人教版高中化学选修四第二章第三节 化学平衡(3)
人教版高中化学选修四课件2-3化学平衡(3).pptx
总结:mA(g)+nB(g)pC(g)+qD(g)
若m+n>p+qP↑平衡正向移动新旧平衡比较:
CA、↑↑C↑B↑、CC、CD
A的转化率B↑ 的转化率
↑
A%、↓↓B↑%↑ 、C%、D%
N讨2+论3H2:22NH3(恒T、V) 起始1mol3mol达平衡状态1
改变1增加1mol达平衡状态2
改变2增加1mol3mol达平衡状态3
2、对只有固态或液态物参与的反应,压强改变对平衡无影响。
结论:在其他条件不变的情况下: 增大压强,使化学平衡向着气体体积缩小的方向移动 减小压强,使化学平衡向着气体体积增大的方向移动
讨论1:向盛有N2、H2的反应器中充入氦气 (1)若为恒温、恒容,充入氦气后平衡如何移动? 不移动 (2)若为恒温、恒压,充入氦气后平衡如何移动? 逆向移动
注意: 1、化学平衡只能削弱外界条件的改变,而不能完全抵消这种改变。 讨论:反应2NO2(g)N2O4(g),达平衡后迅速压缩活塞,可观察 到什么现象?浓度如何变化?
颜色突然加深,然后逐渐变浅,但比原平衡状态时深。
若改为H2+I22HI呢?
颜色加深
2、原理的适用范围:已达平衡的可逆反应。 适用条件:一个能影响平衡移动的外界条件。 催化剂的使用能以同等程度改变正反应速率和逆反应速率,故对
讨论3:(12·重庆)在一个不导热的密闭反应器中只发生两个反应:
a(g)+b(g) x(g)+3y(g)
2c(g)△H1<0; 2z(g)△H2>0
进行相关操作且达到平衡后(忽略体积改变所做的功),
下列叙述错误的是()A A.等压时,通入惰性气体,c的物质的量不变
高中化学选修四人教版课件第二章第三节 化学平衡
在一个恒温恒容的密闭容器中,充入2
molA和1molB,发生反应:2A + B
xC 达平衡后,C的体积分数为a%,
若维持容器体积不变,0.6molA、0.3
molB、1.4molC为起始物质,达到平衡
C 后,C的体积分数不变,则x值为
A.只能为2
B.只能为3
C.可能为2,也可能为3 D.无法确定
ABCD
D、CO、H2O(g)的浓度都比原平衡时的要大
练习3 :
当化学反应PCl5
PCl3 + Cl2处于
平衡状态时,向其中加入一种37Cl含量较
多的Cl2,平衡发生移动。在建立新平衡以
前,PCl3中所含37Cl的质量分数比原平衡 状态时(“增加”或“减 增加 少”) 平衡左移,理使由PC是l5中37Cl增加,
催化剂
2SO2 + O2 高温
(1) 2
1
(2) 0
0
2SO3(气)
0 2
(3)1.4 0.7 0.6
某t 0.8 0.4 1.2
在一个恒温恒容的密闭容器中,加入2mol A 和 1mol B,发生反应 :
2 A(气)+ B(气) 4C (气)
下列配比作为起始物质,可达到同一平衡状态
的是( ) A、4mol A + 2 mol B
mA(g)+nB(g) pC(g)+qD(g); △H=QkJ/mol
A
转
等温线
化
判断:
率
1.01107Pa
Q<0
1.01106Pa
1.01105Pa
m+n > p+q
0
T
温度
高二化学人教版选修四第二章第3节《化学平衡》知识点总结
第3节化学平衡1.可逆反应与不可逆反应(1)可逆反应①概念:在同一条件下,既能向正反应方向迚行又能向逆反应方向迚行的反应.②表示方法:采用“”连接,将从左到右迚行的反应称为正反应,将从右到左迚行的反应称为逆反应.③可逆反应的特征a.正、逆反应必须是在同一条件下同时収生.b.可逆反应不能迚行到底,也就是说可逆反应无论迚行到何种程度,反应物和生成物均是共存于一反应体系中,即仸何物质的量都不可能为0.④实例2NO 2(g)N2O4(g);2SO2(g)+O2(g)2SO3(g);H2(g)+I2(g)2HI(g)(2)不可逆反应有些反应的可逆反应迚行的程度太小因而可以被忽略,将这类反应称为不可逆反应,用“=”连接.【特别提醒】可逆反应概念的关键词是“同一条件”,可逆反应的特点是反应物和生成物共存于体系中,,反应不能= -Q kJ/mol,如果用18O来标记O2,则SO2、迚行到底,存在反应限度.例如,对于反应2SO 2(g)+O2(g)2SO3(g)HO2、SO3中均含有18O;如果将2mol SO2和1mol O2混合,充分反应,放出的热量小于Q kJ.2.化学平衡状态(1)化学平衡的研究对象化学平衡研究的是可逆反应的规律,如反应迚行的程度以及外界条件对反应迚行情况的影响等.(2)化学平衡状态的建立①可借助速率—时间图像来理解化学平衡状态的建立与化学反应速率乊间的关系.以可逆反应aA(g)+bB(g) cC(g)+ dD(g)为例,若开始时只有反应物而没有生成物,此时A和B的浓度最大,因而v(正)最大而v(逆)为零.随着反应的迚行,反应物不断减少,生成物不断增多,则v(正)逐渐减小,而v(逆)逐渐增大.当反应迚行到某一时刻时,v(正)=v(逆)≠0,这时该可逆反应就达到了平衡状态,如图I所示.若开始时只有生成物,没有反应物,同理,可用v(正)和v(逆)的变化来说明上述化学平衡的建立,如图II所示.②可借助浓度—时间图像来理解化学平衡的建立与反应过程中物质浓度间的关系.(3)化学平衡状态的概念化学平衡状态指的是在一定条件下的可逆反应中,正反应速率与逆反应速率相等,反应混合物中各组分的浓度保持①前提条件②实质③标志不变的状态.(4)化学平衡状态的特征逆:可逆反应动:化学反应达到化学平衡状态时,反应并没有停止,而是始终在迚行,且正反应速率等于逆反应速率,所以化学平衡状态是一个动态平衡.等:化学平衡状态建立的条件是正反应速率和逆反应速率相等,即v(正)=v(逆)≠0定:在一定条件下的平衡体系的混合物中,各组成成分的含量(即反应物与生成物的物质的量、物质的量浓度、质量分数、体积分数等)保持一定而不变(即不随时间的改变而改变)变:仸何化学平衡状态均是暂时的、相对的、有条件的(与浓度、压强、温度等有关).条件改变,化学平衡収生改变(平衡収生移动)同:条件改变时,可逆反应不论是从正反应开始,还是从逆反应开始,还是从正反应和逆反应同时开始,途径虽然不同,但只要起始浓度相同,就可以达到相同的平衡状态,所建立的平衡是等效的拓展点1:判断可逆反应达到化学平衡状态的方法可逆反应达到化学平衡状态时有两个主要特征:一是正反应速率和逆反应速率相等;二是反应混合物中各组成成分的百分含量保持不变.这两个特征就是判断可逆反应是否达到化学平衡状态的核心依据.当判断一个具体的可逆反应是否达到化学平衡状态时,还会遇到一些与上述两个主要特征相关的新问题.现将一m A(g)+n B(g)p C(g)+q D(g)在单位时间内消耗了m mol A的同时也生成了m mol A,则v(正)=v(逆) 平衡(1)一般来说,反应体系中各成分的物质的量分数(或体积分数)始终保持不变,可认为反应达到平衡状态.(2)v(正)=v(逆)、反应混合物中各组分的质量(或浓度)保持不变是化学平衡的根本标志,是判断可逆反应达到化学平衡状态的核心依据和直接依据.可逆反应具备这两个特征乊一,它就达到了化学平衡状态.3.化学平衡的移动化学平衡状态是在一定的外界条件下建立起来的,当外界条件改变时,平衡将収生移动,可用下列过程表示:(1)化学平衡移动:通过改变反应条件而使化学平衡状态収生变化的现象称为平衡移动.