最新2014年浙江省温州市数学中考卷

合集下载

浙江省温州市2014年中考数学试题(word版) (10)

浙江省温州市2014年中考数学试题(word版) (10)

温州地区2013-2014学年第二学期第一次模拟考试九年级数学试卷(本卷满分为150分,考试时间为120分钟)温馨提示:用心思考,细心答题,相信你一定会有出色的表现!参考公式:二次函数cbxaxy++=2(a≠0)图象的顶点坐标是(2ba-,244ac ba-).一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1、若使代数式1-2x有意义,则字母x的取值范围是……………………()A、1≠x B、21≥x C、1≥x D、21≠x2、如图1所示是几何体的主视图与左视图,那么它的俯视图是………………()图13、禽流感病毒呈球形,其最小直径约为0.000 000 08米,用科学记数法表示为()A、80×190-米B、0.8×170-米C、8×180-米D、8×190-米4、如图2,在直角坐标系中,点A的坐标是(2,3),则tanα的值是…………()A、32B、23C、13132D、131335、如图3,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=…………()A、40°B、50°C、60°D、80°6、不等式组图4AB CD图3OA BCD 1D 2B 2B 3B 4B 1A 4A 3A 2A 1BA C图5图6⎩⎨⎧>-≤-x x x 32201解集在数轴上表示为……………………………………( ) A .B .C .D .7、已知抛物线3)1(22-+-=x y ,则它的顶点坐标是…………………………( ) A 、(1,3) B 、(-1,3) C 、(1,-3) D 、(-1,-3)8、如图4所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,AD :DC=1:2,△ABC 的面积是18,则△DEC 的面积是………………………………………………( ) A 、8 B 、9 C 、12 D 、159、如图5,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ).若y 1< y 2,则x 的取值范围是……( )A 、x <-1或0<x <2B 、x <-1或x >2C 、-1<x <0或0<x <2D 、-1<x <0或x >2 10、如图6,Rt △ABC 中,∠ACB=Rt ∠,AC=2BC=2,作内接正方形 A 1B 1D 1C ;在Rt △AA 1B 1中,作内接正方形A 2B 2D 2A 1;在Rt △A A 2B 2 中,作内接正方形A 3B 3D 3A 2;……;依次作下去,则第n 个正方 形A n B n D n A n-1的边长是………………………………( ) A 、131-n B 、 n 31C 、1132--n n D 、n n 32二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:92-a =_______________12、我校开展的“好书伴我成长”读书活动,为了解九年级200名学生读书情况,随机调查了九年级50名学生读书的册数.统计数据如下表所示:册数 0 1 2 3 4册及以上 人数31316a5则全校九年级学生的读书册数等于3册的有_______名图7图813、已知圆锥的母线是3cm ,底面半径是1cm ,则圆锥的表面积是_____________cm 214、某商店为尽快清空往季商品,采取如下销售方案:将原来商品每件m 元,加价50%,再做降价40%.经过调整后的实际价格为___________元(结果用含m 的代数式表示)15、如图7,在平面直角坐标系中,点A 是抛物线b x a y +-=2)1(与y 轴的交点,点B 是这条抛物线上的另一点,且AB∥x 轴,则以AB 为边的等边△ABC 的周长为 .16、如图8,在Rt △ABC 中,∠ACB=90°,以点C 为圆心做弧,分别交AC 、CB 的延长线于点D 、F ,连结DF ,交AB 于点E ,已知S △BEF =9,S △CDF =40,tan ∠DFC=2,则BC=________, S △ABC =____________三、解答题(本题有8小题,共80分): 17、(本题10分)(1)计算:()021845sin 2---+⨯-π(2)先化简,再求值:⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1),其中x =2 18、(本题8分)如图9,AB 是CD 的垂直平分线,交CD 于点M ,过点M 作ME ⊥A C , MF ⊥AD ,垂足分别为E 、F 。

浙江省温州市2014年中考数学试题(word版) (11)

浙江省温州市2014年中考数学试题(word版) (11)

浙江省温州地区2013-2014学年上学期期末模拟学业水平检测八年级数学试卷考生注意:1.本试卷满分100分,考试时间为90分钟;2.答题时,用0.5毫米的黑色或蓝色中性笔在试卷上作答;3.请在试卷的密封线内写上自己所在的学校、班级及姓名和考号。

