16-数列通项公式求法

合集下载

数列求通项的十种方法

数列求通项的十种方法

数列求通项的十种方法
数列是数学中的一个重要概念,对于求数列通项的问题,有许多不
同的解法。

下面将介绍十种求解数列通项的方法。

1. 暴力求解法:将数列中的前几项写出来,然后根据已知项之间的规
律来推出通项公式。

2. 公式推导法:利用一些已知的数列通项公式,结合这个数列的特点,在此基础上推导出此数列的通项公式。

3. 通项公式分解法:将数列的通项公式分解为元素之和的形式,从而
得到每一项的通项公式。

4. 递推公式求解法:根据数列中一些指定的通项公式,推导出递推公式,并使用递推公式依次求出数列中每一项的通项公式。

5. 差分法:通过对数列求差(即相邻项之差),得到一个新数列,然
后对新数列再次求差,直到差分后的数列为常数列,最后通过累加得
到原数列的通项公式。

6. 微积分法:对数列进行微积分操作,得到导数,然后再对导数积分,通过积分得到原数列的通项公式。

7. 特征方程法:将递推公式转化为特征方程,并求解特征根,然后根
据特征根求得通项公式。

8. 奇怪公式法:有些数列的通项公式看起来十分奇怪,但通过反复验证,发现确实有效。

9. 递归法:通过一个递归的函数,根据某一项的值递归计算其他项的值,最终得到整个数列的通项公式。

10. 牛顿插值法:利用牛顿插值法,通过已知的数列中一部分数值,反
推出整个数列的通项公式。

以上是十种求解数列通项的方法,每种方法都有其适用范围和局限性。

对于不同的数列,选择不同的方法求解,可以得到更加准确和简便的
结果。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列通项公式的求法(最全)

数列通项公式的求法(最全)

非等差等比数列通 项公式的求法
构造法
构造法是一种常用 的数列通项公式求 法
构造法通过观察数 列的规律找出通项 公式
构造法需要一定的 数学基础和逻辑思 维能力
构造法可以应用于 非等差等比数列的 通项公式求法
数学归纳法
添加标题
定义:一种证明数学命题的方法通过证明一个命题对某个初始值成立并且假设对某个值 成立时可以推出对下一个值也成立从而证明命题对所有值都成立。
. 计算数列相邻项之间的差值得到差数列。 b. 观察差数列的规律寻找通项公式。 c. 验证通项公式的正确性。
适用范围:逐差法适用于等比数列、等差数列等有规律的数列。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
注意事项:在使用逐差法时需要注意差数列的规律避免遗漏或错误。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
步骤: . 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或 公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
. 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
应用:适用于求解非等差等比数列的通项公式 单击此处输入你的项正文文字是您思想的提炼,言简的阐述观点。
公式中的1表示首项d表示公差
公式法的适用范围:已知首项 和公差的等差数列
累加法
累加法原理:通过累加数列的前n项和得到通项公式 累加法公式:n=Sn-S(n-1)其中Sn为前n项和 累加法应用:适用于已知数列的前n项和求通项公式 累加法示例:例如已知数列{1,3,5,7,9}的前n项和为Sn=n^2则通项公式为n=2n-1

