(完整版)高数中需要掌握证明过程的定理(一)
高三数学几何证明知识点
![高三数学几何证明知识点](https://img.taocdn.com/s3/m/503f1c005627a5e9856a561252d380eb629423e3.png)
高三数学几何证明知识点数学几何是高中数学中的一大重要内容,对于高三学生来说,掌握好数学几何证明知识点不仅可以提高解题能力,还可以帮助他们更好地理解数学的本质和思维方式。
本文将介绍一些高三数学几何证明的重要知识点。
一、线段延长线在线段AB上取一点C,在延长线AC上取一点D,若有AD=BC,则可得证明:线段AB平分线段CD。
证明:根据题意可得AD=BC,要证明线段AB平分线段CD,即证明CD=2BD。
连接线段AB,并且作线段BE║AC,交延长线AD于E点。
根据平行线性质可得:∠AEB=∠ACB(对应角)因为∠AEB和∠ACB都是与切线AB相对应的所以他们之间也相等。
同理可得∠BED=∠ACB根据等角性质可得∠AEB=∠BED所以ΔABE与ΔBDE全等。
根据全等三角形的性质可知:AE=BE=BD根据延长线分割线段的性质可得:BD=CD-BD所以 CD=2BD。
因此,线段AB平分线段CD。
二、等腰三角形的性质等腰三角形是指两边相等、两底角相等的三角形,对于高三数学几何证明来说,等腰三角形的性质是常见的知识点。
定理1:等腰三角形的底角(两边非等边所对应的角)相等。
证明:设三角形ABC为等腰三角形,其中AB=AC。
假设∠B=∠C=x,∠A=y因为∠A+∠B+∠C=180°所以 y+x+x=180°化简可得:y=180°-2x又因为∠B=∠C=x所以∠BAC=180°-2x根据等差定理可知∠BAC=y所以∠BAC=∠BAC,即底角相等。
定理2:等腰三角形中,等腰边所对角相等。
证明:设三角形ABC为等腰三角形,其中AB=AC。
假设∠B=∠C=x,∠A=y又因为∠B=∠C=x根据等差定理可知∠ABC=∠ACB所以∠ABC=y所以∠ABC=∠ACB,即等腰边所对角相等。
三、勾股定理勾股定理是几何证明中使用频率非常高的一个知识点,该定理表明在直角三角形中,直角边的平方等于两个直角边所对应的两个锐角的正弦和余弦乘积的和。
考研高等数学有哪些重要定理证明
![考研高等数学有哪些重要定理证明](https://img.taocdn.com/s3/m/43fe2f14dc36a32d7375a417866fb84ae45cc326.png)
考研高等数学有哪些重要定理证明考研高等数学有哪些重要定理证明考生们在进行考研高等数学的复习阶段时,有很多重要定理证明需要去掌握。
店铺为大家精心准备了考研高等数学定理证明的复习指导,欢迎大家前来阅读。
考研高等数学重要的定理证明高数定理证明之微分中值定理:这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。
除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。
考虑函数在一点的导数,用什么方法?自然想到导数定义。
我们可以按照导数定义写出f'(x0)的极限形式。
往下如何推理?关键要看第二个条件怎么用。
“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。
结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。
若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。
那么它引出的定理就是我们下面要讨论的罗尔定理。
若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。
该定理的条件和结论想必各位都比较熟悉。
条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。
如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
闲言少叙,言归正传。
既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。
我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。
话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。
(word完整版)高等数学公式定理整理
![(word完整版)高等数学公式定理整理](https://img.taocdn.com/s3/m/4e324dfab9f67c1cfad6195f312b3169a451eabd.png)
(word完整版)⾼等数学公式定理整理⾼等数学公式定理整理1.01版本定理,公式整理仅⽤于参考,具体学习请多做题⽬以增进对知识的掌握。
蓝⾊为定理红⾊为公式三⾓函数恒等公式:两⾓和差tan αanα·ta+tan βanβ)-(tan α=β)-tan(αtan αanα·ta-(1tan βa +(tan α=β)+tan(αcos αosα·s±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+和差化积]2β)-(α]sin[2β)+(α-2sin[=cos β-cos α]2β)-(α]cos[2β)+(α2cos[=cos β+cos α]2β)-(α]sin[2β)+(α2cos[=sin β-sin α]2β)-(α]cos[2β)+(α2sin[=sin β+sin α积化和差β)]-cos(α-β)+[cos(α21-=sin αinα·s β)]-cos(α+β)+[cos(α21=cos αosα·c β)]-sin(α-β)+[sin(α21=cos αosα·s β)]-sin(α+β)+[sin(α21=sin αinα·c倍⾓公式(部分):很重要!αtan -1αtan 2=tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α22sin αsinα·=sin2α22222⼀、函数函数的特性: 1.有界性:假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满⾜|f(x)|≤M 。
则称f (x )是D 的有界函数。
如果正数M 不存在,则称这个函数是D 上的⽆界函数。
数学高数定理定义总结
![数学高数定理定义总结](https://img.taocdn.com/s3/m/e82be108ce84b9d528ea81c758f5f61fb7362827.png)
数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。
下面将对这些定理进行定义和总结。
1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。
这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。
-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。
-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。
-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。
2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。
- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。
- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。
- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。
25个高数定理证明
![25个高数定理证明](https://img.taocdn.com/s3/m/1c84874cbed5b9f3f90f1cef.png)
a
0
=
2
a 0
f ( x)dx,若f ( x)是偶函数
0 , 若f ( x)是偶函数
17 .设f(x)是以T为周期的连续函数,
证明对a,
a+T
f(x)dx =
T
f(x)dx =
a
0
T
2 -T
f(x)dx
2
18.设D是由y=f ( x)( f 0), x a, b和x a, x b, y 0
14.设yoz坐标面内的曲线L的方程为 F(y, z)=0,求其绕z轴旋转一周所得到 的旋转曲面的方程为F( x2+y2 , z)=0
15.设单连通区域D内P,Q 连续, y x
且满足 P Q,证明曲线积分 y x
L Pdx Qdy在D内与路径无关
16.设f ( x)在a, a上连续,
证明 a f ( x)dx a f ( x) f ( x) dx
3、 利用最大值,最小值证明不等式.
