函数概念与基本初等函数晚练专题练习(三)含答案人教版高中数学高考真题汇编

合集下载

高三数学 函数的概念与基本初等函数多选题知识点及练习题含答案

高三数学 函数的概念与基本初等函数多选题知识点及练习题含答案

高三数学 函数的概念与基本初等函数多选题知识点及练习题含答案一、函数的概念与基本初等函数多选题1.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x e x '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.2.下列说法中,正确的有( ) A .若0a b >>,则b aa b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x xf x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确;对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.4.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC.【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.5.已知21,1,()ln ,1,xx f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.6.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.7.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.8.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.11.已知函数123,12 ()1,222x xf x xf x⎧--≤≤⎪=⎨⎛⎫>⎪⎪⎝⎭⎩,则下列说法正确的是()A.若函数()=-y f x kx有4个零点,则实数k的取值范围为11,246⎛⎫⎪⎝⎭B.关于x的方程*1()0()2nf x n N-=∈有24n+个不同的解C.对于实数[1,)x∈+∞,不等式2()30xf x-≤恒成立D.当1[2,2](*)n nx n N-∈∈时,函数()f x的图象与x轴围成的图形的面积为1【答案】AC【分析】根据函数的表达式,作出函数的图像,对于A,C利用数形结合进行判断,对于B,D利用特值法进行判断.【详解】当312x≤≤时,()22f x x=-;当322x<≤时,()42f x x=-;当23x<≤,则3122<≤x,1()1222⎛⎫==-⎪⎝⎭x xf x f;当34x<≤,则3222<≤x,1()2222⎛⎫==-⎪⎝⎭x xf x f;当46x<≤,则232<≤x,11()2242⎛⎫==-⎪⎝⎭x xf x f;当68x<≤,则342<≤x,1()1224⎛⎫==-⎪⎝⎭x xf x f;依次类推,作出函数()f x的图像:对于A,函数()=-y f x kx有4个零点,即()y f x=与y kx=有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈ ⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.已知定义在R 上的函数()f x 的图象连续不断,若存在常数()t t R ∈,使得()()0f x t tf x ++=对任意的实数x 成立,则称()f x 是回旋函数.给出下列四个命题中,正确的命题是( )A .常值函数()(0)f x a a =≠为回旋函数的充要条件是1t =-;B .若(01)x y a a =<<为回旋函数,则1t >;C .函数2()f x x =不是回旋函数;D .若()f x 是2t =的回旋函数,则()f x 在[0]4030,上至少有2015个零点. 【答案】ACD 【分析】A.利用回旋函数的定义即可判断;B.代入回旋函数的定义,推得矛盾,判断选项;C.利用回旋函数的定义,令0x =,则必有0t = ,令1x =,则2310t t ++=,推得矛盾;D.根据回旋函数的定义,推得()()22f x f x +=-,再根据零点存在性定理,推得零点的个数. 【详解】A.若()f x a =,则()f x t a +=,则0a ta +=,解得:1t =-,故A 正确;B.若指数函数()01xy a a =<<为回旋函数,则0x t x a ta ++=,即0t a t +=,则0t <,故B 不正确;C.若函数()2f x x =是回旋函数,则()220x t tx ++=,对任意实数都成立,令0x =,则必有0t = ,令1x =,则2310t t ++=,显然0t =不是方程的解,故假设不成立,该函数不是回旋函数,故C 正确;D. 若()f x 是2t =的回旋函数,则()()220f x f x ++=,对任意的实数x 都成立,即有()()22f x f x +=-,则()2f x +与()f x 异号,由零点存在性定理得,在区间(),2x x +上必有一个零点,可令0,2,4,...20152x =⨯,则函数()f x 在[]0,4030上至少存在2015个零点,故D 正确. 故选:ACD 【点睛】本题考查以新定义为背景,判断函数的性质,重点考查对定义的理解,应用,属于中档题型.13.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nn f x x x f x xx -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.14.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4 D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得3t >或3t <- 2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.15.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B.34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.16.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a bbb->≥,当220a b-≤时,b≤恒成立,()f x∴=“控制增长函数”;对于C. ()21()sin1,()()2f x x f x a f x-≤=≤∴+-≤,2b∴≥时,a为任意正数,()()f x a f x b+≤+恒成立,()2()sinf x x∴=是“控制增长函数”;对于D. ()()f x a f x b+≤+化为,()sin()sinx a x a x x b++≤+,令2aπ=,则(2)sin sin,2sinx x x x b x bππ+≤+≤,当2bπ≥时,不等式()sin()sinx a x a x x b++≤+恒成立,()sinf x x x∴=⋅是“控制增长函数”.故选:BCD【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.17.设函数2,0()12,02xe xf xx x x⎧≤⎪=⎨-++>⎪⎩,对关于x的方程2()()20f x bf x b-+-=,下列说法正确的有().A.当2b=-+1个实根B.当32b=时,方程有5个不等实根C.若方程有2个不等实根,则17210b<≤D.若方程有6个不等实根,则322b-+<<【答案】BD【分析】先作出函数()f x的图象,进行换元()f x t=,将方程转化成关于t的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可.【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =,即131,12()f x ⎛⎫∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b bt t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024*********b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD. 【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.18.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.19.已知函数ln ,0()1,x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a 的可能取值是( )A .0B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =,故1()2f x =-,()f x =()f x =,当1()2f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.20.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。

高三数学数学函数的概念与基本初等函数多选题的专项培优易错试卷练习题及答案

高三数学数学函数的概念与基本初等函数多选题的专项培优易错试卷练习题及答案

高三数学数学函数的概念与基本初等函数多选题的专项培优易错试卷练习题及答案一、函数的概念与基本初等函数多选题1.设函数2,0()12,02x ex f x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =-,即131,12()f x ⎛⎫-∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =-,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-±,均不满足上面范围,舍去;(2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b b t t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024*********b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD.【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.2.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.3.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( )A .()1.10.9f -=B .函数()f x 为奇函数C .()()11f x f x +=+D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.4.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<; B选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.5.已知函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】 由基本不等式可得120x x +-≥或124x x+-≤-,作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2;故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.6.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x=对称,∴613392229222iix==-⨯+⨯+⨯=∑,故C正确;若直线1y kx=+经过点(3,0),则13k=-,若直线1y kx=+与23(0)y x x x=--<相切,则消元可得:2(3)10x k x+++=,令0∆=可得2(3)40k+-=,解得1k=-或5k=-,当1k=-时,1x=-,当5k=-时,1x=(舍),故1k=-.若直线1y kx=+与()y f x=在(0,3)上的图象相切,由对称性可得1k=.因为方程()1f x kx=+恰有3个实根,故直线1y kx=+与()y f x=的图象有3个交点,113k∴-<<-或1k=,故D正确.故选:BCD.【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.7.已知()f x为R上的奇函数,且当0x>时,()lgf x x=.记()sin()cosg x x f x x=+⋅,下列结论正确的是()A.()g x为奇函数B.若()g x的一个零点为x,且x<,则()00lg tan0x x--=C.()g x在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个D.若()g x大于1的零点从小到大依次为12,,x x,则1223x xππ<+<【答案】ABD【分析】根据奇偶性的定义判断A选项;将()0g x=等价变形为tan()x f x=-,结合()f x的奇偶性判断B选项,再将零点问题转化为两个函数的交点问题,结合函数()g x的奇偶性判断C选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.8.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.二、导数及其应用多选题9.设函数cos 2()2sin cos x f x x x=+,则( ) A .()()f x f x π=+ B .()f x 的最大值为12 C .()f x 在,04π⎛⎫-⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 【答案】AD【分析】 先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误.【详解】()f x 的定义域为R ,且cos 2()2sin cos x f x x x=+, ()()()()cos 22cos 2()2sin cos 2sin cos x x f x f x x x x x ππππ++===++++,故A 正确. 又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2x y x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫ ⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈- ⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈-⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数, 所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x , 故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

