【真题】2014年浙江省高考数学试卷及答案(理科)

合集下载

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

函数是( ).
A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)
【答案】D
【解析】因为函数 y=f(x)的图像与函数 y=g(x)的图像关于直线 x+y=0 对称,
而函数图像与其反函数的图像关于直线 y=x 对称,
所以这两个函数的反函数图像也关于直线 x+y=0 对称.
设函数 y=f(x)的反函数图像上任一点 P(x,y),
62

.
【答案】(-∞,2]
4
【解析】f(x)=cos 2x+asin x=1-2sin2x+asin x.
令 t=sin x,∵x∈
π,π
62
,∴t∈
1 2
,1
,
∴g(t)=1-2t2+at=-2t2+at+1
1 2
<
t
<
1
,
由题意知2×(-2)

1 ,∴a≤2,
2
∴a 的取值范围为(-∞,2].
11.(2014 大纲全国,理 11)已知二面角α-l-β为 60°,AB⊂α,AB⊥l,A 为垂足,CD⊂β,C∈l,∠ACD=135°,则
异面直线 AB 与 CD 所成角的余弦值为( ).
A.1
B. 2
C. 3
D.1
4
4
4
2
【答案】B
【解析】如图,在平面α内过 C 作 CE∥AB,
则∠ECD 为异面直线 AB 与 CD 所成的角或其补角,
【答案】C
【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=csoins3355°°, ∴csoins3355°°>sin 35°>sin 33°. ∴c>b>a,选 C.

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷真题及答案(理科)

2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。

2014年高考真题——理科数学(全国大纲卷)解析版 Word版含解析

2014年高考真题——理科数学(全国大纲卷)解析版 Word版含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103i z i=+,则z 的共轭复数为 ( )A .13i -+B .13i --C .13i +D .13i -2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =I ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-3.设sin 33,cos55,tan 35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>4.若向量,a b r r 满足:()()1,,2,a a b a a b b =+⊥+⊥r r r r r r r 则b =r ( )A .2B .2C .1D .225.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43C 的方程为 ( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=7.曲线1x y xe-=在点(1, 1)处切线的斜率等于( ) A .2e B .e C .2 D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A .814πB .16πC .9πD .274π 【答案】A .【解析】考点:1.球的内接正四棱锥问题;2. 球的表面积的计算.9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14B .13C .24D .23 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )图2A .6B .5C .4D .311.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 ( )A .14B 2C 3D .12【答案】B.【解析】12.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 8y x 的展开式中22x y 的系数为 . 【答案】70.14.设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2l的夹角的正切值:12124 tan13k kk kθ-==+.考点:1.直线与圆的位置关系(相切);2.两直线的夹角公式.16.若函数()cos2sinf x x a x=+在区间(,)62ππ是减函数,则a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC∆的内角A,B,C的对边分别为a,b,c,已知3cos2cosa C c A=,1tan3A=,求B.18. (本小题满分12分)等差数列{}na的前n项和为nS,已知110a=,2a为整数,且4nS S≤.(I )求{}n a 的通项公式; (II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分) 如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===. (I )证明:11AC A B ⊥; (II )设直线1AA 与平面11BCC B 31A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3人需使用设备的概率;(II)X表示同一工作日需使用设备的人数,求X的数学期望.21.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【答案】(I )24y x =;(II )直线l 的方程为10x y --=或10x y +-=.22. (本小题满分12分)函数()()()ln 11ax f x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 【答案】(I )(i )当12a <<时,()f x 在()21,2a a --上是增函数,在()22,0a a -上是减函数,在()0,+∞上是增函数;(ii )当2a =时,()f x 在()1,-+?上是增函数;(iii )当2a >时,()f x 在是()1,0-上是增函数,在()20,2a a -上是减函数,在()22,a a -+∞上是增函数;(II)详见试题分析.1n k=+时有2333kak k<?++,结论成立.根据(i)、(ii)知对任何n N*Î结论都成立.考点:1.利用导数研究函数的单调性;2.利用数学归纳法证明数列不等式.。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

高中数学--历年高考真题精选7(附答案)

高中数学--历年高考真题精选7(附答案)

高中数学--历年高考真题精选题号 一 二 三 总分 得分一 、选择题(本大题共10小题,每小题4分,共40分)1.给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知二次函数的图象如图所示,则它与轴所围图形的面积为A .B .C .D .3.在5(1)x +-6(1)x +的展开式中,含3x 的项的系数是(A) -5(B) 5(C) -10 (D) 104.为了迎接2010年广州亚运会,某大楼安装5个彩灯,他们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红橙黄绿蓝中的一种颜色,且这5个彩灯商量的颜色各不相同,记得这5个彩灯有序地闪亮一次为一个闪烁,而相邻两个闪烁的时间间隔均为5妙。

在每一个闪烁中,那么需要的时间至少是 A .1205秒B .1200秒C .1195秒D .1190秒 5.由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积为( ) A .154B .174 C .1ln 22D .2ln 26. ( 2x -3 )5的展开式中x 2项的系数为(A )-2160(B )-1080 (C )1080(D )21607.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【 】A .14B .16C .20D .488.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =9.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有A.6种B.12种C.24种D.30种二 、填空题(本大题共8小题,每小题3分,共24分) 11.已知圆C 的圆心是直线1,(1x t y t=⎧⎨=+⎩为参数)与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程为12.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 . 13.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .14.若变量x,y 满足约束条件 ,4,,y x x y y k ≤⎧⎪+≤⎨⎪≥⎩且 2z x y =+的最小值为-6,则k =_______.15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 是BC=CD ,过C 作圆O 的切线交AD 于E 。