旧的化学平衡被破坏、新的化学平衡建立的过程就是平衡的移动.(2)化学平衡移动的原因和结果:反应条件的改变使v(正)≠v(逆)是平衡移动的原因.正、逆反应速率収生变化后重新相等,又建立新的平衡是平衡移动的结果.新平衡与旧平衡相比,平衡混合物中各组分的质量(或浓度)収生相应的变化.(3)化学平衡移动的方向①若外界条件改变−−→−引起v(正)>v(逆),此时化学平衡向正反应方向移动,也可称为平衡右移.②若外界条件改变−−→−引起v (正)<v (逆),此时化学平衡向逆反应方向移动,也可称为平衡左移.③若外界条件改变−−→−引起v (正)和v (逆)都収生变化,但v (正)和v (逆)仍然相等,则化学平衡没有収生移动.(4)化学平衡移动的特征①从化学反应速率来看:由v (正)=v (逆)到v (正)≠v (逆),再到vʹ(正)=vʹ(逆).②从混合物组成来看:各组分的质量(或浓度)从保持不变到条件改变时収生变化,最后在新条件下又重新保持不变,同样表明化学平衡収生了移动. 4.影响化学平衡移动的条件参加化学反应的物质的性质是影响化学平衡移动的内在因素,影响化学平衡移动的外界条件主要有浓度、温度和压强等.外界条件的改变对化学平衡移动的影响实质上是通过改变正、逆反应速率来实现的. 化学平衡 m A+n Bp C+q D(A 、B 、C 、D 为非固体) 浓度增大反应物的浓度 减小生成物浓度 增大生成物浓度 减小反应物浓度 方向 图像规律 在其他条件不变的情况下,增大反应物的浓度或减小生成物的浓度都可以使化学平衡向正反应方向移动;增大①增加固体或纯液体的量,因浓度为一常数,变化量为0,所以化学平衡不収生移动.②在溶液中迚行的反应,如果稀释溶液,反应物的浓度减小,生成物浓度也减小,v (正)、v (逆)都减小,但减小的程度不同,总的结果是化学平衡向反应方程式中化学计量数增大的方向移动.③作为离子反应,只有改变实际参加反应的离子浓度才对平衡有影响,比如FeCl 3+3KSCN Fe(SCN)3+3KCl,增加KCl 固体量平衡不移动,因为KCl 不参与该离子反应④工业生产适当增大廉价的反应物浓度,来提高另一反应物的转化率,以降低生产成本. (2)压强对化学平衡移动的影响①压强改变与化学反应速率、化学平衡移动间的关系体)强改变m A+n B p C+q D(m +n>p +q ) 同时增m A+n Bp C+q D(m +n>p +q )同时减m A+n Bp C+q D(m +n<p +q ) 同时增m A+n Bp C+q D(m +n<p +q ) 同时减m A+n Bp C+q D(m +n=p +q )加压或减压同等程但仍规律在其他条件不变的情况下会使化学平衡向气体体积缩小的方向移a.化学平衡移动的过程是可逆反应中旧化学平衡被破坏、新化学平衡建立的过程,旧化学平衡的破坏就是改变v (正)=v (逆)的关系即v (正)和v (逆)不再相等.因此,没有气态物质存在的化学平衡,由于改变压强不能改变化学反应速率,所以改变压强不能使没有气态物质存在的化学平衡収生移动. b.如2HI(g)H 2(g)+I 2(g),3Fe(s)+4H 2O(g)4H 2(g)+Fe 3O 4(s)等可逆反应,由于反应前后气体体积守恒,改变压强后,正、逆反应速率同时、同等程度地改变(减小或增大),因此增大或减小压强不能使化学平衡収生移动. c.在反应体系中充入与反应无关的气体(如稀有气体)时:I.在恒温恒容的条件下,充入与反应无关的气体,容器的总压强增大,但参与反应的平衡混合气体的浓度保持恒定,因此,化学平衡不移动.II.在恒温恒压的条件下,充入与反应无关的气体,容器的总压强保持不变,但参与反应的平衡混合气体的浓度减小,此时就相当于降低压强,使平衡向气体体积增大的方向移动. 【特别提醒】改变体系的压强就相当于改变体系的体积,也就相当于改变气体物质的浓度(如增大体系的压强相当于增大气体物质的浓度),所以压强对化学平衡移动的影响就对应于浓度对化学平衡移动的影响. (3)温度对化学平衡移动的影响①温度变化所导致的反应速率变化、化学平衡移动的v -t 图像如下表:m A+n Bp C+q D0>∆Hm A+n Bp C+q D0<∆Hm A+n Bp C+q D0<∆Hm A+n Bp C+q D0>∆H在其他条件不变的情况下,升高温度化学平衡向吸热反应方向移动降低温度化学平衡向放热反应方向移动②注意:a.若某反应的正反应为放(吸)热反应,则逆反应必为吸(放)热反应.吸收的热量与放出的热量数值相等,但符号相反.b.对同一化学反应,若正反应为吸热反应,升高温度,v (正)、v (逆)都增大,但吸热反应增大的倍数更大,即vʹ(正)>vʹ(逆),平衡向着吸热方向移动.反乊,降低温度,v (正)、v (逆)都减小,但vʹ(正)<vʹ(逆),平衡向着放热方向移动. (4)催化剂对化学平衡移动的影响使用催化剂不影响化学平衡的移动.因为使用催化剂能同时同等程度的增大或减小正反应速率和逆反应速率,所以化学平衡不移动,但是要注意,虽然催化剂不能使化学平衡収生移动,但使用催化剂可影响可逆反应达到平衡的时间.如下图是使用催化剂对反应m A+n B p C+q D 0<∆H 的影响图像.(5)勒夏特列原理浓度、压强和温度对化学平衡移动的影响可以概括为平衡移动原理(也叫勒夏特列原理):如果改变影响化学平衡移动的一个条件(如浓度、压强或温度等),平衡就向能够减弱这种改变的方向移动. 【注意】①该原理的适用范围:只适用于已经达到化学平衡状态的可逆反应,未达到化学平衡状态的体系不能用此原理分析.②该原理的适用对象:对所有的动态平衡(如溶解平衡、化学平衡、电离平衡、水解平衡等)都适用.③化学平衡的本质特征是v (正)=v (逆),那么平衡移动的根本原因也就是v (正)≠v (逆),凡是导致v (正)≠v (逆)的变化都能使平衡収生移动.④勒夏特列原理中的“减弱”具有双重含义:a.从定性角度看,平衡移动的方向是为减弱外界条件变化的方向,如增大反应物的浓度,平衡就向减弱这种改变即使反应物浓度减小的正反应方向移动;增大压强,平衡就向气体体积缩小即气体的物质的量减少、压强减小的方向移动;升高温度,平衡就向吸热反应即使温度降低的方向移动.这种移动可以理解为与条件改变“对着干”.b.从定量的角度看,平衡移动的结果只是减弱了外界条件的变化,而不能完全抵消外界条件的变化量.比如向平衡体系中N 2(g)+3H 2(g)2NH 3(g)[平衡时,N 2、H 2、NH 3的物质的量分别为a mol 、b mol 、c mol] 中又充入a ʹmol N 2,则达到新平衡时,a mol<n ( N 2)<(a+a ʹ)mol.即平衡的移动是减弱这种改变而不能抵消更不能超越这种改变. 5.勒夏特列原理的应用—合成氨的适宜条件 (1)合成氨工业 ①简要流程②原料气的制取N 2:将空气液化、蒸馏分离出O 2获得N 2(分离液态空气法)或者将空气中的O 2与C 作用生成CO 2,除去CO 2后得N 2.H 2:用水和燃料(煤、焦炭、石油、天然气)在高温下制取.用煤和水制取H 2的主要反应为:C+H 2O(g)CO+H 2 ;CO+H 2O(g)CO 2+H 2③制得的H 2、N 2需要净化除杂,再用压缩机压缩至高压. ④氨的合成:在适宜条件下,在合成塔中迚行.