基本初等函数之函数综合性问题二轮复习专题练习(三)附答案人教版高中数学高考真题汇编

基本初等函数之函数综合性问题二轮复习专题练习(三)附答案人教版高中数学高考真题汇编
(2)由(1)知,当 时,每天的盈利额为0;
当 时, ,因为 ,…8分
令 ,得 或 ,因为 <96,故 时, 为增函数.
令 ,得 ,故 时, 为减函数.……………………………………10分
所以,当 时, (等号当且仅当 时成立),………………………12分
当 时, (等号当且仅当 时取得),……………14分
5.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为()
(A)6(B)7(C)8(D)9(2020山东理10)
6.若函数 ,则f(f(10)=
A.lg101 B.2 C.1 D.0
7.设函数 ,若 的图象与 图象有且仅有两个不同的公共点 ,则下列判断正确的是
综上,若 ,则当日产量为84件时,可获得最大利润;若 ,则当日产量为 时,可获得最大利润.………………………………………………………………………………16分
20.(1)略;
(2)
,则 的取值范围是
13.已知 ,则 的值为.
14.已知函数 与 在 上有定义,且 , ,则 ________.
15.设定义在区间 上的函数 的图象与 图象的交点横坐标为 ,则 的值为▲.
16.函数 的图像与 的图像关于 轴对称,若 ,则 的值是____
评卷人
得分
三、解答题
17.某工厂某种产品的年固定成本为250万元,每生产 千件,需另投入成本为 ,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完.
(1)求证 是R上的增函数
(2)若 ,解不等式

函数概念与基本初等函数一轮复习专题练习(三)含答案人教版新高考分类汇编

函数概念与基本初等函数一轮复习专题练习(三)含答案人教版新高考分类汇编

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.如右图,OA=2(单位:m),OB=1(单位:m),OA 与OB 的夹角为6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点C .甲.乙两质点同时从点O 出发,甲先以速度1(单位:ms)沿线段OB 行至点B,再以速度3(单位:ms)沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s)沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是(2020江西文)2.已知函数y=13x x -++的最大值为M ,最小值为m ,则mM的值为__22_____ 3.01,a <<下列不等式一定成立的是 (A )(1)(1)log (1)log (1)2a a a a +--++> (B) (1)(1)log (1)log (1)a a a a +--<+(C) (1)(1)(1)(1)log (1)log (1)log (1)log (1)a a a a a a a a +-+--++<-++(D) (1)(1)(1)(1)log (1)log (1)log (1)log (1)a a a a a a a a +-+---+>--+(2020山东理)4.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )A .2∈M ,0∈M ;B .2∉M ,0∉M ;C .2∈M ,0∉M ;D .2∉M ,0∈M .5.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递增,且y f (x )的图象关于直线x 3对称,则下面正确的结论是( )(A) f (1.5)<f (3.5)<f (6.5) (B)f (3.5)<f (1.5)<f (6.5)(C) f (6.5)<f (3.5)<f (1.5)(D)f (3.5)<f (6.5)<f (1.5) (2020天津文)6.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,,0)()()()(>'+'x g x f x g x f 且,0)3(=-g 则不等式0)()(<x g x f 的解集是( )A.),3()0,3(+∞⋃-B .)3,0()0,3(⋃-C .),3()3,(+∞⋃--∞D .)3,0()3,(⋃--∞(2020湖南理)7.如果函数()y f x =的图像与函数32y x '=-的图像关于坐标原点对称,则()y f x =的表达式为( )(A )23y x =- (B )23y x =+ (C )23y x =-+ (D )23y x =--(2020全国2文)(4)8.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f << B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<(2020江苏6)9.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是A (,1)(2,)-∞-⋃+∞ B(1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞ 【考点定位】本小题考查分段函数的单调性问题的运用。

函数概念与基本初等函数单元过关检测卷(三)附答案人教版高中数学新高考指导艺考生专用

函数概念与基本初等函数单元过关检测卷(三)附答案人教版高中数学新高考指导艺考生专用
专题:
综合题;函数的性质及应用.
分析:
(1)把a=1代入f(x)可求得对称轴,借助图象可得g(1);
(2)对称轴为 ,按照对称轴在区间左侧、内部、右侧三种情况进行讨论,借助图象可得g(ห้องสมุดไป่ตู้);
(3)由(2),按照a≤﹣2,﹣2<a<2,a≥2三种情况讨论分别求出函数相应的最大值,然后比较取其较大者即可;
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C
2.B
3.C
4.A
5.D函数的定义域必须满足条件:
6.D
7.C
8.
9.
10.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.;
12.
13.
14.
15.
16.①②③
评卷人
得分
三、解答题
17.
二次函数在闭区间上的最值.
A. B. C. D. (2020年高考天津卷(文))
2.设 ,二次函数 的图像为下列之一
则 的值为()
(A) (B) (C) (D) (2020全国1理)
3.函数 的定义域是()
A.(- ,1)B.(1,+ )C.(-1,1)∪(1,+ )D.(- ,+ )(2020广东文4)
要使函数有意义当且仅当 解得 且 ,从而定义域为 ,故选C.
4.若函数f(x)= ,则该函数在(-∞,+∞)上是( )
A.单调递减无最小值B.单调递减有最小值
C.单调递增无最大值D.单调递增有最大值(2020上海)
5.函数 的定义域为( )
A. B. C. D. (2020湖北理4文1)

函数概念与基本初等函数考前冲刺专题练习(三)含答案人教版高中数学高考真题汇编

函数概念与基本初等函数考前冲刺专题练习(三)含答案人教版高中数学高考真题汇编

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.如右图,OA=2(单位:m),OB=1(单位:m),OA 与OB 的夹角为6 ,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点 C .甲.乙两质点同时从点O 出发,甲先以速度1(单位:ms)沿线段OB 行至点B,再以速度3(单位:ms)沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s)沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是(2020江西文)2.一元二次方程20ax bx c ++=有一个正根和一个负根的必要但不充分条件是----------( )(A)0ac < (B)0ac ≤ (C)0ab < (D)0ab ≤3.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( ) A .0B .1C .2D .3(2020湖北文) 4.函数y=x 2+bx+c (x ∈[0,+∞))是单调函数的充要条件是( )A .b ≥0B .b ≤0C .b >0D .b <0(2020全国文10,理9)5.定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg (10x +1),x ∈(-∞,+∞),那么( )A .g (x )=x ,h (x )=lg (10x +10-x +2)B .g (x )=21lg [(10x +1)+x ],h (x )=21lg [(10x +1)-x ]C .g (x )=2x ,h (x )=lg (10x +1)-2x D .g (x )=-2x ,h (x )=lg (10x +1)+2x (1994全国15) 6.若函数f(x)=121+X , 则该函数在(-∞,+∞)上是( ) A .单调递减无最小值 B . 单调递减有最小值C .单调递增无最大值D . 单调递增有最大值(2020上海)7.已知函数x x f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=⋂N M ( )A .{}1>x xB .{}1<x xC .{}11<<-x x D .φ(2020广东) 8.若(sin )2cos 2f x x =-,则(cos )f x =( )(A )2-sin 2x (B )2+sin 2x (C )2-cos 2x (D )2+cos 2x (2020安徽春季理8)9.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞ 【考点定位】本小题考查分段函数的单调性问题的运用。