如,当x 0, )时,e x (1 x) 1
4、 常值不等式的证明转化成函数的单调性, 或函数不等式. 如,比较e , e的大小
二、等式的证明思路
1、如果结论是不带导数的等式,一般用零点定理考虑 如,F(x0)=0
2、已知结论中含导数: (A)是一个点的导数,如f( )=0,用罗尔定理考虑 (B)是二个点的导数,如f( )+g( )=0,用两次拉 格朗日中值定理或一 次 拉 格 朗 日 中 值 定 理, 一次柯西中值定理
3、 如果结论是函数值与某点的二阶导数的等式,
要用泰勒公式考虑.
如,结论是f
(b)
2
f
a
2
b
(b a)2 f (a)
高数中需要掌握证明过程的定理(一).
![高数中需要掌握证明过程的定理(一).](https://img.taocdn.com/s3/m/5bae593aeff9aef8941e06d0.png)
高数中的重要定理与公式及其证明(一)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。
如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。
但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。
而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。
因此,在这方面可以有所取舍。
应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。
这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。
由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。
1)常用的极限0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1lim(1)xx x e →+=与0sin lim1x xx →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。
证明: 0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x→+=。
01lim 1x x e x →-=:在等式0ln(1)lim 1x x x→+=中,令ln(1)x t +=,则1t x e =-。
由于极限过程是0x →,此时也有0t →,因此有0lim11tt te →=-。
极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim1x x e x→-=。
高数重要定理(高数上下)汇编
![高数重要定理(高数上下)汇编](https://img.taocdn.com/s3/m/82a1c411aa00b52acec7ca40.png)
( x→∞)
则
lim
f (x) =
lim
f ′( x).
x→a F ( x) x→a F ′( x)
( x→∞)
( x→∞)
等价无穷小量替换(代换)定理: 在同一个极限过程,若α ∼α′, β ∼β′,则
limαβ
=limα β
′′=limαβ′=limβα′.
注:等价无穷小量代换一般只能用在整体乘、 除关系,而不能用在局部乘、除关系和整体加、 减关系.
和最小值.
(2)有界性:若 f (x)在[a,b]上连续,则 f (x)在[a,b]上有界. (3)介值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上可取到介于 它在[a,b]上最小值与最大值之间的一切值. (4) 零 点 定 理 ( 或 根 的 存 在 定 理 ): 若 f (x) 在 [a,b] 连 续 , 且 f (a)⋅ f (b)<0,则必∃ξ∈(a,b),使 f (ξ )=0.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
α⎛
⎜⎜⎝
<β
⎞ ⎟⎟⎠
所围成的曲边扇形的面积
∫ A =
1 2
βr 2 (θ )dθ
α
.