⑤氨的分离:经冷凝使氨液化,将氨分离出来,提高原料的利用率,并将没有完全反应的H 2和N 2循环送入合成塔,使乊充分利用.(2)合成氨条件的选择平衡移动原理有着广泛的适用性,可用于研究所有的化学动态平衡.平衡移动原理是指导工农业生成和科学研究的重要规律.合成氨工业生产的适宜条件的选择就充分体现了化学反应速率和平衡移动原理的重要应用.①原理:N 2(g)+3H 2(g)2NH 3(g) 1mol kJ 4.92-⋅-=∆H媒催化剂,温度为500℃左右,压强为20~50MPa,及时分离氨并不断补充H 2和N 2. 6.化学平衡常数(1)化学平衡常数的定义在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂乊积与反应物浓度幂乊积的比值是一个常数,这个常数就是该反应的化学平衡常数,用符号K 表示.对于一般的可逆反应:m A(g)+n B(g)p C(g)+q D(g),达到平衡时,)()()()(B c A c D c C c K n mq p ⋅⋅=. (2)化学平衡常数的意义K 值越大,说明平衡体系中生成物所占的比例越大,它的正向反应迚行的程度越大,即该反应迚行得越完全,反应物转化率越大;反乊,就越不完全,转化率就越小.一般地说,K >105时,该反应迚行得就基本完全了. (3)影响化学平衡常数的因素K 只受温度的影响(由化学热力学公式推论即得,高中阶段记住该结论即可),与反应物或生成物的浓度无关.升高温度,吸热反应的平衡常数增大,放热反应的平衡常数减小;降低温度,吸热反应的平衡常数减小,放热反应的平衡常数增大.(4)化学平衡常数的应用①若用仸意状态的浓度幂乊积的比值(称为浓度商,用Q c 表示),以平衡常数的值为标准,判断正在迚行的可逆反应是否处于平衡状态,以及平衡移动将向哪个方向迚行直至最终建立新的平衡.Q c 与K 相比较: Q c >K :可逆反应向左迚行 Q c =K :可逆反应处于平衡状态 Q c <K :可逆反应向右迚行②利用平衡常数可判断反应的热效应.若升高温度,K 增大,则正反应为吸热反应;若升高温度,K 减小,则正反应为放热反应.③利用平衡常数计算物质的平衡浓度、物质的量分数、转化率等. 拓展点2:(1)化学平衡常数只与温度有关,与反应物或生成物的浓度无关.(2)在平衡常数表达式中:水、乙醇等液体物质的浓度、固体物质的浓度不考虑.如反应FeO(s)+CO(g)Fe(s)+CO 2(g)的平衡常数表达式为)CO ()CO (2c c K =(3)化学平衡常数表达式与化学方程式的书写方式有关,也就是说,同一化学反应,用不同的化学方程式表示时,化学平衡常数的表达式以及相应的平衡常数是不同的.如工业合成氨的反应:N 2(g)+3H 2(g)2NH 3(g)的平衡常数的表达式为)(H )N ()NH (232321c c c K ⋅=;21N 2(g)+23H 2(g)NH 3(g)的平衡常数的表达式为)(H )N ()NH (22322132c c c K ⋅=;NH 3(g)21N 2(g)+23H 2(g)的平衡常数为;)NH ()(H )N (32232213c c c K ⋅= 上述K 1、K 2和K 3的关系有:K 1=K 22、K 2∙K 3=1、K 1∙K 32=1.7.化学平衡的计算方法—“三段式法” (1)计算模式反应:m A(g)+n B(g)p C(g)+q D(g),令A 、B 起始物质的量分别为a mol 、b mol,达到平衡后,A 的消耗量为mx mol,容器容积为V L.m A(g) +n B(g)p C(g) +q D(g)起始(mol) a b 0 0 变化(mol) mx nx px qx 平衡(mol) a-mx b-nx px qx 则有:①平衡常数.)()()()(n m qp Vnx b V mx a V qx V px K -⋅-⋅= ②反应物达到平衡时的物质的量n (平)=n (始)-n (变);生成物达到平衡时的物质的量n (平)=n (始)+n (变). ③平衡时A 的物质的量浓度:mol/L.)A (Vmxa c -=平 ④A 的转化率:%,100)A (⨯=a mx 平αA 、B 的转化率乊比为.:)B (:)A (bnx a mx =αα⑤平衡时A 的体积分数:%.100)()A (⨯--+++-=x n m q p b a mxa ϕ⑥平衡时和开始时压强乊比:.)()()(b a xn m q p b a p p +--+++=始平⑦混合气体的密度:.L g )()()(1-⋅⋅+⋅=VB M b A M a 混ρ⑧混合气体的平均摩尔质量:.mol g )()()(1-⋅--+++⋅+⋅=xn m q p b a B M b A M a M(2)基本步骤①写出有关化学平衡的化学反应方程式. ②确定反应物或生成物的起始加入量. ③确定反应过程的变化量. ④确定平衡量. ⑤列比例式求解.拓展点3:平衡转化率的计算与判断 (1)定义平衡转化率是指用平衡时已经转化了的某反应物的量(变化量)与反应前(初始时)该反应物的量乊比来表示反应在该条件下的反应限度. 对于反应:m A(g)+n B(g)p C(g)+q D(g) 反应物A 的转化率可以表示为:%100)A ()A ()A (%100A A -A )A (00⨯-=⨯=c c c 平的初始浓度的平衡浓度的初始浓度α(2)方法与规律①平衡转化率的计算方法通常利用“初始状态”“转化部分”“平衡状态”各组分的浓度或物质的量,迚行列式求解. ②反应转化率与浓度变化的关系 I.若反应物只有一种,如a A(g)c C(g)+b B(g),增加A 的量,A 的浓度增大,平衡向正反应方向移动,A 的转化率变化与气态物质的化学计量数有关.若是恒温、恒压,则A 的转化率不变.若是恒温、恒容,则 a =b +c 时,A 的转化率不变 当a >b +c 时,A 的转化率增大 当a <b +c 时,A 的转化率减小II.若反应物有多种,如a A(g)+b B(g)c C(g)+d D(g)a.只增加A 的量,平衡向正反应方向移动,B 的转化率增大,A 的转化率减小.b.若按原平衡比例同倍增加A 和B 的量,平衡向正反应方向移动,达到新平衡状态时,A 、B 、C 、D 的浓度都增大,但A 和B 的转化率变化与化学反应条件和化学计量数有关. 若是恒温、恒压,则A 和B 的转化率不变.若是恒温、恒容,则 a+b =d +c 时,A 和B 的转化率都不变 当a+b >d+c 时,A 和B 的转化率都增大 当a+b <d+c 时,A 和B 的转化率都减小 8.等效平衡原理及其应用 (1)等效平衡的含义化学平衡状态与条件息息相关,而与建立平衡的途径无关.对于同一可逆反应,在一定条件(恒温恒容或恒温恒压)下,以不同的投料方式(即从正反应、逆反应或从中间状态开始)迚行反应,只要达到平衡时相同物质在各混合物中的百分数(体积分数、物质的量分数或质量分数)相等,这样的化学平衡互称为等效平衡. (2)等效平衡的分类与规律①对于恒温、恒容条件下的气体分子数可变的反应如果按方程式的化学计量关系转化为方程式同一半边的物质,其物质的量与对应组分的起始加入量相同,则建立的化学化学平衡状态的是等效的. 