计算方法上机作业
西安交通大学计算方法B大作业
计算方法上机报告姓名:学号:班级:目录题目一------------------------------------------------------------------------------------------ - 4 -1.1题目内容 ---------------------------------------------------------------------------- - 4 -1.2算法思想 ---------------------------------------------------------------------------- - 4 -1.3Matlab源程序----------------------------------------------------------------------- - 5 -1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 -2.1题目内容 ---------------------------------------------------------------------------- - 7 -2.2算法思想 ---------------------------------------------------------------------------- - 7 -2.3 Matlab源程序---------------------------------------------------------------------- - 8 -2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 -3.1题目内容 --------------------------------------------------------------------------- - 11 -3.2算法思想 --------------------------------------------------------------------------- - 11 -3.3Matlab源程序---------------------------------------------------------------------- - 13 -3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 -4.1题目内容 --------------------------------------------------------------------------- - 15 -4.2算法思想 --------------------------------------------------------------------------- - 15 -4.3Matlab源程序---------------------------------------------------------------------- - 15 -4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -5.1题目内容 --------------------------------------------------------------------------- - 18 -5.2算法思想 --------------------------------------------------------------------------- - 18 -5.3 Matlab源程序--------------------------------------------------------------------- - 18 -5.3.1非压缩带状对角方程组------------------------------------------------- - 18 -5.3.2压缩带状对角方程组---------------------------------------------------- - 20 -5.4实验结果及分析 ------------------------------------------------------------------ - 22 -5.4.1Matlab运行结果 ---------------------------------------------------------- - 22 -5.4.2总结分析------------------------------------------------------------------- - 24 -5.5本专业算例 ------------------------------------------------------------------------ - 24 - 学习感悟-------------------------------------------------------------------------------------- - 27 -题目一1.1题目内容计算以下和式:0142111681848586n n S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法; (2)若要保留30个有效数字,则又将如何进行计算。
西安电子科技大学出版社计算方法上机答案
西安电子科技大学出版社《计算方法》任传祥等编著第九章计算方法上机参考答案实验一,算法一#include <stdio.h>#include <math.h>double I0=log(6)/log(5),I1;int n=1;main (){while(1){I1=1.0/(n)-I0*5.0;printf("%d %lf\n", n,I1);if(n>=20)break;elseI0=I1;n++;}}实验一,算法二#include <stdio.h>#include <math.h>double I0=(1/105.0+1/126.0)/2,I1;int n=20;main (){printf("%d %lf\n", n,I0);while(1){I1=1.0/(5.0*n)-I0/5.0;printf("%d %lf\n", n-1,I1);if(n<2)break;elseI0=I1;n--;}}实验二,二分法#include <stdio.h>#include <math.h>#define esp 1e-3double f(double x);main (){double a=1,b=2,x;while(fabs(b-a)>esp){x=(a+b)/2;printf("x=%lf\n",x);if(f(x)==0)break;elseif(f(x)*f(a)<0)b=x;elsea=x;}}double f(double x){return pow(x,3)-x-1;}实验二,牛顿迭代法#include<stdio.h>#include<math.h>double f(double x);double f1(double x);#define esp 1e-3void main(){double x0 = 1.5, x1;x1 = x0 - f(x0) / f1(x0);printf("x=%lf\n", x1);x0 = x1;x1 = x0 - f(x0) / f1(x0);printf("x=%lf\n", x1);while (fabs(x1 - x0)>esp){x0 = x1;x1 = x0 - f(x0) / f1(x0);printf("x=%lf\n", x1);} }double f(double x){return pow(x, 3) - x - 1;} double f1(double x){return 3 * x*x - 1;}弦割法#include<stdio.h>#include<math.h>double f(double x);#define esp 1e-3void main(){double x0 = 1.5, x1=2.0,x2;do{ x2=x1 - (x1-x0)*f(x1) /(f(x1)-f(x0));x0=x1;x1=x2;printf("x=%lf\n", x1);}while (fabs(x1 - x0)>esp);{printf("x=%lf\n", x1);}}double f(double x){return pow(x, 3) - x - 1;}实验3#include <stdio.h>/*列主元高斯消去法*/#include <math.h>float x[3],temp,max;float A[3][4]={10,-2,-1,3,-2,10,-1,15,-1,-2,5,10},c[3][4]={10,-2,-1,3,-2,10,-1,15,-1,-2,5,10}; int n=3,i,k,j,m;void main(){for(i=0;i<n;i++){max=A[i][i];k=i;for(j=j+1;j<n;j++){{max=fabs(A[j][i]);k=j;}}if(k!=i){for(j=i+1;j<=n;j++){temp=A[i][j];A[i][j]=A[k][j];A[k][j]=temp;}}for(j=i+1;j<n;j++)for(m=i+1;m<=n;m++){c[j][m]=c[j][m]+(-c[j][i]/c[i][i])*c[i][m];}}for(i=n-1;i>=0;i--){temp=0.0;for(j=n-1;j>=i+1;j--)temp=temp+c[i][j]*x[j];x[i]=(c[i][n]-temp)/c[i][i];}printf("x[1]=%f\nx[2]=%f\nx[3]=%f\n",x[0],x[1],x[2]);实验四,拉格朗日插值#include<stdio.h>int n=5,i,j;double l,L=0,X=0.5;main(){double x[5]={0.4,0.55,0.65,0.8,0.9};doubley[5]={0.41075,0.57815,0.69675,0.88811,1.02652}; for(i=0;i<n;i++){l=y[i];for(j=0;j<n;j++){if(j!=i)l=l*(X-x[j])/(x[i]-x[j]); } L=L+l;}printf("%lf\n",L);return 0;} X=0.5 X=0.7 X=0.85牛顿插值法#include<stdio.h>#include<math.h>main(){double x[5]={0.4,0.55,0.65,0.8,0.9};doubley[5]={0.41075,0.57815,0.69675,0.88811,1.02652};int n=5,i,j;double z;printf("input z\n");scanf("%lf",&z);double a[5][5];for(i=0;i<5;i++)a[i][0]=y[i];for(i=1;i<5;i++)for(j=i;j<5;j++)a[j][i]=(a[j][i-1]-a[j-1][i-1])/(x[j]-x[j-i]);double N=a[0][0],temp=1.0;for(i=1;i<n;i++){temp=temp*(z-x[i-1]);N=N+a[i][i]*temp;}printf("N=%lf\n",N);return 0;}实验五曲线拟合#include <stdio.h>#include <math.h>float x[5]={1,2,3,4,5};float y[5]={7,11,17,27,40};float A[2][3],c[2][3];float z[2],temp,max;int i,j,k,m;int n=2;void main(){for(i=0;i<5;i++){c[0][0]=A[0][0]+=1;c[0][1]=A[0][1]+=x[i];c[0][2]=A[0][2]+=y[i];c[1][0]=A[1][0]+=x[i];c[1][1]=A[1][1]+=x[i]*x[i];c[1][2]=A[1][2]+=x[i]*y[i];}/* for(i=0;i<2;i++){printf(" %lf %lf %lf\n",A[i][0],A[i][1],A[i ][2]);}*/for(i=0;i<n;i++){max=A[i][i];k=i;for(j=j+1;j<n;j++){if(fabs(A[j][i])>max){max=fabs(A[j][i]);k=j;}} if(k!=i){for(j=i+1;j<=n;j++){temp=A[i][j];A[i][j]=A[k][j];A[k][j]=temp;}}for(j=i+1;j<n;j++)for(m=i+1;m<=n;m++){c[j][m]=c[j][m]+(-c[j][i]/c[i][i])*c[i][m];}}for(i=n-1;i>=0;i--){temp=0.0;for(j=n-1;j>=i+1;j--)temp=temp+c[i][j]*z[j];z[i]=(c[i][n]-temp)/c[i][i];}printf("a=%f\nxb=%f\n",z[0],z[1]); }实验六数值积分/*梯形*/#include<stdio.h>#include<math.h> double f(double x); main(){double x[10],y[10];double h,b=1,a=0,I;int n,i;printf("n\n");scanf("%d",&n);h=(b-a)/n;for(i=0;i<=n;i++){x[i]=a+(i*h);y[i]=f(x[i]);}I=f(a)+f(b);for(i=1;i<=n-1;i++){I=I+2*y[i];}I=(h/2)*I;printf("%lf",I);}double f(double x){double f;f=1.0/(1.0+(x*x));return(f);}/*辛普森*/#include<stdio.h>#include<math.h>double f(double x);main(){double x[30],y[30];double h,b=1,a=0,I;int n,i;printf("n\n");scanf("%d",&n);//点乘2扩展h=(b-a)/n;x[10]=1;y[10]=f(x[10]);for(i=0;i<n;i++){x[2*i]=a+(i*h);y[2*i]=f(x[2*i]);x[2*i+1]=a+(i+(1.0/2.0))*h;y[(2*i)+1]=f(x[(2*i)+1]);}I=f(a)+f(b);for(i=0;i<n;i++){I=I+4*y[(2*i)+1];}for(i=1;i<n;i++){I=I+2*y[2*i];}I=(h/6)*I;printf("%lf\n",I);}double f(double x){double f;f=1.0/(1.0+(x*x));return(f);}/*梯形*//*辛普森*/。
