(完整word版)基于Matlab的牛顿迭代法解非线性方程组
牛顿迭代法解非线性方程(组)
牛顿迭代法解非线性方程(组)在辨识工作中,常常需要对辨识准则或者判据进行求极值,这往往涉及到求非线性方程(组)的解问题。
牛顿迭代法是一种常用方法。
下面把自己对牛顿迭代法的学习和理解做个总结。
1.一元非线性方程的牛顿迭代公式和原理以一元非线性方程 f(x)=0 为例,对函数 f(x)进行Taylor级数展开(只展开至线性项)得f(x) = f(x0)+f'(x0)(x-x0)所以方程可写成f(x0)+f'(x0)(x-x0) = 0其中x0是给定的已知值,则不难推导出方程的解(当然,只是近似解,毕竟Taylor展开过程中只取了线性项)x = x0 - f(x0) / f'(x0)其中x不是真实解,但是相比之前的x0更靠近真实解了,因此可以多重复几次上述过程,从而使得到的解非常接近准确值。
所以,对于一元非线性方程,牛顿拉夫逊迭代公式为:x(k+1) = x(k) - f(x(k)) / f'(x(k))根据Taylor级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解f(x)=0的过程。
第一次迭代x1 = x0 - f(x0) / f'(x0),其中f(x0) / f'(x0)的几何意义很明显,就是x0到x1的线段长度(这可以从直角三角形的知识得到)。
第二次迭代x2 = x1 - f(x1) / f'(x1),其中f(x1) / f'(x1)的几何意义很明显,就是x1到x2的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x的取值在不断逼近真实解x*。
可能有人问,迭代求得的结果会不会不收敛,也就是x会不会偏离x*。
由于x0是在x*附近区域取值的,因此x0到x1这段曲线应该认为是平滑的没有转折的,因此切线与x轴的交点只会越来越接近真实解x*。
但是如果x0的取值离x*比较远的话,那么x0到x1这段曲线上可能有“转折”,这样就可能引起迭代的不收敛。
(最新整理)基于Matlab的牛顿迭代法解非线性方程组
(完整)基于Matlab的牛顿迭代法解非线性方程组编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基于Matlab的牛顿迭代法解非线性方程组)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基于Matlab的牛顿迭代法解非线性方程组的全部内容。
基于Matlab 实现牛顿迭代法解非线性方程组已知非线性方程组如下221122121210801080x x x x x x x ⎧-++=⎪⎨+-+=⎪⎩ 给定初值0(0,0)T x =,要求求解精度达到0.00001首先建立函数F(x),方程组编程如下,将F 。
m 保存到工作路径中:function f=F (x )f (1)=x(1)^2—10*x(1)+x (2)^2+8;f (2)=x(1)*x (2)^2+x(1)-10*x(2)+8;f=[f(1) f (2)];建立函数DF (x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中:function df=DF(x)df=[2*x (1)—10,2*x (2);x (2)^2+1,2*x(1)*x (2)-10];编程牛顿迭代法解非线性方程组,将newton 。
m 保存到工作路径中:clear ;clcx=[0,0]';f=F (x);df=DF(x);fprintf ('%d %。
7f %.7f\n’,0,x (1),x (2));N=4;for i=1:Ny=df\f';x=x —y;f=F (x);df=DF (x );fprintf ('%d %.7f %。
matlab fsolve 算法
matlab fsolve 算法Matlab是一种常用的科学计算软件,其中的fsolve算法是用于求解非线性方程组的一种方法。
本文将介绍fsolve算法的原理和使用方法,并通过实例展示其在实际问题中的应用。
一、fsolve算法原理fsolve算法是一种数值方法,用于求解非线性方程组。
它基于牛顿迭代法,通过不断迭代逼近方程组的解。
具体原理如下:1. 假设要求解的方程组为F(x) = 0,其中x为未知向量,F为非线性函数。
2. 首先,我们需要对方程组进行线性化,即将其转化为形如J(x)Δx = -F(x)的线性方程组,其中J(x)为方程组F(x)的雅可比矩阵,Δx为x的增量。
3. 初始时,我们给定一个初始解x0。
4. 然后,利用初始解和雅可比矩阵,通过求解线性方程组J(x0)Δx = -F(x0),得到增量Δx。
5. 将增量Δx加到初始解x0上,得到新的解x1 = x0 + Δx。
6. 重复步骤4和步骤5,直到满足终止准则,即F(x)的范数小于某个给定的容差。
二、fsolve算法使用方法在Matlab中,可以使用fsolve函数调用fsolve算法来求解非线性方程组。
其基本语法如下:x = fsolve(fun,x0,options)其中,fun为一个函数句柄,表示要求解的方程组F(x) = 0,x0为初始解向量,options为求解选项。
三、fsolve算法应用实例下面通过一个实际问题来演示fsolve算法的应用。
假设有一个非线性方程组:sin(x) + cos(y) = 1exp(x) + y = 2我们的任务是求解方程组的解。
我们需要将方程组转化为函数形式。
