2017考研:高数常考的四大定理证明

合集下载

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数fx在闭区间a,b上连续,且在该区间的端点取不同的函数值fa=A及fb=B,那么对于A与B之间的任意一个数C,在开区间a,b内至少有一点ξ使得fξ=Ca<ξ<b.Ps:c是介于A、B之间的,结论中的ξ取开区间;介值定理的推论:设函数fx在闭区间a,b上连续,则fx在a,b上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈a,b, 使得fξ=C;闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值;此条推论运用较多Ps:当题目中提到某个函数fx,或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值;2、零点定理:设函数fx在闭区间a,b上连续,且fa与fb异号,即fa.fb<0,那么在开区间内至少存在一点ξ使得fξ=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数fx满足:1、在闭区间a,b上连续;2、在开区间a,b内可导;3、在区间端点处函数值相等,即fa=fb.那么在a,b内至少有一点ξ<aξ<b,使得f`x=0;4、 拉格朗日中值定理:如果函数fx 满足:1、在闭区间a,b 上连续;2、在开区间a,b 内可导;那么在a,b 内至少有一点ξ<a ξ<b,使得fb-fa=f`ξ.b-a.5、 柯西中值定理:如果函数fx 及gx 满足1、在闭区间a,b 上连续;2、在开区间a,b 内可导;3、对任一xa<x<b,g`x ≠0,那么在a,b 内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值;6、 积分中值定理:若函数fx 在a,b 上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba -=⎰ξPs :该定理课本中给的结论是在闭区间上成立;但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数fx 在a,b 上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f b a -=⎰ξ证明:设⎰=x a dx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导导函数即为)(x f ;则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得a b dxx f a b a F b F F b a -=--=⎰)()()()`(ξ而)()`(ξξf F =所以),(b a ∈∃ξ使得)()()(a b f dx x f ba -=⎰ξ;在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可;千万不可直接运用,因为课本给的定理是闭区间;定理运用:1、设)(x f 在0,3上连续,在0,3内存在二阶导函数,且⎰+==20)3()2()()0(2f f dx x f f . 证明:1)2,0(∈∃η使)0()(f f =η2)3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的;有的人明知这样还硬是这样做,最后只能是0分;具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合;1、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导. 则对)(x F 由拉格朗日中值定理有:2、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有fa=fb=fc,那么问题就解决了;第一问中已经在0,2内找到一点,那么能否在2,3内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤从而,M f f m ≤+≤2)3()2(,那么由介值定理就有: 则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf cPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来;2、设fx 在0,1上连续,在0,1内可导,且f0=0,f1=1.证明:ξξξ-=∈∃1)()1,0()1(f 使得、本题第一问较简单,用零点定理证明即可;1、首先构造函数:]1,0[,1)()(∈-+=x x x f x F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得2、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用;在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手;另外在说一点,在历年证明题中,柯西中值定理考的最少;本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1你题目做多了,肯定就知道事实就是这样.