东南大学计算方法与实习上机实验一
东南大学计算方法与实习实验报告学院:电子科学与工程学院学号:06A*****姓名:***指导老师:***实习题14、设S N=Σ(1)编制按从大到小的顺序计算S N的程序;(2)编制按从小到大的顺序计算S N的程序;(3)按两种顺序分别计算S1000,S10000,S30000,并指出有效位数。
解析:从大到小时,将S N分解成S N-1=S N-,在计算时根据想要得到的值取合适的最大的值作为首项;同理从小到大时,将S N=S N-1+ ,则取S2=1/3。
则所得式子即为该算法的通项公式。
(1)从大到小算法的C++程序如下:/*从大到小的算法*/#include<iostream>#include<iomanip>#include<cmath>using namespace std;const int max=34000; //根据第(3)问的问题,我选择了最大数为34000作为初值void main(){int num;char jus;double cor,sub;A: cout<<"请输入你想计算的值"<<'\t';cin>>num;double smax=1.0/2.0*(3.0/2.0-1.0/max-1.0/(max+1)),temps;double S[max];// cout<<"s["<<max<<"]="<<setprecision(20)<<smax<<'\n';for(int n=max;n>num;){temps=smax;S[n]=temps;n--;smax=smax-1.0/((n+1)*(n+1)-1.0);}cor=1.0/2.0*(3.0/2.0-1.0/num-1.0/(num+1.0)); //利用已知精确值公式计算精确值sub=fabs(cor-smax); //double型取误差的绝对值cout<<"用递推公式算出来的s["<<n<<"]="<<setprecision(20)<<smax<<'\n';cout<<"实际精确值为"<<setprecision(20)<<cor<<'\n';cout<<"则误差为"<<setprecision(20)<<sub<<'\n';cout<<"是否继续计算S[N],是请输入Y,否则输入N!"<<endl;cin>>jus;if ((int)jus==89||(int)jus==121) goto A;}(2)从小到大算法的C++程序如下:/*从小到大的算法*/#include<iostream>#include<iomanip>#include<cmath>using namespace std;void main(){int max;A: cout<<"请输入你想计算的数,注意不要小于2"<<'\t';cin>>max;double s2=1.0/3.0,temps,cor,sub;char jus;double S[100000];for(int j=2;j<max;){temps=s2;S[j]=temps;j++;s2+=1.0/(j*j-1.0);}cor=1.0/2.0*(3.0/2.0-1.0/j-1.0/(j+1.0)); //利用已知精确值公式计算精确值sub=fabs(cor-s2); //double型取误差的绝对值cout<<"用递推公式算出来的s["<<j<<"]="<<setprecision(20)<<s2<<'\n';cout<<"实际精确值为"<<setprecision(20)<<cor<<'\n';cout<<"则误差为"<<setprecision(20)<<sub<<'\n';cout<<"是否继续计算S[N],是请输入Y,否则输入N!"<<endl;cin>>jus;if ((int)jus==89||(int)jus==121) goto A;}(3)(注:因为程序中setprecision(20)表示输出数值小数位数20,则程序运行时所得到的有效数字在17位左右)ii.选择从小到大的顺序计算S1000、S10000、S30000的值需要计算的项S1000S10000S30000计算值0.74900049950049996 0.74966672220370571 0.74996666722220728实际精确值0.74900049950049952 0.74990000499950005 0.74996666722220373误差 4.4408920985006262*10-16 5.6621374255882984*10-15 3.5527136788005009*10-15有效数字17 17 17附上部分程序运行图:iii.实验分析通过C++程序进行计算验证采用从大到小或者从小到大的递推公式算法得到的数值基本稳定且误差不大。
应用计算方法
结果分析:比较发现,经过两种改进迭代法,求重根时迭代速度明显加快。
3-4 试验目的体验 Steffensen’s method 加速技巧 试验内容:先用 Newton 法求解方程 x-tanx=0 再用 Steffensen 法求解,比较迭代步数。精确到 10-4。 迭代公式: P(k+1)=P(k)-(P(k)-tan(P(k)))/(1-(sec(P(k)))^2) 初值 P0=1 Newton 法: function [ p,k ]=fnewton( p0,max,tol ) for k=1:max p=p0-(p0-tan(p0))/(1-(sec(p0))^2); if abs(p-p0)<tol break; end p0=p; end disp(p); disp(k) % fnewton( 1,100,10^(-4) ) Steffensen 法: function [ p1,k ]=steffensen( p0,max,tol ) n=1; p(1)=p0; while n<=max for k=1:2 p(k+1)=p(k)-(p(k)-tan(p(k)))/(1-(sec(p(k)))^2); end p1=p(1)-(p(2)-p(1))^2/(p(3)-2*p(2)+p(1)); f0=p1-(p1-tan(p1))/(1-(sec(p1))^2); if abs(f0)<tol break; end n=n+1; p(1)=p1; end disp(p1); disp(n) % steffensen( 1,100,10^(-4) ) >> steffensen( 1,100,10^(-4) ) -1.3387e-07 3
3-2 试验目的:考察 Newton 法求单根的收敛速度 应用 Newton 迭代法求 3-1 中的方程,并与 3-1 中的迭代法相比较,考察收敛速度。精确到时 10-4 迭代公式: P(k+1)= P(k)-(2P(k)-eP(k)+3)/(2- eP(k)) 初值 P0=1 和-1。 Newton 法: function [ p,k ] = fnewton( p0,max,tol ) for k=1:max p=p0-(2*p0-exp(p0)+3)/(2-exp(p0)); if abs(p-p0)<tol break; end
计算方法与计算 实验一误差分析
% 输出的量--每次迭代次数k和迭代值xk,
%
--每次迭代的绝对误差juecha和相对误差xiangcha,
误差分析
误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算 中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。 因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时, 由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法 的好坏会影响到数值结果的精度。 一、实验目的
因为运行后输出结果为: y 1.370 762 168 154 49, yˆ =1.370 744 664 189
38, R 1.750 396 510 491 47e-005, WU= 1.782 679 830 970 664e-005 104 . 所
以, yˆ 的绝对误差为 10 4 ,故 y
③ 运行后输出计算结果列入表 1–1 和表 1-2 中。
④ 将算法 2 的 MATLAB 调用函数程序的函数分别用 y1=15-2*x^2 和
y1=x-(2*x^2+x-15)/(4*x+1)代替,得到算法 1 和算法 3 的调用函数程序,将其保
存,运行后将三种算法的前 8 个迭代值 x1, x2 ,, x8 列在一起(见表 1-1),进行
的精确解 x* 2.5 比较,观察误差的传播.
算法 1 将已知方程化为同解方程 x 15 2x2 .取初值 x0 2 ,按迭代公式
xk1 15 2xk2
计算方法大作业1 克服Runge现象
x3
x2
x
1
S1 ( x)
-0.34685
0.2086
0.073964
0.038462
S2 (x)
S (xi 0 ) S x(i 0 )
S
'
(xi
0) S
xi' (
0 )i
S
'
'
x(i
0)S
xi' ' (
0)
1 ,n2, . . . , 1
(1)
这里共有了 3n-3 个条件,再加上条件(2)中的 n+1 个插值条件,共有 4n-2 个条件,
因此还需要 2 个方程才能确定 S (x) .通常可在区间[a, b]的端点 a x0,b xn 上各加一个边
dn1
1
2
Mn
dn
(6)
2 1
2
2
2
1 M1 d1
M2
d2
n 1
2
n
1
M
n
1
dn1
n
n 2 M n dn
由式(1)内点拼接条件,可得
i M i1 2M i i M i1 d j i 1, 2,..., n 1
(3) (4)
其中
i
hi 1 hi1
, hi
i
hi hi 1
计算方法上机程序
1.对分+扫描Private Function f(x!)f = x ^ 4 - 5 * x ^ 2 + x + 2 End FunctionPrivate Sub Form_Click() Dim a!, b!, h!, c!, p!, q!, x!a = InputBox("输入a")b = InputBox("输入b")h = InputBox("输入h")x = aDo While x < bIf f(x) * f(x + h) <= 0 Thenp = x: q = x + hDo While Abs(q - p) > 0.00001 c = (p + q) / 2If f(c) = 0 ThenExit DoElseIf f(p) * f(c) < 0 Thenq = cElsep = cEnd IfEnd IfLoopPrint "["; p, q; "]"; cEnd Ifx = x + hLoopEnd Sub2.用牛顿法求a的立方根,精度要求0.000005 Private Sub Form_Click()Dim x0 As Single, x1 As SingleDim a As Integera = InputBox("输入a")If a = 0 ThenPrint "a的立方根=0"EndEnd Ifx1 = (a ^ 1 / 3)Dox0 = (x1)x1 = (x0 - (x0 ^ 3 - a) / (3 * x0 ^ 2))Loop While (Abs(x1 - x0)) > 0.000005 Print "a的立方根为:"; x1End Sub3.编写牛顿法求方程根1)x3-x2-2x-3=0(初值x0=2)Private Sub Form_Click()Dim x0 as Single,x1 as Singlex1=2Dox0=x1x1=x0-(x0^3-x0^2-2*x0-3)/(3*x0^2-2*x0-2) Loop while abs(x1-x0)>0.00001Print x1End sub2)x-sinx=1/2(初值x0=1)Private Sub Form_Click()Dim x0 As Single, x1 As Singlex1 = 1Dox0 = x1x1 = x0 - (x0 - Sin(x0) - 1 / 2) / (1 - Cos(x0))Loop While Abs(x1 - x0) > 0.00001Print x1End Sub4.