列方程解应用题的关键是
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
方程(列方程解应用题)
方程(列方程解应用题)【知识概述】列方程解应用题的关键是设未知数,根据题意找出等量关系。
列方程解应用题的一般步骤是:1、弄清题意,找出未知数,并用X表示;2、找出应用题题中数量间的相等关系,列方程;3、解方程;4、检验,写出答案。
例题精学例1 、光明小学买2张桌子和5把椅子共付220元,每张桌子的价格是每把椅子价格的3倍,每张桌子和每把椅子各多少元?【思路点拨】根据“每张桌子的价格是每把椅子价格的3倍”,设一份数为X,也就是设每把椅子X元,每张桌子的价格是每把椅子价格的3倍,是3X元,再根据“2张桌子和5把椅子共付220元”得到:2张桌子的钱数+5把椅子的钱数=220元,根据这个等量关系列方程解答。
同步精练1、幼儿园买来花毛巾和白毛巾各40条,共用640元,已知花毛巾单价是白毛巾单价的3倍,一条花毛巾和一条白毛巾共多少元?2、买30千克精粉和70千克小米共付人民币312元,1千克精粉的价格是1千克小米价格的2倍,买精粉和小米各用多少元?3、买10个排球和4个篮球共付510元,每个篮球比每个排球贵5元,篮球和排球的单价各是多少元?例2 、有一群鸭,在河里的只数是岸上的3倍,如果有26只上岸,那么,岸上的鸭子就与河里的鸭子一样多,这群鸭子一共多少只?【思路点拨】根据“在河里的只数是岸上的3倍”,设岸上的鸭子有X只,河里的鸭子有3X只,再根据“如果有26只上岸,那么岸上的鸭子就与河里的鸭子一样多”,得到:河里的只数-26只=岸上的只数+26只,根据这个等量关系列方程解答。
同步精练1、甲筐有梨400个,乙筐有梨240个,现在从两筐相等数目的梨,剩下的梨数,甲筐恰好是乙筐的5倍,求两筐所剩的梨数各多少?2、六(1)班与六(2)班原有图书一样多,后来六(1)班又买来新书38本,六(2)班从原有的图书中取出72本送给一年级同学,这时六(1)班的图书是六(2)班的3倍,两班原有图书各多少本?3、有甲乙两个班,如果从甲班调8个同学到乙班,则两个班人数相等,如果从乙班调8个同学到甲班,则甲班的人数就是乙班的2倍,甲乙两班各多少人?例3 、生产一批零件,原计划10天完成,实际每天比原计划多生产42个零件,结果提前3天完成任务,这批零件有多少个?【思路点拨】这道题的等量关系不明显,细心分析一下,就发现这批零件的总个数是一定的,因此这道题的等量关系是:计划每天生产零件的个数×计划的天数=实际每天生产零件的个数×实际的天数,设计划每天生产X个,列方程解答。
小学数学应用题解题技巧
小学数学应用题解题技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。
列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。
一、首先是审题,确定未知数。
审题,理解题意。
就是全面分析已知数与已知数、已知数与未知数的关系。
特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。
即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
二、寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。
所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。
上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。
解方程时应当注意把等号对齐。
如:2x+47=4952x+47——47=495——47 ←应将“2x”看做一个整体。
2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。
如果左右两- 1 -边相等,说明方程解正确了。
如上题的检验过程为:检验:把x=224代入原方程。
列方程解应用题的关键在哪里?
44 —\
( 检验)
方程 ( 的解 组)
2 班
— —/ 参 加Y
小结是需要的, 但这个 小结 比较一般 化, 因
没有 参 加 4 -y 4
为学生最困难的是“ 建构方程( ” 怎样建构? 组),
在这个小结里 没有体现 出来. 听了这两节课, 笔者 想对 “ 这节课 的教学难
1班委会花 10 . 0 元购买了笔记本和钢笔共2 2 件, 作为班级奖品. 如果笔记本价格是 2 元/ . 本, 5 钢笔 7 支. 元/ 那么买 了多少笔记本和钢笔? 2 甲乙油桶.甲桶有油 4 0 . 0 千克, 乙有 10 5 千 克.如果 甲桶放出的油与 乙桶放出的油的重 量
成人票 +学生票 = 1
成 人 票收 入 +学 生票 收 入 = 5 1
和二班, 又涉及 了参加和没有参加的, 尽管 G老 师列了个简单 的表:
l 一班 I 参加 I 没有参加 I I 二班 I 参加 I 没有参加 I 还是显得很拗 口.以至 G老师 问学生: 脑子
有没有被弄“ 了? 糊” 接着是两道课内练 习题:
程) 解时比 较简便; 第三种方法 ( 列二元方程组)
列方程容易. G老师说了两者 的区别, 但没有说 明两者 的联系: 第三种方法列出方程组后, 只要 消元即得第一、二种.