求数列通项公式的三种方法

求数列通项公式的三种方法

一般地,数列的通项公式可用数列的第n 项表示出来,因此求数列的通项公式,关键是根据数列各项之间的规律,求得数列第n 项的表达式.求数列的通项公式问题可采用公式法、逐差相加法、逐商相减法来求解.一、公式法对于求数列的通项公式来说,公式法是最简单,也最直接的方法,但该方法只适用于求解等差、等比数列的通项公式问题.在解题时,需首先根据等差、等比数列的定义判定数列的类型,然后求出数列的首项、公差、公比,再根据等差数列的通项公式:a n =a 1+(n -1)d ;等比数列的通项公式:a n =a 1q n -1来求解.例1.已知数列{a n }满足a 1=0,且11-a n +1-11-a n =1,求数列{a n }的通项公式.解:∵11-a n +1-11-a n =1,a 1=0,∴11-a 1=1,∴数列{}11-a n是以1为首项,1为公差的等差数列,∴11-a n =11-a 1+(n -1)×1=n ,∴数列{a n }的通项公式为a n =n -1n .由等差数列的定义:从第2项起,每一项与它的前一项的差都等于同一个常数,可知数列{}11-a n是等差数列,求得数列的首项、公差,便可利用等差数列的通项公式求出数列{}11-a n 的通项公式,通过运算,即可得到a n 的表达式.二、逐差相加法逐差相加法也叫做累加法,是求数列通项公式的常用方法之一.当遇到形如a n +1-a n =f (n )的递推式时,可采用逐差相加法求数列的通项公式.首先令n =1,2,3,…,n ,得到a n +1-a n =f (n ),a n -1-a n -2=f (n -1),…,a 2-a 1=f (1),再将各项相加可得a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=f (n )+f (n -1)+…+f (1).通过正负相消,即可求得a n 的表达式.例2.若数列{a n }满足a n +1=a n +2n +1,a 1=1,求数列{a n }的通项公式.解:∵a n +1=a n +2n +1,∴a n +1-a n =2n +1,a n -a n -1=2n -1,...a 3-a 2=3=3,a 2-a 1=1.将上述式子累加可得(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=[2(n -1)+1]+[2(n -2)+1]+…+(2×2+1)+(2×1+1)=2[(n -1)+(n -2)+…+2+1]+(n -1)=2×(n -1)n 2+(n -1)=n 2-1,∴a n =n 2,即数列{a n }的通项公式为a n =n 2.有些数列的递推式并不满足n =1的情况,因此运用逐差相加法求数列的通项公式,要注意考虑n =1的情况是否满足所求得的数列通项公式.三、逐商相乘法逐商相乘法也叫做累乘法,主要适用于求解由形如a n +1a n=f (n )的递推式求数列的通项公式问题.在解题时,需先分别令n =1,2,3,…,n ,得到=f (n ),a n -1a n -2=f (n -1),…,a 2a 1=f (1),再将各项相乘可得a n a 1=a n +1a n ·a n -1a n -2·…·a 2a 1=f (n )·f (n -1)·…·f (1).通过约分,即可求得a n 的表达式.例3.已知数列{a n }是首项为1的正项数列,(n +1)a 2n +1-na 2n +a n +1a n =0,求数列{a n }的通项公式.解:(n +1)a 2n +1-na 2n +a n +1a n =(a n +1+a n )[(n +1)a n +1-na n ]=0,∵a n +1+a n >0,∴(n +1)a n +1=na n ,∴a n +1a n =n n +1,∴a 2a 1=12,a 3a 2=23,a 4a 3=34,…,a n a n -1=n -1n ,将上述n -1个式子相乘可得a n a 1=1n ,∴数列{a n }的通项公式为a n =1n.将数列的递推公式变形后,便可得到形如a n +1a n=f (n )的式子,于是采用逐商相乘法来求解,就能得到数列{a n }的通项公式.总之,无论运用哪种方法求解,都需仔细研究数列的各项或递推式,将其进行适当的变形,使其转化为a n +1-a n =d 、a n +1-a n =f (n )、a n +1a n =d 、a n +1a n =f (n )的形式,然后采用定义法、逐差相加法、逐商相乘法来求出数列的通项公式.(作者单位:甘肃省庆阳市环县第五中学)杜海坤探索探索与与研研究究50。