高中数学基本定理证明
![高中数学基本定理证明](https://img.taocdn.com/s3/m/4cf7180a5ef7ba0d4b733b4c.png)
1三角函数的定义证明•已知锐角厶ABC中,AB=c , AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD丄AB于点D在Rt△ BCD 中,由cosB=BD/BC,得BD=acosB,在Rt△ ACD 中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示:1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。
2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD丄AB于点D ,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。
3、接下来分别在Rt△ ACD和Rt△ BCD中利用三角函数来表示AD的长度向待证靠近2点P ABC内任意一点,求证点P到厶ABC距离和为定值点P ABC外时,上述结论是否成立,若成立,请证明。
若不成立h1,h2,h3 与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】证明:连接PA、PE、PC,过C作AE上的高AD,交AE于G。
过P作AE、EC、CA 的重线交AE、EC、CA 于D、E、F 三角形ABC面积=AE*CG/2三角形ABC面积=三角形ABP+BCP+CAP面积=AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2故: AB*CG/2=AB*(PD+PE+PF)/2CG=PD+PE+PF即:点P到厶ABC距离和为三角形的高,是定值。
(2)若P在三角形外,不妨设h1>h3,h2>h3 ,则有:h1+h2-h3=三角形边上的高3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少?简证如下:设M为正四面体P -ABC内任一点,M到面ABC,面PAB,面PAC,面PBC的距离分别为h 1,h 2 , h 3 , h 4 .由于四个面面积相等,则VP - ABC = VM - ABC + VM - PAB + VM -PAC + VM - PBC=(1/3 ) -S^ABC • (h 1 + h 2 +h 3+h 4).而S^ABC= (V 3/4)a A2 ,VP -ABC= (V2/12归人3 ,故h 1 +h 2 +h 3 +h 4 = V3/3a (定值).4正弦定理的证明过程步骤1.在锐角△ ABC中,设BC=a,AC=b,AB=c。
高二数学学科中的常用定理及证明
![高二数学学科中的常用定理及证明](https://img.taocdn.com/s3/m/e173626d3069a45177232f60ddccda38376be122.png)
高二数学学科中的常用定理及证明数学是一门理性思维与逻辑推理相结合的学科,其中各种定理起着重要的作用。
在高二数学学科中,有许多常用定理被广泛运用于解决数学问题。
本文将重点介绍高二数学学科中的常用定理及其证明。
一、边角关系定理边角关系定理是数学中最基础且广泛应用的定理之一。
该定理说明在任意三角形中,两条边的和大于第三边,任意两角的和小于180度。
这一定理不仅能够解决三角形的构造问题,还可以帮助我们判断三角形的形状及性质。
定理:在三角形ABC中,AB + BC > AC,AC + BC > AB,AB +AC > BC;∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
证明:不妨设AB ≤ BC ≤ AC。
1. 若AB + BC = AC,则我们可以得到一个等腰三角形ABC,其中∠A = ∠C,∠B < 180°。
2. 若AB + BC > AC,则我们可以得到一个普通三角形ABC,其中∠A + ∠B < 180°,∠A + ∠C < 180°,∠B + ∠C < 180°。
3. 若AB + BC < AC,则无法构成一个三角形。
由此可见,边角关系定理在解决三角形问题中起着重要的作用。
二、勾股定理勾股定理是高二数学中最为经典的定理之一,它描述了一个直角三角形的边长关系。
勾股定理广泛应用于解决测量、定位和解析几何等问题中。
定理:在直角三角形ABC中,设边长分别为a、b、c(其中c为斜边),则有a^2 + b^2 = c^2。
证明:设∠C为直角。
根据三角形的相似性,我们可以得到下面的两个类似三角形:△ABC ~ △ADC△ABC ~ △BDC由此可得:AB/AD = BC/DC (由第一个类似三角形)AB/BD = BC/AC (由第二个类似三角形)联立以上两个等式,得到:(AB/AD) × (AB/BD) = (BC/DC) × (BC/AC)即:(AB/AD) × (BD/AB) = (BC/DC) × (AC/BC)化简后可得:AB × BD = AC × DC根据矩形面积公式可得:AB × BD + AD × DC = AD × DC + AC × BC即:AB × BC + AC × DC = AD × DC + AC × BC而AD × DC + AC × BC = AC × AC所以,AB × BC + AC × AC = AC × AC即:AB × BC = AC × AC - AC × AC = AC × AC即:AB × BC = AC × AC两边开根号并化简,可得:AB × BC = AC^2因此,我们得到了勾股定理。
高中数学必备公式定理大全
![高中数学必备公式定理大全](https://img.taocdn.com/s3/m/f1e7f8fbfab069dc5022018f.png)
(高考必备!)高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假 56 )充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
7 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。
D 则就是f (x )的递增区间。
减函数:(1)、文字描述是:y 随x 的增大而减小。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。
数学高三重要定理与证明方法总结
![数学高三重要定理与证明方法总结](https://img.taocdn.com/s3/m/d63175854128915f804d2b160b4e767f5acf8002.png)
数学高三重要定理与证明方法总结高三阶段是数学学科中最为关键和关注的阶段之一,其中重要的定理和证明方法对学生的数学学习和应对高考非常重要。