列主元高斯消去法Private Sub Form_Click()Dim a(1 To 3, 1 To 4) As Single, t#, i!, j!, k!, r!, l#, x(1 To 3) As Single For i = 1 To 3For j = 1 To 4a(i, j) = InputBox("输入一个数")Print a(i, j);Next jPrintNext iFor k = 1 To 2r = kFor i = k + l To 3If Abs(a(i, k)) > Abs(a(r, k)) Then r = iNext iIf r <> k ThenFor i = 1 To 4t = a(k, i)a(k, i) = a(r, i)a(r, i) = tNext iEnd IfFor i = k + l To 3l = (a(i, k) / a(k, k))For j = k + l To 4a(i, j) = (a(i, j) - l * a(k, j)) Next jNext iNext kFor k = 3 To 1 Step -1s = 0For j = k + l To 3s = s + (a(k, j) * x(j)) Next jx(k) = (a(k, 4) - s) / a(k, k) Next kFor i = 1 To 3Print x(i),Next iEnd sub5.LU分解法Private Sub Form_Click()Const n = 4Dim a(1 To n, 1 To n) As Single, l(1 To n, 1 To n) As Single, u(1 To n, 1 To n) As SingleDim x(1 To n) As Single, y(1 To n) As Single, b(1 To n) As Single, s#, i!, j!, k!, r!For i = 1 To nFor j = 1 To na(i, j) = InputBox("输入a数组")Print a(i, j)Next jPrintNext iFor i = 1 To nb(i) = InputBox("输入b数组")Print b(i)PrintFor k = 1 To nFor j = k To ns = 0For r = 1 To k - 1s = s + l(k, r) * u(r, j)Next ru(k, j) = a(k, j) - sNext jFor i = k + 1 To ns = 0For r = 1 To k - 1s = s + (l(i, r) * u(r, k)) Next rl(i, k) = (a(i, k) - s) / u(k, k) Next iNext kFor i = 1 To ns = 0For k = 1 To i - 1s = s + l(i, k) * y(k)y(i) = b(i) - sNext iFor i = n To 1 Step -1s = 0For k = i + 1 To ns = s + (u(i, k) * x(k))Next kx(i) = (y(i) - s) / u(i, i)Next iFor i = 1 To nPrint x(i)Next iEnd Sub6.雅克比迭代Option Base 1Function cha(x!(), y!()) As SingleDim z As Single, i As Single, k As Singlen = 3z = Abs(x(1) - y(1))For i = 2 To nIf (z < Abs(y(i) - x(i))) Then z = Abs(x(i) - y(i))Next icha = zEnd FunctionPrivate Sub Form_Click()Dim a1, x(3) As Single, y(3) As SingleDim t As Single, s As Single, a(3, 3) As SingleDim i As Integer, j As Integer, k As Integer, n As Integer n = 3a1 = Array(10, -2, -1, -2, 10, -1, -1, -2, 5)b = Array(3, 15, 10)For i = 1 To n: y(i) = 0: Next ik = 1For i = 1 To 3For j = 1 To 3a(i, j) = a1(k)k = k + 1Next j, iFor k = 1 To 30For i = 1 To nx(i) = y(i)Next iFor i = 1 To nt = 0For j = 1 To nIf (i <> j )Then t = t + a(i, j) * x(j) Next jy(i) = ((b(i) - t) / a(i, i))Next iIf (cha(x, y) < 0.00001 )Then Print k;For i = 1 To nPrint y(i)Next iExit ForEnd IfNext kIf k > 30 Then Print "发散"End Sub7. 高斯-赛德尔迭代Option Base 1Function cha(x!(), y!()) As SingleDim z As Single, i As Single, k As Singlen = 3z = Abs(x(1) - y(1))For i = 2 To nIf z < Abs(y(i) - x(i)) Then z = Abs(x(i) - y(i))Next icha = zEnd FunctionPrivate Sub Form_Click()Dim a1, x(3) As Single, y(3) As SingleDim t As Single, s As Single, a(3, 3) As SingleDim i As Integer, j As Integer, k As Integer, n As Integer n = 3a1 = Array(10, -2, -1, -2, 10, -1, -1, -2, 5)b = Array(3, 15, 10)For i = 1 To n: x(i) = 0: Next ik = 1For i = 1 To 3For j = 1 To 3a(i, j) = a1(k)k = k + 1Next j, iFor k = 1 To 30For i = 1 To ny(i) = x(i)Next iFor i = 1 To nt = 0For j = 1 To nIf i <> j Then t = t + a(i, j) * x(j) Next jx(i) = (b(i) - t) / a(i, i)Next iIf cha(x, y) < 0.00001 Then Print k;For i = 1 To nPrint x(i)Next iEnd IfNext kIf k > 30 Then Print "发散"End Sub8.拉格朗日插值多项式,求在t=3.5处的函数值的近似值,节点由x,y数组给出Private Sub Form_Click()Const n = 3Dim p#, s!Dim x, y As Variantx = Array(1, 2, 3, 4)y = Array(4, 5, 14, 37)t = InputBox("input t ")p = 0For k = 0 To ns = 1For i = 0 To nIf (i <> k) Thens = s * ((t - x(i)) / (x(k) - x(i)))Next ip = p + (y(k) * s)Next kPrint pEnd Sub9.牛顿基本插值公式Private Sub Form_Click()Const n = 4Dim x(n) As Single, y(n) As Single, t#, p#, s# For i = 0 To (n)x(i) = InputBox("input x" & Trim(Str(i)))y(i) = InputBox("input y" & Trim(Str(i))) Next it = InputBox("input t")For k = 1 To nFor i = n To k(-1)y(i) = (y(i) - y(i - 1)) / ((x(i) - x(i - k)))Next ip = y(0)h = 1For i = 1 To nh = (h * (t - x(i - 1)))p = p + (h * y(i))Next iPrint "p="; pEnd Sub10.拟合Private Sub Form_Click()Dim l#, m#, n#, i%, j%, k%, t1#Dim x As Variant, y As Variantn = 7m = 2x = Array(0, 1, 2, 3, 4, 5, 6, 7)y = Array(0, 5, 3, 2, 1, 2, 4, 7)ReDim a(0 To m, 0 To m + 1) As Single, t(n) As Single For i = 0 To mFor k = 1 To ns = s + x(k) ^ i * y(k) Next ka(i, m + 1) = sFor j = 0 To ms = 0For k = 1 To ns = s + x(k) ^ (i + j) Next ka(i, j) = sNext jNext iFor i = 0 To mFor j = o To m + 1 Print a(i, j),Next jPrintNext iFor k = 0 To mr = kFor i = k + 1 To mIf Abs(a(i, k)) > Abs(a(r, k)) Then r = iEnd IfNext iIf r <> k ThenFor i = 0 To m + 1t1 = a(k, i)a(k, i) = a(r, i)a(r, i) = t1Next iEnd Ifl = 1For i = k + 1 To ml = a(i, k) / a(k, k)For j = k + 1 To m + 1a(i, j) = a(i, j) - l * a(k, j)Next jNext iNext kFor k = m To step - 1s = 0For j = k + 1 To ms = s + a(k, j) * t(j)Next jt(k) = (a(k, m + 1) - s) / a(k, k) Next kPrint "y="; t(0)For i = 1 To mIf t(i) >= 0 Then Print "+" Print t(i); "*x^;i;"Next iEnd Sub11.SimpsonFunction f!(x!)f = x + x * Exp(x)End FunctionPrivate Sub Form_Click() Dim b!, N!, h!, x!, s!, a!a = 0:b = 1: N = 8h = (b - a) / (2 * N)x = as = f(a)For i = 1 To Nx = x + hs = s + 4 * f(x)x = x + hs = s + 2 * f(x)Next is = h / 3 * (s - f(b))Print sEnd Sub(2)Private Sub form_click()Dim a As Single, b As Single, eps As Single, s As Single Dim x As Single, h As Single, t1 As Single, t As Singlea = InputBox("输入积分下限a")b = InputBox("输入积分上限b")eps = InputBox("输入精度要求eps")h = b - at2 = (h / 2) * (f(a) + f(b))Dot1 = t2s = 0For x = a + h / 2 To b Step hs = s + f(x)Next xt2 = t1 / 2 + (h / 2) * sh = h / 2Loop While Abs(t1 - t2) > eps Print "积分的近似值:"; t2End SubFunction f(x As Single) As Singlef = 1 / (1 + x * x)End Function12.用牛顿法求方程的附近根Private Sub Form_Click()Dim x#, x1#x1 = 1Dox = x1x1 = x - (x - Exp(-x)) / (1 + Exp(-x)) Loop While Abs(x1 - x) > 10 ^ (-5) Print x1End Sub。
( 鞋盒)上机纸张大小计算方法
(鞋盒)上机纸张大小计算方法一、3k版1)普通式:长=2底短折边+1底长+2底高+2盖长折边+1盖宽+2盖高宽=1底宽+2底高+2底长折边备注:(1底宽+2底高+2底长折边)≤(1盖长+2盖高+2盖短折边)时,则上述宽=1盖长+2盖高+2盖短折边:长=1底长+(1底宽+5cm)+ 1盖宽+2盖高+2盖长折边宽=2底长折边+1底宽+2底高备注:A、当2底高+2底短折边≥1底宽+5cm时,同1)算法。
B、当2底高+2底短折边≤1底宽+5cm时,同2)算法。
二、4k版1)普通式: 长=1底长+2底高+2底短折边+2盖短折边+1盖长+2盖高宽=1底宽+2底高+2底长折边+1盖宽+2盖高+2盖长折边2)加补强:长=1底长+2底高+2底短折边+2盖短折边+1盖长+2盖高 宽=2底宽+3底高+3底长折边3)补强而且中间密合:长=2底长+2底高+1底宽+2底短折边 备注:(1底高+1短折边)≤1底宽 宽=2底宽+3底高+3底长折边4)交叉补强: 长=2底长+2底高+(1底宽+5cm)+2底短折边 宽=2底宽+3底高+3底长折边备注:(当1底长折边+1底宽+1底高)≤(2盖高+1盖宽+2盖长折边)时,则2)、3)、4)三项宽=1底高+1底长折边+4盖高+4盖长折边+2盖宽。
三、6k版:长=3底宽+6底高+6底长折边宽=1底长+2底短折边+2底高+1盖宽+2盖高+2盖长折边四、斜背式: 1)3k 版:长=1底宽+1盖宽+3底高+1斜高+4折边宽=1盖长+1底高+1斜高+2折边2)4k版:长=2底长+2底高+2斜高+4折边 宽=1底宽+1盖宽+3底高+1斜高+4折边五、常规知识:1)底尺寸:450p、500p、550p、600p;盖长=底长+0.7cm;盖宽=底宽+0.5cm.坑纸则分别为+0.8cm、+0.6cm.2)盖尺寸:450p、500p、550p、600p;底长=盖长-0.7cm;底宽=盖宽-0.5cm.坑纸则分别为-0.8cm、-0.6cm.3)斜背式内盒规定:斜高为:mens段为7.6cm,womens段为6.4cm,girls/boys段为5cm.折边为底高之四分之一。
《计算方法》上机实验指导书刘轶中-8页word资料