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

求数列通项公式的三种常用方法

求数列通项公式的三种常用方法

在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。

在下面,我将介绍十种常用的方法来求解数列的通项公式。

方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。

常见的递推公式有线性递推和非线性递推两种形式。

方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。

常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。

方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。

常见的指数递推法包括指数增长、指数递减和二阶指数递增等。

方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。

通过构造级数和求导积分等操作,可以得到数列的通项公式。

方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。

常见的生成函数包括普通生成函数和指数型生成函数。

方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。

常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。

方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。

通过构造矩阵和矩阵的运算,可以得到数列的通项公式。

方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。

方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。

常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。

方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

如何求数列通项公式对数法和倒数法

如何求数列通项公式对数法和倒数法

如何求数列通项公式对数法和倒数法数列通项公式是指通过已知数列的前几项,求出数列的通项公式,即根据数列的规律确定若干项之间的关系。

常见的求解数列通项公式的方法有数列分解法、差数列法、通项公式递推法、逐差法、对数法和倒数法等。

本文将重点介绍对数法和倒数法求解数列通项公式的方法。

对数法求解数列通项公式:对数法是一种通过对数函数来求解数列的通项公式的方法。

当数列中的每一项与它的位置n之间存在对数关系时,可以考虑使用对数函数来推导数列的通项公式。

步骤:1.观察数列中的每一项与它的位置n之间是否存在对数关系。

一般而言,数列中每一项都是指数函数或指数运算的形式,并且指数函数中的底数与位置n之间存在着对应的关系。

2.如果存在对数关系,可以尝试将数列各项进行对数运算,得到新的数列。

3.对新的数列进行观察和分析,通过推导和求解,找到新数列通项公式。

4.将新数列通项公式恢复成原数列的通项公式。

举例1:求数列1,3,9,27...的通项公式。

观察数列可发现,每一项都是3的指数形式,可以尝试进行对数运算。

对数值运算后,得到新数列0,1,2,3...,然后进行观察和分析。

我们发现新数列的通项公式为n,将其恢复成原数列的通项公式,即为3的n次幂,通项公式为3^n。

因此,数列1,3,9,27...的通项公式为3^n。

倒数法求解数列通项公式:倒数法是一种通过数列的倒数与位置n之间的关系来求解数列通项公式的方法。

当数列中的每一项与它的倒数存在比例关系时,可以考虑使用倒数来推导数列的通项公式。

步骤:1.观察数列中的每一项与它的倒数之间是否存在比例关系。

一般而言,数列中的每一项都是分式形式,并且分式中的分母与位置n之间存在比例关系。

2.如果存在比例关系,可以尝试将数列的每一项取倒数,得到新的数列。

3.对新的数列进行观察和分析,通过推导和求解,找到新数列通项公式。

4.将新数列通项公式恢复成原数列的通项公式。

举例2:求数列1,1/2,1/3,1/4...的通项公式。

数列通项公式的求法(新编)

数列通项公式的求法(新编)
所以各式相加得an-a1 =f(n-1)+ f(n-2)+…+ f(2)+ f(1).
例 已知数列{an}中,a1=1,an=an-1+n,求数列 {an}的通项公式。
解:an =an-1 + n an-1=an-2 +(n-1) … … … … a3= a2 + 3 a2= a1 + 2 各式相加得,an=a1+n+(n1)+…+3+2 =1+ n+(n-1)+…+3+2 = n(n+1)/2 当n=1时,a1=(1×2)/2=1,
而当 n 1时,a1 S1 1合上式
故a n 6n 5(n N )

sn 1 例已知数列 an 的a1 1, sn . ( n 2). 2 sn 1 1 求an
sn 1 1 1 分析 : sn 2 2 sn 1 1 sn s n 1
am q
nm
(n, m N )

S n1 S n an1
数列通项公式求法
数列的通项公式是数列的核心内容之 一,它如同函数中的解析式一样,有了解析式 便可研究其性质等;而有了数列的通项公式 便可求出任一项以及前n项和等.因此,求数 列的通项公式往往是解题的突破口、关键 点. 因此近年来的高考题中经常出现给出数 列的解析式(包括递推关系式和非递推关 系式),求通项公式的问题,对于这类问 题考生感到困难较大.为了突破这一难点, 现将求数列通项的思想方法系统归纳如下:
备 注:
已知,a1=a, an+1=an+f(n),其中f(n)可以是关于 n的一次函数、二次函数、指数函数、分式函 数,求通项. ①若f(n)是关于n的一次函数,累加后可转化为等 差数列求和; ②若f(n)是关于n的二次函数,累加后可分组求和; ③若f(n)是关于n的指数函数,累加后可转化为等 比数列求和; ④若f(n)是关于n的分式函数,累加后可裂项求和。