本文将总结高三数学学科中的一些重要定理和证明方法,帮助同学们进行复习和备考。
一、数列与函数部分1. 等差数列的通项公式及求和公式等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为第n项。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn为前n项和。
2. 等比数列的通项公式及求和公式等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为第n项。
等比数列求和公式为Sn=a1(1-r^n)/(1-r),其中Sn为前n项和。
3. 函数的性质与图像函数的性质包括定义域、值域、奇偶性、单调性等。
根据函数式的不同形式,可以画出函数的图像,进一步帮助理解函数的性质。
例如:y=ax^2+bx+c的图像呈抛物线状,其开口方向取决于a的正负。
4. 三角函数的基本公式和性质三角函数的基本公式包括正弦定理、余弦定理和正切定理等。
利用这些公式可以求解各种三角形的边长和角度。
同时,需要了解三角函数的周期性、奇偶性等性质。
二、解析几何部分1. 二次函数的性质和图像二次函数的一般形式为y=ax^2+bx+c,其中a为二次项系数,b为一次项系数,c为常数项。
可以通过判别式来判断二次函数的图像类型(开口向上或向下),进而求解顶点坐标和轴线方程。
2. 圆的性质与方程圆的性质包括圆心、半径、圆上的切线等。
圆的标准方程为(x-h)^2+(y-k)^2=r^2,其中(h, k)为圆心坐标,r为半径长度。
根据圆的性质和方程,可以求解圆与直线或圆与圆的交点坐标。
3. 直线与平面的方程及其性质直线的一般方程为Ax+By+C=0,其中A、B、C为常数。
平面的一般方程为Ax+By+Cz+D=0,其中A、B、C、D为常数。
通过直线与平面的方程,可以求解它们的交点或判定它们的位置关系。
考研数学高数定理证明的知识点
![考研数学高数定理证明的知识点](https://img.taocdn.com/s3/m/bae506a918e8b8f67c1cfad6195f312b3169ebf7.png)
考研数学高数定理证明的知识点数学高等数学(高数)是考研数学中的一个重要部分,其中涉及了许多重要的定理及其证明。
以下是一些常见的高数定理及其证明的知识点:1.邻域性原理:如果一个函数在一些点的一些邻域内恒大于(或小于)另一个函数,而两个函数在该点处相等,则这两个函数在该邻域内恒大于(或小于)。
证明:假设函数f(x)和g(x)在点x0处连续且f(x)>g(x),且f(x0)=g(x0)。
因为f(x)和g(x)在x0处连续,所以存在一个邻域N(x0)使得f(x)>g(x)在该邻域内成立。
因此,f(x)>g(x)在N(x0)内恒成立。
2.极限的一致性:如果两个函数在一个有限闭区间内的一致性极限或一致性趋于无穷大的极限都存在,则它们的差的(绝对值的)极限是0。
证明:假设函数f(x)和g(x)在闭区间[a,b]内一致趋于函数h(x)和0,即对任意的ε>0,存在N,当n>N时,有,f(x)-h(x),<ε以及,g(x)-0,<ε成立。
由于,h(x),≤,f(x)-h(x),+,g(x)-0,所以当n>N时,有,h(x),≤2ε成立。
因此,极限,h(x),=0。
3.导数的基本性质:导数具有线性性、乘积法则、商法则和链式法则等基本性质。
证明:以线性性为例,假设函数f(x)和g(x)在点x0处可导。
根据导数的定义,有lim_(x→x0) (f(x)-f(x0))/(x-x0)=lim_(x→x0) (g(x)-g(x0))/(x-x0)=f'(x0)和g'(x0)。
我们可以得到lim_(x→x0) (f(x)+g(x)-[f(x0)+g(x0)])/(x-x0)=lim_(x→x0)[(f(x)-f(x0))/(x-x0)+(g(x)-g(x0))/(x-x0)]=f'(x0)+g'(x0)。
因此,函数f(x)+g(x)在点x0处可导,且(f+g)'(x0)=f'(x0)+g'(x0)。
2024年考研数学高等数学部分重要基本定理证明
![2024年考研数学高等数学部分重要基本定理证明](https://img.taocdn.com/s3/m/37cfa88ea0c7aa00b52acfc789eb172ded6399a3.png)
数学高等数学部分重要基本定理证明(数学一)本文将对2024年考研数学高等数学部分的几个重要基本定理进行证明,包括连续函数的一致连续性、可导函数的连续性、可导函数的增量有界性以及闭区间上函数的连续性。
首先,我们来证明连续函数的一致连续性。
定义函数f(x)在区间[a,b]上连续,则对于任意ε>0,存在对应的δ>0,当,x1-x2,<δ时,有,f(x1)-f(x2),<ε成立。
要证明函数的一致连续性,即要证明对于任意ε>0,不论取如何小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。
反证法:假设对于一些ε>0,不论取多小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。
则对于这个ε>0,无论如何选择δ,总可以找到这样的x1和x2,使得,f(x1)-f(x2),≥ε成立。
由连续函数的定义可知,当,x1-x2,足够小时,有,f(x1)-f(x2),<ε成立。
这与我们的假设矛盾。
综上所述,连续函数的一致连续性成立。
接下来证明可导函数的连续性。
定义函数f(x)在区间[a,b]上可导,则对于任意x∈(a,b),f(x)在x处连续。
要证明函数的连续性,即对于任意ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε成立。
根据可导函数的定义可知,当x足够接近x0时,有,f(x)-f(x0),<ε'成立,其中ε'是一个任意小的正实数。
取ε'=ε/2,则对于ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε'=ε/2成立。
又由于f(x0)-f(x0)=0<ε/2成立,所以有,f(x)-f(x0),≤,f(x)-f(x0),+,f(x0)-f(x0),<ε/2+ε/2=ε成立。
综上所述,可导函数的连续性成立。
高中数学的解析数学证明中的定理与证明方法
![高中数学的解析数学证明中的定理与证明方法](https://img.taocdn.com/s3/m/a4b912f01b37f111f18583d049649b6649d7094f.png)
高中数学的解析数学证明中的定理与证明方法数学中的定理与证明是数学学科中的重要内容,解析数学作为高中数学的一部分,也包含了许多重要的定理和证明方法。
本文将介绍一些常见的解析数学定理以及它们的证明方法。
一、三角函数的基本性质定理与证明方法1. 余弦定理余弦定理是解析几何中三角形的重要定理,它表示三角形中的任意一边的平方等于另外两边平方和的两倍减去这两边乘积的余弦的两倍。