并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索;写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可;Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法;做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手;3、设函数fx 在闭区间0,1上连续,在开区间0,1内可导,且f0=0,f1=1/3.对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的;很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法;那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数而且题目中f1=1/3,貌似这样有点想法了,本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了:先来构造一个函数:0)`()`(=+ξηF F 刚好证明出来;Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键;做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理;说明真题出的还是很有技巧的;一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用;4.设fx 在区间-a,aa>0上具有二阶连续导数,f0=01、写出fx 的带拉格朗日余项的一阶麦克劳林公式2、证明在-a,a 上至少存在一点η使得⎰-=aa dx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础1、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++=2、第二问先将第一问的式子fx 代入看看有什么结果出来⎰⎰--⋅=a a aa dx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数;做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法;题目中说道fx 有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用;所以有:因为fx 有二阶连续导数,所以存在最大值和最小值,设为M,m 则对于区间-a,a,222)``(,)``(Mx x f mx M x f m ≤⋅≤≤≤ξ所以由介值定理有结论成立;Ps :本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用;题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用;5、设fx 在],0[π上连续,且0cos )(,0)(00=⋅=⎰⎰ππxdx x f dx x f .证明:在),0(π内至少存在两个不同点0)()(2121==ξξξξf f 使得、本题看似很简洁,但做起来去不容易;结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢;令:],0[,)()(0π∈=⎰x dt t f x F x ,0)()0(==πF F似乎只需在找出一点Fc=0即可;,如果一切如我们所想,证明也就完成了;0)(sin )(cos )(cos cos )(0000=⋅+⋅==⋅⎰⎰⎰ππππdx x F x x F x x xdF xdx x f 似乎已经找到这个点了;但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立;构造函数],0[,)(sin )(0π∈⋅=⎰x dt t F t x G x 具体的证明步骤和上面涉及到的一样,自己去证;证完后就得到所以有:),0(,0)()()0(ππ∈===c F c F F接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路;Ps :本题是02年左右的数一一道证明题,看看题目很简洁,但具体来做,如果对定理的运用不熟练,还是不好弄出来;本题中涉及到积分,而且又要证明等式成立且为0,容易想到积分中值定理,以及罗尔定理;但是积分中值定理是对于闭区间而言,而我们要用到开区间,只能自己构造函数来证明其在开区间内成立,如果在实际做题的时候你不证明直接用,估计一半的分都没了;本题关键的就是寻找这个点C,找出来了其他的都不是问题,既然是关键点,那得分点也肯定最多了,你不证明这个点,直接套用课本中定理如果用的话,得分类讨论了,硬是说C 