一、细心选一选(本题共10小题,每小题3分,共30分)【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】1、点(-1,2)位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2、若∠1和∠3是同旁内角,∠1=78度,那么下列说法正确的是( )(A )∠3=78度 (B ) ∠3=102度 (C )∠1+∠3=180度(D )∠3的度数无法确定 3.如图,已知∠1=∠2,则下列结论一定正确的是( )(A )∠3=∠4 (B ) ∠1=∠3 (C ) AB//CD (D ) AD//BC4.小明、小强、小刚家在如图所示的点A 、B 、C 三个地方,它们的连线恰好构成一个直角三角形,B ,C 之间的距离为5km ,新华书店恰好位于斜边BC 的中点D ,则新华书店D 与小明家A 的距离是( )(A)2.5km (B)3km (C)4 km (D)5km 5.下列能断定△ABC 为等腰三角形的是( )题号 1 2 3 4 5 6 7 8 9 10 答案学校 班 级________________ 姓 名________________ 学 号_______________封线 密答 题 请 不 要 超 过 此 密 封 线 学校 班 级________________ 姓 名________________ 考 号_______________ ADBC (第8题)第3题DB AC第4题(A )∠A=30º、∠B=60º (B )∠A=50º、∠B=80º (C )AB=AC=2,BC=4 (D )AB=3、BC=7,周长为136.某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

浙江省温州市2014年中考数学试题(word版) (14)

浙江省温州市2014年中考数学试题(word版) (14)

九年级数学试卷温馨提示:同学们:全卷满分为150分,考试时间120分钟,请仔细审题。

参考公式:)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2ab ac a b -- 一.选择题(本题共10题,每题4分,共40分.每小题只有一个选项是正确的,不选,多选,错选,均不得分) 1.反比例函数xy 5-= 的图象位于-------------------------------------------------------( ) A .第一、二象限 B .第一、三象限C .第二、三象限D .第二、四象限2.若34a b =,则a bb +=------------------------------------------------------------------( ) A .2 B .74 C . 54 D . 323.把抛物线y =(x +1)2向下平移3个单位,所得到的抛物线是-----------------------( )A . y =x 2-3B . y =(x +1)2-3C . y =(x +3)2+1D . y = (x -3)2+14.如图,点A 、B 、C 都在⊙O 上,若∠A=44°,则∠BOC 的度数为--------------( )A .22oB .44oC .46oD .88o5.如图,C 是以AB 为直径的⊙O 上一点,已知AB =10,BC =6,则圆心O 到弦BC 的距离是-------------------------------------------------------------------------------------------- -( )A .3B .4C .5D .2.56.如图,A 、B 、C 三点在正方形网格线的交点处.若将△ACB绕着点A 逆时针旋转得到△''AC B ,则tan 'B 的值为-----------------------------( ) A .1 B .12C .13D .147.对于抛物线y=-x 2+2x -3,下列结论正确的是---------------------------------------( )A .与x 轴有两个交点B .开口向上C .与y 轴交点坐标是(0,—3)D .顶点坐标是(1,2)8.如图,点C 是线段AB 的黄金分割点(AC >BC )则下列结论中正确的是-- ( )BA第5题图O第4题图第6题图第5题图FE CBADA .222BC AB AC +=B . AB AC BC ⋅=2C .25=AC AB D .215-=ACBC第8题图 第9题图 第10题图9.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F , 25:4:=∆∆ABF DEF S S ,则DE : EC 为---------------------------------------------------------- ( ) A .2:3 B .2:5 C .4:21 D .4:2510.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y =kx(x >0)的图像与△ABC 有公共点,则k 的取值范围是--------------------( )A .2≤k ≤5B .2≤k ≤8C .2≤k ≤9D .5≤k ≤8 二、填空题(本题共6题,每小题5分,共30分.) 11.已知二次函数y=x 2+3x -5,当x=2时,y= . 12.已知线段a =3,b =16,则a 、b 的比例中项为 . 13.某校九年级二班50名学生的年龄情况如下表所示:年龄 14岁 15岁 16岁 17岁 人 数720167从该班随机地抽取一人,抽到学生的年龄恰好是15岁的概率是 .14.如图,小华用一个半径为6cm ,面积为218πcm 的扇形纸板,制作一个圆形的玩具帽,则帽子的底面半径r= cm .15.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离OB =2,OA =4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好 与⊙O 相切于点C ,则OC = .第15题图BEDFxOA Cy16.如图,Rt △OAB ∽Rt △BCD ,斜边都在x 轴上,tan ∠AOB=2,AB =56,双曲线xky =(x >0)与AO 交于点E 、交BC 于点F ,且 OE =2AE , CF =2BF ,,则反比例函数解析式是 , 点C 的坐标是 .三、解答题:(本题有8小题,共80分) 第16题图 17.(本题8分)已知二次函数的图象经过点( —1, —8 ),顶点为( 2, 1 ).(1)求这个二次函数的解析式; (2)求图象与x 轴的交点坐标.18.(本题8分) 如图,小山岗的斜坡AC 的坡度是43tan =α,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6○,求小山岗的高AB (结果取整数;参考数据:sin 26.6○=0.45, cos 26.6○=0.89, tan 26.6○=0.50 )。