其表达式为:c^2 = a^2 + b^2 - 2abcosC,其中a、b、c分别表示三角形的边长,C表示两边夹角的余弦值。
证明方法:根据三角形的边长关系和余弦的定义,可以通过展开和化简的方式得到余弦定理的推导过程。
2. 正弦定理正弦定理是解析三角学中的重要定理,它表示三角形中任意两边的比值等于对应两个角的正弦的比值。
其表达式为:a/sinA = b/sinB =c/sinC,其中a、b、c分别表示三角形的边长,A、B、C分别表示对应的角度。
证明方法:通过分析三角形的面积和底边的关系,可以推导出正弦定理。
二、导数和微分定理的证明方法1. 极限定义导数的定义是解析数学中重要的基础概念,它表示函数在某一点上的变化率。
导数的定义可以通过极限的概念进行证明,即通过求函数在某一点上的左侧和右侧的极限来确定函数的导数。
2. 微分中值定理微分中值定理是解析数学中的重要定理,它表示如果函数在闭区间[a, b]上连续且在开区间 (a, b)上可导,那么它在开区间(a, b)上至少存在一点c,使得该点处的导数等于函数在区间端点处的斜率。
该定理有三种形式:拉格朗日中值定理、柯西中值定理和罗尔中值定理。
三、进一步的数学证明方法1. 数学归纳法数学归纳法是解析数学中的一种常见的证明方法,它常用于证明具有递归性质的数学命题。
数学归纳法的基本思想是通过证明一个命题在某个特定条件下成立,然后再证明在该条件的基础上,它在下一个条件也成立。
2. 反证法反证法是解析数学中一种常见的证明方法,它通过假设命题不成立,然后推导出矛盾的结论,从而证明原命题的正确性。
高等数学教材定理证明
![高等数学教材定理证明](https://img.taocdn.com/s3/m/ba285049854769eae009581b6bd97f192379bf10.png)
高等数学教材定理证明高等数学是大学数学学科中的重要分支,它涉及到多个定理的证明过程。
本文将围绕高等数学教材中的定理证明展开讨论,探究其原理和推导过程。
以下将从数列极限、导数、积分以及微分方程等几个方面详细介绍。
一、数列极限定理数列极限定理是高等数学中的基础定理之一。
对于一个数列${a_n}$,若存在数A使得对于任意的正数ε,都存在正整数N,使得当n>N时,有|a_n - A|<ε成立,则称A为数列${a_n}$的极限,记作lim(n→∞)a_n = A。
1. Cauchy收敛准则若对于任意的正数ε,存在正整数N,使得当m,n>N时,有|a_m - a_n|<ε成立,则数列${a_n}$称为Cauchy数列。
2. 单调有界定理若数列${a_n}$单调增加且有上界,则该数列必存在极限。
二、导数定理导数是高等数学中的重要概念,在实际应用中具有广泛的意义。
下面介绍导数的相关定理及其证明。
1. 导数存在定理设函数f(x)在区间[a, b]上连续,在(a, b)内可导且左右导数存在极限,则在(a, b)内必存在导数。
证明:根据导数的定义,导数存在等价于左右导数相等。
故设左导数为L,右导数为R,即lim(x→a+)f'(x) = L,lim(x→a-)f'(x) = R。
由于f(x)在区间[a, b]上连续,根据拉格朗日中值定理,存在c∈(a, b),使得f'(c) = f(b) - f(a) / (b - a)。
由此可得lim(x→a+)f'(x) = lim(x→a-)f'(x) = f(b) - f(a) / (b - a),即L = R。
因此,导数存在。
2. 切线存在定理设函数f(x)在点x=a处可导,则函数在该点处存在唯一的切线。
证明:由导数的定义可知,f'(a) = lim(x→a)(f(x) - f(a)) / (x - a)。
高数定理证明
![高数定理证明](https://img.taocdn.com/s3/m/bbd46f6725c52cc58bd6bebd.png)
高数定理证明 1 极限与连续1.1 预备知识1.1.1 确界存在定理:若非空数集D ⊆R 有上(下)界,则D 必存在上(下)确界。
1.2数列极限1.2.1 唯一性:若数列{}n x 收敛,则{}n x 的极限是唯一的。
1.2.2 有界性:若数列{}n x 收敛,则{}n x 必有界。
1.2.3 保号性:若lim n n x A →∞=,则0A >,则N +∃∈Z ,使得当n N >时,有02n Ax >>。
1.2.4 归并性:数列{}n x 收敛于A 的充分必要条件是{}n x 的任一子列也收敛于A 。
1.2.5 设lim ,lim n n n n x A y B →∞→∞==,则:(1)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞±=±=±;(2)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞=⋅=;(3)lim limlim n nn n nn n x x A y y B →∞→∞→∞==(这里lim 0n n B y →∞=≠)。
1.2.6 夹逼准则:如果数列{}{}{},,n n n x y z 满足:N +∃∈Z ,使得当n N >时,有n n n y x z ≤≤,且lim lim n n n n y z A →∞→∞==,则lim n n x A →∞=。
1.2.7 单调有界原理:单调有界数列必有极限。
1.2.8 柯西收敛准则:数列{}n x 收敛的充分必要条件是:对0ε∀>,0N +∃∈Z ,只要0,m n N >时,就有m n x x ε-<。
或者说:对0ε∀>,0N +∃∈Z ,只要0n N >时,n p n x x ε+-<对所有的p +∈Z 成立。
1.3函数极限的性质和运算法则1.3.1 (极限唯一性)如果0lim ()x x f x →存在,则极限唯一。
高中数学定理证明方法高中数学定理证明
![高中数学定理证明方法高中数学定理证明](https://img.taocdn.com/s3/m/f8528da1f46527d3250ce096.png)
高中数学定理证明方法|高中数学定理证明数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = ax+h* + k就是y等于a乘以x+h的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为p/2,0 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3pir^3面积=pir^2周长=2pir圆的标准方程 x-a2+y-b2=r2 注:a,b是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0一椭圆周长计算公式椭圆周长公式:L=2πb+4a-b椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长2πb加上四倍的该椭圆长半轴长a与短半轴长b的差。
二椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率π乘该椭圆长半轴长a与短半轴长b的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sinA+B=sinAcosB+cosAsinB sinA-B=sinAcosB-sinBcosAcosA+B=cosAcosB-sinAsinB cosA-B=cosAcosB+sinAsinBtanA+B=tanA+tanB/1-tanAtanB tanA-B=tanA-tanB/1+tanAtanBcotA+B=cotAcotB-1/cotB+cotA cotA-B=cotAcotB+1/cotB-cotA倍角公式tan2A=2tanA/1-tan2A cot2A=cot2A-1/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sinα+2π/n+sinα+2π*2/n+sinα+2π*3/n+……+sin[α+2π*n-1/n]=0cosα+cosα+2π/n+cosα+2π*2/n+cosα+2π*3/n+……+cos[α+2π*n-1/n]=0 以及sin^2α+sin^2α-2π/3+sin^2α+2π/3=3/2tanAtanBtanA+B+tanA+tanB-tanA+B=0·万能公式:sinα=2tanα/2/[1+tan^2α/2]cosα=[1-tan^2α/2]/[1+tan^2α/2]tanα=2tanα/2/[1-tan^2α/2]半角公式sinA/2=√1-cosA/2 sinA/2=-√1-cosA/2cosA/2=√1+cosA/2 cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosA tanA/2=-√1-cosA/1+cosAcotA/2=√1+cosA/1-cosA cotA/2=-√1+cosA/1-cosA和差化积2sinAcosB=sinA+B+sinA-B 2cosAsinB=sinA+B-sinA-B2cosAcosB=cosA+B-sinA-B -2sinAsinB=cosA+B-cosA-BsinA+sinB=2sinA+B/2cosA-B/2 cosA+cosB=2cosA+B/2sinA-B/2tanA+tanB=sinA+B/cosAcosB tanA-tanB=sinA-B/cosAcosBcotA+cotBsinA+B/sinAsinB -cotA+cotBsinA+B/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=nn+1/2 1+3+5+7+9+11+13+15+…+2n-1=n22+4+6+8+10+12+14+…+2n=nn+11^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=nn+12n+1/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=nn+1/2^21*2+2*3+3*4+4*5+5*6+6*7+…+nn+1=nn+1n+2/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=a+ba-b a3+b3=a+ba2-ab+b2 a3-b3=a-ba2+ab+b2三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√b2-4ac/2a -b-√b2-4ac/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 x-a2+y-b2=r2 注:a,b是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2c+c"h"圆台侧面积 S=1/2c+c"l=piR+rl 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=长+宽×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[pp - ap - bp - c] 海伦-公式p=a+b+c/2和:a+b+c*a+b-c*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=a+b+cr/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= √{1/4[c^2a^2-c^2+a^2-b^2/2^2]} “三斜求积” 南宋秦九韶| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内Aa,b,Bc,d, Ce,f,这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!秦九韶三角形中线面积公式:S=√[Ma+Mb+Mc*Mb+Mc-Ma*Mc+Ma-Mb*Ma+Mb-Mc]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=上底+下底×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=长×宽+长×高+宽×高×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体正方体、圆柱体的体积=底面积×高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2a+bS=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=a+b+c/2 S=ah/2=ab/2?sinC=[ss-as-bs-c]1/2=a2sinBsinC/2sinA1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理sas 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 asa有两角和它们的夹边对应相等的两个三角形全等24 推论aas 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理sss 有三边对应相等的两个三角形全等26 斜边、直角边公理hl 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于感谢您的阅读,祝您生活愉快。
大学高等数学定理公式
![大学高等数学定理公式](https://img.taocdn.com/s3/m/56ecf159a200a6c30c22590102020740be1ecd9b.png)
大学高等数学定理公式大学高等数学是大学阶段重要的一门课程,它涵盖了许多重要的定理和公式。