理学院《计算方法》实验指导书适合专业:信息与计算科学数学与应用数学贵州大学二OO七年八月前言《计算机数值计算方法》包括很多常用的近似计算的处理手段和算法,是计算科学与技术专业的必修课程,为了加强学生对该门课程的理解,使学生更好地掌握书中的计算方法、编制程序的能力,学习计算方法课程必须重视实验环节,即独立编写出程序,独立上机调试程序,必须保证有足够的上机实验时间。
在多年教学实践基础上编写了《计算机数值计算方法》上机实习指南,目的是通过上机实践,使学生能对教学内容加深理解,同时培养学生动手的能力.本实习指南,可与《计算机数值计算方法》课本配套使用,但是又有独立性,它不具体依赖哪本教科书,主要的计算方法在本指南中都有,因此,凡学习计算方法课的学生都可以参考本指南进行上机实习。
上机结束后,按要求整理出实验报告。
实验报告的内容参阅《计算机数值计算方法》上机实验大纲。
目录第一章解线性方程组的直接法实验一 Gauss列主元素消去法实验二解三对角线性方程组的追赶法第二章插值法与最小二乘法实验三 lagrange插值法实验四分段插值法实验五 曲线拟合的最小二乘法第三章 数值积分实验六 复合求积法实验七 变步长法第四章 常微分方程数值解法实验八 Euler 方法第五章 解线性方程组和非线性方程的迭代法实验九 Jacobi 迭代法、Gauss-Seidel 迭代法实验十 Newton 迭代法实验一 : Gauss 列主元素消去法实验学时:2实验类型:验证实验要求:必修一、实验目的用gauss 消去法求线性方程组AX=b. 其中一、 实验内容二、 实验条件PC 机,tc2.0,Internet 网。
三、 实验步骤1.根据算法事先写出相应程序。
2.启动PC 机,进入tc 集成环境,输入代码。
3.编译调试。
4. 调试通过,计算出正确结果后。
实验二 解三对角线性方程组的追赶法⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=b b b x x x a a a a a a a a a n n nn n n n n b X A M M 2122122221112111....................................实验学时:2实验类型:验证实验要求:必修一、实验目的二、实验内容三、实验组织远行要求统一进行实验,一人一组四、实验条件PC机,tc2.0,Internet网五、实验步骤a)根据算法事先写出相应程序。
计算方法上机作业
方程求根一、目的和意义非线性方程在科学研究与工程实践中广泛出现,例如,优化问题、特征值问题、微分方程问题等。
但是,除少量方程外,大多数非线性方程求根相当困难,常见的几个简单、有效的数值求根方法,包括二分法、迭代法、牛顿法、割线法等,本实验旨在比较各种算法的计算性能和使用范围。
二、计算公式1.二分法2.不动点迭代法三、结构程序设计代码1.二分法1).定义所求解函数function [ y ] = f( x )y = x^3 + 4*x^2 - 10;end2).执行算法%初始化,设置区间端点a、b,误差限tola = 1;b = 2; tol = 0.5*10^(-6);k = 0; fa = f(a);%设置最大二分次数为30for k = 1:50p = (a + b)/2; fp = f(p);if(fp == 0 || (b - a)/2 < tol)breakendif(fa * fp < 0)b = p;elsea = p;enddisp('近似解p = ');disp(vpa(p,10)); disp('迭代次数k = ');disp(k);end2.不动点迭代法1).定义不动点方程g(x)function [ y ] = g( x )y = x^3 + 4*x^2 + x - 10;end2).执行算法%初始化,设置误差限,设置初值p0tol = 0.5*10^(-6);k = 1; p0 = 1.5;%迭代次数为10次while k <= 10p = g(p0);if abs(p - p0) < tolbreakenddisp('近似解p = ');disp(vpa(p,10)); disp('迭代次数k = ');disp(k);k = k + 1; p0 = p;end四、结果及其讨论1.二分法结果由于结果较长,只取了一部分,从图中可以看出,迭代20次可得到误差限范围内的近似解p=1.36522。
数值计算方法上机实验报告
数值计算方法上机实验报告实验目的:复习和巩固数值计算方法的基本数学模型,全面掌握运用计算机进行数值计算的具体过程及相关问题。
利用计算机语言独立编写、调试数值计算方法程序,培养学生利用计算机和所学理论知识分析解决实际问题的能力。
上机练习任务:利用计算机基本C 语言编写并调试一系列数值方法计算通用程序,并能正确计算给定题目,掌握调试技能。
掌握文件使用编程技能,如文件的各类操作,数据格式设计、通用程序运行过程中文件输入输出运行方式设计等。
一、各算法的算法原理及计算机程序框图1. 列主元高斯消去法算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘一个方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上对上三角方程组求解。
列选住院是当高斯消元到第k 步时,从k 列的kk a 以下(包括kk a )的各元素中选出绝对值最大的,然后通过行交换将其交换到kk a 的位置上。
交换系数矩阵中的两行(包括常数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结果。
●源程序:#define N 200#include "stdio.h"#include "math.h"FILE *fp1,*fp2;void LZ(){int n,i,j,k=0,l;double d,t,t1;static double x[N],a[N][N];fp1=fopen("a1.txt","r");fp2=fopen("b1.txt","w");fscanf(fp1,"%d",&n);for(i=0;i<n;++i)for(j=0;j<=n;++j){fscanf(fp1,"%lf",&a[i][j]);}{d=a[k][k];l=k;i=k+1;do{if(fabs(a[i][k])>fabs(d)) /*选主元*/{d=a[i][k];l=i;}i++;}while(i<n);if(d==0){printf("\n输入矩阵有误!\n");}else{ /*换行*/if(l!=k){for(j=k;j<=n;j++){t=a[l][j];a[l][j]=a[k][j];a[k][j]=t;}}}for(j=k+1;j<=n;j++) /*正消*/ a[k][j]/=a[k][k];for(i=k+1;i<n;i++)for(j=k+1;j<=n;j++)a[i][j]-=a[i][k]*a[k][j];k++;}while(k<n);if(k!=0){for(i=n-1;i>=0;i--) /*回代*/ {t1=0;for(j=i+1;j<n;j++)t1+=a[i][j]*x[j];x[i]=a[i][n]-t1;}for(i=0;i<n;i++)fprintf(fp2,"\n 方程组的根为x[%d]=%lf",i+1,x[i]); fclose(fp1); fclose(fp2); }main() { LZ(); }● 具体算例及求解结果:用列选主元法求解下列线性方程组⎪⎩⎪⎨⎧=++=++=-+28x x 23x 2232832321321321x x x x x x 输入3 输出结果:方程组的根为x[1]=6.0000001 2 -3 8 方程组的根为x[2]=4.000000 2 1 3 22 方程组的根为x[3]=2.000000 3 2 1 28● 输入变量、输出变量说明:输入变量:ij a 系数矩阵元素,i b 常向量元素 输出变量:12,,n b b b 解向量元素2. 杜里特尔分解法解线性方程● 算法原理:求解线性方程组Ax b =时,当对A 进行杜里特尔分解,则等价于求解LUx b =,这时可归结为利用递推计算相继求解两个三角形(系数矩阵为三角矩阵)方程组,用顺代,由Ly b =求出y ,再利用回带,由Ux y =求出x 。
数值计算方法上机题
习题二问题:1.编制通用子程序对n+1个节点x i及y i=f(x i) (i=1,…n) (1)n次拉格朗日插值计算公式;(2)n次牛顿向前插值计算公式;(3)n次牛顿向后插值计算公式;(一)程序流程图(1)拉格朗日插值程序流程图(2)牛顿向前插值程序流程图(3)牛顿向后插值程序流程图。
(二)源程序见主程序清单问题:2.计算(1)已知f(x)=lnx,,[a,b]=[1,2],取h=0.1,x i=1+ih,i=0,1, (10)用通用程序(1),(3)计算ln1.54及ln1.98的近似值;(一)程序清单/* program of question 2.1, page 61 */#include "stdio.h"#include "math.h"main(){ int i,flag=0;double z1,z2,x[11],y[11],t,s1,s2,z[10],c[11][11],log(double),ntb(),L(); for(i=0;i<=10;i++){x[i]=1+0.1*i;y[i]=log(x[i]);}printf("data x:\n");for(i=0;i<=10;i++){flag++;printf("%11.6f",x[i]);if(flag%4==0)printf("\n");}printf("\ndata y:\n");flag=0;for(i=0;i<=10;i++){flag++;printf("%11.6f",y[i]);if(flag%4==0)printf("\n");}printf("\nThe true value:\n");printf(" ln1.54=%f ln1.98=%f\n",log(1.54),log(1.98));z1=L(x,y,10,1.54);z2=L(x,y,10,1.98);t=(1.54-x[10])/0.1;s1=ntb(y,10,t,z,c);s2=ntb(y,10,t,z,c);t=(1.98-x[10])/0.1;printf("The approximate value:\n");printf(" L(1.54)=%f L(1.98)=%f\n",z1,z2);printf(" NTB(1.54)=%f NTB(1.98)=%f\n",s1,s2);}double L(double x[],double y[],int n,double t){ int i,k; double z=0.0,s;if(n==1)z=y[0];for(k=0;k<=n;k++){ s=1.0;for(i=0;i<=n;i++) if(i!=k)s=s*(t-x[i])/(x[k]-x[i]);z=z+s*y[k]; }return z;}double ntb(double y[],int n,double t,double z[],double c[][11]) { int i,j,sn=n;double s;z[0]=t;for(i=1;i<=n-1;i++) z[i]=z[i-1]*(t+i)/(i+1);for(i=0;i<=n;i++) c[i][0]=y[sn--];for(j=1;j<=n;j++)for(i=0;i<=n-j;i++) c[i][j]=c[i][j-1]-c[i+1][j-1];s=y[n];for(i=0;i<=n-1;i++) s=s+z[i]*c[0][i+1];return s;}(二)运行结果data x:1.000000 1.100000 1.200000 1.3000001.400000 1.500000 1.600000 1.7000001.800000 1.9000002.000000data y:0.000000 0.095310 0.182322 0.2623640.336472 0.405465 0.470004 0.5306280.587787 0.641854 0.693147The true value:ln1.54=0.431782 ln1.98=0.683097The approximate value:L(1.54)=0.431782 L(1.98)=0.683097NTB(1.54)=0.431782 NTB(1.98)=0.683097问题:(2)f(x)=1/(1+25x2), |x|≤1取等距节点n=5和n=10,用通用程序(1),(2)依次计算x=-0.95+ih(i=0,1, (19)h=0.1)处f(x)的近似值,并将其结果与其真实值相比较。
数值计算方法上机实验题
数值计算方法上机实验实验内容:1.要求:分别用复化梯形法,复化Simpson 法和 Romberg 公式计算.2.给定积分dx e x⎰31和dx x ⎰311 ,分别用下列方法计算积分值要求准确到510- ,并比较分析计算时间. 1)变步长梯形法; 2)变步长 Simpson 法; 3) Romberg 方法.算法描述:1、复合梯形法:⎰=tdt t a t V 0)()( ))()(2)((211∑-=++=n k k n b f x f a f hT输入 被积函数数据点t,a. 输出 积分值.n T复合Simpson 法:⎰=tdt t a t V 0)()( ))()(2)(4)((6101121∑∑---=++++=n k n k k k n b f x f x f a f hS输入 被积函数f(x),积分区间[a,b]和n 输出 复合Simpson 积分值n S步1 .);()(;a x b f a f S nab h n ⇐-⇐-⇐ 步2 对n k ,,2,1 =执行).(2;2);(4;2x f S S hx x x f S S h x x n n n n +⇐+⇐+⇐+⇐步3 n n S hS ⨯⇐6步4 输出n SRomberg 积分法:根据已知数据对其进行多项式拟合得出p(x);f(x)⇐p(x); 输入 被积函数f(x),积分区间端点a,b,允许误差ε 输出 Romberg 积分值n R 2 步1 .0;0;0;0));()((2;1111⇐===+⇐-⇐k R C S b f a f hT a b h 步2 反复执行步3→步9. 步3 .2;0h a x S +⇐⇐ 步4 反复执行步5→步6. 步5 ;);(h x x x f S S +⇐+⇐步6 若x ≥b,则退出本层循环. 步7 执行.6316364;1511516;3134;2212212212212C C R S S C T T S S h T T -⇐-⇐-⇐+⇐步8 执行.1;;;;;2;2121212112+⇐⇐⇐⇐⇐⇐-⇐k k R R C C S S T T hh R R e 步9 若e ≤ε且k ≥5,则退出循环. 步10 .22R R n ⇐ 步11 输出.2n R2、变步长梯形算法:功能 求积分⎰ba)(dx x f ,允许误差为ε。