2014年浙江省温州市中考数学试卷-答案

2014年浙江省温州市中考数学试卷-答案

16.【答案】4 或 12
【解析】当 O 与 AD 相切于点 M 时,如图 1, O 与 CD 相切于点 G ,连接 OG ,则 OG CD ,延长 GO
交 AB 于点 H ,则 OH EF ,设 EH x .则 EF 2x , EG : EF 5 : 2 ,EG 5x , GH 2x , AD 8 ,
t 3 在1 t 9 范围内
2
4
27 S 9
8
2
当 9 t 5 时, S t(2t 6) 2(t 3)2 9
2
22
27 S 20 2
【考点】图形与坐标、平行四边形的判定、相似三角形的判定和性质及二次函数的综合应用.
9/9
又 S五边形ACBED S△ACB S△AED S△BDE 1 ab 1 c2 1 a(b a) 2 22
1 ab 1 b2 1 ab 1 ab 1 c2 1 a(b a) 2 22 2 22
a2 b2 c2
证法二:连接 BD ,过点 B 作 DE 边上的高 BF ,
浙江省温州市 2014 年初中毕业生学业考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】C 【解析】异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值,(3) 4 4 3 1 , 故选 C. 【考点】有理数的运算. 2.【答案】C 【解析】捐款 15~20 元的人数最多.故选 C. 【考点】频数分布直方图. 3.【答案】D 【解析】主视图是从正面看到的几何体的视图,故选 D. 【考点】几何体的三视图. 4.【答案】A 【解析】要使分式 x 2 意义,只需满足分母 x 2 0 , x 2 即可,故选 A

【VIP专享】2014年浙江省初中毕业生学业考试(温州市试卷)

【VIP专享】2014年浙江省初中毕业生学业考试(温州市试卷)

[
D. ∠B+∠C
D. 7
D. x 1
D. m2
[
D. 25℃
学习方法报社

9. 20 位同学在植树节这天共种了 52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
男生有 x 人,女生有 y 人,根据题意,列 方程组正确的是( )
x y 52 A. 3x 2 y 20
x y 20 C. 2x 3y 52
A. (0,-4) B. (0,4) C. (2,0) D. (-2,0)
8 . 如图,已知点 A,B,C 在⊙O 上, 为优弧,下列选项中与∠AOB 相
等的是( )
A. 2∠C
B. 4∠B
C. 4∠A
C. 24℃
第 1 页 共 10 页
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2014年浙江省温州市数学中考试题述评

2014年浙江省温州市数学中考试题述评
的顶 点 A在 第 一 象 限 , A B∥
。 J j

由 于s 边 删 ∞ = s c D + s 。 = 寻 6 + 寻 口 6 ,
又 因为 S 口 边 聊D c 口= S A a 册 +I s △ D ∞=
图 3
轴, A D∥y轴 , 且对 角线的交点与原点 0重合. 在 边A B从 小于 A D 到大 于 A D的 变化过程 中 , 若矩 形

4 0・
中学教研 ( 数学)
A B C D的周长 始终 保持不 变 , 则 经 过 动点 A的反 比
看最 近 5年来 , 温州 市数学 中考压轴题 都在考
例函数 Y = ( 其中 ≠ O ) 中k 值的变化情况是
( A. 一直增 大
B . 一 直减 小
“ 动” . 以方 程 、 函数 和几何 图形 的综合 运 用作 为 主 要方 式 , 用到三 角形 、 四边形 、 相似形 和 圆等有关 知
表示 出五 边形 面积 , 建 立 等式 . 首先 联 结 B D, 过 点


B作 D E边 上 的 高 B F , 则 B F =b—n , 表示 出 S 五 边 黝㈣ , 进 而得 出答 案. 从勾 股定 理 的根 源 人 手 , 探 究 它 的证 明方 法 , 这 在往年 的考 试 中并 不常 见. 这道题让 学生更 加深 刻地 理解 勾股 定理 , 不 仅使 学 生知其 然而且更 深入 地 知其所 以然. 在渗透数学文化的同时, 引导 学生 探 索勾股 定 理 的证 明过程 , 让 学生近距 离地 感受到 图形 变换 的魅 力. 考 试 不再 是 简 单 的 “ 考考 你 ” , 更 多 的是让 你 “ 试试 ”, 你 会 学 到更 多 , 一 场考 试 也是 节“ 学 习课 ” ! 源 于教 材 , 取 题 教材 , 进行 改编 和再造 , 这一直 以来受 到大 家 的喜爱 和拥 护 , 相信 必能有 效遏制题 海 战术 , 回归到对 数 学 本 质 的研 究. 考 查学 生 对 核 心 知识 的掌 握 , 突 出数 学重 要 思 想 与 方法 , 研 究解 决 问题 的通 性通 法 , 这些 基本 溢满 整份试 卷. 2 试卷 出题原意与考生考场发挥的契合度 如今 一 份 地 方 中考 卷 , 肩 \ B 负着 双 重 身 份 , 即 毕 业 考 核 和