点就成立,那估计一半的分都没了;对于中值定理这章,就先给出上面一些经典的题目,大家好好体会下,多做些题,多思考;下面来讲讲对于证明题中的,函数如何来构造:基本上都是从结论出发,运用求导或是积分,或是求微分方程,解出来也可;本人自己总结了一些东西,与大家交流下:首先我们来看看一些构造函数基本方法:一、要证明的等式是一阶导数与原函数之间的关系:一般都会构造出为任意常数或者或者n x e e XXX x g n x x ,)(-⋅=1、如果只是单纯导函数和原函数之间关系,想想构造带有x x e e -或者)()`(x f x f = 可以构造x e x f x g -⋅=)()(0)()`(=+x f x f 可构造x e x f x g ⋅=)()(λ=+)()`(x f x f 可构造x x e e x f x g ⋅-⋅=λ)()()()(x f dt t f xa =⎰这个也是原函数与一阶导函数问题,构造函数⎰⋅=-x a x dt t f e x g )()( 先将其变形下:x x f x f λλ-=-1)()`(左边是导函数与原函数关系可构造:x e x f λ-⋅)(右边可以看成是x x λ-`也成了导函数和原函数之间关系,如是可以构造:x e x λ-⋅从而要构造的函数就是:x e x x f x g λ--=))(()(2、如果还涉及到变量X,想想构造n x0)()`(=+x f x xf 可构造x x f x g ⋅=)()(xx f x f )(2)(-=可构造2)()(x x f x g ⋅= 0)()`(=+x nf x xf 可构造n x x f x g ⋅=)()(3、另外还可以解微分方程来构造函数:如0)`()(=+x f x xf二、二阶导数与原函数之间关系构造带有x x e e -或者如何构造如下:)()`()`()``(x f x f x f x f +=+对于此式子,你会不会有所想法呢,在上面讲到一阶导函数与原函数之间的构造方法,等式前面也可以看成是一阶导函数与原函数只不过原函数是)`(x f 之间关系,从而等式左边可以构造x e x f ⋅)`(等式右边可以构造x e x f ⋅)(总的构造出来函数为:x e x f x f x g ⋅-=))()`(()(另:如果这样变形:构造函数如下:x e x f x f x g -⋅+=))()`(()(,可以看上面原函数与导函数之间关系如何构造的;从而对于此函数构造有两种方法,具体用哪一种构造得看题目给的条件了;如果题目给了)()`(x f x f -为什么值可以考虑第一中构造函数,如果题目给了)()`(x f x f +,则可以考虑第二种构造方法;先变形:变成一阶导函数和原函数之间关系这个函数确实不好构造,如果用微分方程来求会遇到复数根;实际做的时候还得看题目是否给了)`(x f 的一些条件,如果在某个开区间内不为0,而构造出来的函数在闭区间端点取值相等,便可用罗而定理来证明;具体来看看题目:1、 设)(x f 在0,1上连续,在0,1内可导,且f0=f1=0,f1/2=1证明:2、存在1)()`(),,0(+-=∈ηηηξηf f 使得1、对一问直接构造函数用零点定理:x x f x F -=)()(具体详细步骤就不写了;2、该问主要问题是如何构造函数:如果熟练的话用上面所讲方法来构造: 1)()`(+-=ηηηf f 先变形 另:用微分方程求解法来求出要构造的函数把常数退换掉之后就是要构造的函数函数构造出来了,具体步骤自己去做;2、设)`(x f 在a,b 上连续,fx 在a,b 内二阶可导,fa=fb=0,0)(=⎰b a dx x f证明:1存在)`()(),`()(),(,221121ξξξξξξf f f f b a ==∈使得2存在)()``(,),,(21ηηξξηηf f b a =≠∈使得1、第一问中的函数构造:2、第二问中函数构造有两种构造方法,上面讲解中说道了我们在这用第一种原因在于第一问中)()`(x f x f -=0符合此题构造; 具体详细步骤自己去写写;3、设奇函数]1,1[)(-在x f 上具有二阶导数,且f1=1,证明:(1) 存在1)`(),1,0(=∈ξξf 使得(2) 存在1)`()``(),1,1(=+-∈ηηηf f 使得第一问中证明等式,要么用罗尔定理,要么介值定理,要么零点本题很容易想到用罗尔定理构造函数来求,因为涉及到了导函数1、x x f x F -=)()(,题目中提到奇函数,f0=0有F0=F1=0从而用罗尔定理就出来了;2、第二问中的结论出发来构造函数,从上面讲的方法来看,直接就可以写出要构造的函数先变形下:x xx e x f x G e e x f f f ⋅-==⋅=+)1)`(()()`(1)`()``(ηη函数构造出来,并且可以用到第一问的结论,我们只需要在-1,0之间在找一个点也满足1的结论即可;也即1)`(),0,1(=-∈ζζf从而可以对)1,1(),(-⊆∈ξζη运用罗尔定理即可;Ps :本题为13年数一真题,第一问基础题,但要看清题目为奇函数,在0点处函数值为0.第二问关键是构造函数,函数构造出来了就一步步往下做,缺什么条件就去找什么条件或者证明出来,13年考研前我给我的几个考研小伙伴们讲过构造函数的一些方法,考场上都很快就搞出来了;以上是关于中值定理这章的一些小小的讲解,由于科研实践很忙,这些都是今天抽出时间写出来的,Word 上写,真心费时间,如果大家还有什么问题,可以来讨论下;。