计算方法大作业——三次样条插值
计算方法上机报告
此完成所有数据的输入。继续按 Enter 键会出现提示“选择封闭方程组的边界条件: 第 一类边界条件输入 1,第二类边界条件输入 2,第三类边界条件输入 3。 ”根据已知情况 选择相应的边界条件,若为自然三次样条插值,则选 1,并将插值区间两端点的二阶导 数值设置为 0。输入完成之后按 Enter 开始求解,程序运行结束后命令窗口会显示要求 的三次样条插值函数,同时会出现该插值函数以及插值节点的图像,便于直接观察。 2.3 算例及计算结果 (1) 《数值分析》课本第 137 页的例题 4.6.1,已知函数 y=f(x)的数值如下表,求它 的自然三次样条插值函数。 xi yi -3 7 -1 11 0 26 3 56 4 29
(2) 给定函数 f ( x)
3 x 1 1 x 0 0 x3 3 x 4
1 (1 x 1) 。取等距节点,构造牛顿插值多项式 N5(x) 1 25x 2 和 N10(x)及三次样条插值函数 S10(x)。分别将三种插值多项式与 f(x)的曲线画在同一个
N10 x
22757 10 5444 8 20216 6 17147 4 3725 2 x x x x x 1 103 11 53 139 221
将牛顿插值多项式 N5(x)和 N10(x)及三次样条插值函数 S10(x)分别与 f(x)的曲线画在 同一个坐标系上进行比较,如图 12。可以看出三次样条函数与原函数符合的非常好, 对于低次的牛顿插值多项式,与原函数的大致趋势相同,而高次的牛顿插值多项式由 于龙格现象的出现,与原函数之间相差比较大。
S ( xi ) S ( xi ), ( xi ) S ( xi ), S S ( x ) S ( x ), i i i 1, 2, , n 1
数值计算方法上机实习题答案.doc
1.设I n 1 x ndx ,0 5 x( 1)由递推公式 I n 5I n 11,从 I 0的几个近似值出发,计算I 20;n解:易得: I 0 ln6-ln5=0.1823, 程序为:I=0.182;for n=1:20I=(-5)*I+1/n;endI输出结果为: I 20= -3.0666e+010( 2)粗糙估计 I 20,用 I n 1 1I n 1 1 ,计算 I 0;5 5n0.0079 1 x 20 1 x 200.0095因为dx I 20dx 6 5所以取 I 20 1(0.0079 0.0095) 0.0087 2程序为: I=0.0087;for n=1:20I=(-1/5)*I+1/(5*n);endII 0= 0.0083( 3)分析结果的可靠性及产生此现象的原因(重点分析原因 )。
首先分析两种递推式的误差;设第一递推式中开始时的误差为E0 I 0 I 0,递推过程的舍入误差不计。
并记 E n I n I n,则有 E n 5E n 1 ( 5) n E0。
因为 E20( 5) 20 E0 I 20,所此递推式不可靠。
而在第二种递推式中E0 1E1 (1)n E n,误差在缩小,5 5所以此递推式是可靠的。
出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制,即算法是否数值稳定。
2.求方程e x10x 2 0 的近似根,要求x k 1x k 5 10 4,并比较计算量。
(1)在 [0, 1]上用二分法;程序: a=0;b=1.0;while abs(b-a)>5*1e-4c=(b+a)/2;if exp(c)+10*c-2>0b=c;else a=c;endendc结果: c =0.0903( 2)取初值x0 0,并用迭代 x k 1 2 e x ;10程序: x=0;a=1;while abs(x-a)>5*1e-4a=x;x=(2-exp(x))/10;endx结果: x =0.0905(3)加速迭代的结果;程序: x=0;a=0;b=1;while abs(b-a)>5*1e-4a=x;y=exp(x)+10*x-2;z=exp(y)+10*y-2;x=x-(y-x)^2/(z-2*y+x);b=x;endx结果: x =0.0995( 4)取初值x00 ,并用牛顿迭代法;程序: x=0;a=0;b=1;while abs(b-a)>5*1e-4a=x;x=x-(exp(x)+10*x-2)/(exp(x)+10); b=x;end x 结果: x =0.0905( 5) 分析绝对误差。
中国石油大学(华东)计算方法上机实验程序
1.二分法#include <iostream.h>double f(double x);void main(){double a,b,x,ep;a=0;b=5;ep=0.000001;while(b-a>=ep){x=(a+b)/2;if(f(a)*f(x)>0) a=x;else b=x;}x=(a+b)/2;cout<<"the root of f(x) is"<<" "<<x<<endl; }double f(double x){double f1;f1=x*x*x-6*x-1;return f1;}2.牛顿迭代法#include <iostream.h>#include <math.h>double f1(double x);double f2(double x);void main(){int flag,nmax,k;double x,ep,x0;x=2;ep=000001;nmax=200;flag=1;k=1;while(fabs(x-x0)>ep&&(k<nmax)){x0=x;if(fabs(f2(x0))<ep){flag=0;break;}x=x0-f1(x0)/f2(x0);k=k+1;}if(k>=nmax) flag=0;if(flag==0)cout<<"the newton method is failure"<<endl; elsecout<<"the root of f(x) is"<<" "<<x<<endl;}double f1(double x){double f1;f1=x*x*x-3*x-1;return f1;}double f2(double x){double f1;f1=3*x*x-3;return f1;}3.列主元消去法#include<iostream.h>#include<math.h>void main(){static double a[3][3]={{7,8,11},{5,1,-3},{1,2,3}};static double b[3]={-3,-4,1};double ep=0.001;int ip=1;int n=3;double dmax,temp,s;int m,i,j,k;for(k=0;k<=n-2;k++){dmax=fabs(a[k][k]);m=k;for(i=k+1;i<=n-1;i++){if(fabs(a[i][k])>dmax){dmax=fabs(a[i][k]);m=i;}}if(dmax<ep){ip=-1;break;}if(m!=k){for(j=k;j<=n-1;j++){temp=a[k][j];a[k][j]=a[m][j];a[m][j]=temp;}temp=b[k];b[k]=b[m];b[m]=temp;}for(i=k+1;i<=n-1;i++){a[i][k]=a[i][k]/a[k][k];for(j=k+1;j<=n-1;j++){a[i][j]=a[i][j]-a[i][k]*a[k][j];}b[i]=b[i]-a[i][k]*b[k];}}b[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--){s=0;for(j=i+1;j<=n-1;j++){s=s+a[i][j]*b[j];}b[i]=(b[i]-s)/a[i][i];}if(ip==-1)cout<<"gauss method is failure"<<endl;elsecout<<"the solution of eqution is "<<b[0]<<","<<b[1]<<","<<b[2]<<endl; }4.LU分解法#include <iostream>#include <fstream>using namespace std;#define N 3int main(){float A[N][N],U[N][N],L[N][N],X[N],Y[N],B[N];float s=0;int i,j,k;cout<<"请输入将要分解的矩阵:"<<endl;for(i=0;i<N;i++) //输入待分解的矩阵for(j=0;j<N;j++)cin>>A[i][j];for(i=0;i<N;i++) //初始化for(j=0;j<N;j++){L[i][j]=0;U[i][j]=0;if(i==j)L[i][j]=1;}for(j=0;j<N;j++) //求U矩阵第一行U[0][j]=A[0][j];for(i=1;i<N;i++)L[i][0]=A[i][0]/U[0][0]; //求L矩阵的第一列for(k=1;k<N;k++) //用k记录化解的行列数,在行和列分解都完成时再进行下一行列的分解{for(j=k;j<N;j++) //本循环将完成行分解的工作{for(int u=0;u<=k-1;u++){s=s+L[k][u]*U[u][j];}U[k][j]=A[k][j]-s;s=0; //每行的和不一致,一行使用完后要置0}for(i=k+1;i<N;i++) //在行分解完成后进行列分解{for(int l=0;l<=k-1;l++){s=s+L[i][l]*U[l][k];}L[i][k]=(A[i][k]-s)/U[k][k];s=0; //每列的和不一致,一行使用完后要置0 }}cout<<endl<<"L"<<endl;for(i=0;i<N;i++){ //输出L Ufor(j=0;j<N;j++)cout<<L[i][j]<<"\t";cout<<endl;}cout<<endl<<"U"<<endl;for(i=0;i<N;i++){for(j=0;j<N;j++)cout<<U[i][j]<<"\t";cout<<endl;}cout<<"请输入矩阵B"<<endl;cout<<endl;for(i=0;i<N;i++)cin>>B[i];Y[0]=B[0]; //求Yfor(k=1;k<N;k++){for(j=0;j<k;j++){s=s+L[k][j]*Y[j];}Y[k]=B[k]-s;s=0;}cout<<endl<<"Y:"<<endl; //输出Yfor(i=0;i<N;i++)cout<<Y[i]<<"\t";cout<<endl;X[N-1]=Y[N-1]/U[N-1][N-1]; //求Xfor(k=N-2;k>=0;k--){for(j=k+1;j<N;j++){s=s+U[k][j]*X[j];}X[k]=(Y[k]-s)/U[k][k];s=0;}cout<<endl<<"X:"<<endl; //输出Xfor(i=0;i<N;i++)cout<<X[i]<<"\t";cout<<endl;system("pause");return 0;}5.追赶法#include <iostream>using namespace std;int main(){double a[15],b[15],c[15],d[15];double t;int i,n;cout<<"请输入 n= ";cin>>n;cout<<endl;cout<<"请输入 b[1],c[1],d[1]:"<<endl;cin>>b[1]>>c[1]>>d[1];cout<<endl;cout<<"输入2行到n-1行 :"<<endl;for(i=2;i<=n-1;i++){cin>>a[i]>>b[i]>>c[i]>>d[i];}cout<<endl;cout<<"请输入 a[n],b[n],d[n]:"<<endl;cin>>a[n]>>b[n]>>d[n];c[1]=c[1]/b[1];d[1]=d[1]/b[1];for(i=2;i<=n-1;i++){t=b[i]-c[i-1]*a[i];c[i]=c[i]/t;d[i]=(d[i]-d[i-1]*a[i])/t;}d[n]=(d[n]-d[n-1]*a[n])/(b[n]-c[n-1]*a[n]);for(i=n-1;i>=1;i--) d[i]=d[i]-c[i]*d[i+1];for(i=1;i<=n;i++)cout<<endl<<"x["<<i<<"]="<<d[i];cout<<endl;return 0;}6.平方根法#include <stdio.h>#include <stdlib.h>#include <math.h>#define EPS 1.0e-8#define N 20double a[N][N], b[N], x[N];int n;int zhuyuan(int row); /* 选主元*/void hangjiaohuan(int row1, int row2); /* 行交换*/ void xiaoyuan(int row); /*消元*/void huidai(); /* 回代*/void main(){printf("请输入方程的维数n!