2014年浙江温州高级中等学校招生考试数学试卷

2014年浙江温州高级中等学校招生考试数学试卷

2014年浙江省初中毕业生学业考试(温州市试卷) 数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(-3)+4的结果是()A.-7B.-1C.1D.72.下图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元3.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()有意义,则x的取值应满足()4.要使分式-A.x≠2B.x≠-1C.x=2D.x=-15.计算:m6·m3的结果是()A.m18B.m9C.m3D.m26.小明记录了一星期每天的最高气温如下表,则这个星期每天的最高气温的中位数是()A.22℃B.23℃C.24℃D.25℃7.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)8.如图,已知点A,B,C在☉O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人.根据题意,列方程组正确的是()A. B. C. D.10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2+3a=.12.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.13.不等式3x-2>4的解是.14.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.15.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题.你举的反例是x= (写出一个x的值即可).16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.☉O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG∶EF=∶2.当边AD或BC所在的直线与☉O相切时,AB的长是.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:+2×(-5)+(-3)2+20140;(2)化简:(a+1)2+2(1-a).18.(本题8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.19.(本题8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是.求从袋中取出黑球的个数.20.(本题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(本题10分)如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(-1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF与△BNF的面积之比.22.(本题8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°.求证:a2+b2=c2.图1证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab,又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),∴b2+ab=c2+a(b-a).∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.图2证明:连结.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.23.(本题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).24.(本题14分)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO.设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M、N分别在一、四象限.在运动过程中,设▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.答案全解全析:一、选择题1.C原式=+(4-3)=1,故选C.2.C根据题图所给出的数据可得捐款15~20元的有20人,人数最多,则捐款人数最多的一组是15~20元.故选C.3.D从几何体的正面看,可得此几何体的主视图是,故选D.4.A由题意得x-2≠0,解得x≠2.故选A.5.B同底数幂相乘,底数不变,指数相加,∴m6·m3=m9.故选B.6.B将数据从小到大排列:21,22,22,23,24,24,25,中位数是23℃.故选B.7.B令x=0,得y=2×0+4=4,则函数图象与y轴交点的坐标是(0,4).故选B.8.A由圆周角定理可得∠AOB=2∠C.故选A.9.D因为男生有x人,女生有y人,根据题意得,故选D.10.C在矩形ABCD中,设AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值,设a+b=t,则b=t-a.∵矩形ABCD的对角线的交点与原点O重合,∴k=AB·AD=ab=a(t-a)=-a2+ta.∴k关于a的函数图象是开口向下的抛物线,且当a=,即a=b时,k最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.评析本题考查了矩形的性质,反比例函数中比例系数k的几何意义及不等式的性质,属中等难度题.根据题意得出k=AB·AD=ab是解题的关键.二、填空题11.答案a(a+3)解析a2+3a=a(a+3).12.答案80解析∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.评析本题考查了平行线的性质及三角形外角的性质,解此题的关键是求出∠C的度数,进而得出∠3的度数.13.答案x>2解析移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.14.答案解析tan A==.15.答案-2(答案不唯一)解析当x=-2时,原式=4-10+5=-1,不是正数.16.答案4或12解析如图,连结EO,连结GO并延长,交EF于N点,则GN⊥AB.∴EN=NF.又∵EG∶EF=∶2,∴EG∶EN=∶1.又∵GN=AD=8,∴设EN=x,则GE=x,根据勾股定理得(x)2-x2=64,解得x=4,∴GE=4.设☉O的半径为r,由OE2=EN2+ON2得r2=16+(8-r)2,∴r=5.设BC所在的直线与☉O相切于K点,连结OK.∴OK=NB=5,∴EB=9.又AE=AB,∴AB=12.当AD与☉O相切时,同理可求出AB=4.评析本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于正确添加辅助线,并进行分类讨论,利用勾股定理求出对应圆的半径.三、解答题17.解析(1)原式=2-10+9+1=2.(2)原式=a2+2a+1+2-2a=a2+3.18.解析(1)如图甲所示.(2)如图乙所示.图甲图乙19.解析(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为=.(2)设从袋中取出x个黑球,=,根据题意得--解得x=2,经检验,x=2是原分式方程的解.∴从袋中取出黑球的个数为2.20.解析(1)∵△ABC是等边三角形,∴∠B=60°.∵DE∥AB,∴∠EDC=∠B=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2.∵∠DEF=90°,∠F=30°,∴DF=2DE=4.21.解析(1)由题意可得-(-1)2+2×(-1)+c=0,解得c=3.∴y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴顶点的坐标为M(1,4).(2)∵A(-1,0),抛物线的对称轴为直线x=1,∴点B(3,0).∴EM=1,BN=2.易知EM∥BN,∴△EMF∽△BNF.∴===.22.证明连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),∴ab+b2+ab=ab+c2+a(b-a),∴a2+b2=c2.评析本题主要考查了勾股定理的证明,表示出五边形面积是解题关键.23.解析(1)=-=82.5(分).答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题.-由题意得解得答:E同学答对12题,答错1题.②C同学.他实际答对14题,答错3题,未答3题.评析本题考查加权平均数的求法、二元一次方程组的解法,注意理解题意,正确列式解答.24.解析(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3,即t=,∴OE=+3=,∴E.(2)证明:如图,连结CD交OP于点G,在平行四边形PCOD中,CG=DG,OG=PG,∵AO=PE,∴AG=EG,∴四边形ADEC为平行四边形.(3)①(i)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,=,∴=,即-∴t=1.第二种情况:如图,当点N在DE边上时,∵NF∥PD,∴△EFN∽△EPD,∴===,-∴t=.(ii)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴△EMF∽△EDP.=,∴=,即-∴t=.第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,=,∴=,即-∴t=5.②<S≤或<S≤20.提示:当1≤t<时,S=t(6-2t)=-2-+,∵t=在1≤t<范围内,∴<S≤.当<t≤5时,S=t(2t-6)=2--,∴<S≤20.评析本题主要考查了平行四边形的知识,解题的关键是分几种不同的情况讨论.。