2014年全国一卷高考理科数学试卷及答案

2014年全国一卷高考理科数学试卷及答案

2014年全国一卷高考理科数学试卷及答案2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷(选择题共60分)一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x|x-2x-3≥0},B={x|-2≤x<2},则A∩B=A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)2.(1+i)³/(1-i)²=A.1+iB.1-iC.-1+iD.-1-i3.设函数f(x),g(x)的定义域都为R,且f(x)时奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.已知F是双曲线C:x-my=3m(m>0)的一个焦点,则点F 到C的一条渐近线的距离为A.3B.3mC.3D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率=A.1/3B.5/8C.7/8D.16.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]上的图像大致为图片无法显示)7.执行下图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=图片无法显示)A.2016B.715C.35D.288.设α∈(0,π/2),β∈(0,π/2),且tanα=(1+sinβ)/cos²β,则3α-β=A.2α-βB.2α+βC.3α+βD.3α-β9.不等式组{x+y≥1,x-2y≤4}的解集记为D。

有下面四个命题:p1:对于任意的(x,y)∈D,有x+2y≥-2;p2:存在(x,y)∈D,使得x+2y≥2;p3:对于任意的(x,y)∈D,有x+2y≤3;p4:存在(x,y)∈D,使得x+2y≤-1.其中真命题是A.p2,p3B.p1,p4C.p1,p2D.p1,p310.已知抛物线C:y=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个焦点,若2FP=4FQ,则|QF|=A.7/5B.3C.√3D.21.已知函数$f(x)=ax-3x+1$,若$f(x)$存在唯一的零点$x$,且$x>0$,则$a$的取值范围为$\textbf{(C)}$($1$,$+\infty$)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★考试结束前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{2.已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3.某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) A. 902cm B. 1292cm C. 1322cm D. 1382cm 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )A. B. C. D.8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则 A.()()1212,p p E E ξξ>< B.()()1212,p p E E ξξ<> C.()()1212,p p E E ξξ>> D.()()1212,p p E E ξξ<< 10.设函数21)(xx f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99Λ==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人, 每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______.16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________.17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某若则的最大值 。

(仰角为直线AP 与平面ABC所成角)三、解答题:本大题共5小题,共72分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知,3a b c ≠=22cos -cos 3cos 3cos .A B A A B B =(Ⅰ)求角C 的大小; ⅠⅠ()若4sin 5A =,求ABC ∆的面积.19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b b a +==(Ⅰ)求n a 与n b ; ⅠⅠ()设()*∈-=N n b a c nn n 11。

记数列{}n c 的前n 项和为n S . (i )求n S ;(ii )求正整数k ,使得对任意*∈N n ,均有n k S S ≥.20.(本题满分15分)如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.(Ⅰ)证明:⊥DE 平面ACD ; ⅠⅠ()求二面角E AD B --的大小21.(本题满分15分)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;ⅠⅠ()若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.22.(本题满分14分)已知函数()).(33R a a x x x f ∈-+=(Ⅰ)若()x f 在[]1,1-上的最大值和最小值分别记为)(),(a m a M ,求)()(a m a M -; ⅠⅠ()设,R b ∈若()[]42≤+b x f 对[]1,1-∈x 恒成立,求b a +3的取值范围.参 考 答 案一、 选择题:本题考查基本知识和基本运算。

每小题5分,满分50分。

1.B 2.A 3.D 4.C 5.C 6. C 7.D 8.D 9. A 10.B 二、填空题:本题考查基本知识和基本运算。

每小题4分,满分28分。

11.6 12.25 13.31,2⎡⎤⎢⎥⎣⎦ 14.6015.(-∞ 16.2 17.9三.解答题:本大题共5小题,共72分。

解答应写出文字说明、证明过程或演算步骤。

18.本题主要考查诱导公式、两角和差公式、二倍角公式、正弦定理、余弦定理、三角形面积公式等基础知识,同时考查运算求解能力。

满分14分。

(I )由题意得,1cos 21cos 22222A B A B ++-=,即112cos 22cos 22222A AB B -=-, sin(2)sin(2)66A B ππ-=-,由a b ≠得,A B ≠,又()0,A B π+∈,得2266A B πππ-+-=,即23A B π+=,所以3C π=;(II )由c =4sin 5A =,sin sin a c A C=得85a =,由a c <,得A C <,从而3cos 5A =,故()sin sin sin cos cos sin B A C A C A C =+=+=,所以ABC ∆的面积为1sin 2S ac B == 19. 本题主要考查等差数列与等比数列的概念、通项公式、求和公式、不等式性质等基础知识,同时考查运算求解能力。

满分14分。

(I )由题意,()()*∈=N n a a a nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈;(II )(i )由(I )知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭,所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>;当5n ≥时,()()11112n n n n c n n +⎡⎤=-⎢⎥+⎣⎦,而()()()()()11112120222n n n n n n n n n ++++++--=>,得()()51551122n n n ++≤<,所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.20.本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力、推理论证和运算求解能力。

相关文档
最新文档