在Matlab中,我们可以定义一个函数文件,例如:function F = equations(x)F(1) = sin(x(1)) + cos(x(2)) - 1;F(2) = exp(x(1)) + x(2) - 2;然后,我们可以使用fsolve函数来求解方程组:x0 = [0,0]; % 初始解向量options = optimoptions('fsolve','Display','iter'); % 设置求解选项x = fsolve(@equations,x0,options); % 调用fsolve算法求解方程组我们可以将求解的结果打印出来:disp(['x = ', num2str(x(1))]);disp(['y = ', num2str(x(2))]);通过运行上述代码,我们可以得到方程组的解x = 0.7854,y = 1.2146。
matlab程序设计实践牛顿法解非线性方程
matlab程序设计实践⽜顿法解⾮线性⽅程中南⼤学MATLAB程序设计实践学长有爱奉献,下载填上信息即可上交,没有下载券的⾃⾏百度。
所需m⽂件照本⽂档做即可,即新建(FILE)→脚本(NEW-Sscript)→复制本⽂档代码→运⾏(会跳出保存界⾯,⽂件名默认不要修改,保存)→结果。
第⼀题需要把数据⽂本⽂档和m⽂件放在⼀起。
全部测试⽆误,放⼼使⽤。
本⽂档针对做⽜顿法求⾮线性函数题⽬的同学,当然第⼀题都⼀样,所有⼈都可以⽤。
←记得删掉这段话班级:学号:姓名:⼀、《MATLAB程序设计实践》Matlab基础表⽰多晶体材料织构的三维取向分布函数(f=f(φ1,φ,φ2))是⼀个⾮常复杂的函数,难以精确的⽤解析函数表达,通常采⽤离散空间函数值来表⽰取向分布函数,Data.txt是三维取向分布函数的⼀个实例。
由于数据量⾮常⼤,不便于分析,需要借助图形来分析。
请你编写⼀个matlab程序画出如下的⼏种图形来分析其取向分布特征:(1)⽤Slice函数给出其整体分布特征;(2)⽤pcolor或contour函数分别给出(φ2=0, 5, 10, 15, 20, 25, 30, 35 …90)切⾯上f分布情况(需要⽤到subplot函数);(3) ⽤plot函数给出沿α取向线(φ1=0~90,φ=45,φ2=0)的f分布情况。
备注:data.txt 数据格式说明解:(1)将⽂件Data.txt 内的数据按照要求读取到矩阵f(phi1,phi,phi2)中,代码如下:fid=fopen('data.txt'); for i=1:18tline=fgetl(fid); endphi1=1;phi=1;phi2=1;line=0; f=zeros(19,19,19); while ~feof(fid)tline=fgetl(fid); data=str2num(tline); line=line+1;if mod(line,20)==1 phi2=(data/5)+1; phi=1;elsefor phi1=1:19f(phi1,phi,phi2)=data(phi1);endphi=phi+1;endendfclose(fid);将以上代码保存为readdata.m在MATLAB中运⾏,运⾏结果如下图所⽰:将以下代码保存为code1.m⽂件:fopen('readdata.m');readdata;[x,y,z]=meshgrid(0:5:90,0:5:90,0:5:90);slice(x,y,z,f,[45,90],[45,90],[0,45])运⾏结果如下图所⽰:(2)将以下代码保存为code2.m⽂件:fopen('readdata.m');readdata;for i=1:19subplot(5,4,i)pcolor(f(:,:,i))nd运⾏结果如下图所⽰:将以下代码保存为code3.m⽂件:fopen('readdata.m');readdata;for i=1:19subplot(5,4,i)contour(f(:,:,i))end运⾏结果如下图所⽰:(3)φ1=0~90,φ=45,φ2=0所对应的f(φ1,φ,φ2)即为f(:,10,1)。
牛顿迭代法解非线性方程组(MATLAB版)
⽜顿迭代法解⾮线性⽅程组(MATLAB版)⽜顿迭代法,⼜名切线法,这⾥不详细介绍,简单说明每⼀次⽜顿迭代的运算:⾸先将各个⽅程式在⼀个根的估计值处线性化(泰勒展开式忽略⾼阶余项),然后求解线性化后的⽅程组,最后再更新根的估计值。
下⾯以求解最简单的⾮线性⼆元⽅程组为例(平⾯⼆维定位最基本原理),贴出源代码:1、新建函数fun.m,定义⽅程组1 function f=fun(x);2 %定义⾮线性⽅程组如下3 %变量x1 x24 %函数f1 f25 syms x1 x26 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17);7 f2 = sqrt(x1^2 + (x2-4)^2)-5;8 f=[f1 f2];2、新建dfun.m,求出⼀阶微分⽅程1 function df=dfun(x);2 f=fun(x);3 df=[diff(f,'x1');diff(f,'x2')]; %雅克⽐矩阵3、建⽴newton.m,执⾏⽜顿迭代过程1 clear;clc2 format;3 x0=[0 0]; % 迭代初始值4 eps = 0.00001; % 定位精度要求5for i = 1:106 f = double(subs(fun(x0),{'x1''x2'},{x0(1) x0(2)}));7 df = double(subs(dfun(x0),{'x1''x2'},{x0(1) x0(2)})); % 得到雅克⽐矩阵8 x = x0 - f/df;9if(abs(x-x0) < eps)10break;11 end12 x0 = x; % 更新迭代结果13 end14 disp('定位坐标:');15 x16 disp('迭代次数:');17 i结果如下:定位坐标:x =0.0000 -1.0000迭代次数:i =4。
牛顿迭代法求解非线性方程组的解
10 简化牛顿法 简化牛顿法又称平行弦法,其迭代公式为