高三数学 函数的概念与基本初等函数多选题复习题及答案

高三数学 函数的概念与基本初等函数多选题复习题及答案

高三数学函数的概念与基本初等函数多选题复习题及答案一、函数的概念与基本初等函数多选题1.函数()()1xf xx Rx=∈+,以下四个结论正确的是()A.()f x的值域是()1,1-B.对任意x∈R,都有()()1212f x f xx x->-C.若规定()()()()()11,n nf x f x f x f f x+==,则对任意的(),1nxn N f xn x*∈=+ D.对任意的[]1,1x∈-,若函数()2122f x t at≤-+恒成立,则当[]1,1a∈-时,2t≤-或2t≥【答案】ABC【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围.【详解】由函数解析式可得11,01()11,01xxf xxx⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x的值域是()1,1-,且单调递增即()()1212f x f xx x->-(利用单调性定义结合奇偶性也可说明),即有AB正确;对于C,有()11xf xx=+,若()1,1(1)nxn N f xn x*-∈=+-,∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.2.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.3.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.4.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则312t ≤<,4423t ≤<,5534t ≤<,6645t ≤<,,21n nn t n -≤<-,因为6342=,若6n ≥,则不存在t 同时满足312t ≤<,6645t ≤<.只有5n ≤时,存在35[3,2)t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.5.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()xx f x ee -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.6.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确;当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.7.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( )A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦;综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.8.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)12,x ⎡∈-+∞⎣,()0f x <时,(),12x ∈-∞-所以12,012,122)01,12(x x x x x x x x x g x ⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.二、导数及其应用多选题9.关于函数()sin x f x e a x =+,(,)x π∈-+∞,下列说法正确的是( ) A .当1a =时,()f x 在(0,(0))f 处的切线方程为210x y -+=; B .当1a =时,()f x 存在唯一极小值点0x ,且()010f x -<<; C .对任意0a >,()f x 在(,)π-+∞上均存在零点; D .存在0a <,()f x 在(,)π-+∞上有且只有一个零点. 【答案】ABD 【分析】当1a =时,()sin x f x e x =+,求出(),(0),(0)f x f f '',得到()f x 在(0,(0))f 处的切线的点斜式方程,即可判断选项A ;求出()0,()0f x f x ''><的解,确定()f x 单调区间,进而求出()f x 极值点个数,以及极值范围,可判断选项B ;令()sin 0xf x e a x =+=,当0a ≠时,分离参数可得1sin x x ae -=,设sin (),(,)xxg x x eπ=∈-+∞,求出()g x 的极值最值,即可判断选项C ,D 的真假. 【详解】A.当1a =时,()sin x f x e x =+,所以()cos x f x e x '=+,0(0)cos 02f e '=+=,0(0)01f e =+=,所以()f x 在(0,(0))f 处的切线方程为210x y -+=,故正确;B. 因为()sin 0x f x e x ''=->,所以()'f x 单调递增,又()202f π'-=>,334433()cos442f e e ππππ--⎛⎫'-=+-=- ⎪⎝⎭,又233442e e e ππ⎛⎫= ⎪⎝>>⎭,即34e π>,则3()04f π'-<,所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得0()0f x '=,即 00cos 0x e x +=,则在()0,x π-上()0f x '<,在()0,x +∞上,()0f x '>,所以()f x 存在唯一极小值点0x,因为000000()sin sin cos 4xf x e x x x x π⎛⎫=+=-=- ⎪⎝⎭,03,42x ππ⎛⎫∈-- ⎪⎝⎭,所以03,44x πππ⎛⎫-∈-- ⎪⎝⎭()01,04x π⎛⎫-∈- ⎪⎝⎭,故正确; C.令()sin 0x f x e a x =+=,当0a ≠时,可得1sin x xa e-=,设sin (),(,)x xg x x eπ=∈-+∞,则cos sin 4()x x x x x g x e e π⎛⎫- ⎪-⎝⎭'==,令()0g x '=,解得,,14x k k Z k ππ=+∈≥-当52,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时()0g x '<,当592,244x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()0g x '>,所以当524x k ππ=+,,1k Z k ∈≥-时,()g x 取得极小值,即35,,...44x ππ=-,()g x 取得极小值,又35 (44)g g ππ⎛⎫⎛⎫-<> ⎪ ⎪⎝⎭⎝⎭,因为在3,4ππ⎡⎤--⎢⎥⎣⎦上,()g x 递减,所以()34342g x g e ππ⎛⎫≥-=- ⎪⎝⎭,所以当24x k ππ=+,,0k Z k ∈≥时, ()g x 取得极大值,即9,, (44)x ππ=,()g x 取得极大值,又9 (44)g g ππ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭ ,所以 ()442g x g e ππ⎛⎫≤= ⎪⎝⎭,所以(),x π∈-+∞时,()34422g x e ππ-≤≤,当3412e a π-<-,即34a e π>时,()f x 在(,)π-+∞上不存在零点,故C 错误; D.当412ae -=4a e π=时,1=-y a 与()sin x xg x e =的图象只有一个交点,所以存在0a <,()f x 在(,)π-+∞上有且只有一个零点,故D 正确; 故选:ABD 【点睛】方法点睛:用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.10.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a ba ab a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.。

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.3.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确;故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.4.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果. 【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥,221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.5.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.6.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.7.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt ty -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)x x h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.8.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得92t = (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或32t <<+合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或32t <<每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或2t =+0t =有一个1x =与其对应,2t =x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且2t >12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.二、导数及其应用多选题9.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.10.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB 【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x-'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合;设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为021ln x k x -=,又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x e =, 所以21ln 12()e k e e -==,可得切线方程为2x y e =, 又由直线3xy e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1,明显不满足,排除D. 故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.。

高考数学函数的概念与基本初等函数多选题复习题及答案

高考数学函数的概念与基本初等函数多选题复习题及答案

高考数学函数的概念与基本初等函数多选题复习题及答案一、函数的概念与基本初等函数多选题1.设函数2,0()12,02x e xf x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =,即131,12()f x ⎛⎫∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =,故A错误;选项B中,32b=,方程即23122t t-+=,即22310t t-+=,解得1t=或12t=,当()1f x t==时看图可知,存在3个根,当1()2f x t==时看图可知,存在2个根,故共5个不等的实根,B正确;选项C中,方程有2个不等实根,则有两种情况:(1)122bt t==,则31,22b⎛⎫∈ ⎪⎝⎭或10,22b⎛⎤∈ ⎥⎝⎦,此时2204bb+--=,即2480b b-+=,解得223b=-±,132b=-±,均不满足上面范围,舍去;(2)12t t≠时,即(]123,,02t t=∈-∞或(]12,,0t t∈-∞.①当(]123,,02t t=∈-∞时132t=,代入方程得2220332b b+⎛⎫-⋅⎪⎝-=⎭,解得1710b=,由123210t t b=-=,得(]21,05t=∉-∞,不满足题意,舍去;②当(]12,,0t t∈-∞时220bbtt+-=-,则()2420b b∆=-->,1220t t b=-≥,12t t b+=<,解得223t<--,故C错误;选项D中,方程有6个不等实根,则1211,1,,122t t⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t≠,222()2422b bt t b tt b bϕ⎛⎫=---⎪⎝⎭+-=+-图象如下:需满足:()219324213202024bbb bbϕϕϕ⎧⎛⎫=->⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-<⎪⎪⎝⎭⎩,解得:32232b-+<<,故D正确.故选:BD.【点睛】关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.2.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,边长为3,所以当((0,1),,0)33A B C -时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.3.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+ D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得11,01()11,01x x f x x x ⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥,∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.4.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.5.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则312t ≤<,4423t ≤<5534t ≤<6645t ≤<,,21n nn t n -≤<-6342=6n ≥,则不存在t 同时满足312t ≤<6645t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确.故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.7.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.8.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得922t =+. (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+,结合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.二、导数及其应用多选题9.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B .ln eππ>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25xyk ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f f π∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭ 当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴==1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.10.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对, B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴21x x -==≥,B 对,C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x =-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.。