这些定理和公式在解决数学问题、推导数学证明以及应用数学和工程领域中发挥着重要作用。
在本文中,我们将介绍一些大学高等数学中常见的定理和公式,并探讨其应用。
一、极限与连续1. 导数的定义:对于函数f(x),若存在一个常数a,使得当x趋近于a时,函数的导数存在,并记为f'(a),则称函数在点a处可导。
2. 微分中值定理:若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)内可导,则存在c∈(a,b),使得f'(c) = (f(b)-f(a))/(b-a)。
3. 泰勒公式:对于函数f(x),若f(x)在x=a处的n阶导数存在,则有:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! ,其中fⁿ(a)表示函数在点a处的n阶导数。
二、微积分1. 不定积分的基本公式:∫xⁿdx = xⁿ⁺¹/(n+1) + C ,其中C为常数。
2. 定积分的基本公式:若函数f(x)在区间[a,b]上连续,则∫[a,b]f(x)dx存在,且记为F(x)的原函数在区间[a,b] 的定积分为∫[a,b]f(x)dx = F(b) - F(a)。
3. 牛顿-莱布尼兹公式:若函数f(x)在[a,b]上连续,则∫[a,b]f'(x)dx = f(b) - f(a)。
三、向量与矩阵1. 向量的模和方向:对于向量A = (a₁,a₂,...,aₙ),其模记为|A|,方向记为θ,有A =|A|cosθ·i + |A|sinθ·j。
2. 向量的点积:对于向量A = (a₁,a₂,...,aₙ)和B = (b₁,b₂,...,bₙ),其点积记为A·B = a₁b₁ + a₂b₂ + ... + aₙbₙ。
高考数学常用定理的证明
![高考数学常用定理的证明](https://img.taocdn.com/s3/m/4e9530d94793daef5ef7ba0d4a7302768e996f3b.png)
高考数学常用定理的证明
高考数学常用定理的证明是高考数学的重要组成部分,也是高考数学思维方式的训练。
本文将介绍高考数学中常用的定理及其证明方法。
首先,我们来看看关于三角形的定理,也就是三边所对角等于两角之和。
证明这个定理的方法也很简单,首先画出一个三角形ABC,用A、B、C分别标注三角形的三个顶点,设∠A=α,∠B=β,∠C=γ,则有α+β+γ=180°;又由于三角形的两个角的和等于其另一角,即α+β=γ,至此,三边所对角等于两角之和的定理就已经证明完毕。
其次,我们来看看正方形的定理,每条边的长度都相等。
画出一个正方形,用A、B、C、D分别标注正方形的四个顶点,设AB=a,BC=b,CD=c,DA=d,则有a=b=c=d,至此,正方形的定理就证明完毕。
继续来看看另外一个定理,即梯形的定理。
画出一个梯形ABCD,用A、B、C、D分别表示梯形的四个顶点,设AB=a,BC=b,CD=c,其中a>b>c,则可以推出:a+c=b+d,至此,梯形的定理也就证明完毕。
最后,我们来看看圆的定理,即圆心到圆上任意一点的距离都相等。
画出一个圆,用O表示圆心,用A表示圆上任意一点,设圆心到点A的距离为r,则可以推出:任意点和圆心的距离都是r,至此,圆的定理也就证明完毕。
以上就是高考数学中常用定理及其证明方法的总结,可以说这些定理是高考数学中不可或缺的,因此考生在复习高考数学时,应该重点掌握这些定理,加深对它们的理解,从而掌握高考数学的思维方式。
大学高等数学定理公式
![大学高等数学定理公式](https://img.taocdn.com/s3/m/b3e3e422482fb4daa58d4bbf.png)
第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数中的重要定理与公式及其证明(一)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。
如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。
但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。
而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。
因此,在这方面可以有所取舍。
应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。
这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。
由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。
1)常用的极限0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1lim(1)xx x e →+=与0sin lim1x xx →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。
证明: 0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x→+=。
01lim 1x x e x →-=:在等式0ln(1)lim 1x x x→+=中,令ln(1)x t +=,则1t x e =-。
由于极限过程是0x →,此时也有0t →,因此有0lim11tt te →=-。
极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim1x x e x→-=。
01lim ln x x a a x →-=:利用对数恒等式得ln 0011lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011limln lim ln ln x a x a x x e e a a x x a →→--==。
因此有01lim ln x x a a x→-=。
0(1)1lim a x x a x→+-=:利用对数恒等式得 ln(1)ln(1)ln(1)00000(1)111ln(1)1ln(1)lim lim lim lim lim ln(1)ln(1)a a x a x a x x x x x x x e e x e x a a a x x a x x a x x+++→→→→→+---+-+====++上式中同时用到了第一个和第二个极限。
201cos 1lim 2x x x →-=:利用倍角公式得22220002sin sin1cos 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭。