考研数学必考的定理证明整理

考研数学必考的定理证明整理

考研数学必考的定理证明整理在考研数学中,有一些定理是非常重要且必考的,掌握了这些定理的证明方法,可以在考试中帮助我们更好地理解和解答数学问题。

下面整理了一些考研数学中必考的定理证明,希望对大家复习有所帮助。

1.逆序数定理:逆序数是指在一个排列中,如果一个数之前有比它大的数,则称这个数是逆序的。

逆序数定理指出,对于任意的排列,其逆序数的奇偶性与该排列的逆序数的个数是相同的。

即如果逆序数的个数是偶数,则排列的逆序数是偶数;如果逆序数的个数是奇数,则排列的逆序数是奇数。

证明思路:利用归纳法进行证明,首先证明初始情况成立,然后假设逆序数的定理对于所有小于n的情况成立,再证明对于n的情况也成立。

2.幂级数:幂级数在数学中是一个重要的概念,特别是在微积分和函数论中应用广泛。

幂级数的收敛半径和收敛域是幂级数的重要性质。

幂级数的收敛半径可以通过柯西-阿达玛公式求得,而收敛域的边界上收敛性需要通过级数的边界性分析得到。

证明思路:根据幂级数的定义,首先确定幂级数的通项项、幂级数求和函数的定义域和收敛半径。

然后通过柯西-阿达玛公式计算幂级数的收敛半径。

最后通过比较判断幂级数的收敛性。

3.极值定理:极值定理也是考研中的一个重要定理,它指出一个连续函数在闭区间上必有最大值和最小值。

极值定理有两个重要的推论,即费马定理和魏尔斯特拉斯定理。

费马定理指出,如果函数在一点处取得极值,则该点处的导数为0。

魏尔斯特拉斯定理指出,一个函数在闭区间上连续,则它在该区间上必有最大值和最小值。

证明思路:根据连续函数的定义和闭区间的定义,利用极值定理的条件和结论,通过反证法进行证明。

首先假设函数在闭区间上没有取得最大值或最小值,然后通过构造序列和利用辅助函数等方法逐步推导出矛盾,从而证明极值定理成立。

以上是一些考研数学中必考的定理证明,这些定理在数学理论和应用中都有着重要的地位,掌握了它们的证明方法可以提高我们对数学知识的理解和应用能力。

在备考过程中,除了熟悉定理的证明过程,还要注意练习相关的例题和应用题,加强对定理的理解和掌握,提高解题的能力。

数学高数定理定义总结

数学高数定理定义总结

数学高数定理定义总结高数定理是数学分析中的重要定理之一,它统一了微积分的各个概念和工具,形成了系统完备的理论体系。

高数定理包括极限定理、连续性定理、导数与微分定理、积分定理等。

首先是极限定理。

极限是研究函数变化趋势的重要工具,极限定理给出了计算极限的有用方法。

其中包括夹逼准则、单调有界数列的极限、函数极限的保号性等等。

这些定理可以用来证明一些重要的极限,如正弦函数的极限、指数函数的极限等。

其次是连续性定理。

连续性是函数的一个重要特性,连续性定理给出了一些充分条件和必要条件。

其中包括闭区间上连续函数的性质、有界函数的连续性、连续函数的保号性等等。

这些定理可以用来证明一些重要的连续函数,如多项式函数的连续性、指数函数的连续性等。

导数与微分定理是高阶微积分理论的核心内容,它们给出了函数的变化率和微分的相关性质。

其中包括导数的定义和性质、微分的定义和性质、函数递增和递减的判定方法等等。

这些定理可以用来证明一些重要的导数和微分公式,如常数函数的导数、幂函数的导数等。

积分定理是微积分中的另一个重要分支,它研究的是函数的区间上的积累性质。

其中包括不定积分的基本定理、定积分的基本定理、微积分基本定理等等。

这些定理可以用来计算一些重要的积分,如多项式函数的不定积分、定积分的性质等。

高数定理的最终目标是建立一个完整的微积分体系,使得我们能够更好地理解和处理实际问题。

在应用中,高数定理可以用来解决诸如曲线的弧长、区域的面积、体积、质心等问题。

同时,高数定理还在其他学科领域发挥重要作用,如物理学中的运动学、力学等。

总之,高数定理是微积分理论的核心内容,它们给出了一些重要的概念和工具,为我们理解函数和计算变化率提供了重要的基础。

通过深入学习和应用高数定理,我们可以提高数学思维能力和问题解决能力,为其他学科领域的研究和应用提供有力支持。

2017考研数学高效率解题快捷定理

2017考研数学高效率解题快捷定理

2017考研数学高效率解题快捷定理一、高数高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。

主要包括八方面内容:1.函数、极限与连续。

主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学。

主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

3.一元函数积分学。

主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.向量代数和空间解析几何。

主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。

5.多元函数微分学。

主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

6.多元函数的积分学。

这部分是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

7.无穷级数。

主要考查级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。

考研数学理解高等数学中的重要定理与公式应用

考研数学理解高等数学中的重要定理与公式应用

考研数学理解高等数学中的重要定理与公式应用重要定理与公式的应用在高等数学的学习中起到了关键性的作用。

这些定理和公式是数学领域中的基石,被广泛应用于解决各种问题和证明数学的相关理论。

本文将讨论数学中的一些重要定理和公式,并探讨它们在实际问题中的应用。

一、极限与连续在高等数学中,极限理论是非常重要的基础。

极限是指当自变量趋近于某个确定的值时,函数的取值会趋近于一个特定的值。

极限有许多重要的性质和定理,如极限的唯一性、四则运算法则等。

这些定理在数学推导和证明中经常被使用。

公式1:极限的四则运算法则设lim(f(x))=A,lim(g(x))=B,则以下性质成立:(1)lim(f(x)+g(x))=A+B(2)lim(f(x)-g(x))=A-B(3)lim(f(x)×g(x))=A×B(4)lim(f(x)/g(x))=A/B (B≠0)在实际问题中,极限的应用非常广泛。