高三数学 函数的概念与基本初等函数多选题练习题附解析

高三数学 函数的概念与基本初等函数多选题练习题附解析

高三数学 函数的概念与基本初等函数多选题练习题附解析一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.3.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B .当151522a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得152a -<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当15a --=21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;1a <<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A1a <<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当a =3个根,C 正确;当4a ≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.4.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ 51≥=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.5.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭ D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.6.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得11,01()11,01x x f x x x⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.7.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+,则1()+2cos 2+2cos 0xxg x e x x e '=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.8.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==>⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-, ∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.二、导数及其应用多选题9.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2xx aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.10.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。

函数概念与基本初等函数晚练专题练习(三)带答案人教版新高考分类汇编

函数概念与基本初等函数晚练专题练习(三)带答案人教版新高考分类汇编


(
p,
q)

(5,0)

p 2q 2 p q

5 0

p q

1 2
,
所 以 (1,2) ( p, q) (1,2) (1,2) (2,0) , 故 选 B .
3 .设 b 0,二次函数 y ax2 bx a2 1 的图像为下列之一
13.已知:
g(x)

ex ln
,x x,
0 x
0
,
则g
(
g
(1)) 3

14.函数 y 2x 1的单调区间为____________________ 1 x
1 5 . 已 知 y f (x) 是 奇 函 数 , 当 x 0 时 , f ( x) x(1 x ), 当 x 0 时 , f (x) =
,若 |
f (x1)
f (x2 ) ||
f
()
f
() |,则(
)
A. 0
B. 0 C. 0 1 D. 1(2020 辽宁)
5.函数
f
x
4x 1 的图象( 2x

A. 关于原点对称 B. 关于直线 y=x 对称 C. 关于 x 轴对称 D. 关于 y 轴对 称(2020 重庆理 5)
A . f ( a) f (b) f ( a) f ( b) B . f ( a) f (b) f ( a) f ( b)
C . f ( a) f (b) f ( a) f ( b) D . f ( a) f (b) f ( a) f ( b)
第 II 卷(非选择题)
f(3.5)<f(6.5)<f(1.5) (2020 天津文)

专题02 函数的概念与基本初等函数-三年(2022–2024)高考数学真题分类汇编(通用)(原卷版)

专题02 函数的概念与基本初等函数-三年(2022–2024)高考数学真题分类汇编(通用)(原卷版)

专题02函数的概念与基本初等函数I 考点三年考情(2022-2024)命题趋势考点1:已知奇偶性求参数2023年全国Ⅱ卷2023年全国乙卷(理)2024年上海卷2022年全国乙卷(文)2023年全国甲卷(理)从近三年高考命题来看,本节是高考的一个重点,函数的单调性、奇偶性、对称性、周期性是高考的必考内容,重点关注周期性、对称性、奇偶性结合在一起,与函数图像、函数零点和不等式相结合进行考查.考点2:函数图像的识别2022年天津卷2023年天津卷2024年全国甲卷(理)2024年全国Ⅰ卷2022年全国乙卷(文)2022年全国甲卷(理)考点3:函数模型及应用2022年北京卷2024年北京卷2023年全国Ⅰ卷考点4:基本初等函数的性质:单调性、奇偶性2023年全国乙卷(理)2022年北京卷2023年北京卷2024年全国Ⅰ卷2024年天津卷2023年全国Ⅰ卷考点5:分段函数问题2022年浙江卷2024年上海夏季考点6:函数的定义域、值域、最值问题2022年北京卷2022年北京卷考点7:函数性质(对称性、周期性、奇偶性)的综合运用2023年全国Ⅰ卷2022年全国I卷2024年全国Ⅰ卷2022年全国II卷考点8:指对幂运算2022年天津卷2022年浙江卷2024年全国甲卷(理)2023年北京卷考点1:已知奇偶性求参数1.(2023年新课标全国Ⅱ卷数学真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ().A .1-B .0C .12D .12.(2023年高考全国乙卷数学(理)真题)已知e ()e 1xax x f x =-是偶函数,则=a ()A .2-B .1-C .1D .23.(2024年上海夏季高考数学真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .4.(2022年高考全国乙卷数学(文)真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b =.5.(2023年高考全国甲卷数学(理)真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .考点2:函数图像的识别6.(2022年新高考天津数学高考真题)函数()21x f x x-=的图像为()A .B .C .D .7.(2023年天津高考数学真题)已知函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .25e 5e 2x xx --+B .25sin 1x x +C .25e 5e 2x xx -++D .25cos 1x x +8.(2024年高考全国甲卷数学(理)真题)函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的图象大致为()A .B .C .D .9.(2024年新课标全国Ⅰ卷数学真题)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .810.(2022年高考全国乙卷数学(文)真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+11.(2022年高考全国甲卷数学(理)真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .考点3:函数的实际应用12.(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态13.(2024年北京高考数学真题)生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A .2132N N =B .2123N N =C .2321N N =D .3221N N =14.(多选题)(2023年新课标全国Ⅰ卷数学真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A .12p p ≥B .2310p p >C .30100p p =D .12100p p ≤考点4:基本初等函数的性质:单调性、奇偶性15.(2023年高考全国乙卷数学(理)真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.16.(2022年新高考北京数学高考真题)已知函数1()12xf x =+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()1f x f x -+=D .1()()3f x f x --=17.(2023年北京高考数学真题)下列函数中,在区间(0,)+∞上单调递增的是()A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=18.(2024年新课标全国Ⅰ卷数学真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞19.(2024年天津高考数学真题)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=20.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞考点5:分段函数问题21.(2022年新高考浙江数学高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是.22.(2024年上海夏季高考数学真题)已知(),0,1,0x x f x x >=≤⎪⎩则()3f =.考点6:函数的定义域、值域、最值问题23.(2022年新高考北京数学高考真题)函数1()1f x x x=-的定义域是.24.(2022年新高考北京数学高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为;a 的最大值为.考点7:函数性质(对称性、周期性、奇偶性)的综合运用25.(多选题)(2023年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点26.(多选题)(2022年新高考全国I 卷数学真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=27.(2024年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <28.(2022年新高考全国II 卷数学真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .129.(2022年高考全国乙卷数学(理)真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-考点8:指对幂运算30.(2022年新高考天津数学高考真题)化简()()48392log 3log 3log 2log 2++的值为()A .1B .2C .4D .631.(2022年新高考浙江数学高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .5332.(2024年高考全国甲卷数学(理)真题)已知1a >且8115log log 42a a -=-,则=a .33.(2023年北京高考数学真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.。