2)导数与微分的四则运算法则'''''''''22(), d()(), d()(), d()(0)u v u v u v du dv uv u v uv uv vdu udvu vu uv u vdu udv v v v v v ±=±±=±=+=+--==≠【点评】:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义。
而导数的证明也恰恰是很多考生的薄弱点,通过这几个公式可以强化相关的概念,避免到复习后期成为自己的知识漏洞。
具体的证明过程教材上有,这里就不赘述了。
3)链式法则设(),()y f u u x ϕ==,如果()x ϕ在x 处可导,且()f u 在对应的()u x ϕ=处可导,则复合函数(())y f x ϕ=在x 处可导可导,且有:[]'''(())()()dy dy duf x f u x dx du dxϕϕ==或【点评】:同上。
4)反函数求导法则设函数()y f x =在点x 的某领域内连续,在点0x 处可导且'()0f x ≠,并令其反函数为()x g y =,且0x 所对应的y 的值为0y ,则有:'0''00111()()(())dx g y dy f x f g y dydx===或 【点评】:同上。
5)常见函数的导数()'1x xααα-=,()'sin cos x x =,()'cos sin x x =-, ()'1ln x x =,()'1log ln a x x a=, ()'x xe e =,()'ln x x a e a =【点评】:这些求导公式大家都很熟悉,但很少有人想过它们的由来。
实际上,掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对极限的计算也是很好的练习。
现选取其中典型予以证明。
证明:()'1x x ααα-=:导数的定义是'0()()()lim x f x x f x f x x∆→+∆-=∆,代入该公式得 ()'1100(1)1(1)1()lim lim x x x x x x x x x x x x x x x xxααααααααα--∆→∆→∆∆+-+-+∆-====∆∆∆。
最后一步用到了极限0(1)1lima x x a x→+-=。
注意,这里的推导过程仅适用于0x ≠的情形。
0x =的情形需要另行推导,这种情况很简单,留给大家。
()'sin cos x x =:利用导数定义()'0sin()sin sin lim x x x x x x ∆→+∆-=∆,由和差化积公式得002cos()sinsin()sin 22lim lim cos x x x xx x x x x x x ∆→∆→∆∆++∆-==∆∆。
()'cos sin x x =-的证明类似。
()'1ln x x =:利用导数定义()'00ln(1)ln()ln 1ln lim lim x x x x x x x x x x x∆→∆→∆++∆-===∆∆。
()'1log ln a x x a =的证明类似(利用换底公式ln log ln a x x a=)。
()'x xe e=:利用导数定义()()'001lim lim x x x xx x x x x e e e ee e x x+∆∆∆→∆→--===∆∆。
()'ln x x a e a =的证明类似(利用对数恒等式ln x x a a e =)。
6)定积分比较定理如果在区间[,]a b 上恒有()0f x ≥,则有()0ba f x dx ≥⎰推论:ⅰ如果在区间[,]a b 上恒有()()f x g x ≥,则有()()b baaf x dxg x dx ≥⎰⎰;ⅱ设M m 和是函数()f x 在区间[,]a b 上的最大值与最小值,则有:()()()ba mb a f x dx M b a -≤≤-⎰【点评】:定积分比较定理在解题时应用比较广,定积分中值定理也是它的推论。
掌握其证明过程,对理解及应用该定理很有帮助。
具体的证明过程教材上有。
7)定积分中值定理设函数()f x 在区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一点ξ使得下式成立:()()()baf x dx f b a ξ=-⎰【点评】:微积分的两大中值定理之一,定积分比较定理和闭区间上连续函数的推论,在证明题中有重要的作用。
考研真题中更是有直接用到该定理证明方法的题目,重要性不严而喻。
具体证明过程见教材。
8)变上限积分求导定理如果函数()f x 在区间[,]a b 上连续,则积分上限的函数()()xa x f x dx Φ=⎰在[,]ab 上可导,并且它的导数是'()()(),xa d x f x dx f x a xb dx Φ==≤≤⎰设函数()()()()u x v x F x f t dt =⎰,则有'''()(())()(())()F x f u x u x f v x v x =-。
【点评】:不说了,考试直接就考过该定理的证明。
具体证明过程见教材。
9)牛顿-莱布尼兹公式如果函数()f x 在区间[,]a b 上连续,则有()()()ba f x dx Fb F a =-⎰,其中()F x 是()f x 的原函数。
【点评】:微积分中最核心的定理,计算定积分的基础,变上限积分求导定理的推论。
具体证明过程见教材。
设函数()f x 在点0x 的某领域0()U x 内有定义,并且在0x 处可导,如果对任意的0()x U x ∈,有00()()()()f x f x f x f x ≤≥或,那么'0()0f x =【点评】:费马引理是罗尔定理的基础,其证明过程中用到了极限的保号性,是很重要的思想方法。
具体证明过程见教材。
11)罗尔定理: 如果函数()f x 满足(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 上可导(3)在区间端点处的函数值相等,即()()f a f b =那么在(,)a b 内至少存在一点()a b ξξ<<,使得'()0f ξ=。
【点评】:罗尔定理,拉格朗日中值定理,柯西中值定理是一脉相承的三大定理;它们从形式上看是由特殊到一般,后面的定理包含前面的定理,但实际上却是相互蕴含,可以相互推导的。
这几个定理的证明方法也就是与中值有关的证明题主要的证明方法。
中值定理的证明是高数中的难点,一定要多加注意。
具体证明过程见教材。
12)拉格朗日中值定理: 如果函数()f x 满足(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 上可导那么在(,)a b 内至少存在一点()a b ξξ<<,使得'()()()f b f a f b aξ-=-。
【点评】:同上。
13)柯西中值定理: 如果函数()f x 和()g x 满足 (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 上可导那么在(,)a b 内至少存在一点()a b ξξ<<,使得''()()()()()()f f b f ag g b g a ξξ-=-。
【点评】:同上。
设函数()f x 在[,]a b 上连续,在(,)a b 上可导。