例如,在物理学中,我们经常需要求解速度、加速度等问题,这些问题可以通过极限的方法来求解。

同时,在经济学和金融学中,也可以应用极限的概念来进行分析和建模。

二、微分与导数微分学是高等数学中的一个重要分支,它研究函数的变化率和相关的性质。

微分学的核心概念是导数,导数描述了函数在某一点的瞬时变化率。

微分与导数的定理和公式在求解最值、曲线的切线、近似计算等方面起着至关重要的作用。

定理1:导数的基本计算法则对于可导函数f(x),常数a和b,以下公式成立:(1)导数的线性性质:[af(x)+bg(x)]' = af'(x) + bg'(x)(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)(3)商法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)]^2微分学的应用非常广泛。

在物理学中,微分学被用来描述运动的变化率,求解速度、加速度等问题。

高等数学考研几个重要定理的证明

高等数学考研几个重要定理的证明

1、 罗尔定理(考过)如果函数f(x)在闭区间[a ,b ]上连续,在开区间(a ,b )上可导,且f(a)= f(b),则在开区间(a ,b )内至少存在一点£,使得)('ξf =0.证: ∵函数f(x)在闭区间[a ,b ]上连续∴由最大最小值定理有: m< f(x)<M(1) 若m=M ,此时f(x)在[a ,b ]上为恒定值对任意的x ∈(a ,b )都有)('ξf =0。

(2) 若m ≠M , 因为f(a)= f(b),则m 和M 中至少有一个不等于区间的端点值。

不妨设M ≠f(a),则存在ξ∈(a ,b )使得)(ξf =M 。

∴ 对任意的x ∈[a ,b ]使得f(x)≤)(ξf ,从而由费马引理,可知)('ξf =0.证毕。

2、 拉格朗日中值定理(考过)如果函数f(x)满足:(1)在闭区间[a ,b ]上连续;(2)在开区间(a ,b )上可导,那么在(a ,b )内至少存在(a ,b )一点ξ,使得))((')()(a b f a f b f -=-ξ成立。

证: 引进辅助函数 )()()()()()(a x ab a f b f a f x f x -----=ϕ 易知F (a )=F (b )=0,且F (x )在[a ,b ]内连续,在(a ,b )内可导 且a b a f b f x f x ---=)()()(')('ϕ 根据罗尔定理,可知在(a ,b )内至少存在有一点ξ,使)('x ϕ=0,即0)()()('=---ab a f b f f ξ 由此可得)(')()(ξf a b a f b f =--, 即))((')()(a b f a f b f -=-ξ证毕。

三、积分中值定理(考过)如果函数f (x )在积分区间[a ,b ]上连续,则在(a ,b )内至少存在一点ξ,使得))(()(a b f dx x f ba-=⎰ξ证:由于f (x )在[a ,b ]上连续,则存在m ,M 使得M x f m ≤≤)(又由定积分估值定理,有)()()(a b M dx x f a b m ba-≤≤-⎰即 M a b dx x f m ba ≤-≤⎰)(由介值定理得: a b dx x f f ba -=⎰)()(ξ证毕。

2017考研数学:定积分与不定积分定理汇总

2017考研数学:定积分与不定积分定理汇总

2017考研数学:定积分与不定积分定理汇总▶不定积分1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

●分部积分法如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

▶定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、关于广义积分设函数f(x)在区间[a,b]上除点c(a<c<b)外连续,而在点c的邻域内无界,如果两个广义积分∫acf(x)dx与∫cbf(x)dx都收敛,则定义∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否则(只要其中一个发散)就称广义积分∫abf(x)dx发散。