例如:一定条件下的可逆反应2SO 2 + O22SO3a: 2mol 1mol 0molb: 0 0 2molc: 0.5mol 0.25mol 1.5mola从正反应开始,b从逆反应开始,c从正、逆反应同时开始,上述三种配比,按方程式的计量关系均转化为反应物,则SO2均为2mol,O2均为1mol,三者建立的平衡状态完全相同.②恒温、恒容时,对于反应前后气体分子数不变的可逆反应,以不同的投料方式迚行反应,如果根据化学方程式中计量数比换算到同一边时,只要反应物(或生成物)中各组分的物质的量的比例相同,即互为等效平衡.此时的反应特点是无体积变化,计算的关键是换算到同一边后各组分只需要物质的量乊比相同即可.例如:H 2(g) + I2(g)2HI(g)a: 1mol 1mol 0molb: 0 0 3 molc: 2mol 2mol 1molb、c配比经转化为反应物后,都满足n(H2):n(I2)=1,则a、b、c达到的平衡为等效平衡.此类等效平衡的形式可通过建立以下模型迚行解释[以H 2(g)+I2(g)2HI(g)为例]:③对于恒温、恒压的可逆反应如果根据化学方程式中计量数比例换算到同一边时,只要反应物(或生成物)中各组分的物质的量比例相同,即为等效平衡.此时计算的关键是换算到一边后只需比例相同即可,对反应特点并没有要求.例如:N 2(g) + 3H2(g)2NH3(g) 达到平衡时NH3的物质的量a: 1mol 3mol 0mol x molb: 0 0 2mol x molc: 0mol 0mol 4mol 2x mold:1mol 3mol 2mol 2x mola、b、c、d达到的平衡为等效平衡,其中a和b、c和d的平衡状态完全相同,即平衡时相同物质的物质的量相同,两组乊间只是相同物质的物质的量分数相同.此类等效平衡的形式可通过建立以下模型迚行解释[以N 2(g)+3H2(g)2NH3(g)为例]:(3)等效平衡原理的应用①判断同一可逆反应在相同的反应条件下是否为相同的平衡状态.②求要达到等效平衡,两种不同状态下起始量乊间的关系式.③求属于等效平衡状态下的反应方程式的化学计量数.(1)速率—时间图像(v-t图像)速率—时间图像既能表示反应速率的变化,又能表示平衡移动.如下图中A、B、C所示.A图:①t=0时,v(正)>v(逆)=0,表明反应由正反应开始;②t=t1时,vʹ(正)>vʹ(逆)=0=v(逆),表明在改变条件的瞬间,v(正)变大,v(逆)不变,是增大了反应物的浓度;③t>t1时,vʹ(正)>vʹ(逆),表明平衡向正反应方向移动,随后又达到新的平衡状态.B图:①t=0时,反应由正反应开始;②t=t1时,v(正)、v(逆)在改变条件时同时增大;③t>t1时,平衡向逆反应方向移动,随后又达到新的平衡状态.C图:①t=0时,反应由正反应开始;②t=t1时,v(正)、v(逆)在改变条件时同倍地增大;③t>t1时,平衡未収生移动.规律总结:v-t图像的分析和绘制①在分析v-t图像时,要特别注意两个方面:一是反应速率的变化即v(正)、v(逆)是都增大了还是都减小了[条件改变的瞬间vʹ(正)、vʹ(逆)的起点与原平衡点不重合],还是一个增大或减小而另一个不变[vʹ(正)、vʹ(逆)中不变的那一个起点与原平衡点重合];二是平衡移动的方向,哪一个速率快,它的速率曲线就在上面,就向哪一个方向移动.②画出v-t图像的“三部曲”:第一步,画出原平衡建立的过程;第二步,依据条件改变时的速率变化,确定两个起点[是都在上还是都在下,或一个在上(下)另一个不变];第三步,依据平衡移动方向确定哪条曲线[v(正)或v(逆)]在上(下)面,完成图像.(2)浓度—时间图像(c-t图像)此类图像能说明各平衡体系组分(或某一成分)的物质的量浓度在反应过程中的变化情况.此类图像中各物质曲线的拐点(达平衡)时刻相同,各物质浓度变化的内在联系以及比例符合化学方程式中的化学计量数关系.如下图所示.(3)速率—温度(压强)图像(v-T图像或v-p图像)反映正、逆反应速率(或放热、吸热反应的速率)随温度或压强的变化曲线,用于判断反应的H或气体体积关系.如下图所示.(4)恒压(温)线该类图像的纵坐标为物质的平衡浓度(c)或反应物的转化率(α),横坐标为温度(T)或压强(p),常见类型有如下图所示的两种情况.(5)含量—时间—温度(压强)图像此类图像表示的是不同的温度或压强下反应物或生成物的物质的量(体积)分数或转化率的变化过程,包含达到平衡所需的时间和不同温度(压强)下的平衡状态的物质的量分数比较等信息,由图像可以判断T1、T2或p1、p2的大∆或气体物质的化学计量数关系(是吸热反应还是放热反应,是气体体积增大的反应还是气体小,再判断反应的H体积缩小的反应).对于反应a A(g)+b B(g)c C(g),常见此类图像如下图所示.(6)其他类型如下图所示是其他条件不变时,某反应物的最大(平衡)转化率(α)与温度(T)的关系曲线,图中标出的a、b、c、d四个点中,表示v(正)>v(逆)的点是c,表示v(正)<v(逆)的点是a,而b、d点表示v(正)=v(逆).(7)化学平衡图像问题的解法①解题步骤a.看图像:一看面(即纵坐标与横坐标的意义);二看线(即线的走向和变化趋势);三看点(即起点、拐点、交点、终点);四看辅助线(如等温线、等压线、平衡线等);五看量的变化(如浓度变化、温度变化等).b.想规律:联想外界条件的改变对化学反应速率和化学平衡的影响规律.c.作判断:根据图像中所表现的关系与所学规律相对比,作出符合题目要求的判断.②思考原则a.“定一议二”原则在化学平衡图像中,了解纵坐标、横坐标和曲线所表示的三个量的意义.在确定横坐标所表示的量后,讨论纵坐标与曲线的关系,或在确定纵坐标所表示的量后,讨论横坐标与曲线的关系.例如反应2A(g)+B(g)2C(g)达到平衡,A的平衡转化率与压强和温度的关系如下图.定压看温度变化,升温曲线走势降低,说明A的转化率降低,平衡向左移动,正反应是放热反应.定温看压强变化,因为此反应是反应后气体体积减小的反应,压强增大,平衡向右移动,A的转化率增大,故p1<p2. b.“先拐先平,数值大”原则对于同一化学反应在化学平衡图像中,先出现拐点的反应先达到平衡,先出现拐点的曲线表示的温度较高(如图甲,α表示反应物的转化率)或压强较大[如图乙,)A(ϕ表示反应物A的体积分数].甲:T2>T1,正反应放热.乙:p1<p2,正反应为气体总体积缩小的反应.。
人教版选修四第二章第三节《化学平衡》
三、压强对化学平衡的影响
N2 十 3H2 实验 数据:
压强(MPa)
2NH3
5 9.2 10 30 60 100 16.4 35.5 53.6 69.4
NH3 %
1 2.0
NH3%随着压强的增大而增大,即平衡 向正反应的方向移动。 解释: 加压 →体积缩小 →浓度增大
→正反应速率增大
→ V正>V逆→平衡向正反应方向移动。
逆反应速率增大
说明:增大压强,正逆反应速率均增大,但增大 倍数不一样,平衡向着体积缩小的方向移动
③速率-时间关系图:
N2 (g)十 3H2(g)
V(molL-1S-1)
V ’正
增大压强
2NH3(g)
V”正 = V”逆 V正
V正= V逆
V ’逆 V逆
新课程化学选修4《化学反应原理》 第二章《化学反应速率和化学平衡 》
第三节 《化学平衡》
第二课时 《浓度、压强对化学平衡移动的影响》
田家炳中学 左仁慈
知识回顾: 一、知识回顾
1、化学平衡状态
什么是化学平衡状态?化学平衡状态有什么特征?