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法数列通项公式是指能够直接给出数列中任意一项的公式。

找到数列通项公式可以帮助我们快速计算数列中的任意项,同时也能更好地理解数列的性质和规律。

在数学中,有多种方法可以求解数列通项公式,下面我们将介绍其中的9种常见方法。

1.递推关系法递推关系法是求解数列通项公式最常见的方法之一、当我们可以找到数列中每一项与前几项之间的关系时,可以利用递推关系求出通项公式。

例如,斐波那契数列中每一项都等于前两项的和,可以用递推关系f(n)=f(n-1)+f(n-2)来求解。

2.等差数列通项公式等差数列是指数列中每一项与前一项之差都相等的数列。

等差数列通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3.等比数列通项公式等比数列是指数列中每一项与前一项的比都相等的数列。

等比数列通项公式为an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r 表示公比。

4.幂数列通项公式幂数列是指数列中每一项都是一个幂函数的形式。

幂数列通项公式为an = ar^(n-1),其中an表示第n项,a表示一些常数,r表示递增的比值。

5.组合数列通项公式组合数列是指数列中每一项都是由组合数形成的数列。

组合数列通项公式可以通过求解组合数来获得。

6.一元多项式数列通项公式一元多项式数列是指数列中的每一项都是由一元多项式形成的数列。

可以利用多项式的相关性质和求解方法获得数列通项公式。

7.递推与线性常系数齐次差分方程法递推与线性常系数齐次差分方程法是利用递推关系和差分方程的性质求解数列通项公式的方法。

8.高阶递推关系法当数列中每一项与前面多个项之间有复杂的关系时,可以利用高阶递推关系进行求解。

9.查找数列在数学常数表中的表达式有些数列的通项公式可以在数学常数表中找到,例如斐波那契数列中的通项公式可以在黄金分割数相关的公式中找到。

以上是数列通项公式的9种常见求法,每种方法都可以根据不同的数列规律和特点进行选择和运用。

求数列的通项公式常见类型与方法

求数列的通项公式常见类型与方法

求通项an
答案:an n2
练习3:已知数列an,bn满足a1 2, b1 3,且
an
bn
3
5 2
an1
2
5 3
bn1
1, (n
5 an1 5 bn1 2,
2).令cn
an
bn ,
求数列cn 的通项公式。 答案:cn 3n 2
类型三:已知a1且满足an qan1 kqn , n 2, 求通项an
例3:根据前几项写出符合下列条件数列的一个通项公式。 1.
2. 0.3,0.33,0.333, (逐项依次多数字3)
答案:(1)an (1)n
(2n
1)
(n
n 1) 2
(2)an
3 9
(1
1 10
n
)
三、根据数列前n项和求数列通项公式
,要分 n=1和n≥2两种情况来求,然后验证两种情形可否用统 一解析式表示,若不能统一,则用分段函数的形式表示。
二、根据前几项,利用不完全归纳法猜想数列通 项公式
根据前几项写数列通项公式应掌握几种规律:一是符号
规律,若各项符号为正、负相间时,则必有 1n 或
1n1因式;二是乘方规律,即每一项都与同一个数的
乘方有密切关系;三是等差、等比规律。找规律时,要 看给出的项的分子或分母有什么变化规律,可以适当变 形,使它们的结构变得一致,再看和n的关系,用含有 n的式子表示出来。
an (an an1) (an1 an2 ) (a2 a1) a1
形如已知 ,且
( 是可求积的数列)的形式均可用累商法(迭乘法)。
a . .a 恒等式2
n
an an1
an1 an2
a2
a1

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。

I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。

七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。

数列通项公式求法(16种类型)

数列通项公式求法(16种类型)

数列通项公式求法类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1: 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 例1解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以na a n 111-=-211=a ,nn a n 1231121-=-+=∴变式:已知数列{}n a 满足11211n n a a n a +=++=,,求n a 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a例2解:由条件知11+=+n n a a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴变式:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

631n a n =-类型3 1n n a pa q +=+或1()n n a pa f n +=+或n n n qa pa a +=++12解法(待定系数法/构造法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再转化为等比数列;令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列;……;把原递推公式转化为)(112n n n n sa a t sa a -=-+++,再转化为等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列通项公式的求法
一、公式法
例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