函数概念与基本初等函数强化训练专题练习(三)含答案人教版高中数学高考真题汇编

函数概念与基本初等函数强化训练专题练习(三)含答案人教版高中数学高考真题汇编

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.函数ln cos ()22y x x ππ=-<<的图象是 ( )(2020山东)2.若函数)(x f =))(12(a x x x-+为奇函数,则a =( )(A )21 (B )32 (C )43(D )1(2020辽宁文6)3.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递增,且y f (x )的图象关于直线x 3对称,则下面正确的结论是( )(A) f (1.5)<f (3.5)<f (6.5)(B)f (3.5)<f (1.5)<f (6.5)(C) f (6.5)<f (3.5)<f (1.5)(D)f (3.5)<f (6.5)<f (1.5) (2020天津文)4.函数2log 2-=x y 的定义域是( )A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞ (2020湖南理)5.函数y =11+x 的图象是( )(2020全国文2)6.函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为( ) A.3B.0C.-1D.-2(2020福建理)7.函数f(x)=|x-1|的图象是( )(2020北京春季文)8.函数x x y 22-=在区间],[b a 上的值域是]3,1[-,则点),(b a 的轨迹是图中的线段( )(A )AB 和AD (B )AB 和CD (C )AD 和BC (D )AC 和BD9.已知函数y=f (x )是偶函数,且x >0时,f (x )单调递减,若x 1>0,x 2<0,且|x 1|<|x 2|,则 ( )A 、f (x 1)<f(x 2)(B )f(-x 2)>f (x 1)(C )f (-x 1)>f (-x 2)(D )f (-x 1)<f (-x 2) 10.函数1()f x x x=-的图像关于( C )(全国二3) A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.方程x 2+(m ﹣2)x+5﹣m=0的两根分布在区间(2,3)和(3,4)之间,则实数m 的取值范围为 (,﹣4) .(5分)12.若函数()y f x =的定义域为R ,值域为[a ,b ],则函数()y f x a =+的最大值与最小值 之和为 ▲ .13.函数)(x f 是奇函数,)(x g 是偶函数且)1(11)()(±≠+=+x x x g x f ,则=-)3(f __ __14.求下列函数的值域:(1)65)(2++-=x x x f (2)]4,2()31()(3∈=-x x f x x15.已知:()12320081232008f x x x x x x x x x =-+-+-++-+++++++++若(2)20082009f x >⨯,则x 的范围是 .(12x >或12x <-) 分析:考虑函数的奇偶性、单调性、以及(?)20082009f =⨯16.设奇函数()f x 满足:对x R ∀∈有(1)()0f x f x ++=,则(5)f = .评卷人得分三、解答题17.已知函数()f x 是定义在R 上的奇函数,且当0x >时,2()23f x x x =-- (1) 求函数()f x 的解析式;(2) 作出函数()f x 的图像,并写出函数()f x 的单调递增区间。

(2)函数的概念与基本初等函数——高考数学三年真题专项汇编卷(2019-2021)

(2)函数的概念与基本初等函数——高考数学三年真题专项汇编卷(2019-2021)

(2)函数的概念与基本初等函数——高考数学三年真题专项汇编卷(2019-2021)1.【2021年·全国乙卷(理)】设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.(1)1f x -- B.(1)1f x -+ C.(1)1f x +- D.(1)1f x ++2.【2021年·全国甲卷(理)】青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记数法的数据V 满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( 1.259≈)()A.1.5B.1.2C.0.8D.0.63.【2021年·全国乙卷(文)】下列函数中最小值为4的是()A.224y x x =++B.4|sin ||sin |y x x =+C.222x x y -=+D.4ln ln y x x=+4.【2019年·全国Ⅰ卷(理)】已知0.20.32 log 0.2,2,0.2a b c ===,则()A .a b c<<B .a c b<<C .c a b<<D .b c a<<5.【2021年·全国甲卷(理)】设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[1,2]x ∈时,2()f x ax b =+.若(0)(3)6f f +=,则92f ⎛⎫= ⎪⎝⎭()A.94-B.32-C.74D.526.【2021年·全国甲卷(理)】下列函数中是增函数的为()A.()f x x=- B.2()3xf x ⎛⎫= ⎪⎝⎭C.2()f x x =D.()f x =7.【2021年·浙江卷】已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是()A.1()()4y f x g x =+-B.1()()4y f x g x =--C.()()y f x g x =D.()()g x y f x =8.【2021年·全国甲卷(文)】设()f x 是定义域为R 的奇函数,且(1)(-)f x f x +=.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭()A.53-B.13-C.13D.539.【2021年·北京卷】设函数()f x 的定义域为[0,1],则“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.【2021年·新高考Ⅱ卷】若5log 2a =,8log 3b =,12c =,则()A.a b c>> B.b a c>> C.b c a>> D.c b a>>11.【2019年·全国Ⅰ卷(文)】函数2sin ()cos x xf x x x +=+在[,]-ππ的图像大致为()A .B .C .D .12.【2020年·全国Ⅲ卷(理)】已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则()A.a b c <<B.b a c <<C.b c a<< D.c a b<<13.【2020年·全国Ⅱ卷(文)】设函数331()f x x x =-,则()f x ()A.是奇函数,且在(0,)+∞单调递增 B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减14.【2021年·新高考Ⅰ卷】已知函数()3()22x xf x x a -=⋅-是偶函数,则a =____________.15.【2019年·全国Ⅱ卷(理)】已知()f x 是奇函数,且当0x <时,()e ax f x =-,若(ln 2)8f =,则a =_________.答案以及解析1.答案:B解析:本题考查函数的性质.由1()1xf x x -=+,得1(1)2(1)1(1)x x f x x x----==+-,1(1)(1)1(1)2x x f x x x-+-+==+++,所以22(1)112x f x x x ---=-=-,显然不是奇函数;22(1)11x f x x x --+=+=是奇函数;22(1)12xf x x --+-=+显然不是奇函数;2(1)12f x x++=+,显然不是奇函数.2.答案:C解析:本题考查对数的运算.可知 4.95lg L V ==+,故0.11100.81.259V -==≈.3.答案:C解析:本题考查复合函数的最小值.A 项,2224(1)33y x x x =++=++≥;B 项,由0|sin |1x <≤,令函数4y u u =+,|sin |u x =,则函数4y u u=+在(0,1]u ∈内为减函数,所以4|sin |5|sin |y x x =+≥;C 项,由20x >,令函数4y u u =+,2x u =,则函数4y u u =+在(0,2]u ∈内单调递减,在(2,)u ∈+∞内单调递增,故当2u =,即1x =时取得最小值,所以2422242x x x xy -=+=+≥,当且仅当1x =时等号成立;D 项,由ln 0x ≠,得0x >且1x ≠,当(0,1)x ∈时,ln 0x <,此时4ln 0ln y x x=+<,故函数的最小值不可能为4.综上可知C 项正确.4.答案:B解析:22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .5.答案:D解析:本题考查函数的奇偶性与周期性.可知(1)(1)f x f x -+=-+,(2)(2)f x f x -+=+,故(2)(2)(11)(11)()f x f x f x f x f x +=-+=-++=--+=-,(4)()f x f x +=,则(0)(2)4f f a b =-=--,(3)(1)(1)f f f a b =-==+,得(0)(3)36f f a +=-=,得2a =-,由(01)(01)f f -+=-+,得(1)0f a b ==+,故2b =,所以9139952222422f f f a b ⎛⎫⎛⎫⎛⎫==-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.6.答案:D解析:本题考查函数的单调性,一次函数()f x x =-是R 上的减函数;指数函数2()3xf x ⎛⎫= ⎪⎝⎭是R 上的减函数;二次函数2()f x x =在(,0)-∞上单调递减,在(0,)+∞上单调递增;幂函数()f x =是R 上的增函数.7.答案:D解析:本题考查函数的图象与奇偶性.由图象可知函数是奇函数,排除A 项和B 项;因为21()4f x x =+和()sin g x x =在π0,2⎛⎫ ⎪⎝⎭上均为增函数且为正,故()()y f x g x =在π0,2⎛⎫⎪⎝⎭上为增函数,排除C 项.8.答案:C解析:本题考查函数的基本性质、奇偶性与周期性以及函数值的求解.由于()f x 是定义域为R 的奇函数,则有()()f x f x -=-,结合(1)()f x f x +=-,可得(1)()f x f x +=-,故(2)(1)()f x f x f x +=-+=,即函数()f x 是周期为2的周期函数,所以551123333f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.9.答案:A解析:若函数()f x 在[0,1]上单调递增,根据函数的单调性可知:函数()f x 在[0,1]的最大值为(1)f ,所以“函数()f x 在[0,1]上单调递增”为“函数()f x 在[0,1]的最大值为(1)f ”的充分条件.若函数()f x 在[0,1]的最大值为(1)f ,函数()f x 在[0,1]上可能先递减在递增,且最大值为(1)f ,所以“函数()f x 在[0,1]上单调递增”不是“函数()f x 在[0,1]的最大值为(1)f ”的必要条件.故选A.10.答案:C解析:本题考查对数的大小比较.因为551log 2log 2a c =<==,891log 3log 32b c =>==,所以b c a >>.11.答案:D 解析:由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422(1,2(2f πππππ++==>2()01f πππ=>-+.故选D .12.答案:A解析:因为4584log 85=,8log 5b =,54455885⎛⎫=> ⎪ ⎪⎝⎭,所以4585>,所以45884log 8log 55b =>=,即45b <.因为45134log 135=,13log 8c =,5445513138⎛⎫=< ⎪ ⎪⎝⎭,所以45138<,所以4513134log 13log 85c =<=,即45c >.又752187353125=<=,所以75lg3lg5<,所以7lg35lg5<,所以lg35lg57<,所以lg354lg575a =<<,而5785<,所以5lg87lg5<,所以lg55lg87>,所以lg 55lg87b =>,所以c b a >>.13.答案:A解析:由函数3y x =和31y x =-都是奇函数,知函数331()f x x x=-是奇函数.由函数3y x =和31y x =-都在区间(0,)+∞上单调递增,知函数331()f x x x =-在区间(0,)+∞上单调递增,故函数331()f x x x =-是奇函数,且在区间(0,)+∞上单调递增.故选A.14.答案:1解析:本题考查函数的奇偶性.因为()f x 为偶函数,所以()()f x f x -=,所以()(1)220x x a --+=,由220x x -+≠得1a =.15.答案:-3解析:设0x >,则0x -<.∵当0x <时,()e ax f x =-,∴()e ax f x --=-.∵()f x 是奇函数,∴()()e ax f x f x -=--=,∴ln 2ln 2(ln 2)e (e )2a a a f ---===.又∵(ln 2)8f =,∴28a -=,∴3a =-.。