高等数学重要基本定理的证明

高等数学重要基本定理的证明
九、二阶可导函数凹凸性的充要判别法
十、拐点的充分判别法及必要条件
十一、洛必达法则
十二、定积分的比较与定积分中值定理
十三、变限积分函数的连续性与可导性
十四、牛顿.莱布尼兹公式
十五、曲线积分与路径无关问题
高等数学重要基本定理的证明
一、连续函数的零点定理与介值定理
二、函数的可微性,可导性及连续性的关系
三、微分中值定理
四、导函数的性质——可导函数的间断点一定是第二类间断点
五ห้องสมุดไป่ตู้导函数的性质——导函数一定取中间值
六、函数单调性的充要判别法
七、函数极值点的充分判别法
八、一阶可导函数凹凸性的充要判别法

2017考研数学 高数必考定理之中值定理与导数的应用

2017考研数学 高数必考定理之中值定理与导数的应用

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。

中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。

同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

中公考研小编整理了高数必考定理之中值定理与导数的应用,供2017考研的同学参考,帮助考生在备考的初期阶段整理总结此部分的内容。

1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式。

5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

考研数学高数易出证明题的知识点有哪些

考研数学高数易出证明题的知识点有哪些

考研数学高数易出证明题的知识点有哪些一、数列极限的证明数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的有关证明微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:1.零点定理和介质定理;2.微分中值定理;包含罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理就是用以处置高阶导数的有关问题,考查频率底,所以以前两个定理居多。

3.微分中值定理分数中值定理的促进作用就是为了换成分数符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

三、方程根的问题包括方程根唯一和方程根的个数的讨论。

四、不等式的证明五、定积分等式和不等式的证明主要牵涉的方法存有微分学的方法:常数变异法;积分学的方法:换元法和原产积分法。

六、积分与路径无关的五个等价条件这一部分就是数一的考试重点,最近几年没有设计至,所以必须重点高度关注。

1.函数、极限与连续。

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。

2.一元函数微分学。

谋取值函数的导数与微分包含高阶导数,隐函数和由参数方程所确认的函数微分,特别就是分段函数和具有绝对值的函数可以导性的探讨;利用洛比达法则谋不定式音速;探讨函数极值,方程的木,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常须要结构辅助函数;几何、物理、经济等方面的最大值、最小值应用领域问题,求解这类问题,主要就是确认目标函数和约束条件,认定所探讨区间;利用导数研究函数性态和描写函数图形,谋曲线渐近线。

考研数学定理公式汇总

考研数学定理公式汇总

考研数学定理公式汇总考研数学是考生们备考中必不可少的一科,其中要掌握的定理和公式也是非常重要的内容。

下面将为大家总结一些考研数学中常见的定理和公式,帮助大家更好地备考。

1.极限与连续部分:(1)极限的四则运算:-两个函数的和、差的极限等于函数分别取极限再求和、差;-两个函数的积的极限等于函数分别取极限再求积;-两个函数的商的极限等于函数分别取极限再求商,其中除数不能为0;-常数与函数的极限等于常数与函数分别取极限再求和。

(2)函数的连续性:-如果函数在特定点连续,那么在该点的左右极限存在;-如果函数在特定点的左右极限都存在且相等,那么函数在该点连续;-复合函数的连续性:如果两个函数都在特定点连续,那么它们的复合函数在该点也连续。

2.导数与微分部分:(1)导数的四则运算:-两个函数的和、差的导数等于函数分别求导再求和、差;-两个函数的积的导数等于函数分别求导再求积再求和、差;-两个函数的商的导数等于函数分别求导再求商再求和、差,其中除数不能为0;-常数与函数的导数等于常数与函数求导再求和。

(2)常用的导数公式:-幂函数的导数公式:(x^n)'=n*x^(n-1),其中n为常数;-指数函数的导数公式:(e^x)'=e^x;- 对数函数的导数公式:(ln x)' = 1/x;- 三角函数的导数公式:(sin x)' = cos x,(cos x)' = -sin x,(tan x)' = sec^2 x,(cot x)' = -csc^2 x。

3.积分部分:(1)常用的积分公式:- 幂函数的积分公式:∫x^n dx = 1/(n+1)*x^(n+1),其中n不等于-1;- 指数函数的积分公式:∫e^x dx = e^x;- 对数函数的积分公式:∫1/x dx = ln,x;- 三角函数的积分公式:∫sin x dx = -cos x,∫cos x dx = sin x,∫sec^2 x dx = tan x,∫csc^2 x dx = -cot x。