xk1 xk Cf (xk ),C 0, k 0,1,
(4-7)
从不动点迭代法的角度看,简化牛顿法的迭代函数(x) x Cf (x) ,下面讨论简
化牛顿法的收敛性。
若| '(x) ||1 Cf '(x) | 1 ,即取 0 Cf ' (x) 2 .在根 x* 附近成立,则迭代法
x k 的点 Pk 引切线,并将该切线与 x 轴的交点的横坐标 x k1 作为 x* 的新的近似值。 注意到切线方程为
y f (xk ) f '(xk )(x xk )
(4-4)
这样求得的值 x k1 比满足 f (xk ) f '(xk )(x xk ) 0 ,从而就是牛顿公式
x
k 1
| f (xk1) || f (xk ) |
(4-8)
满足此要求的算法称为下山法。
将牛顿法和下山法一起使用时,即在下山法保证函数值稳定下降的前提下,
用牛顿法加快收敛速度。为此,为此将牛顿法的计算结果
xk 1
xk
f (xk ) f ' (xk )
(4-9)
与前一步的近似值 xk 的适当加权平均作为新的改进值
代法中所遇到的 jacobi 矩阵难求的问题。
关键词:非线性方程组、牛顿迭代法、MATLAB、 jacobi 矩阵
一、前言 非线性方程组在实际问题中经常出现,并且在科学与工程计算中的地位越来
越来重要,很多常见的线性模型都是在一定条件下由非线性问题简化得到的,为 得到更符合实际的解答,往往需要直接研究非线性模型,然而从线性到非线性是 一个质的飞跃,方程的性质的不同,所以求解方法也有很大差别。本文主要介绍 关于非线性方程及方程组的数值解法,先分析非线性方程的数值解法,然后再延 伸到方程组的解法。
matlab牛顿迭代法求方程
一、引言在数值计算中,求解非线性方程是一项常见的任务。
牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。
而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。
二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。
其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。
2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。
根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。
三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。
需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。
按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。
2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。
传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。
四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。
利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。
2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。
通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。
非线性方程组求解的牛顿迭代法用MATLAB实现
非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。
假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。
我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。
为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。
雅可比矩阵是由方程组的偏导数组成的矩阵。
对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。
在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。
以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。
下一步是实现牛顿迭代法。
牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。
在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。
matlab实验一:非线性方程求解-牛顿法