二、累加法
例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式 例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例4 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

三、累乘法
例5 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

四、待定系数法
例7 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式。

例8 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例题9.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,
n ∈N *, 且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式;
(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.
一、填空题
1.在等差数列{a n }中,a 2+a 8=4,则它的前9项和S 9=________.
2.已知数列{a n }为等差数列,其前n 项的和为S n ,若a 3=6,S 3=12,则公差d =________. 3.若2,a ,b ,c,9成等差数列,则c -a =________.
4.已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =______.
5.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.
6.已知在正项等比数列{a n }中,a 1=1,a 2a 4=16,则|a 1-12|+|a 2-12|+…+|a 8-12|=________.
7.在等差数列{a n }中,a 7=π
4,则tan(a 6+a 7+a 8)等于________.
8.设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =________.
9.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是________. 二、解答题
10.设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;
(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12
n ,n ∈N *
,求{b n }的前n 项和T n .
12已知等比数列}{n a 中1n n a a +>,且37283,2a a a a +=⋅=,则
11
7
a a =( ) A.
21
B. 23
C. 32
D. 2 11设各项为正数的数列
{}n a 的前n 和为n S ,且n S 满足.
222*(3)3()0,n n S n n S n n n N -+--+=∈
(1)求1a 的值;
(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有
11221111
(1)(1)(1)3
n n a a a a a a +++<+++
13数列}{n a 的项是由1或2构成,且首项为1,在第k 个1和第1k +个1之间有21k -个2,即数列}{n a
为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列}{n a 的前n 项和为n S ,则20S = ;
2013S = .
14以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.
1 2 3 4 5 … 2013 2014 2015 2016
3 5 7 9 ............ 4027 4029 4031 8 12 16 ..................... 8056 8060 20 28 (16116)
…………………………………………
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为 (A )2015
20172
⨯ (B )2014
20172
⨯ (C )2015
20162
⨯ (D )2014
20162

15(本小题满分14分)
等差数列{}n a 中,11a =,前n 项和为n S ,等比数列{}n b 各项均为正数,12b =,且227s b +=,
432s b -=.
(1)求n a 与n b ; (2)设212n n n a c a -=
, n T =123n c c c c ⋅⋅⋅⋅⋅ 求证:1
2n T n
≥ ()n N +∈. 16(本小题满分12分)
已知{}n a 为等差数列,且满足138a a +=,2412a a +=. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 17(本小题满分12分)
已知公差不为0的等差数列}{n a 的前n 项和为n S ,770S =且621,,a a a 成等比数列。

(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设248
n n S b n
+=
,数列}{n b 的最小项是第几项,并求出该项的值。

18.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A .12 B .13 C .14 D .15
19如下面数表为一组等式:某学生猜测221(21)()n S n an bn c -=-++,若该学生回答正确,则
3a b += .
21(本小题满分14分)
123451,235,45615,7891034,111213141565,
s s s s s ==+==++==+++==++++=
等差数列{}n a 前n 项和为n S ,已知对任意的n N *
∈,点(),n n S 在二次函数2()f x x c =+图象
上。

(1)求c ,n a ; (2)若2n
n n
a k =
,求数列{}n k 前n 项和n T . 22.已知等比数列{}n a 中,12a =,且有24674a a a =,则3a =( ) A .1 B .2 C .14 D . 12
23(本小题满分14分)
已知数列{}n b 满足11
124n n b b +=+
,且17
2
b =,n T 为{}n b 的前n 项和. (1)求证:数列1
{}2
n b -是等比数列,并求{}n b 的通项公式; (2)如果对于任意*n N ∈,不等式1227122n
k
n n T ≥-+-恒成立,求实数k 的取值范围.
24(本小题满分14分)
已知数列{}n a 的前n 项和()12
n n n a S +=
,且1
1a
=.
(1)求数列{}n a 的通项公式;
(2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.
若存在,求出所有符合条件的k 值;若不存在,请说明理由.。

相关文档
最新文档