最新温州市中考数学试卷及答案(word版)

最新温州市中考数学试卷及答案(word版)

2014年浙江省初中毕业生学业考试(温州市卷)数学试题卷满分150分,考试时间为120分钟一、选择题(本题有10小题,每小题4分,共40分) 1. 计算4)3(+-的结果是A. -7B. -1C. 1D. 7 2. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一个组是A. 5~10元B. 10~15元C. 15~20元D. 20~25元3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是4. 要使分式21-+x x 有意义,则x 的取值应满足 A. 2≠x B. 1-≠x C. 2=x D. 1-=x 5. 计算36m m ⋅的结果是A. 18m B. 9m C. 3m D. 2m6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是星期 一 二 三 四 五 六 日 最高气温(℃)22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7. 一次函数42+=x y 的图像与y 轴交点的坐标是A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)(2014.温州.8.本题4分) 如图,已知点A ,B ,C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是 A. ⎩⎨⎧=+=+202352y x y x B.⎩⎨⎧=+=+203252y x y x C. ⎩⎨⎧=+=+523220y x y x D.⎩⎨⎧=+=+522320y x y x 10. 如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点重合,在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数)0(≠=k xky 中,k 的值的变化情况是 A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:=+a a 32▲12. 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= ▲ 度 13. 不等式423>-x 的解是 ▲14. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 ▲15. 请举反例说明“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是x = ▲ (写出一个x 的值即可)(2014.温州.16. 本题5分)如图,在矩形ABCD 中,AD=8,E 是边AB 上一点,且AE=41AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相较于另一点F ,且EG :EF=2:5。

【五年中考】2010-2014年温州中考数学试题及参考答案(精校版)

【五年中考】2010-2014年温州中考数学试题及参考答案(精校版)

D、外离
9、已知二次函数的图像 (0 x 3) 如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是
()
A、有最小值 0,有最大值 3
B、有最小值-1,有最大值 0
C、有最小值-1,有最大值 3
D、有最小值-1,无最大值
10、如图,O 是正方形 ABCD 的对角线 BD 上一点,⊙O 与边 AB,BC 都相切,点 E,F 分别在 AD,DC 上,现将
(1)求 CD 的长;(2)求 BF 的长。
第 12 页 共 44 页
21、(本题 10 分)一个不透明的布袋里装有 3 个球,其中 2 个红球,1 个白球,它们除颜色外其余都相同。 (1)求摸出 1 个球是白球的概率; (2)摸出 1 个球,记下颜色后放回,并搅均,再摸出 1 个球。求两次摸出的球恰好颜色不同的概率(要
卷Ⅱ
二、填空题(本题有 6 小题。每小题 5 分,共 30 分)
11.分解因式:m2—2m=

12.在“情系玉树献爱心”捐款活动中,某校九(1)班同学人人拿出自己的零花钱,现将同学们的捐款数
整理成统计表,则该班同学平均每人捐款
元.
捐 款 数 5 10 20 50
13.当 x=
x3 时,分式 x 1 的值等于 2.
(1)计算: 8 2010 3 0 1 1 . 2
(2)先化简,再求值:(n+6)(a-b)+a(2b-a),其中 n=1.5,b=-2.
第 3 页 共 44 页
18.(本题 6 分)由 3 个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.
19.(本题 8 分)2010 年上海世博会某展览馆展厅东面有两个入口 A,B,南面 j 西面、北面各有一个出口, 示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.