基本初等函数之函数综合性问题强化训练专题练习(三)带答案人教版高中数学高考真题汇编

基本初等函数之函数综合性问题强化训练专题练习(三)带答案人教版高中数学高考真题汇编

高中数学专题复习
《基本初等函数之函数综合性问题》单元过关检

经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(2020年普通高等学校招生统一考试大纲版数学(理)WOR D 版含答案(已校对))
(A)()1,1- (B)11,2⎛
⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫ ⎪⎝⎭ 2.把函数si n ()y x x =∈R 的图象上所有的点向左平行移动
3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的
12倍(纵坐标不变),得到的图象所表示的函数是( )
A .sin 23y x x π⎛
⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭
R , C .sin 23y x x π⎛
⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,。

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题及答案

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题及答案

高三数学提高题专题复习函数的概念与基本初等函数多选题练习题及答案一、函数的概念与基本初等函数多选题1.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e =+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e-<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.2.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.3.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.4.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以1212a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.5.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.6.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.8.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<, 又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.9.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==;任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.10.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、212x =+、212x =-; 若使得其与()f x m =的所有零点之和为0,则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立11.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()1f x m x =+1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b则有11+11+abba⎧=⎪⎪⎨⎪=⎪⎩,解得:1212ab⎧-=⎪⎪⎨⎪=⎪⎩.故存在, B正确.对C, 若函数()f x m=[],a b,因为()f x m=,故由跟随区间的定义可知b ma ba m⎧=-⎪⇒-=⎨=⎪⎩a b<即()()()11a b a b a b-=+-+=-,因为a b<,1=.易得01≤<.所以(1a m m=-=--,令t=20t t m--=,同理t=20t t m--=,即20t t m--=在区间[]0,1上有两根不相等的实数根.故140mm+>⎧⎨-≥⎩,解得1,04m⎛⎤∈- ⎥⎝⎦,故C正确.对D,若()212f x x x=-+存在“3倍跟随区间”,则可设定义域为[],a b,值域为[]3,3a b.当1a b<≤时,易得()212f x x x=-+在区间上单调递增,此时易得,a b为方程2132x x x-+=的两根,求解得0x=或4x=-.故存在定义域[]4,0-,使得值域为[]12,0-.故D正确.故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.12.已知函数1(),f x xx=+221()g x xx=+则下列结论中正确的是()A.()()f xg x+是奇函数B.()()f xg x⋅是偶函数C.()()f xg x+的最小值为4D.()()f xg x⋅的最小值为2【答案】BC【分析】利用奇偶性的定义可得A错B对;利用均值不等式可得C对;利用换元求导可得D错.【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得t >t <2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.13.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+--由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.14.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B .3412a b ==2a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.15.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.16.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.17.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确.由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.19.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.20.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴61339 2229222iix==-⨯+⨯+⨯=∑,故C正确;若直线1y kx=+经过点(3,0),则13k=-,若直线1y kx=+与23(0)y x x x=--<相切,则消元可得:2(3)10x k x+++=,令0∆=可得2(3)40k+-=,解得1k=-或5k=-,当1k=-时,1x=-,当5k=-时,1x=(舍),故1k=-.若直线1y kx=+与()y f x=在(0,3)上的图象相切,由对称性可得1k=.因为方程()1f x kx=+恰有3个实根,故直线1y kx=+与()y f x=的图象有3个交点,113k∴-<<-或1k=,故D正确.故选:BCD.【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.。