实验一:非线性方程求解程序1:二分法:syms f x;f=input('请输入f(x)=');A=input('请输入根的估计范围[a,b]='); e=input('请输入根的误差限e='); while (A(2)-A(1))>ec=(A(1)+A(2))/2;x=A(1);f1=eval(f);x=c;f2=eval(f);if (f1*f2)>0A(1)=c;elseA(2)=c;endendc=(A(1)+A(2))/2;fprintf('c=%.6f\na=%.6f\nb=%.6f\n',c,A)用二分法计算方程:1.请输入f(x)=sin(x)-x^2/2请输入根的估计范围[a,b]=[1,2]请输入根的误差限e=0.5e-005c=1.404413a=1.404411b=1.4044152.请输入f(x)=x^3-x-1请输入根的估计范围[a,b]=[1,1.5]请输入根的误差限e=0.5e-005c=1.324717a=1.324715b=1.324718程序2:newton法:syms f x;f=input('请输入f(x)=');df=diff(f); x0=input('请输入迭代初值x0=');e1=input('请输入奇异判断e1=');e2=input('请输入根的误差限e2=');N=input('请输入迭代次数限N=');k=1;while (k<N)x=x0;if abs(eval(f))<e1fprintf('奇异!\nx=%.6f\n迭代次数为:%d\n',x0,k)breakelsex1=x0-eval(f)/eval(df);if abs(x1-x0)<e2fprintf('x=%.6f\n迭代次数为:%d\n',x1,k)breakelsex0=x1;k=k+1;endendendif k>=Nfprintf('失败\n')end用newton法计算方程:1.请输入f(x)=x*exp(x)-1请输入迭代初值x0=0.5请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.567143迭代次数为:42.请输入f(x)=x^3-x-1请输入迭代初值x0=1请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=1.324718迭代次数为:53.1:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.45请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:43.2:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.65请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:93.3:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:4程序3:改进的newton法:syms f x;f=input('请输入f(x)=');df=diff(f);x0=input('请输入迭代初值x0=');e1=input('请输入奇异判断e1=');e2=input('请输入根的误差限e2=');N=input('请输入迭代次数限N=');k=1;while (k<N)x=x0;if abs(eval(f))<e1fprintf('奇异!\nx=%.6f\n迭代次数为:%d\n',x0,k)breakelsex1=x0-2*eval(f)/eval(df);if abs(x1-x0)<e2fprintf('x=%.6f\n迭代次数为:%d\n',x1,k)breakelsex0=x1;k=k+1;endendendif k>=Nfprintf('失败\n')end用改进的newton法计算方程:1.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10失败2.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=20失败3.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=100失败。
牛顿法解非线性方程(MATLAB和C++)
41 end
42 time = toc;
43
44 fprintf('\nIterated times is %g.\n', times);
45 fprintf('Elapsed time is %g seconds.\n', time);
46
47 root = x_iter;
48
49 % subfunction
5
6 // 功能描述:求解非线性方程根,并输出最终解 7 // 迭代式:x(k+1) = x(k) - f(x(k))/df(x(k)). 8 // 使用:修改标出的“修改”部分即可自定义参数
9
10 // 输入:函数 fun,函数导数 dfun,初值 x0,
4
11 // 最大迭代次数 maxiter,停止精度 tol 12 // 输出:迭代数值解 x_iter2
2
Listing 1: MATLAB EXAMPLE 1 % 2013/11/20 15:14:38
2
3 f = @(x)x^2 − 2; 4 df = @(x)2*x; 5 x0 = 3; 6 root = newton(f, df, x0);
C++ 以 C++ 实现的方法并未编写成为一般可调用的方法,而作为一个独立的 文件(包含一个实例),修改部分即可求解对应的方程。具体参照 cpp 文件内 注释。
A 附录
A.1 MATLAB
Listing 2: MATLAB CODE 1 function root = newton(f, df, x0, maxiter, tol) 2 %NEWTON Newton's method for nonlinear equations. 3% 4 % NEWTON's method: x(k+1) = x(k) - f(x(k))/f'(x(k)). 5% 6 % Inputs 7 % f - nonlinear equation. 8 % df - derivative of f(x). 9 % x0 - initial value. 10 % maxiter - maximum iterated times. 11 % tol - precision. 12 % 13 % Outputs 14 % root - root of f(x) = 0.