2014年浙江省温州市中考数学试卷附详细答案(原版+解析版)

2014年浙江省温州市中考数学试卷附详细答案(原版+解析版)

2014年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()A.﹣7B.﹣1 C. 1 D.72.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A.B.C.D.4.(4分)(2014•温州)要使分式有意义,则x的取值应满足()5.(4分)(2014•温州)计算:m6•m3的结果()6.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()7.(4分)(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()(8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB 相等的是()9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()..10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=.12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.13.(5分)(2014•温州)不等式3x﹣2>4的解是.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x= (写出一个x的值即可).16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是.三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结∵S五边形ACBED=又∵S五边形ACBED=∴∴a2+b2=c2.23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)24.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.2014年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A.B.C.D.解:从几何体的正面看可得此几何体的主视图是,4.(4分)(2014•温州)要使分式有意义,则x的取值应满足()636.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气(8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB 相等的是()9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,人,女生有y...10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()k=•AD=abAB•二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=a(a+3).12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.)求出即可.tanA==,故答案为:.,cosA=,.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).时,原式+5=5,不是整数,故答案为:.题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.EF=:EN=,依据勾股定理即可求得AB:::,解得:x=4,GE=,K=NB=5AB三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)=2;18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.=,继而求得答案.∴从袋中摸出一个球是黄球的概率为:=;)设从袋中取出x=,20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.=)(.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.ab++ab+c aab+b ab=ab++23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)题,根据对错共==82.5,同学答对1224.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B 出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.时和当<OB=3t=,+3=,=,即=,==,t=,的延长线上时,==,t=,=即=,t=5②<≤或时,)+t=在范围内,<≤,<﹣﹣,<。

2014年温州市中考数学真题及答案解析

2014年温州市中考数学真题及答案解析

2014年浙江省初中毕业生学业考试(温州市卷)数学试题卷满分150分,考试时间为120分钟参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0)卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分) 1. 计算4)3(+-的结果是A. -7B. -1C. 1D. 72. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一 个边界值,不含后一个边界值),则捐款人数最多的一个组是A. 5~10元B. 10~15元C. 15~20元D. 20~25元 3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是4. 要使分式21-+x x 有意义,则x 的取值应满足 A. 2≠x B. 1-≠x C. 2=x D. 1-=x 5. 计算36m m ⋅的结果是A. 18m B. 9m C. 3m D. 2m6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是星期 一 二 三 四 五 六 日 最高气温(℃)22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7. 一次函数42+=x y 的图像与y 轴交点的坐标是A. (0,-4)B. (0,4)C. (2,0)D. (-2,0) 8. 如图,已知点A ,B ,C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是 A. ⎩⎨⎧=+=+202352y x y x B.⎩⎨⎧=+=+203252y x y x C. ⎩⎨⎧=+=+523220y x y x D. ⎩⎨⎧=+=+522320y x y x 10. 如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点重合,在边AB从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数)0(≠=k xky 中,k 的值的变化情况是 A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:=+a a 32▲12. 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= ▲ 度 13. 不等式423>-x 的解是 ▲14. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 ▲15. 请举反例说明“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是x = ▲ (写出一个x 的值即可)16. 如图,在矩形ABCD 中,AD=8,E 是边AB 上一点,且AE=41AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相较于另一点F ,且EG :EF=2:5。

浙江省温州市中考数学试卷及答案

浙江省温州市中考数学试卷及答案

浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()A.﹣7B.﹣1 C.1D. 7 考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+(4﹣3)=1,故选:C.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)(2014•温州)要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1考点:分式有意义的条件.分析:根据分式有意义,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≠0,解得x≠2.故选A.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(4分)(2014•温州)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计析:算即可.解答:解:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22 24 23 25 24 22 21A.22℃B.23℃C.24℃D.25℃考点:中位数.分析:将数据从小到大排列,根据中位数的定义求解即可.解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=a(a+3).考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.评:12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.考点:平行线的性质.分析:根据平行线的性质求出∠C,根据三角形外角性质求出即可.解答:解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.点评:本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA 的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).考点:命题与定理.专题:开放型.分析:能使得x2+5x+5的值不是整数的任意实数均可.解答:解:当x=时,原式=+5=5,不是整数,故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1 =2;(2)原式=a2+2a+1+2﹣2a =a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图—应用与设计作图.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.分析:(1)根据平行线的性质可得∠EDC=∠B=60,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解解:(1)∵△ABC是等边三角形,答:∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.考点:勾股定理的证明.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,进而得出答案.解答:证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题主要考查了勾股定理得证明,表示出五边形面积是解题关键.23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:二元一次方程组的应用;加权平均数.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.24.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P 运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC 是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD 求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC 求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.。