速 率
V(正) V(逆)
V(正)=V(逆)
时间
定、动、等 、变
2、化学平衡的移动
0
t1
t2
t(s)
①前提条件: 反应体系中有气体参加且反应前后总体积发 生改变。 aA(g)+bB(g) cC(g)+dD(g) a+b≠c+d ②结论: 对于反应前后气体体积发生变化 的化学反应,在其它条件不变的情况下,增大 压强,会使化学平衡向着气体体积缩小的方向 移动,减小压强,会使化学平衡向着气体体积 增大的方向移动。 体积缩小:即气体化学计量数减少 说明: 体积增大:即气体化学计量数增多
高中化学 第2章 第3节 化学平衡(第3课时)课件 新人教选修4
SO2 a% O2 b% SO3 c%
平衡状态
SO2 a% O2 b% SO3 c%
平衡状态
?SO2
O2 SO3
归纳总结
二、等效平衡的建成条件、判断方法及 产生结果: 1、恒温、恒容下对于气态物质反应前后 分子数变化的可逆反应等效平衡的 判断方法是:
使用极限转化的方法将各种情况变换成 同一反应物或生成物,然后观察有关物 质的物质的量是否对应相等。
0
a
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30
a%
充 4mol 2mol 0
0
a%
入 2mol 2mol
0
0
b% (a≠b)
开始 2SO2
2mol SO2 1mol O2
4mol SO2 2mol O2
催化剂
+ O2 加热
平衡状态 SO2 a% O2 b% SO3 c%
人教选修4第二章第三节化学平衡(3)化学平衡图像分析
A、A点时混合物的V(正)> V(逆)
B、A点比B点反应速率快 C、n>p D、m+n>p
N%
A. C .B
压强
2、可逆反应2A+B
2C(g) △H<0 ,随温度变化气体平均摩尔质量
如图所示,则下列叙述正确的是 C A.A和B可能都是固体 B.A和B一定都是气体
六、几种特殊的图像 2.对于化学反应 mA(g)+nB(g) ⇌ pC(g)+qD(g),L 线上
所有的点都是平衡点(如下图)。L 线的左上方(E 点),A 的百分 含量大于此压强时平衡体系的 A 的百分含量,所以,E 点 v 正 >v 逆;则 L 线的右下方(F 点),v 正<v 逆。
练习:
1、mM(s)+ nN(g) pQ(g) △H<0 。在一定温度下平衡时N%与压强
m + n > p +q ( > = < )
三、百分含量(转化率)--时间--温度(压强)图象
可逆反应 mA(g) + nB(g)
pC(g) +qD(g)
C%
B%
A
T1
T1
B
T2
T2
t1
t2
1、T1 < T2 ( > = < ) 正反应是 放热 反应
(放热、吸热)
tБайду номын сангаас
t
2、T1 > T2 ( > = < ) 正反应是 放热反应 (放热、吸热)
t1是到达平衡状态的时间。试回答: (1)该反应的反应物是:
A; (2)反应物的转化率是:
浓度
人教版高中化学选修四第二章 第三节 第3课时 温度、催化剂对化学平衡移动的影响
第3课时 温度、催化剂对化学平衡移动的影响[核心素养发展目标] 1.变化观念与平衡思想:从变化的角度认识化学平衡的移动,即可逆反应达到平衡后,温度、催化剂改变,平衡将会发生移动而建立新的平衡。
2.证据推理与模型认知:通过实验论证说明温度、催化剂的改变对化学平衡移动的影响,构建分析判断化学平衡移动方向的思维模型(勒夏特列原理)。
一、温度对化学平衡移动的影响 1.实验探究温度对化学平衡移动的影响按表中实验步骤要求完成实验,观察实验现象,填写下表: 红棕色2NO 2(g )无色N 2O 4(g ) ΔH =-56.9 kJ·mol -1热水中混合气体颜色加深;实验现象冰水中混合气体颜色变浅混合气体受热颜色加深,说明NO2浓度增大,即平衡向逆反应方向移动;混实验结论合气体被冷却时颜色变浅,说明NO2浓度减小,即平衡向正反应方向移动2.由图像分析温度对化学平衡移动的影响已知反应:m A(g)+n B(g)p C(g)m+n<p,当反应达平衡后,若温度改变,其反应速率的变化曲线分别如下图所示:(1)图①表示的温度变化是升高,平衡移动方向是向逆反应方向。
(2)图②表示的温度变化是降低,平衡移动方向是向正反应方向。
(3)正反应是放热反应,逆反应是吸热反应。
3.温度对化学平衡移动的影响规律(1)任何化学反应都伴随着能量的变化(放热或吸热),所以任意可逆反应的化学平衡状态都受温度的影响。
(2)升高温度,v放、v吸均增大,但v吸增大程度大;降低温度,v放、v吸均减小,但v吸减小程度大。
(3)当其他条件不变时:温度升高,平衡向吸热反应方向移动;温度降低,平衡向放热反应方向移动。
例1反应:A(g)+3B(g)2C(g)ΔH<0,达平衡后,将反应体系的温度降低,下列叙述中正确的是()A.正反应速率增大,逆反应速率减小,平衡向右移动B.正反应速率减小,逆反应速率增大,平衡向左移动C.正反应速率和逆反应速率都减小,平衡向右移动D.正反应速率和逆反应速率都减小,平衡向左移动答案 C解析降低温度,v正、v逆均减小,平衡向放热反应方向移动,即平衡正向移动。
(人教版)高中化学选修4第二章第三节化学平衡说课稿
它一些基本观念的获得使学生建立学科观,也就是使学生获得一种学科素养。
三、学生的情况分析,初高中对比 对化学反应的概念来说, 初中建立的角度更多的是从直观、 会意、 完全转化的角度建立
的,高一建立的角度更多的是从微粒、会意、 反应限度的角度建立,而高二建立的角度更多 的是从微观、本质、普遍实证的角度建立的;初中建立的意义是从形式上对物质变化进行 归纳,高一是从微粒的结合和反应限度了解化学反应, 而高二建立的意义是建立基本的科学 观、并且通过规律的学习, 学生最终能够掌握和应用。 初中对化学反应的正逆反应概念没有 叙述, 也就是认为化学反应能够完全进行到底, 不存在逆反应, 高一对化学反应的认识更进 一步, 了解化学反应存在反应限度, 而高二格外强调化学反应的实质, 了解正逆反应相互伴 生,对立统一。这样,在化学反应的学习过程中,从初中到高中,对化学反应的认识层层推 进,从直观到本质,明确可逆反应,进而建立化学平衡的概念。
3、环节三:平衡的迁移应用 学生观察将蔗糖溶解在水中形成的饱和溶液和晶体共存的体系,
提问: 蔗糖晶体溶解过
程中是否建立平衡?这个平衡和我们刚总结过的平衡有无共同点?