牛顿法matlab程序及例题
牛顿法matlab程序及例题牛顿法是一种求解非线性方程组的常用方法,它的基本思想是通过迭代逐步逼近方程组的根。
在matlab中,可以通过编写相应的程序来实现牛顿法,并且可以通过一些例题来深入理解其应用。
下面是一份牛顿法的matlab程序:function [x, fval, exitflag, output] = mynewton(fun, x0, tol, maxiter)% fun:非线性方程组的函数句柄% x0:初始点% tol:允许误差% maxiter:最大迭代次数x = x0;fval = feval(fun, x);iter = 0;output = [];while norm(fval) > tol && iter < maxiteriter = iter + 1;J = myjacobian(fun, x);dx = - J fval;x = x + dx;fval = feval(fun, x);output = [output; [x', norm(fval)]];endif norm(fval) <= tolexitflag = 0; % 成功求解elseexitflag = 1; % 未能求解end% 计算雅可比矩阵function J = myjacobian(fun, x)n = length(x);fval = feval(fun, x);J = zeros(n);h = sqrt(eps); % 微小的增量for j = 1:nxj = x(j);x(j) = xj + h;fval1 = feval(fun, x);x(j) = xj - h;fval2 = feval(fun, x);x(j) = xj;J(:, j) = (fval1 - fval2) / (2 * h);end接下来,我们可以通过一个例题来演示牛顿法的应用。
牛顿法matlab程序及例题
牛顿法matlab程序及例题牛顿法是一种求解非线性方程的优秀方法,其基本思想是利用切线逼近非线性方程的根,逐步逼近准确解。
下面我们介绍牛顿法的matlab程序及例题。
【程序】function [x_iter,k]=newton(f,df,x0,tol,maxit)%牛顿法%输入:f-目标函数,df-目标函数的导函数,x0-初始值,tol-误差限,maxit-最大迭代次数%输出:x_iter-迭代结果,k-迭代次数k=0;x_iter=x0;err=tol+1;while(err>tol && k<maxit)x=x_iter;x_iter=x-f(x)/df(x);err=abs(x_iter-x);k=k+1;endif(k==maxit)fprintf('未收敛');elsefprintf('迭代次数:%d',k);end【例题】example:求解非线性方程f(x)=x^3-5x^2+3x+7=0,初始值为x0=2,精度为1e-6。
解法:首先求导得df(x)=3x^2-10x+3,然后代入程序:>> f=@(x)x^3-5*x^2+3*x+7;>> df=@(x)3*x^2-10*x+3;>> [x_iter,k]=newton(f,df,2,1e-6,100);>> x_iterans =4.3793>> kk =5故该非线性方程的根为x=4.3793,迭代次数为5次。
【总结】通过以上例题,我们可以发现牛顿法是一种十分有效的求解非线性方程的方法,其程序简洁高效,对于复杂的非线性方程求解也能得到较好的结果。
因此在实际应用中,我们可以采用牛顿法来求解非线性方程,提高计算效率和精度。
matlab实现牛顿迭代法求解非线性方程组-5页 文字版
编制:数学建模QQ群 694176364matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到0.00001————————————————————————————————首先建立函数fun储存方程组编程如下将fun.m保存到工作路径中:function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3];————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将newton.m保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1:length(x0);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为iteration.txt fid=fopen('iteration.txt','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %10.6f',il(j,k));endendfprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid);————————————————————————————————运行程序在matlab中输入以下内容newton([0.1 