浙江省温州市2014年中考数学试题(word版) (2)

浙江省温州市2014年中考数学试题(word版) (2)

浙江省桐乡市实验中学2013-2014学年上学期基础调研九年级数学试卷一、选择题(每小题3分,共27分)1、对右图的对称性表述,正确的是( ).(A )轴对称图形 (B )中心对称图形(C )既是轴对称图形又是中心对称图形 (D )既不是轴对称图形又不是中心对称图形 2、已知数轴上三点A 、B 、C 分别表示有理数a 、1、-1,那么1+a 表示( )(A )A 、B 两点的距离 (B )A 、C 两点的距离(C )A 、B 两点到原点的距离之和 (D )A 、C 两点到原点的距离之和 3、已知点P (x , x ),则点P 一定 ( )(A )在第一象限 (B )在第一或第二象限 (C )在x 轴上方 (D )不在x 轴下方 4、已知三角形的周长是c ,其中一边是另一边2倍,则三角形的最小边的范围是( ) (A )6c 与4c 之间 (B )6c 与3c 之间 (C )4c 与3c 之间 (D )3c 与2c之间 5、如图,∠XOY =90°,OW 平分∠XOY ,P A ⊥OX ,PB ⊥OY ,PC ⊥OW .若OA +OB +OC =1,则OC =( )A .2-2B .2-1C .6-33D .32-36、直线b kx y +=经过点A (-1,m )与点B (m ,1),其中m >1,则直线b kx y +=不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7、若解分式方程22111x m x x x x x++-=++产生增根,则m 的值是( ) (A ) --12或 (B ) -12或 (C ) 12或 (D ) 12或-8、 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个ACXPW 第5题 第1题9、如图,△AOB 为等边三角形,点A 在第四象,点B 的坐标为(4,0),过点C (-4,0)作直线l 交AO 于D ,交AB 于E ,且点E 在某反比例函数x 图象上,当△ADE 和△DCO 的面积相等时,k 的值为( ) A 、-33B 、-3C 、-33D 、-66二、填空(每小题4分,共20分)10、已知圆心角为120°的扇形面积为12π,那么扇形的弧长为11、若关于x 函数1)3(2+--=x a ax y 的图像与x 轴有唯一公共点,则a =__________.12、已知反比例函数12y x=-,当6y <时,x 的取值范围是 13、如图,A 、B 、C 为⊙O 上三点,∠BAC=120°,∠ABC=45°,M ,N 分别是BC ,AC 的中点,则OM:ON=14、已知点E 11(,)x y 、F 22(,)x y 在抛物线2y ax bx c =++的对称轴的同侧(点E 在点F 的左侧),过点E 、F 分别作x 轴的垂线,分别交x 轴于点B 、D ,交直线y =2ax +b 于点A 、C ,设S 为直线AB 、CD 与x 轴、直线y=2ax+b 所围成图形的面积,.则S 与1y 2,y 的数量关系式为:S=三、解答题(共28分)15、(6分)(1)解方程:12136x x x -+-=-(2)x ,y 表示两个数,规定新运算“*”及“”如下:x *y =mx +n y ,x △y =kxy ,其中m ,n ,k 均为自然数(零除外),已知1*2=5,(2*3)△4=64,求(1△2)*3的值。

温州中考数学试题剖析版

温州中考数学试题剖析版

C. 15﹣20 元
D . 20﹣25 元
A

B.
考点:简单组合体的三视图. 菁优网版权所有
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解答:
解:从几何体的正面看可得此几何体的主视图是
故选:D. 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,
中位数是 23.
故选 B.

23

25
点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中
间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
7.(4 分)(2014•温州)一次函数 y=2x+4 的图象与 y 轴交点的坐标是( )
A . (0,﹣4)
B. (0,4)
考点:一次函数图象上点的坐标特征. 菁优网版权所有
分析:在解析式中令 x=0,即可求得与 y 轴的交点的纵坐标. 解答:解:令 x=0,得 y=2×0+4=4,
则函数与 y 轴的交点坐标是(0,4). 故选 B. 点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.
2014 年浙江省温州市中考数学试卷
参考答案与试题解析
一、选择题(共 10 小题,每小题 4 分,满分 40 分)
1.(4 分)(2014•温州)计算:(﹣3)+4 的结果是( ) A. ﹣7 B. ﹣1 C. 1 D. 7 考点:有理数的加法.
菁优网版权所有
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,过力根管保据线护生0高不产中仅工资可艺料以高试解中卷决资配吊料置顶试技层卷术配要是置求指不,机规对组范电在高气进中设行资备继料进电试行保卷空护问载高题与中2带2资,负料而荷试且下卷可高总保中体障资配2料3置2试3时各卷,类调需管控要路试在习验最2;3大2对3限2设题度备到内进位来行。确调在保整管机使路组其敷高在设中正过资常程料工1试中况卷,下安要与全加过,强度并看工且2作5尽5下2可2都2能护可地1以关缩正于小常管故工路障作高高;中中对资资于料料继试试电卷卷保连破护接坏进管范行口围整处,核理或对高者定中对值资某,料些审试异核卷常与弯高校扁中对度资图固料纸定试,盒卷编位工写置况复.进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年浙江省初中毕业生学业考试(温州市卷)
数学试题卷
参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是
a
ac
b b x 242-±-=
(ac b 42-≥0) 一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选、
多选、错选均不给分) 1. 计算3)2(⨯-的结果是
A. -6
B. -1
C. 1
D. 6 2. 小明对九(1)班全班同学“你最喜欢的球类项目是什么?
(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。