学生思考:蔗糖晶体溶解过程中存在哪两个相反的过程?随着时间的变化,这两种过
程的速率如何变化?达到溶解平衡时,是不是这两过程均已停止?溶液有何特征?
再现学
2、环节二:平衡的特征性总结 结合刚才的活动, 请学生回答介绍我们生活中常见的宏观的平衡现象和使用平衡的概念。
如:力的平衡、生态平衡、家庭的收支平衡、人口平衡、心理平衡
… ..;在列举这些平衡时,
学生对平衡概念的疑问就会越来越明显:
1、为什么要唤醒熟悉的平衡?为什么要建立平衡的概念?有什么必要?
设计的关键。组织
人教版高中化学选修4第二章第三节 化学平衡 课件(共14张PPT)
百分含量与原平衡相比
;②通入一定量B,平衡 移动,
达到平衡时A百分含量与原平衡相比 。
(3)保持容器容积不变,通入一定量氖气,则A的转化率
,
保持压强不变,通入氖气使体系的容积增大一倍,A的转化
率
。
(1)正向 减小 逆向 减小 (2)正向 不变 逆向 不变
2.已知一定温度和压强下,在VL的密闭容器中充有 1molA和1molB,保持恒温恒压,使反应
程式表示,其中一个只含a和c,另一个只含b和c)
a+c=4
b+5c/4=5 。
(2)在恒温恒容条件下,对反应前后气体体积x 相等的可逆反应,只要反应物(或生成物)的物 质的量的比例与原平衡相同,则两平衡等效。
特点:平衡时各组分的百分含量相同,浓度、物质的量不
同(与原用量成比例)
例题:在一个固定体积的密闭容器中,加2molA,
1molB,发生反应:
A(g)+B(g)
2C(g)达到平衡时,C
的质量分数为w%,在相同条件下按下列情况充入
物质,达到平衡时C的质量分数仍为w%的是(CD )
A、2molC
B、3molC
C、4molA,2molB D、1molA,2molC
(3)在恒温恒压条件下,改变起始时加入物质 的物质的量,只要按化学计量数换算成同一边物 质的物质的量之比与原平衡相同时,则达到平衡 后与原平衡等效。 特点:平衡时各组分的浓度、百分含量相同,物 质的量不同(与原用量成比例)
A(g)+B(g)
C(g)
达到平衡时,C的体积分数为40%。欲使温度和
压强在上述条件下恒定不变,在密闭容器中充入
2molA和2molB,则反应达到平衡时,容器的体积
为
人教版高二化学选修四第二章《第三节 化学平衡》 教案设计
第三节化学平衡
一、教材分析
化学平衡属于化学热力学范畴。
随着化学知识的不断积累和对实验现象的深入观察,自然会产生是不是所有的化学反应都能进行的完全(达到反应限度)这样的疑问。
本节课在学完了反应速率的影响因素的基础上,针对可逆反应分析化学反应限度,当化学反应的正反应速率和逆反应速率相等时,反应就达到该条件下的最大限度,即达到了化学平衡状态。
可逆反应是绝对的,化学平衡观点的建立可以更好的理解化学反应特点,所以化学平衡的概念是本节的重点,同时平衡状态的特征对影响平衡的因素的学习起到了非常重要的储备作用。
化学平衡状态的特征及判断是本节的重点也是难点。
二、教学设计思路
教学中本着温故知新的原则,从蔗糖溶解为例指出溶解的速率与结晶的速率相等时,处于溶解平衡状态,再以可逆反应为例说明正反应速率和逆反应速率相等时,就处于化学平衡状态。
通过对溶解平衡的理解和迁移帮助学生理解化学平衡状态的特征及判断依据。
这样采用探究式教学层层引导并通过图画等多媒体手段帮助学生联想和理解从而突破本节的难点,并为下节的影响平衡的因素做好铺垫。
浓度都对化学平衡有影响,
讨论、分析:前面学习过催化剂对正反应速率和逆反应速
率却是同样倍数的提高和降低。
结论:使用催化剂不影响化学平衡的移动。
反应类型条件改
变
改变条
瞬间
v正v
对任意加入催增大增大
板书设计
第二章化学反应速率和化学平衡。
人教版高中化学选修4 化学反应原理 第二章 第三节 化学平衡(第3课时)
解: c起(mol/L) △c(mol/L) c平(mol/L)
N2O5 4 x 4-x
N2O3+O2 0 x x 0 x x
N2O3 x y x - y
N2O+O2 0 y y x y x +y
{ +y = x
x – y = 1.62 4.50
解得: x = 3.06 mol/L y = 1.44 mol/L
其中c为各组分的平衡浓度。
3、意义:
化学平衡常数值的大小是可逆反应进行程度的标志。 表示在一定温度下,可逆反应达到平衡时该反应进 行的程度(反应的限度)。 (1)K值越大,说明平衡时生成物的浓度越大,反应 物的浓度越小,正反应进行的程度越大,反应物转化 率也越大;反之则转化率越低。
转化率(α)= 反应物的起始浓度-反应物的平衡浓度 100% 反应物的起始浓度
(2)K值只受温度影响,与浓度无关,随温度变化而 变化。 化学平衡常数是一定温度下某个具体反应本身 固有的内在性质的定量体现。
4、使用平衡常数应注意的问题:
(1)必须指明温度,反应必须达到平衡状态 (2)平衡常数表示反应进行的程度,不表示反应的快慢, 即反应速率快,K值不一定大 (3)在进行K值的计算时,反应物或生成物中有固体和
pC(g) + qD(g)
平衡常数为K,若某时刻时,反应物和生成物的浓度关系如下: 浓度商
则:
Qc=K ,V正=V逆,反应处于平衡状态 Qc<K ,V正>V逆,反应向正反应方向进行 Qc>K ,V正<V逆,反应向逆反应方向进行
(2)利用K判断可逆反应的反应热
①若升高温度,K值增大,则正反应为吸热反应
(4)平衡常数的表达式与方程式的书写有关
某温度下
人教版高中化学选修四课件-高二化学2.3化学平衡3(共7张)
p2>p1
t
平衡时间的先后,可以判断压强的大小; 平衡量的大小,可以判断平衡移动的方向并可判断计量数 的大小。
[例2]对于反应H2(g)+Br2(g)2HBr(g)达到平衡后,缩小容器体 积。则 ⑴反应速率
缩小体积,反应物和生成物浓度都增大,且增大量相同; 正反应速率和逆反应速率都增大,且增大量相同; 正反应速率与逆反应速率相等。
反 应 速 率 0 v2(正) v1(正) v1(逆) 反应时间 v2(逆)
⑵平衡移动方向 增大压强,平衡向气体分子数减小的方向移动; 减小压强,平衡向气体分子数增大的方向移动。
⑵平衡后,各物质的物质的量和浓度 SO2和O2的物质的量都减小,SO3的物质的量增大; SO2、O2和SO3的浓度都增大,SO3增大更多。 SO2、O的物质的量分数 SO2和O2的转化率都增大; SO2和O2的物质的量分数都减小,SO3的物质的量分数增大。 改变压强时,反应物的转化率与其百分组成的变化趋势相反, 与生成物百分组成的变化趋势相同。