0.1 -0.1],0.00001,20)————————————————————————————————输出结果ans =0.5000 0.0000 -0.5236———————————————————————————————————————————————在iteration中查看迭代过程iteration x1 x2 x31 0.490718 0.031238 -0.5196612 0.509011 0.003498 -0.5216343 0.500928 0.000756 -0.5233914 0.500227 0.000076 -0.5235505 0.500019 0.000018 -0.5235946 0.500005 0.000002 -0.5235987 0.500000 0.000000 -0.523599计算结果收敛!编制:数学建模QQ群 694176364。
matlab非线性方程的解法(含牛拉解法)
非线性方程的解法(含牛拉解法)1引 言数学物理中的许多问题归结为解函数方程的问题,即,0)(=x f (1.1) 这里,)(x f 可以是代数多项式,也可以是超越函数。
若有数*x 为方程0)(=x f 的根,或称函数)(x f 的零点。
设函数)(x f 在],[b a 内连续,且0)()(<b f a f 。
根据连续函数的性质知道,方程0)(=x f 在区间],[b a 内至少有一个实根;我们又知道,方程0)(=x f 的根,除了极少简单方程的根可以用解析式表达外,一般方程的根很难用一个式子表达。
即使能表示成解析式的,往往也很复杂,不便计算。
所以,具体求根时,一般先寻求根的某一个初始近似值,然后再将初始近似值逐步加工成满足精度要求为止。
如何寻求根的初始值呢?简单述之,为了明确起见,不妨设)(x f 在区间],[b a 内有一个实的单根,且0)(,0)(><b f a f 。
我们从左端出点a x =0出发,按某一预定的步长h 一步一步地向右跨,每跨一步进行一次根的“搜索”,即检查每一步的起点k x 和1+k x (即,h x k +)的函数值是否同号。
若有:0)(*)(≤+h x f x f k k (1.2) 那么所求的根必在),(h x x k k +内,这时可取k x 或h x k +作为根的初始近似值。
这种方法通常称为“定步长搜索法”。
另外,还是图解法、近似方程法和解析法。
2 迭代法2.1 迭代法的一般概念迭代法是数值计算中一类典型方法,不仅用于方程求根,而且用于方程组求解,矩阵求特征值等方面。
迭代法的基本思想是一种逐次逼近的方法。
首先取一个精糙的近似值,然后用同一个递推公式,反复校正这个初值,直到满足预先给定的精度要求为止。
对于迭代法,一般需要讨论的基本问题是:迭代法的构造、迭代序列的收敛性天收敛速度以及误差估计。
这里,主要看看解方程迭代式的构造。
对方程(1.1),在区间],[b a 内,可改写成为:)(x x ϕ= (2.1) 取],[0b a x ∈,用递推公式:)(1k k x x ϕ=+, ,2,1,0=k (2.2) 可得到序列:∞==0210}{,,,,k k k x x x x x (2.3)当∞→k 时,序列∞=0}{k k x 有极限x ~,且)(x ϕ在x ~附近连续,则在式(2.2)两边极限,得, )~(~x x ϕ= 即,x ~为方程(2.1)的根。
(精品word)不动点迭代法和牛顿法非线性方程组求解
《MATLAB 程序设计实践》课程考核1、编程实现以下科学计算算法,并举一例应用之.(参考书籍《精通MALAB科学计算》,王正林等著,电子工业出版社,2009年)“不动点迭代法和牛顿法非线性方程组求解”(1).不动点迭代法非线性方程组求解(a).算法说明:设含有n个未知数与n个方程的非线性方程组记为:F(x)=0,然后把上述方程组改为便于迭代的等价形式:x=φ(x),由此就可以构造不动点迭代法的迭代公式:}满足,则就是φ的不动点,这样就可以求出非线性方程组的解.如果得到的序列{xk在MATLAB中编程实现的非线性方程组的不动点迭代法的函数为:mulStablePoint。
功能:用不动点迭代法求非线性方程组的一个解。
调用格式:[r,n]=mulStablePoint(x0,eps).其中,x0为初始迭代向量;eps为迭代精度;r为求出的解向量;n为迭代步数。
(b)。
流程图:(c).源程序代码:function [r,n]=mulStablePoint(x0,eps) %不动点迭代法求非线性方程组的一个解%初始迭代向量:x0%迭代精度:eps%解向量:r%迭代步数:nif nargin==1eps=1。
0e-4;endr=myf(x0);n=1;tol=1;while tol>epsx0=r;r=myf(x0);%迭代公式tol=norm(r-x0);%注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;if(n〉100000) %迭代步数控制disp(’迭代步数太多,可能不收敛!’);return;endend举例说明:解:首先建立myf.m函数文件,输入以下内容:function f=myf(x)f(1)=0.5*sin(x(1))+0。