函数概念与基本初等函数章节综合检测提升试卷(三)含答案人教版新高考分类汇编

函数概念与基本初等函数章节综合检测提升试卷(三)含答案人教版新高考分类汇编

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.如右图,OA=2(单位:m),OB=1(单位:m),OA 与OB 的夹角为6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交与点C .甲.乙两质点同时从点O 出发,甲先以速度1(单位:ms)沿线段OB 行至点B,再以速度3(单位:ms)沿圆弧BDC 行至点C 后停止,乙以速率2(单位:m/s)沿线段OA 行至A 点后停止.设t 时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图像大致是(2020江西文)2.某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )(2020江西理)3.函数22xy x =-的图像大致是( )(2020山东文11)4.函数()412x xf x +=的图象( )A . 关于原点对称B . 关于直线y=x 对称C . 关于x 轴对称D . 关于y 轴对称(2020重庆理5)5.已知非0实数c b a ,,成等差数列,则二次函数2)(ax x f =+2bx+c 的图象与x 轴的交点个数为( ) A .1B .2C .1或2D .0(2020)6. )(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( )A .2B .3C .4D .5(2020福建理)7.定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg (10x+1),x ∈(-∞,+∞),那么( )A .g (x )=x ,h (x )=lg (10x+10-x+2)B .g (x )=21lg [(10x +1)+x ],h (x )=21lg [(10x+1)-x ] C .g (x )=2x ,h (x )=lg (10x+1)-2x D .g (x )=-2x ,h (x )=lg (10x+1)+2x (1994全国15) 8.函数()y f x =的图像与函数2()log (0)g x x x =>的图像关于原点对称,则()f x 的表达式为( )A .21()(0)log f x x x=> B .21()(0)log ()f x x x =<-C .2()log (0)f x x x =->D .2()log ()(0)f x x x =--<(2020)9.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞【考点定位】本小题考查分段函数的单调性问题的运用。

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习同步练习试卷

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习同步练习试卷

人教版高三数学第二学期函数的概念与基本初等函数多选题单元 期末复习同步练习试卷一、函数的概念与基本初等函数多选题 1.已知53a =,85b =,则( )A .a b <B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.2.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.3.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,122)01,12(x xxx xxx xxg x⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x>时,设1201x x,()()()()121212121212111x x x xg x g x x xx x x x---=+--=因为12120,10x x x x-<-<,所以()()12g x g x->,即()()12g x g x>设121x x<<,()()()()121212121x x x xg x g xx x---=<,即()()12g x g x<所以函数()g x在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g++==函数()g x图象如下图所示由图可知,要使得函数y m=与函数()()g xf xx=的图象有两个不同的交点则实数m的取值范围是()()–,04,∞+∞,故D正确;故选:CD【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.4.已知()f x为R上的奇函数,且当0x>时,()lgf x x=.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.5.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍),结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.6.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=,设(,)P x y 为sin 2sin 22(2)x x h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫ ⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.7.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.8.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f =B .()20202020f =C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.11.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得92t = (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或32t <<+合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或32t <<每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或2t =+0t =有一个1x =与其对应,2t =x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且2t >12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x的方程12f x ax⎛⎫+-=⎪⎝⎭的实根个数构成的集合为{2,3,4}.故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法:(1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.12.设函数ln(2),2()1,2x xf xx x->⎧=⎨+≤⎩,g(x)=x2-(m+1)x+m2-2,下列选项正确的有()A.当m>3时,f[f(x)]=m有5个不相等的实根B.当m=0时,g[g(x)]=m有4个不相等的实根C.当0<m<1时,f[g(x)]=m有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果. 【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,;当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.13.设函数2,0()12,02x e xf x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =-,即131,12()f x ⎛⎫-∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =-,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-±,均不满足上面范围,舍去;(2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b b t t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024*********b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD.【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.14.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.15.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( ) A .1ab = B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<, 由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=,所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确;126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数, 任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >, 所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确. 故选:ACD.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( ) A .若方程()2a f x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2a f x ax =+有两个不同的实数根,则48a << C .若方程()2a f x ax =+有4个不同的实数根,则8a > D .若方程()2a f x ax =+有4个不同的实数根,则4a > 【答案】AC【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2a f x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围.【详解】因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2a f x ax =+的一个根, 则0a =,此时()2a f x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根.当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足, 所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222a x ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足, 所以242422x a x x x ==-++--,如图:若方程()2a f x ax =+有两个不同的实数根, 则0a <或48a <<; 若方程()2a f x ax =+有4个不同的实数根,则8a >. 故选:AC【点睛】 关键点点睛:本题的关键是将方程()2a f x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.17.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫⎪⎝⎭【答案】BC【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项.【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确, 故选:BC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭ B .若00x =,则()sin 26f x x ππ⎛⎫=- ⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个【答案】AC【分析】 根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D .【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈, 两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =, 所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC .【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.19.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫ ⎪⎝⎭B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立 D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1【答案】AC【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断.【详解】当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-; 当23x <≤,则3122<≤x , 1()1222⎛⎫==- ⎪⎝⎭x x f x f ; 当34x <≤,则3222<≤x , 1()2222⎛⎫==- ⎪⎝⎭x x f x f ; 当46x <≤,则232<≤x , 11()2242⎛⎫==- ⎪⎝⎭x x f x f ; 当68x <≤,则342<≤x ,1()1224⎛⎫==- ⎪⎝⎭x x f x f ; 依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈ ⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误;对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x 恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点 【答案】BCD【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==, ()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D .【详解】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.。

函数概念与基本初等函数晚练专题练习(四)含答案人教版高中数学高考真题汇编

函数概念与基本初等函数晚练专题练习(四)含答案人教版高中数学高考真题汇编

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.某地一年的气温Q(t)(单位:ºc)与时间t(月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc,令G(t)表示时间段〔0,t〕的平均气温,G(t)与t之间的函数关系用下列图象表示,则正确的应该是()(2020江西理)2.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )( A .P Q B .Q P C .P=Q D .P Q=(2020湖北理)3.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x a λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( ) A .0<λB .0=λC .10<<λD .1≥λ(2020辽宁) 4.定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg (10x +1),x ∈(-∞,+∞),那么( )A .g (x )=x ,h (x )=lg (10x +10-x +2)B .g (x )=21lg [(10x +1)+x ],h (x )=21lg [(10x +1)-x ] C .g (x )=2x ,h (x )=lg (10x +1)-2xD .g (x )=-2x ,h (x )=lg (10x +1)+2x (1994全国15) 5.函数f (x )=|x|和g (x )=x (2-x )的递增区间依次是( )A .(-∞,0],(-∞,1]B .(-∞,0],[1,+∞)C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)(2020北京春文8)6.函数()y f x =的图像与函数2()log (0)g x x x =>的图像关于原点对称,则()f x 的表达式为( ) A .21()(0)log f x x x => B .21()(0)log ()f x x x =<- C .2()log (0)f x x x =->D .2()log ()(0)f x x x =--<(2020) 7.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是CA .f (x )为奇函数B .f (x )为偶函数C . f (x )+1为奇函数D .f (x )+1为偶函数8.定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 (A)(3)(2)(1)f f f <-< (B) (1)(2)(3)f f f <-<(C) (2)(1)(3)f f f -<< (D) (3)(1)(2)f f f <<-9.函数y=22log 2x y x-=+的图像 (A ) 关于原点对称 (B )关于主线y x =-对称(C ) 关于y 轴对称 (D )关于直线y x =对称10.若)(x f 在[5,5]-上是奇函数,且)()(13f f <,则----------------------------------------------------------( )(A))()(31-<-f f (B))()(10f f > (C))()(11f f <- (D))()(53->-f f第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题11.已知函数b a bx ax x f -++=3)(2是偶函数,且其定义域为]2,3[a a -,则 =+b a12.设2()lg()1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是 .13.函数253x y x +=-的值域是__________,14.已知g(x)=1-2x,f[g(x)]=)0(122≠-x xx ,则f(1/2)等于______________ 15.定义在[-a ,2]奇函数()f x 在[0,2]x ∈上递增,则(0)f = ,a = ;在[,0]x a ∈- 上增减性为 。