\n n = ");scanf("%d", &n);getchar();printf("\n输入%d行%d列矩阵\n", n, n);for (int i=0; i<n; i++){for (int j=0; j<n; j++)scanf("%lf", &a[i][j]);getchar();}printf("\n输入线性方程组右端项b[%d]: ", n); for (i=0; i<n; i++){scanf("%lf", &b[i]);}getchar();for (i=0; i<n-1; i++){double rowmark = zhuyuan(i); if (rowmark == -1){printf("多解!");system("pause");return;}if (rowmark != i){hangjiaohuan(i, rowmark);}xiaoyuan(i);}huidai();printf("\n线性方程组的解为: "); for (i=0; i<n; i++){printf("x%d=%lf ", i+1, x[i]); }printf("\n");system("pause");}int zhuyuan(int row){double elem = a[row][row];int rowmark = row;for (int i=row+1; i<n; i++){if (elem<a[i][row]){elem = a[i][row];rowmark = i;}}if(fabs(elem) <= EPS){return -1;return rowmark;}void hangjiaohuan(int row1, int row2) {double tmp;tmp = b[row1];b[row1] = b[row2];b[row2] = tmp;for (int j=0; j<n; j++){tmp = a[row1][j];a[row1][j] = a[row2][j];a[row2][j] = tmp;}}void xiaoyuan(int row){for (int i=row+1; i<n; i++){int j=row;double tmp = a[i][j]/a[row][row]; b[i] -= tmp*b[row];for (a[i][j++] = 0; j<n; j++){a[i][j] -= tmp*a[row][j];}}}void huidai(){x[n-1] = b[n-1]/a[n-1][n-1];for (int i=n-2; i>=0; i--){double sum = 0.0;for (int j=i+1; j<n; j++){sum -= a[i][j]*x[j];}x[i] = (b[i]+sum)/a[i][i];}7.G-S迭代法#include<iostream>#include<math.h>void main(){double ep=0.000001;int n=3,ip=1,nmax=200;double c[3][3]={{0,0.2,0.1},{0.2,0,0.1},{0.2,0.4,0}};static double d[3]={0.3,1.5,2};static double x[3]={0.3,1.5,2};int i,j,k;double emax,s;k=0;do{emax=0;for(i=0;i<n;i++){s=d[i];for(j=0;j<n;j++){s=s+c[i][j]*x[j];}if(fabs(s-x[i])>emax)emax=fabs(s-x[i]);x[i]=s;}k=k+1;}while((emax>ep)&&(k<nmax));if(k>=nmax)ip=-1;elseip=1;if(ip==1)printf("the soulation of eqution is %1.10f,%1.10f,%1.10f",x[0],x[1],x[2]);else printf("failure");}8.曲线拟合法#include <iostream>#include <cmath>#define gasvoid main(){static double x[10]={1.36,1.49,1.73,1.81,1.95,2.16,2.28,2.48};static double y[10]={14.094,15.069,16.844,17.378,18.435,19.949,20.963,22.495};int n=8;int m=2;double a[10][10],b[10],z[30];int i,j,k,ip;double s;z[0]=n;for(i=0;i<=2*m-1;i++){s=0;for(k=0;k<=n-1;k++){s=s+pow(x[k],(i+1));}z[i+1]=s;}for(i=0;i<=m;i++){s=0;for(k=0;k<=n-1;k++){s=s+y[k]*pow(x[k],(i));}b[i]=s;}for(i=0;i<=m;i++){for(j=0;j<=m;j++){a[i][j]=z[i+j];}}gas(a,b,m+1,ip,0.000001);if(ip!=-1)printf("%f+%fx+%fx*x",b[0],b[1],b[2]);elseprintf("failure"); }。
计算方法实验上机报告(完整版)
简单迭代法#include<stdio.h>#include<math.h>#define x0 3.0#define MAXREPT 1000#define EPS 1E-6#define G(x) pow(12*x+sin(x)-1,1.0/3)void main(){int i;double x_k=x0,x_k1=x0;printf("k\txk\n");for(i=0;i<MAXREPT;i++){printf("%d\t%g\n",i,x_k1);x_k1=G(x_k);if (fabs(x_k1-x_k)<EPS){printf("THE ROOT IS x=%g,k=%d\n",x_k1,i);return;}x_k=x_k1;}printf("AFTER %d repeate,no solved.\n",MAXREPT);}结果牛顿迭代法一#include<stdio.h>#include<math.h>#define x0 3.0#define MAXREPT 1000#define EPS 1E-6#define G(x) x-(pow(x,3)-sin(x)-12*x+1)/(3*pow(x,2)-cos(x)-12) void main(){int i;double x_k=x0,x_k1=x0;printf("k\txk\n");for(i=0;i<MAXREPT;i++){printf("%d\t%g\n",i,x_k1);x_k1=G(x_k);if (fabs(x_k1-x_k)<EPS){printf("THE ROOT IS x=%g,k=%d\n",x_k1,i);return;}x_k=x_k1;}printf("AFTER %d repeate,no solved.\n",MAXREPT);}结果埃特金加速法#include<stdio.h>#include<math.h>#define x0 3.0#define MAXREPT 1000#define EPS 1E-6#define G(x) (pow(x,3)-sin(x)+1)/12void main(){int i;double x1=x0,x2=x0;double z,y;printf("k\tx1\tx2\txk\n");for(i=0;i<MAXREPT;i++){if(i==0)printf("%d\t\t\t%g\n",i,x2);elseprintf("%d\t%g\t%g\t%g\n",i,y,z,x2);y=G(x1);z=G(y);x2=z-((z-y)*(z-y))/(z-2*y+x1);if (fabs(x2-x1)<EPS){printf("THE ROOT IS x=%g,k=%d\n",x2,i);return;}x1=x2;}printf("AFTER %d repeate,no solved.\n",MAXREPT);} 结果牛顿迭代法二#include<stdio.h>#include<math.h>#define x0 1.5#define MAXREPT 1000#define EPS 1E-6#define G(x) x-(pow(x,3)+pow(x,2)-3*x-3)/(3*pow(x,2)+2*x-3) void main(){int i;double x_k=x0,x_k1=x0;printf("k\txk\n");for(i=0;i<MAXREPT;i++){printf("%d\t%g\n",i,x_k1);x_k1=G(x_k);if (fabs(x_k1-x_k)<EPS){printf("THE ROOT IS x=%g,k=%d\n",x_k1,i);return;}x_k=x_k1;}printf("AFTER %d repeate,no solved.\n",MAXREPT);}结果弦截法#include<stdio.h>#include<math.h>#define x0 0#define x1 1.5#define MAXREPT 1000#define EPS 1E-6#define G(x) pow(x,3)+pow(x,2)-3*x-3void main(){int i;double x_k=x0,x_k1=x1,x_k2=0;double y,z;printf("k\txk\n");for(i=0;i<MAXREPT;i++){printf("%d\t%g\n",i,x_k2);y=G(x_k);z=G(x_k1);x_k2=x_k1-(z*(x_k1-x_k))/(z-y);if (fabs(x_k2-x_k1)<EPS){printf("THE ROOT IS x=%g,k=%d\n",x_k2,i);return;}x_k=x_k1;x_k1=x_k2;}printf("AFTER %d repeate,no solved.\n",MAXREPT); } 结果高斯顺序消元法#include<stdio.h>#include<math.h>#define N 4static double aa[N][N+1]={{2,4,0,1,1},{3,8,2,2,3},{1,3,3,0,6},{2,5,2,2,3}}; int gauss(double a[][N+2],double x[]);void putout(double a[][N+2]);void main(){int i,j,det;double a[N+1][N+2],x[N+1];for(i=1;i<=N;i++)for(j=1;j<=N+1;j++)a[i][j]=aa[i-1][j-1];det=gauss(a,x);if(det!=0)for(i=1;i<=N;i++)printf(" x[%d]=%g",i,x[i]);printf("\n");}int gauss(double a[][N+2],double x[]){int i,j,k;double c;putout(a);for(k=1;k<=N-1;k++){ if(fabs(a[k][k])<1e-17){printf("\n pivot element is 0.fail!\n");return 0;}for(i=k+1;i<=N;i++){c=a[i][k]/a[k][k];for(j=k;j<=N+1;j++){a[i][j]=a[i][j]-c*a[k][j];}}putout(a);}if(fabs(a[N][N])<1e-17){printf("\n pivot element is 0.fail!\n");return 0;}for(k=N;k>=1;k--){x[k]=a[k][N+1];for(j=k+1;j<=N;j++){x[k]=x[k]-a[k][j]*x[j];}x[k]=x[k]/a[k][k];}return(1);}void putout(double a[][N+2]){for(int i=1;i<=N;i++){for(int j=1;j<=N+1;j++)printf("%-15g",a[i][j]);printf("\n");}printf("\n");}结果雅克比迭代法#include<stdio.h>#include<math.h>#define N 5#define EPS 0.5e-4static double aa[N][N]={{4,-1,0,-1,0},{-1,4,-1,0,-1},{0,-1,4,-1,0},{-1,0,-1,4,-1},{0,-1,0,-1,4}}; static double bb[N]={2,1,2,1,2};void main(){int i,j,k,NO;double a[N+1][N+1],b[N+1],x[N+1],y[N+1];double d,sum,max;for(i=1;i<=N;i++){for(j=1;j<=N;j++)a[i][j]=aa[i-1][j-1];b[i]=bb[i-1];}printf("\n 请输入最大迭代次数(尽量取大值!)NO:");scanf("%d",&NO);printf("\n");for(i=1;i<=N;i++)x[i]=0;k=0;printf(" k",' ');for(i=1;i<=N;i++)printf("%8cx[%d]",' ',i);printf("\n 0");for(i=1;i<=N;i++)printf("%12.8g",x[i]);printf("\n");do{for(i=1;i<=N;i++){sum=0.0;for(j=1;j<=N;j++)if(j!=i) sum=sum+a[i][j]*x[j];y[i]=(-sum+b[i])/a[i][i];}max=0.0;for(i=0;i<=N;i++){d=fabs(y[i]-x[i]);if(max<d) max=d;x[i]=y[i];}printf("%6d",k+1);for(i=1;i<=N;i++)printf("%12.8g",x[i]);printf("\n");k++;}while((max>=EPS)&&(k<NO));printf("\nk=%d\n",k);if(k>=NO) printf("\nfail!