1*cos(x(2)*x(1))-x(1);f(2)=0.5*cos(x(1))-0.1*sin(x(2))—x(2);在MATLAB命令窗口中输入:(2)。
matlab 牛顿法
matlab 牛顿法
牛顿法(Newton'smethod)是一种数值最优化算法,它可以帮助
在多维空间中 zoudi定最小值或最大值问题,是当前广泛应用的求解
非线性方程组和最优化问题的一种技术。
牛顿法主要基于梯度下降法,其中求解最优解的过程包括一定的
估计、权衡和选择。
其基本思想是:定义一个函数f(x),其中x是未
知变量,牛顿法先从给定的任意初始值x0开始,然后以迭代的方式,
求出满足要求的xn,它满足特定条件f'(xn)=0。
牛顿法比较有效,具有以下特点:首先,它可以快速收敛到问题解;其次,它不受几何结构的影响;最后,它只需要使用较少的迭代
次数就能够找到最优解。
牛顿法也有缺点,特别是当函数存在多个最小值时,它很容易陷
入局部最优解,导致错误的结果。
此外,由于它优先朝向最小值收敛,所以它会被耗费更长的时间,明显慢于梯度下降法。
因此,在使用牛顿法的时候,我们应该综合计算的次数、运算的
复杂度以及当前情况,来看是否合适使用。
如果遇到极大极小值问题,可以考虑使用该方法。
牛顿法体系结构也可以用于做很多分析,比如
计算函数局部敏感性,以及复杂空间里的最小值等。
MATLABNewton迭代法解非线性方程
MATLABNewton迭代法解非线性方程Newton 迭代法解非线性方程Newton 迭代法解非线性方程算法:Step 1 给定初值0x ,e 为根的容许误差Step 2 计算()()1'11----=n n n n x f x f x xStep 3 判断e x x <-0转到Step 4否则转到Step 2Step 4 迭代结果为n x x =Newton 迭代法解非线性方程程序:function Newton_diedai(fun,x0,e)%fun--原函数%dfun-导函数%x0---迭代初值%e----精度%k----迭代次数dfun=inline(diff('x^3-x^2-1'));%计算导函数x=x0;x0=x+1000*e;k=0;while abs(x0-x)>e&k<100%判断误差和迭代次数k=k+1;%计算迭代次数x0=x;x=x0-feval(fun,x0)/feval(dfun,x0);endif k==500disp('迭代次数过多,防止死循环终止');elsefprintf('迭代到%d 次时得到结果%f\n',k,x)end例:用Newton 迭代法求解非线性方程0123=--x x 在5.10=x 附近的根输入:clear allclcfun=inline('x^3-x^2-1')Newton_diedai(fun,1.5,0.5e-6)得到:迭代到4次时得到结果1.465571指导教师:***。
matlab牛顿法程序
matlab牛顿法程序牛顿法是一种常用的优化算法,主要用于求解非线性方程或最优化问题。
它基于一阶导数和二阶导数的信息,通过不断迭代逼近目标函数的零点或最小值。
在Matlab中,我们可以利用该语言的强大功能和简洁的语法编写牛顿法程序。
牛顿法的核心思想是利用二阶导数逼近目标函数,然后通过迭代来逼近方程的解。
设目标函数为f(x),则牛顿法的迭代公式为:x_{n+1} = x_n - f'(x_n) / f''(x_n)其中,x_n是当前的迭代点,f'(x_n)和f''(x_n)分别是目标函数在x_n处的一阶导数和二阶导数。
为了编写一个通用的牛顿法程序,我们需要先定义目标函数及其导数求解的函数。
以求解方程f(x) = 0为例,我们将定义一个函数newton_method(f, f_prime, x0, tol),其中f是目标函数,f_prime是一阶导数函数,x0是初始点,tol是迭代精度。
首先,我们需要定义目标函数和一阶导数函数:```matlabfunction y = f(x)y = x^2 - 2;endfunction y = f_prime(x)y = 2*x;end```接下来,我们可以定义牛顿法的主函数newton_method:```matlabfunction root = newton_method(f, f_prime, x0, tol)x = x0;while abs(f(x)) > tolx = x - f(x) / f_prime(x);endroot = x;end```在主函数中,我们使用一个while循环不断迭代,直到满足迭代精度tol。
每次迭代,我们更新x的值,逼近方程的解。
现在,我们可以调用newton_method函数来求解具体的方程。
假设我们要求解方程x^2 - 2 = 0,初始点x0取1,迭代精度tol取0.0001。