2017考研数学高数4大定理证明

2017考研数学高数4大定理证明

2017考研数学高数4大定理证明考研网为大家提供2017考研数学高数4大定理证明,更多考研资讯请关注我们网站的更新!2017考研数学高数4大定理证明1、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。

考虑函数在一点的导数,用什么方法?自然想到导数定义。

我们可以按照导数定义写出f'(x0)的极限形式。

往下如何推理?关键要看第二个条件怎么用。

“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。

结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。

若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。

那么它引出的定理就是我们下面要讨论的罗尔定理。

若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。

该定理的条件和结论想必各位都比较熟悉。

条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。

如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

闲言少叙,言归正传。

既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。

我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。

话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。

大方向对,但过程没这么简单。

考研高数定理:柯西中值定理

考研高数定理:柯西中值定理

凯程考研集训营,为学生引路,为学员服务!
第 1 页 共 1 页 考研高数定理:柯西中值定理 考研数学考察的中值定理有:罗尔中值定理、拉格朗日中值定理(即微分中值定理)、柯西中值定理和泰勒中值定理。

这四个定理之间的联系和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。

除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。

柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。

泰勒公式中的x0=0时为泰勒公式的特殊情况,为麦克劳林公式,常见函数的麦克劳林展开式要熟记,在求极限和级数一章中有很重要的应用。

证明题中辅助函数的构造方法:
一、结论中只含ξ,不含其它字母,且导数之间的差距为一阶。

二、结论中只含ξ,不含其它字母,且导数之间相差超过一阶。

三、结论中除含ξ,还含有端点a,b 。

四、结论中含两个或两个以上的中值。

小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。

2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。

加油!。

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。

以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。

证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。

因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。

因此,f(x)>g(x)在N(x0)内恒成立。

2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。

证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。

由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。

因此,极限,h(x),=0。

3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。

证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。

根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。

我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。

因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。

考研数学:必考的定理证明整理(2)

考研数学:必考的定理证明整理(2)

2017考研数学:必考的定理证明整理(2)考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号考生需重视教材中重要定理的证明。

下面为考生梳理一下教材中那些要求会证的重要定理。

三、微积分基本定理的证明该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。

注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。

花开两朵,各表一枝。

我们先考虑变上限积分函数在开区间上任意点x处的导数。

一点的导数仍用导数定义考虑。

至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。

单侧导数类似考虑。

牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。

而多数考生能熟练运用该公式计算定积分。

不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。

该公式的证明要用到变限积分求导定理。

若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。

根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。

高等数学常见中值定理证明及应用

高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c 是介于A 、B 之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M ,最小值m,若m ≤C ≤M,则必存在ξ∈[a,b], 使得f(ξ)=C 。

(闭区间上的连续函数必取得介于最大值M 与最小值m 之间的任何值。

此条推论运用较多)Ps :当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、 零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<a ξ<b),使得f`(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<a ξ<b),使得 f(b)-f(a)=f`(ξ).(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续; (2)、在开区间(a,b)内可导; (3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得)`()`()()()()(ξξg f a g b g a f b f =--Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

2017年考研数学最终总结常考公式集锦-高等数学篇

2017年考研数学最终总结常考公式集锦-高等数学篇

(1 x )a 1 ax
a (a 1) 2 a (a 1)...(a n 1) n ( 1)...( n ) x ... x (1 ) n 1 x n 1 , 2! n! (n 1)!
在 x 与 0 之间.
5、极值 并在 x0 的某去心邻域 ( x0 , x0 ) ( x0 , x0 ) 内 第一充分条件: 设函数 f ( x ) 在 x0 处连续, 可导. ①若 x ( x0 , x0 ) 时 f ( x) 0, 而 x ( x0 , x0 ) 时 f ( x) 0, 则 f ( x ) 在 x0 处取得极大
x 0
lim
f ( x0 x, y0 ) f ( x0 , y0 ) x
存在, 则称函数 z f ( x, y) 在点 P0 ( x0 , y0 ) 处关于 x 的偏导数存在, 并定义此极限值为函数 记作 z f ( x, y) 在点 P0 ( x0 , y0 ) 处对变量 x 的偏导数,
' '
值; ②若 x ( x0 , x0 ) 时 f ( x) 0, 而 x ( x0 , x0 ) 时 f ( x) 0, 则 f ( x ) 在 x0 处取得极小
' '
值; ③若 x ( x0 , x0 ) ( x0 , x0 ) 时, f ( x) 符号保持不变, 则 f ( x ) 在 x0 处不能取到极值.
f ( x) g ( x) f ( x) g ( x)
f ( x) g ( x) ,
f ( x) g ( x) f ( x) g ( x) ,
f ( x) f ( x) g ( x) f ( x) g ( x) . g ( x) g 2 ( x) 3、常用函数的 n 阶导数公式