\n");elsefor(i=1;i<=N;i++)printf("x[%d]=%g\t",i,x[i]);}结果拉格朗日插值多项式#include<stdio.h>#include<math.h>#define N 4doublex[N]={0.56160,0.56280,0.56401,0.56521},y[N]={0.82741,0.82659,0.82577,0.82495}; void main(){double x=0.5635;double L(double xx);double lagBasis(int k,double xx);void output();output();printf("\n近似值L(%g)=%g\n",x,L(x));}double lagBasis(int k,double xx){double lb=1;int i;for(i=0;i<N;i++)if(i!=k) lb*=(xx-x[i])/(x[k]-x[i]);return lb;}double L(double xx){double s=0;int i;for(i=0;i<=N;i++)s+=lagBasis(i,xx)*y[i];return s;}void output(){int i;printf("\n各节点信息:\nxi:");for(i=0;i<N;i++)printf("\t%g",x[i]);printf("\nyi:");for(i=0;i<N;i++)printf("\t%g",y[i]);}结果牛顿插值多项式#include <math.h>#include <stdio.h>int a;#define M 4double x[M+1]={0.4,0.55,0.65,0.8,0.9},y[M+1]={0.41075,0.57815,0.69675,0.88811,1.02652}; void main(){double x;printf("输入x=");scanf("%lf",&x);printf("次数:");scanf("%d",&a);double N(double xx,int a);void output();output();printf("\n%d次牛顿插值多项式N(%g)=%g\n",a,x,N(x,a));}double N(double xx,int a){double s=y[0],d=1;int i,j;double df[M+1][M+1];for(i=0;i<=M;i++)df[i][0]=y[i];for(j=1;j<=a;j++)for(i=j;i<=a;i++)df[i][j]=(df[i][j-1]-df[i-1][j-1])/(x[i]-x[i-j]);printf("\nx\tf(x)\t");for(j=1;j<=a;j++) printf("%5d阶",j);for(i=0;i<=a;i++){printf("\n%g\t%g",x[i],y[i]);for(j=1;j<=i;j++)printf("\t%7.5g",df[i][j]);}for(i=1;i<=a;i++){d*=(xx-x[i-1]);s+=df[i][i]*d;}return s;}void output(){int i;printf("\n各节点信息:\nxi:");for(i=0;i<=M;i++)printf("\t%7g",x[i]);printf("\nyi:");for(i=0;i<=M;i++)printf("\t%7g",y[i]);}结果复合梯形公式#include<stdio.h>#include<math.h>#define f(x) 1/(x*x+1)#define Pi 3.1415926void main(){double a=0,b=1;double T,h,x;int n,i;printf("please input n:");scanf("%d",&n);h=(b-a)/n;x=a;T=0;for(i=1;i<n;i++){x+=h;T+=f(x);}T=(f(a)+2*T+f(b))*h/2;printf("T(%d)=%g\n",n,T);printf("The exact value is %g\n",Pi/4);}复合辛普森公式#include<stdio.h>#include<math.h>#define f(x) 1/(1+x*x)#define Pi 3.1415926void main(){double a=0,b=1;double S,h,x;int n,i;printf("please input Even n:");scanf("%d",&n);h=(b-a)/n;x=a; S=0;for(i=1;i<n;i++){x+=h;if(i%2==0) S+=2*f(x);else S+=4*f(x);}S=(f(a)+S+f(b))*h/3;printf("S(%d)=%g\n",n,S);printf("The exact value is %g\n",Pi/4);}龙贝格公式加速#include<stdio.h>#include<math.h>#define f(x) sin(x)/(1+x)#define M 3void main(){double a=0,b=1;double Long(double a,double b);printf("近似值I=%g\n",Long(a,b));}double Long(double a,double b){int n=1,i=1,j=1;double T[M+1][M+1],h,x,sum;h=b-a;T[0][0]=(f(a)+f(b))/2;for(j=1;j<=3;j++){x=a;h/=2;n*=2;sum=0;for(i=1;i<=n;i+=2){x=a+i*h;sum+=f(x);}T[j][0]=T[j-1][0]/2+h*sum;}for(i=1;i<=M;i++)for(j=1;j<=i;j++){T[i][j]=(pow(4,j)*T[i][j-1]-T[i-1][j-1])/(pow(4,j)-1);}printf("k\tT0\tT1\tT2\tT3\n");for(i=0;i<=M;i++){printf("%d",i);for(j=0;j<=i;j++)printf(" %g",T[i][j]);printf("\n");}return T[M][M];}。
计算方法实验报告
2019年计算方法(B)实验报告姓名:学号:专业:课程:计算方法(B)目录一、实验综述 (1)二、实验内容 (1)2.1 实验一 (1)2.2 实验二 (2)2.3 实验三 (3)2.4 实验四 (4)2.5 实验五 (6)三、思考总结 (7)附件A1 (8)附件A2 (9)附件A3 (10)附件A4 (12)附件A5 (14)一、实验综述计算方法在工程实践中得到了广泛的应用,是理工类研究生必备的知识技能。
按照2019年计算方法课程学习要求,本文对计算方法上机题目进行了算法设计、分析,利用matlab 2019b版本对算法进行实现,最终形成了实验报告。
以下为本次实验报告具体内容,包括五个实验部分和一个思考总结部分。
二、实验内容2.1 实验一2.1.1 实验题目用Jacobi迭代和Gauss-Seidel迭代解电流方程组,使各部分电流的误差均小于10-3。
2.1.2 算法分析a)首先列出方程组的系数矩阵A以及等式右端的矩阵b,A=[28,-3,0,0,0;-3,38,-10,0,-5;0,-10,25,-15,0;0,0,-15,45,0;0,-5,0,0,30 ];b=[10;0;0;0;0];为了验证A是否收敛,我们通过判断系数矩阵A是否为严格对角占优矩阵进行确定。
如果是,则可以进行Jacobi迭代和Gauss-Seidel迭代(利用matlab程序验证后,证明了矩阵A为严格对角占优矩阵);如果不是,则需要采用其他方法进行判断迭代是否收敛。
b)对矩阵A分裂成三部分,,其中D为A的对角矩阵,E为A的下三角矩阵的相反数,F为A的上三角矩阵的相反数。
c) Jacobi迭代。
取x得初始向量为x=[0;0;0;0;0],利用迭代公式进行循环计算,当的无穷范数小于10-3,即,停止循环。
d) Gauss-Seidel迭代。
取x得初始向量为x=[0;0;0;0;0],利用迭代公式进行循环计算,当的无穷范数小于10-3,即,停止循环。
计算方法作业
应用计算方法学院:自动化学院班级:硕1104班姓名:陈兆辉计算方法2班教师:张晓丹目录上机作业1 (3)上机作业2 (6)上机作业3 (10)上机作业4 (12)上机作业5 (17)上机作业6 (18)上机作业7 (19)上机作业11.分别用不动带你迭代法与Newton 法求解方程2x- ex +3=0的正根和负根解:(1)用不动点迭代法求方程的正根1)迭代公式:()231ln k P k P ++=,初值p0=1.02)程序:k=1;Tol=0.00001;p0=1.0;N=100;while k<=Np=log(2*p0+3);if abs(p-p0)<Tolbreak;endk=k+1;p0=p;enddisp(p);disp(k)3)显示结果:P= 1.9239K=11(2) 用不动点迭代法求解方程的负根1)迭代公式: 1(3)/2k p k p e +=-,初值p0=-1.02)程序:k=1;Tol=0.00001;p0=-1.0;N=100;while k<=Np=(exp(p0)-3)/2;if abs(p-p0)<Tolbreak;endk=k+1;p0=p;enddisp(p);disp(k)3)显示结果:P= -1.3734k=7(3)用牛顿法求方程的正根1)迭代公式:()1232k k p k k k p p e p p e +-+=--,初值p0=1.02)程序:k=1;Tol=0.00001;p0=1.0;N=100;while k<=Np=p0-(2*p0-exp(p0)+3)/(2-exp(p0));if abs(p-p0)<Tolbreak;endk=k+1;p0=p;enddisp(p);disp(k)3)显示结果:P=1.9239K=8(4)用牛顿法求解方程的负根1)迭代公式:()1232k k p k k k p p e p p e +-+=--,初值p0=-1.02)程序:k=1;Tol=0.00001;p0=-1.0;N=100;while k<=Np=p0-(2*p0-exp(p0)+3)/(2-exp(p0));if abs(p-p0)<Tolbreak;endk=k+1;p0=p;enddisp(p);disp(k)3)显示结果:P= -1.3734K= 44)结果分析:不动点迭代法是求解非线性方程的主要方法,其中牛顿法应用最广泛,它求解方程的单根时具有二阶收敛性,但是它要求较好的初始近似值,牛顿法比普通的迭代法收敛速度快,能较少的迭代达到理想的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算方法上机报告姓名:学号:班级:上课班级:说明:本次上机实验使用的编程语言是Matlab 语言,编译环境为MATLAB 7.11.0,运行平台为Windows 7。
1. 对以下和式计算:∑∞⎪⎭⎫ ⎝⎛+-+-+-+=0681581482184161n n n n S n,要求:① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算;(1) 算法思想1、根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 142111416818485861681n nna n n n n n ε⎛⎫=---<< ⎪+++++⎝⎭; 2、为了保证计算结果的准确性,写程序时,从后向前计算; 3、使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数)(2)算法结构1. ;0=s⎪⎭⎫⎝⎛+-+-+-+=681581482184161n n n n t n; 2. for 0,1,2,,n i =⋅⋅⋅ if 10m t -≤end;3. for ,1,2,,0n i i i =--⋅⋅⋅;s s t =+(3)Matlab源程序clear; %清除工作空间变量clc; %清除命令窗口命令m=input('请输入有效数字的位数m='); %输入有效数字的位数s=0;for n=0:50t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6));if t<=10^(-m) %判断通项与精度的关系break;endend;fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值for i=n-1:-1:0t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6));s=s+t; %求和运算ends=vpa(s,m) %控制s的精度(4)结果与分析当保留11位有效数字时,需要将n值加到n=7,s =3.1415926536;当保留30位有效数字时,需要将n值加到n=22,s =3.14159265358979323846264338328。
通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。
2.某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:深度 11.18 12.26 13.28 13.32 12.61 11.29 10.22 分点 14 15 16 17 181920深度9.157.907.958.869.81 10.80 10.93① 请用合适的曲线拟合所测数据点;② 预测所需光缆长度的近似值,作出铺设河底光缆的曲线图;(1)算法思想如果使用多项式差值,则由于龙格现象,误差较大,因此,用相对较少的插值数据点作插值,可以避免大的误差,但是如果又希望将所得数据点都用上,且所用数据点越多越好,可以采用分段插值方式,即用分段多项式代替单个多项式作插值。
分段多项式是由一些在相互连接的区间上的不同多项式连接而成的一条连续曲线,其中三次样条插值方法是一种具有较好“光滑性”的分段插值方法。
在本题中,假设所铺设的光缆足够柔软,在铺设过程中光缆触地走势光滑,紧贴地面,并且忽略水流对光缆的冲击。
海底光缆线的长度预测模型如下所示,光缆从A 点铺至B 点,在某点处的深度为i h 。