函数概念与基本初等函数强化训练专题练习(三)含答案人教版高中数学

函数概念与基本初等函数强化训练专题练习(三)含答案人教版高中数学

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.函数f (x )=11+x2 (x ∈R )的值域是( ) A .(0,1) B .(0,1] C .[0,1) D .[0,1] (2020陕西文)2.若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=( )A 、-1B 、1C 、-2D 、2(2020安徽理)3.函数()412x xf x +=的图象( ) A . 关于原点对称 B . 关于直线y=x 对称 C . 关于x 轴对称 D . 关于y 轴对称(2020重庆理5)4.下列函数中,既是偶函数又在()0,+∞单调递增的函数是( )A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2xy -=(2020全国文3)5.设f (x )、g (x )都是单调函数,有如下四个命题:①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( ) A .①② B .①④C .②③D .②④(2020全国10)6.函数)13lg(13)(2++-=x xx x f 的定义域是( )A.),31(+∞- B. )1,31(- C. )31,31(- D.)31,(--∞(2020广东)7.设0abc >,二次函数()2f x ax bx c =++的图象可能是8.对于定义域是R 的任意奇函数()f x 都有------------------------------------------------------------------------( ) (A)()()0f x f x --= (B)()()0f x f x --≤ (C)()()0f x f x -≤(D)()()0f x f x ->9.函数()||f x x =和()(2)g x x x =-的递增区间分别是_________________ 10.如图,函数cos y x x =-的部分图象是-------------------------------------------------( )第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.函数()lg(1)4f x x x =-+-的定义域为 ▲ .12.函数132y x x=++-的定义域是 ▲ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《函数的概念与基本初等函数》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为( )
(A) 3 (B)2 (C)1 (D)-1(2020山东理)
2.在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图象关于直线x y =对
称. 现将)(x g y =的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,
所得的图象是由两条线段组成的折线(如图2所示),则函数)(x f 的表达式为
( )
A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,22
01,22)(x x x x x f
B .⎪⎩⎪⎨⎧≤<-≤≤--=20,22
01,22)(x x x x x f
C .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x x x x x f
D .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x x x x x f (2020广东) 3.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有
( )
A .2∈M ,0∈M ;
B .2∉M ,0∉M ;
C .2∈M ,0∉M ;
D .2∉M ,0∈M .
4.已知函数f (x)=1-x e ,g(x)=.342-+-x x 若有f(a)=g(b),则b 的取值范围
为( )
(A ).]22,22[+- (B ).)22,22(+- (C ).[1,3]
(D ).(1,3) (2020湖南文8)
5.当a >1时,函数y =log a x 和y=(1-a )x 的图象只能是( )
(1994上海11)
6.函数)
34(log 1)(22-+-=x x x f 的定义域为( ) A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3) D .[1,3] (2020
江西)
7.已知函数x x f -=11
)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则
=⋂N M ( )
A .{}1>x x
B .{}1<x x
C .{}
11<<-x x D .φ(2020广东) 8.已知函数y=13x x -++的最大值为M ,最小值为m ,则m M
的值为( ) (A)14
(B)12 (C)22 (D)32
(2020重庆理) 9.对于具有相同定义域D 的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b 为常数),对任给的正数m,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有
0()()0()()<m f x h x m h x g x <-<⎧⎨<-⎩
,则称直线l :y =k x +为曲线y =f (x )和y=g(x)的“分渐近线”.给出定义域均为D={}x|x>1的四组函数如下:
①2f(x)=x ,g(x)=x ; ②-x f(x)=10+2,2x-3g(x)=x
; ③2x +1f(x)=x ,xlnx+1g(x)=lnx
; ④22x f(x)=x+1,-x g(x)=2x-1-e )(. 其中, 曲线y=f(x)和y=g(x)存在“分渐近线”的是( )
A .①④
B .②③
C .②④
D .③④(2020福建理)
10.右图给出了某种豆类生长枝数y (枝)与时间t (月)的散点图,那么此种豆类生长枝数与时间的关系用下列函数模型近似刻画最好的是………………………………………………………………( )
(A)22t y =; (B)t y 2log =; (C)3t y =;
(D)t y 2=.
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
11.设函数()f x 的定义域为D ,若存在非零实数m 满足()x M M D ∀∈⊆,均有x m D +∈,且()()f x m f x +≥,则称()f x 为M 上的m 高调函数.如果定义域为R 的函数()f x 是奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4高调函数,那么实数a 的取值范围是 ▲ .
12.给定函数:①y x =,②12
log (1)y x =+,③12x y -=,④|2|y x x =--,其中在
区间(0,1)上是单调减函数的序号是 ____ .(填上所有你认为正确的结论的序号)
13.已知函数2()25lgsin f x x x =-+的定义域是________;
14.函数()lg(23)x x f x =-的定义域为 ▲ .
15.已知()f x 在R 上是奇函数,且(4)()f x f x
+=,当(0,2)x ∈时,2()2f x x =,则(7)f = .
第(15)
16.定义在R 上的奇函数()f x 是周期函数,T 为其一个周期,则()2T f 的值是_______ 评卷人
得分 三、解答题
17.已知函数()x
a x x f +=,()2g x a x =-。

(1)若函数()f x 在区间[)2,+∞上是增函数,试求实数a 的取值范围;(2)若不等式()()f x g x ≥在[)1,+∞上恒成立,试求实数a 的取值范围.
19、(共14分)
18.研究方程lg(1)lg(3)lg()()x x a x a R -+-=-∈的实数解的个数
19.求函数2
()24f x x tx t =-++在区间[0,1]上的最大值()g t . 【例2】2(0),()2(01),52(1)t t g t t t t t t <⎧⎪=+≤≤⎨⎪->⎩
20.已知1()2()3f x f x x
+=,求()f x ;
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、选择题
1.A
2.A
3.A 点拨:方法1:代入判断法,将2,0x x ==分别代入不等式中,判断关于k 的不等式解集是否为R ;
方法2:求出不等式的解集:x k )1(2+≤4k +4422min 222455(1)2[(1)2]252111
k
x k x k k k k +⇒≤=++-⇒≤++-=-+++; 4.B
5.B
6.A
7.C
8.C
9.C 要透过现象看本质,存在分渐近线的充要条件是∞→x 时,0)()(→-x g x f 。

对于,当1>x 时便不符合,所以不存在;对于,肯定存在分渐近线,因为当时,0)()(→-x g x f ;对于,x x x g x f ln 11)()(-=-,设01)(",ln )(2>=-=x
x x x x λλ且x x <ln ,所以当∞→x 时x x ln -越来愈大,从而)()(x g x f -会越来越小,不会趋近于0,所以不存在分渐近线;当0→x 时,022112)()(→+++-=
-x e x
x g x f ,因此存在分渐近线。

故,存在分渐近线的是选C
10. D ;
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
11. ]1,1[-
12.
13.
14.
15.-2.
16. 评卷人
得分 三、解答题
17.(1)0a ≤时,()x a x x f +=在[)2,+∞上是增函数。

0a >时,任取122x x ≤<,()12121212()()x x a f x f x x x x x --=-⋅
,要使函数在[)2,+∞上是增函数,则120x x a ->恒成立,所以4a ≤,综上,a 的取值范围为(],4-∞ 18.
19.
20.。

相关文档
最新文档