高数定理大解析必背

高数定理大解析必背

高等数学定理大解析-考研必捋版(考研大纲要求范围+高数重点知识)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、函数的单调性、奇偶性、周期性(指最小正周期)3、数列的极限定理(极限的唯一性) 数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n +1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。

●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。

定理(极限的局部保号性)如果lim (x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x) >0(或f(x) >0),反之也成立。

●函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)= f(x0+0),若不相等则lim f(x)不存在。

●一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y = f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y= f(x)图形的铅直渐近线。

考研数学高数必考定理

考研数学高数必考定理

考研数学高数必考定理考研数学高数必考定理一、导数与微分1、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。

即函数在某点连续是函数在该点可导的必要条件而不是充分条件。

2、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

3、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。

4、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

二、函数与极限1、函数的极限定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017考研:高数常考的四大定理证明
一、求导公式的证明
2015年真题考了一个证明题:证明两个函数乘积的导数公式。

几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。

实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。

如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。

这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。

先考虑f(x)*g(x)在点x0处的导数。

函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。

该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。

利用数学上常用的拼凑之法,加一项,减一项。

这个“无中生有”的项要和前后都有联系,便于提公因子。

之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。

再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。

二、微分中值定理的证明
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。

考虑函数在一点的导数,用什么方法?自然想到导数定义。

我们可以按照导数定义写出f'(x0)的极限形式。

往下如何推理?关键要看第二个条件怎么用。

“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。

结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。

若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。

那么它引出的定理就是我们下面要讨论的罗尔定理。

若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。

该定理的条件和结论想必各位都比较熟悉。

条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。

如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

闲言少叙,言归正传。

既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。

我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。

话说到这,可能有同
学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。

大方向对,但过程没这么简单。

起码要说清一点:费马引理的条件是否满足,为什么满足?
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。

那么我们看看哪个条件可能和极值产生联系。

注意到罗尔定理的第一个条件是函数在闭区间上连续。

我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。

那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。

结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。

那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。

掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。

罗尔定理的结论等号右侧为零。

我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。

接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。

这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。

这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。

当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。

三、微积分基本定理的证明
该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。

注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。

花开两朵,各表一枝。

我们先考虑变上限积分函数在开区间上任意点x处的导数。

一点的导数仍用导数定义考虑。

至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。

单侧导数类似考虑。

“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。

它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。

而多数考生能熟练运用该公式计算定积分。

不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。

该公式的证明要
用到变限积分求导定理。

若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理
的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描
述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。

根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。

万事俱备,只差写一下。

将该公式右侧的表达式结合推出的等式变形,不难得出结论。

四、积分中值定理
该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数
拎到积分号外面,并把积分变量x换成中值。

如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。

可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是
含有中值但不含导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。

介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中
的中值位于闭区间。

那么何去何从,已经不言自明了。

若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数A。

我们自然想到把积分中值定理的结论朝以上的形式变形。

等式两边同时除以区间长度,就能达到我们的要求。

当然,变形后等号一侧含有积分的式子的长相还是挺
有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。

这个数
就相当于介值定理结论中的A。

接下来如何推理,这就考察各位对介值定理的熟悉程度了。

该定理条件有二:1.函数在闭区间连续,2.实数A 位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即A为闭区间上某点的函数值)。

再看若积
分中值定理的条件成立否能推出介值定理的条件成立。

函数的连续性不难判断,仅需说明定积分除以区间长度这
个实数位于函数的最大值和最小值之间即可。

而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

相关文档
最新文档