海底光缆线的长度预测模型计算光缆长度时,用如下公式:20()L f x ds =⎰20'20()1()f x f x dx =+⎰191(k kk f x +==∑⎰=(2)算法结构1. For n i ,,2,1,0⋅⋅⋅=1.1 i i M y ⇒2. For 2,1=k2.1 For k n n i ,,1, -=2.1.1 i k i i i i M x x M M ⇒----)/()(13. 101h x x ⇒-4. For 1-,,2,1n i =4.1 11++⇒-i i i h x x4.2 b a c c h h h i i i i i i ⇒⇒-⇒+++2;1;)/(11 4.3 i i d M ⇒+165. 0000;;c M d M d n n ⇒⇒⇒λn n n b a b ⇒⇒⇒2;;20μ6. 1111,γμ⇒⇒d b7. 获取M 的矩阵元素个数,存入m 8. For m k ,,3,2 =8.1 k k k l a ⇒-1/μ 8.2 k k k k c l b μ⇒⋅-1- 8.3 k k k k l d γγ⇒⋅-1- 9. m m m M ⇒μγ/10. For 1,,2,1 --=m m k10.1 k k k k k M M c ⇒⋅-+μγ/)(1 11. 获取x 的元素个数存入s 12. k ⇒113. For 1,,2,1-=s i13.1 if i x x ≤~then k i ⇒;break else k i ⇒+114. xx x x x x h x x k k k k ˆ~;~;11⇒-⇒-⇒--- y h x h M y x h M y x M x M k k k k k k ~/]ˆ)6()6(6ˆ6[2211331⇒-+-++---(3)Matlab 源程序clear;clc;x=0:1:20; %产生从0到20含21个等分点的数组 X=0:0.2:20;y=[9.01,8.96,7.96,7.97,8.02,9.05,10.13,11.18,12.26,13.28,13.32,12.61,11.29,10.22,9.15,7.90,7.95,8.86,9.81,10.80,10.93]; %等分点位置的深度数据 n=length(x); %等分点的数目 N=length(X);%% 求三次样条插值函数s(x) M=y;for k=2:3; %计算二阶差商并存放在M 中 for i=n:-1:k;M(i)=(M(i)-M(i-1))/(x(i)-x(i-k+1)); end endh(1)=x(2)-x(1); %计算三对角阵系数a,b,c 及右端向量d for i=2:n-1;h(i)=x(i+1)-x(i);c(i)=h(i)/(h(i)+h(i-1)); a(i)=1-c(i); b(i)=2;d(i)=6*M(i+1); endM(1)=0; %选择自然边界条件 M(n)=0;b(1)=2;b(n)=2;c(1)=0;a(n)=0;d(1)=0;d(n)=0;u(1)=b(1); %对三对角阵进行LU分解y1(1)=d(1);for k=2:n;l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*c(k-1);y1(k)=d(k)-l(k)*y1(k-1);endM(n)=y1(n)/u(n); %追赶法求解样条参数M(i)for k=n-1:-1:1;M(k)=(y1(k)-c(k)*M(k+1))/u(k);ends=zeros(1,N);for m=1:N;k=1;for i=2:n-1if X(m)<=x(i);k=i-1;break;elsek=i;endendH=x(k+1)-x(k); %在各区间用三次样条插值函数计算X点处的值 x1=x(k+1)-X(m);x2=X(m)-x(k);s(m)=(M(k)*(x1^3)/6+M(k+1)*(x2^3)/6+(y(k)-(M(k)*(H^2)/6))*x1+(y(k+1)-(M(k+1)*(H^2)/6)) *x2)/H;end%% 计算所需光缆长度L=0; %计算所需光缆长度for i=2:NL=L+sqrt((X(i)-X(i-1))^2+(s(i)-s(i-1))^2);enddisp('所需光缆长度为 L=');disp(L);figureplot(x,y,'*',X,s,'-') %绘制铺设河底光缆的曲线图xlabel('位置','fontsize',16); %标注坐标轴含义ylabel('深度/m','fontsize',16);title('铺设河底光缆的曲线图','fontsize',16);grid;(4)结果与分析铺设海底光缆的曲线图如下图所示:仿真结果表明,运用分段三次样条插值所得的拟合曲线能较准确地反映铺设光缆的走势图,计算出所需光缆的长度为 L=26.4844m。
3. 假定某天的气温变化记录如下表所示,试用数据拟合的方法找出这一天的气温变化的规律;试计算这一天的平均气温,并试估计误差。
时刻0 1 2 3 4 5 6 7 8 9 10 11 12平均气温15 14 14 14 14 15 16 18 20 20 23 25 28时刻13 14 15 16 17 18 19 20 21 22 23 24平均气温31 34 31 29 27 25 24 22 20 18 17 16(1)算法思想在本题中,数据点的数目较多。
当数据点的数目很多时,用“多项式插值”方法做数据近似要用较高次的多项式,这不仅给计算带来困难,更主要的缺点是误差很大。
用“插值样条函数”做数据近似,虽然有很好的数值性质,且计算量也不大,但存放参数Mi 的量很大,且没有一个统一的数学公式来表示,也带来了一些不便。
另一方面,在有的实际问题中,用插值方法并不合适。
当数据点的数目很大时,要求)(x p 通过所有数据点,可能会失去原数据所表示的规律。
如果数据点是由测量而来的,必然带有误差,插值法要求准确通过这些不准确的数据点是不合适的。
在这种情况下,不用插值标准而用其他近似标准更加合理。
通常情况下,是选取i α使2E 最小,这就是最小二乘近似问题。
在本题中,采用“最小二乘法”找出这一天的气温变化的规律,使用二次函数、三次函数、四次函数以及指数型函数2)(c t b ae C --=,计算相应的系数,估算误差,并作图比较各种函数之间的区别。
(2)算法结构本算法用正交化方法求数据的最小二乘近似。
假定数据以用来生成了G ,并将y 作为其最后一列(第1+n 列)存放。
结果在a 中,ρ是误差22E 。
I 、使用二次函数、三次函数、四次函数拟合时1. 将“时刻值”存入i x ,数据点的个数存入m2. 输入拟合多项式函数)(x p 的最高项次数1-=n h ,则拟合多项式函数为)()()()(2211x g x g x g x p n n ααα+⋅⋅⋅++= , 根据给定数据点确定G For1,,2,1,0-⋅⋅⋅=n jFor m i ,,2,1⋅⋅⋅= 2.1 1,+⇒j i ji g x 2.2 1,+⇒n i i g y 3. For n k ,,2,1⋅⋅⋅=3.1 [形成矩阵k Q ]3.1.1 σ⇒-∑=mki ikkk g g 2/12))(sgn( 3.1.2 k kk g ωσ⇒-3.1.3 For m k k j ,,2,1⋅⋅⋅++=3.1.3.1 j jk g ω⇒ 3.1.4 βσω⇒k 3.2 [变换1-k G 到k G ] 3.2.1 kk g ⇒σFor 1,,,2,1+⋅⋅⋅++=n n k k j 3.2.2 t g mk i ij i ⇒∑=βω/)(3.2.3 For m k k i ,,1,⋅⋅⋅+=3.2.3.1 ij i ij g t g ⇒+ω4. [解三角方程1h Ra =] 4.1nnn n n a g g ⇒+/1.4.2 For 1,,2,1⋅⋅⋅--=n n i 4.2.1iii ni j j ijn i a g x gg ⇒-∑+=+/][11.5. [计算误差22E ]ρ⇒∑+=+mn i n i g121,II 、使用指数函数拟合时现将指数函数进行变形: 将y C =,x t=代入2)(c t b aeC --=得: 2)(c x b aey --=对上式左右取对数得: 222ln ln bx bcx bc a y -+-=令b bc bc a y z -==-==21202ln ln ααα,,,则可得多项式: 2210x x z ααα++=(3)Matlab 源程序clear; %清除工作空间变量 clc; %清除命令窗口命令 x=0:24; %将时刻值存入数组y=[15,14,14,14,14,15,16,18,20,20,23,25,28,31,34,31,29,27,25,24,22,20,18,17,16]; [~,m]=size(x); %将数据点的个数存入m T=sum(y(1:m))/m;fprintf('一天的平均气温为T=%f\n',T); %求一天的平均气温 %% 二次、三次、四次函数的最小二乘近似h=input('请输入拟合多项式的最高项次数='); %根据给定数据点生成矩阵G n=h+1; G=[];for j=0:(n-1)g=x.^j; %g(x)按列排列 G=vertcat(G,g); %g 垂直连接G endG=G'; %转置得到矩阵Gfor i=1:m %将数据y 作为G 的最后一列(n+1列) G(i,n+1)=y(i); endG;for k=1:n %形成矩阵Q(k) if G(k,k)>0; sgn=1;elseif G(k,k)==0; sgn=0; else sgn=-1; endsgm=-sgn*sqrt(sum(G(k:m,k).^2)); w=zeros(1,n); w(k)=G(k,k)-sgm; for j=k+1:mw(j)=G(j,k); endbt=sgm*w(k);G(k,k)=sgm; %变换Gk-1到Gk for j=k+1:n+1t=sum(w(k:m)*G(k:m,j))/bt; for i=k:m;G(i,j)=G(i,j)+t*w(i);endendendA (n)=G(n,n+1)/G(n,n); %解三角方程求系数Afor i=n-1:-1:1A (i)=(G(i,n+1)-sum(G(i,i+1:n).*A (i+1:n)))/G(i,i);ende=sum(G(n+1:m,n+1).^2); %计算误差efprintf('%d次函数的系数是:',h); %输出系数a及误差edisp(A);fprintf('使用%d次函数拟合的误差是%f:',h,e);t=0:0.05:24;A=fliplr(A); %将系数数组左右翻转Y=poly2sym(A); %将系数数组转化为多项式subs(Y,'x',t);Y=double(ans);figure(1)plot(x,y,'k*',t,Y,'r-'); %绘制拟合多项式函数图形xlabel('时刻'); %标注坐标轴含义ylabel('平均气温');title([num2str(n-1),'次函数的最小二乘曲线']);grid;%% 指数函数的最小二乘近似yy=log(y);n=3;G=[];GG=[];for j=0:(n-1)g=x.^j; %g(x)按列排列G=vertcat(G,g); %g垂直连接Ggg=t.^j; %g(x)按列排列GG=vertcat(GG,gg); %g垂直连接GendG=G'; %转置得到矩阵Gfor i=1:m %将数据y作为G的最后一列(n+1列) G(i,n+1)=yy(i);endG;for k=1:n %形成矩阵Q(k)if G(k,k)>0;sgn=1;elseif G(k,k)==0;sgn=0;else sgn=-1;endsgm=-sgn*sqrt(sum(G(k:m,k).^2));w=zeros(1,n);w(k)=G(k,k)-sgm;for j=k+1:mw(j)=G(j,k);endbt=sgm*w(k);G(k,k)=sgm; %变换Gk-1到Gk for j=k+1:n+1t=sum(w(k:m)*G(k:m,j))/bt;for i=k:m;G(i,j)=G(i,j)+t*w(i);endendendA(n)=G(n,n+1)/G(n,n); %解三角方程求系数Afor i=n-1:-1:1A (i)=(G(i,n+1)-sum(G(i,i+1:n).*A (i+1:n)))/G(i,i);endb=-A(3);c=A(2)/(2*b);a=exp(A(1)+b*(c^2));G(n+1:m,n+1)=exp(sum(G(n+1:m,n+1).^2));e=sum(G(n+1:m,n+1).^2); %计算误差efprintf('\n指数函数的系数是:a=%f,b=%f,c=%f',a,b,c); %输出系数及误差efprintf('\n使用指数函数拟合的误差是:%f',e);t=0:0.05:24;YY=a.*exp(-b.*(t-c).^2);figure(2)plot(x,y,'k*',t,YY,'r-'); %绘制拟合指数函数图形xlabel('时刻'); %标注坐标轴含义ylabel('平均气温');title(['指数函数的最小二乘曲线']);grid;(4)结果与分析a、二次函数:一天的平均气温为: 21.20002次函数的系数: 8.3063 2.6064 -0.0938使用2次函数拟合的误差是:280.339547二次函数的最小二乘曲线如下图所示:b、三次函数:一天的平均气温为: 21.20003次函数的系数: 13.3880 -0.2273 0.2075 -0.0084 使用3次函数拟合的误差是: 131.061822三次函数的最小二乘曲线如下图所示:c、四次函数:一天的平均气温为: 21.20004次函数的系数: 16.7939 -3.7050 0.8909 -0.0532 0.0009 使用4次函数拟合的误差是:59.04118四次函数的最小二乘曲线如下图所示:d、指数函数:一天的平均气温为: 21.2000指数函数的系数是: a=26.160286,b=0.004442,c=14.081900 使用指数函数拟合的误差是: 57.034644指数函数的最小二乘曲线如下图所示:通过上述几种拟合可以发现,多项式的次数越高,计算拟合的效果越好,误差越小,说明结果越准确;同时,指数多项式拟合的次数虽然不高,但误差最小,说明结果最准确。