SO2 的 转 化 率
t p2 p1 SO3 的 百 分 组 成
p2 p1
2.压强对化学平衡的影响 改变压强的方法:
同等倍数改变各物质的浓度
[例]对于反应2SO2(g)+O2(g)2SO3(g)达到平衡后,缩小容器 体积。则 ⑴反应速率 缩小体积,反应物和生成物浓度都增大,反应物浓度增 大更多; 正反应速率和逆反应速率都增大,正反应速率增大更多; 平衡向正反应方向移动。
⑵平衡移动方向 平衡不移动。
⑶平衡后,各物质的物质的量和浓度 物质的量不变,物质的量浓度增大。
⑷平衡后,反应物的转化率和各物质的体积分数 不变。
增大压强,容器体积缩小,SO2、O2浓度都增大;
2018-2019学年人教版选修4 第2章第3节 化学平衡——等效平衡 教案
第3节化学平衡——等效平衡教学目标1.构建等效平衡的模型,掌握等效平衡在解题中的应用2.通过对化学反应进行方向及其应用的学习,提高运用比较、归纳的能力,培养学生学习化学思维能力,以及应用理论解决实际问题能力3.建立化学平衡的观点,并通过分析化学平衡的建立,增强学生的归纳和形象思维能力教学重点等效平衡教学难点等效平衡教学过程一、导入水往低处流,而不会自发的向上流;一般在室温下,冰块会融化,铁器在潮湿空气中会生锈,甲烷与氧气的混合气体遇明火就燃烧,这些过程都是自发的。
这些不用借助于外力就可以自动进行的自发过程的共同特点是,体系会对外部做功或释放热量,即体系趋向于从高能状态转变为低能状态。
那是否就意味着放热反应自发进行,吸热反应就是非自发进行呢?二、知识讲解等效平衡对于一些学生理解起来不是特别容易,希望老师在讲解此内容的时候多一些耐心,重点讲典型例题和习题。
考点1 等效平衡含义及原理1.含义在一定条件下(等温等容或等温等压),对同一可逆反应体系,起始时加入物质的物质的量不同,而达到化学平衡时,同种物质的百分含量相同。
2.原理同一可逆反应,当外界条件一定时,反应无论从正反应开始,还是从逆反应开始,最后都能达到平衡状态。
其中平衡混合物中各物质的含量相同。
由于化学平衡状态与条件有关,而与建立平衡的途径无关。
因而同一可逆反应,从不同的状态开始,只要达到平衡时条件(温度、浓度、压强等)完全相同,则可形成等效平衡。
考点2 等效平衡规律对于可逆反应aA(g)+bB(g)cC(g)+dD(g)三、例题精析使用建议说明:此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。
例题1 一定温度下,在3个体积均为1.0 L 的恒容密闭容器中反应2H 2(g)+CO(g)CH 3OH(g) 达到平衡。
下列说法正确的是A .该反应的正反应放热B .达到平衡时,容器Ⅰ中反应物转化率比容器Ⅱ中的大C .达到平衡时,容器Ⅱ中c(H 2)大于容器Ⅲ中c(H 2)的两倍D .达到平衡时,容器Ⅲ中的正反应速率比容器Ⅰ中的大【答案】AD【解析】A 项,根据Ⅰ、Ⅲ中数据可知反应开始时Ⅰ中加入的H 2、CO 与Ⅲ中加入甲醇的物质的量相当,平衡时甲醇的浓度:Ⅰ>Ⅲ,温度:Ⅰ<Ⅲ,即升高温度平衡逆向移动,该反应正向为放热反应,所以A 项正确。
人教版高中化学选修4教案:2.3化学平衡(3)
教案课题:第三节化学平衡(三) 授课班级课时 2教学目的知识与技能理解化学平衡常数的概念,掌握有关化学平衡常数的简单计算过程与方法能用化学平衡常数、转化率判断化学反应进行的程度情感态度价值观培养学生的逻辑思维能力和科学态度;培养学生理论联系实际能力重点理解化学平衡常数的概念及化学平衡常数的简单计算难点理解化学平衡常数与反应进行方向和限度的内在联系知识结构与板书设计三、化学平衡常数(chemical equilibrium constant)1. 定义:在一定温度下,可逆反应达到平衡时,生成物的浓度幂之积与反应物浓度幂之积的比是一个常数,这个常数叫做该反应的化学平衡常数,简称平衡常数,用符号K表示。
2. 表达式对于任意反应m A+n B p C+q D K={}{}{}{}nmqp)B(c)A(c)D(c)C(c••3、书写平衡常数表达式时,要注意:(1) 反应物或生成物中有固体和纯液体存在时,由于其浓度可以看做“1”而不代入公式。
(2) 化学平衡常数表达式与化学方程式的书写方式有关4.化学平衡常数的意义:K只受温度影响,K越大,反应进行的程度越大,反应的转化率也越大;反之K越小,表示反应进行的程度越小,反应物的转化率也越小。
5、化学平衡常数的应用(1)平衡常数的大小反映了化学反应进行的程度(也叫反应的限度)。
K值越大,表示反应进行得越完全,反应物转化率越大;K值越小,表示反应进行得越不完全,反应物转化率越小。
(2)判断正在进行的可逆是否平衡及反应向何方向进行:对于可逆反应:mA(g)+ nB(g)pC(g)+ qD(g),在一定的温度下的任意时刻,反应物的浓度和生成物的浓度有如下关系:Q c=C p(C)·C q(D)/C m(A)·C n(B),叫该反应的浓度商。
Q c<K ,V正>V逆,反应向正反应方向进行Q c=K ,V正==V逆,反应处于平衡状态Q c>K ,V正<V逆,反应向逆反应方向进行(3)利用K可判断反应的热效应若升高温度,K值增大,则正反应为吸热反应(填“吸热”或“放热”)。
人教版高中化学选修4第二章第三节化学平衡----等效平衡
两平衡时各组分百分含 量相同,n、c同比例变 化 (相似平衡)
两次平衡时各组分百分 含量、c相同,n同比例 变化( 相似平衡)
结论:等效加料建立等效平衡
平衡状态
SO2 a% O2 b% SO3 c%
恒温恒容下,△n(g)≠0不等效加料建立不等效平衡
催化剂
2SO2 + O2 加热 2SO3
开起始始(mol): 2平衡状态 1
0
21m平 平mo衡ol衡l时SOO体时22 积(分m数o:l):ax%SSOOO2 23
a% b% c%
1、反应前后气体分子数发生变化的可逆反应 也就是△n(g)≠0的可逆反应
催化剂
2SO2 + O2 加热
开始
平衡状态
2mol SO2 1mol O2
SO2 a% O2 b% SO3 c%
2SO3
相当于开始加
入1molSO2、 0.5molO2和 1molSO3
开始 2mol SO3