由图可知,该班同学最喜欢的球类项目是
A. 羽毛球
B. 乒乓球
C. 排球
D. 篮球 3. 下列各图形中,经过折叠能围成一个立方体的是
4. 下列各组数可能是一个三角形的边长的是
A. 1,2,4
B. 4,5,9
C. 4,6,8
D. 5,5,11 5. 若分式
4
3
+-x x 的值为0,则x 的值是 A. 3=x B. 0=x C. 3-=x D. 4-=x 6. 已知点P (1,-3)在反比例函数)0(≠=
k x k
y 的图象上,则k 的值是
A. 3
B. -3
C. 31
D. 3
1
-
7. 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB=4,OC=1,则OB 的长
是 A.
3 B. 5 C. 15 D. 17
8. 如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是
A.
43 B. 34 C. 53 D. 5
4
9. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,已知AE=6,
4
3
=DB AD ,则EC 的长是
A. 4.5
B. 8
C. 10.5
D. 14 10. 在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作
,如图
所示,若AB=4,AC=2,4
21π
=-S S ,则43S S -的值是
A. 429π
B. 4
23π
C. 411π
D. 45π
二、填空题(本题有6小题,每小题5分,共30分)
11. 因式分解:m m 52
-=__________
12. 在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,
7.8分,7.7分,8.0分,则这位歌手的平均得分是_____分 13. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,
∠2=70°,则∠3=__________度
14. 方程0122
=--x x 的根是__________
15. 如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别
为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴
对称变换,得到△A’B’C’(A 和A’,B 和B’,C 和C’分别是对应顶点),直线b x y +=经过点A ,C’,则点C’的坐标是__________
16. 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大
小不变,且使圆洞的圆心在矩形桌面的对角线交点上。

木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm )后,从点N 沿折
线NF-FM (NF ∥BC ,FM ∥AB )切割,如图1所示。

图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN ,AM 的长分别是__________
三、解答题(本题有8小题,共80分。

解答需写出必要的文字说明、推演步骤或证明过程) 17.(本题10分)
(1)计算:0
)2
1()12(8+-+; (2)化简:)3()1)(1(---+a a a a
18.(本题8分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作
DE ⊥AB ,于点E
(1)求证:△ACD ≌△AED ;
(2)若∠B=30°,CD=1,求BD 的长。

19.(本题8分)如图,在方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上,按要
求画一个三角形,使它的顶点在方格的顶点上。

(1)将△ABC 平移,使点P 落在平移后的三角形内部..,在图甲中画出示意图; (2)以点C 为旋转中心,将△ABC 旋转,使点P 落在旋转后的三角形内部..
,在图乙中画出示意图。

20.(本题10分)如图,抛物线4)1(2+-=x a y 与x 轴交于点A ,B ,与y 轴交于点C 。


点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD 。

已知点A 坐标为(-1,0)。

(1)求该抛物线的解析式; (2)求梯形COBD 的面积。

21.(本题10分)一个不透明的袋中装有5个黄球、13个黑球和22个红球,它们除颜色外
都相同。

(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一
个球是黄球的概率不小于
3
1
,问至少取出了多少个黑球?
22.(本题10分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延
长DA与⊙O的另一个交点为E,连结AC,CE。

(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长。

23.(本题10分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧
解、数学应用、魔方复原,每个项目得分都按一定百分比折算后计入总分。

下表为甲、乙、丙三位同学的得分情况(单位:分)
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算计入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖。

现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后
的分数和是20分,问:甲能否获得这次比赛的一等奖?
24.(本题14分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),
B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作□CDEF。

(1)当0<m<8时,求CE的长(用含m的代数式表示);
(2)当m=3时,是否存在点D,使□CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在整个运动过程中,若存在唯一的位置,使得□CDEF为矩形,请求出所有满
足条件的m的值。

相关文档
最新文档