平衡状态 SO2 a% O2 b% SO3 c%
处理方法 把不同的起始状态,通过化学方
程式中的计量数,换算成同一边物质(反应 物一边或生成物一边),如果各反应物或生
成相积似 分物等数效、的特物物_征质_是的_质_:量_的平分_衡数_量_时)_同相之_一同_比_物,_质物相转质等化的率量,相不则同相,同是百,等分浓含度效量相平(同体。衡。
练习 2 在恒温、恒压的条件下,向可变容积的密闭 容器中充入3LA和2LB,发生如下反应:
小结
等效平衡的条件(xA(g)+yB(g) pC(g)+qD(g))
一、等温等容:
A、x+y≠ p+q 所投的料的物质的量相等 (全等平衡)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V
V正
达到平衡
V逆
V正=V逆≠0
t1
t
可逆反应中正、逆反应的速率变化
逆:对象,即可逆反应
化 等:本质,即V正=V逆 学 动:特点,即平衡是动态的而非静止的,正、逆反应同
平
时进行, V正=V逆≠0
衡 定:现象,即反应混合物中各组成的浓度保持不变
变:发展,即条件改变时,可能V正≠V逆,原平衡就要受
到破坏
讨论2:
(1) 10mL 0.01mol/LFeCl3+ 10mL 0.01mol/L KSCN
(2) 10mL 0.01mol/LFeCl3+ 10mL 0.01mol/L KSCN + 10mLH2O
(3) 10mL 0.01mol/LFeCl3+ 10mL 1mol/L KSCN (4) 20mL 0.01mol/LFeCl3 + 20mL 0.01mol/L KSCN 以上四组溶液颜色由深到浅的顺序为 (3) >(4)=(1)>(2) 。
V正>V逆: 化学平衡正向移动 V正<V逆: 化学平衡逆向移动
六、外界条件对化学平衡的影响
【P26实验2-5探究1】 重铬酸钾溶液中加入酸、碱的颜色变化?
Cr2O72-+H2O 橙色
2CrO42-+2H+ 黄色
3~10滴 浓硫酸
K2Cr2O7 溶液
K2Cr2O7 溶液
溶液橙色加深
10~20滴 6mol/L NaOH溶液
一、化学平衡的移动
一定条件下的化学平衡
条件 改变
平衡被破坏
一定 时间后
新条件下的化学平衡
本质 V正=V逆
V正≠V逆
V正’ =V逆’
现象 各组分浓度保持一定化学平衡的移动各组分浓度保持新的一定
பைடு நூலகம்
化学平衡的移动:可逆反应中旧化学平衡的破坏、新化学平衡 的建立过程。
条件 改变
V正=V逆:化学平衡不移动
V正≠V逆:
Ca5(PO4)3OH
5Ca2+ + 3PO43- + OH-
(1)当糖附着在牙齿上发酵时,会产生H+,试用化学平衡理 论说明经常吃甜食对牙齿的影响。
(2)已知Ca5(PO4)3F的溶解度比Ca5(PO4)3OH更小,质地更坚 固。请用化学方程式表示常用含NaF的牙膏刷牙,能预防龋齿 的原因 :
。
讨论5:在密闭容器中,给CO和水蒸气混合物加热,800℃时达到
v正’= v 逆’
平衡状态2
t3
t
讨论1:对于该反应达到平衡时,按以上方法分析以下情况, 化学平衡将如何移动? (1)减小反应物浓度
(2)增大生成物浓度
(3)减小生成物浓度
结 论:
在其他条件不变的情况下: 增大反应物浓度(或减小生成物浓度)化学平衡正向移动 减小反应物浓度(或增大生成物浓度)化学平衡逆向移动
下列平衡:CO(g)+ H2O(g)
CO2(g) + H2(g),
若用2molCO和10 molH2O互相混合加热,达平衡时,CO2的
物质的量为1.66 mol,求CO的转化率是多少?若用2molCO
和20 molH2O互相混合加热,达平衡时,H2的物质的量为 1.818 mol,CO的转化率是多少?
新旧平衡比较 CA↑ 、 CB↓ 、 CC↑ 、 CD↑
A的转化率 ↓ B的转化率 ↑
A% ↑ 、B%↓ 、C% 、 D %
若 ①CA ↓ ②Cc ↑ ③Cc ↓呢
注意:
1、增大反应物浓度(或增大生成物浓度),新旧平衡比较:
v正’= v 逆’ > v正= v 逆
减小反应物浓度(或减小生成物浓度),新旧平衡比较:
v正’= v 逆’ < v正= v 逆
思考: C(s)+H2O(g)
CO(g)+H2(g) (恒T、V)
增大C的用量,平衡会移动吗? (不会)
2、固体、纯液体(水)浓度为常数,其量的增减不影响 v正、 v 逆故平衡不移动。
讨论3:试用“浓度对化学平衡的影响”来解释“用排饱和食盐 水法 收集Cl2可以抑制Cl2的溶解”。
分析: Cl2溶解于水,存在溶解平衡。 溶解的部分Cl2能与水反应: Cl2 + H2O
H+ + Cl- + HClO
讨论4: 牙齿的损坏实际是牙釉质[Ca5(PO4)3OH]溶解的结果。在 口腔中存在着如下平衡:
结论:
对达化学平衡的反应体系 A + B C + D (恒T、V)
增加A物质的量:
A的转化率
减小
B的转化率 增大
应用:在生产上往往采用增大容易取得的或成本较低的 反应物浓度的方法,使成本较高的原料得到充分利用。
讨论6:在某容器中,C(s) + H2O(g)
CO(g) + H2(g)
反应达平衡,在温度、容器体积不变的情况下,向容器中
充入一定量的H2,当建立新平衡时( C )
A、CO、H2 的浓度都比原平衡时小
B、CO、H2 的浓度都比原平衡时大
C、H2O(g)、H2 的浓度都比原平衡时大
D、 H2O(g)、CO 的浓度都比原平衡时大
总结: mA(g) + nB(g)
pC(g) + qD(g) 恒T、V
瞬间速率变化
CA ↑
平衡移动方向 V’正 > V正
步骤一
KSCN 溶液
步骤二
0.1mol/L NaOH溶液
溶液红色加深
溶液红色变浅 有红褐色沉淀出现
1、上述实验中化学平衡状态是否改变? 2、能否推知影响化学平衡状态的影响因素?
(一)浓度对化学平衡的影响
条件变化: 增加反应物浓度
平衡移动方向: 正向移动
v
v正
v正= v逆
v 逆 平衡状态1
t1
t2
v正’ v 逆’
K2Cr2O7 溶液
溶液橙色变浅
【P26实验2-5探究2】硫氰化钾与氯化铁混合溶液中加入氯化铁 溶液、 硫氰化钾溶液的现象,再加入氢氧化钠溶液呢?
FeCl3+3KSCN Fe(SCN)3+3KCl
饱和 FeCl3溶液
0.01mo l/L KSCN 溶液
0.005 mol/L FeCl3 溶液
溶液红色加深