例 1 参观上海科技馆, 成人票、学生票分 别为6 元和4 元 . 0 5 一天, 共卖出成人票学生票 1 万张. 收入 5 万元, 1 问这天这两种票各售出多少
( 成人票数 x 0 即 6 +学生票数 x 5=5 ) 4 1 添个大括号和方程组就象了.
G老师是这样说的: 中给 出了哪几个相等 题 关系? 请找出来. 票价、票数、收入, 三者什么关系? 成人票价 X张数 =成人票收入
初一数学上册一元一次方程应用题之和差倍分问题分析学案
初一数学上册一元一次方程应用题之和差倍分问题分析学案一元一次方程解应用题是初一数学学习的重点,也是一个难点。
而很多孩子在这类题型上是薄弱项,常常在做题时无从下笔。
所以王老师整理了初一上册一元一次方程解应用题常考题型,希望能帮助到各位同学,今天和大家分享的是小升初衔接|初一数学上册一元一次方程应用题类型之和差倍分问题!一元一次列方程解应用题的关键是:仔细审题,找出能正确表达题目整体数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.和差倍分问题:这类问题主要是正确理解是几倍“增加了几倍”“增加到几倍”“多少”“大小”“不足“剩余”等关键词语的意义,和、差、倍、分问题其实也就是增长率问题。
增长量=原有量×增长率现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.专项训练(附解析版答案)差倍问题1.养殖场鸡是鸭的4倍,鸡比鸭多15000只,鸡和鸭各养了多少只?【答案】鸡有20000只,鸭有5000只【解析】试题分析:由题意“鸡是鸭的4倍”知:鸡比鸭多3倍,又因为“鸡比鸭多15000只”,根据除法的意义列式求出一份的量,即鸭的只数,又由“鸡比鸭多15000只”,用鸭的只数加上15000只,就是鸡的只数。
列方程解应用题的关键是
问:(1)几秒后△PBQ的面积等于8cm2? D
C
(2)几秒后PQ⊥DQ?
3
(3)△PDQ的面积能为8cm2吗?为什么?
1
Q
2
AP
B
巩固练习
如图,矩形ABCD中,AB=6cm,BC=3cm, 动点P、Q分别从点A、D出发,点P以2cm/s的速 度沿AB方向向点B移动,一直到达B为止;点Q 以1cm/s的速度沿DA方向向点A移动。如果P、Q 同时出发,用t(s)表示移动的时间(0≤t≤3)那 么,当为何值时△QAP的面积等于2cm2?
例.某钢铁厂去年1月某种钢的产量为5000吨, 3月上升到7200吨,这两个月平均每个月增长 的百分率是多少?
分析:则2月份比一月份增产__5_0_0_0_x__ 吨. 2月份的产量是 ___5_0_0_0_(_1_+吨x) 3月份比2月份增产____5_0_0_0_(_1_+_x_)x吨 3月份的产量是 ____5_0_0_0_(1_+_x_)_2 吨
D
C
Q
A
P
B
巩固练习
如图,有长为12米的篱笆,一面利用墙(墙 的最大可用长度为a=10米),围成中间隔有一道 篱笆的长方形花圃。 (1)如果要围成面积为9平方米的花圃,AB的长 是多少米? (2)能围成面积比9平方米更大的花圃吗?如果 能,请求出最大面积,并说明围法;如果不能, 请说明理由。
完成学案课堂检测
增长率问题 1.两次增长后的量=原来的量(1+增长率)2 若原来为a,平均增长率是x,增长后的量为b
则 第1次增长后的量是a(1+x) =b 第2次增长后的量是a(1+x)2=b …… 第n次增长后的量是a(1+x)n=b
中考数学 二元一次方程组8种典型例题详解,一次解决应用题
中考数学二元一次方程组8种典型例题详解,一次解决应用题1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
1.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题:【思路点拨】由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展:【思路点拨】由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
2.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题:【思路点拨】本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展:【思路点拨】根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
3.工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。
五年级奥数专题 列方程解应用题(学生版)
列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。
此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。
利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。
列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。
3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。
五年级奥数(教案)第4讲:列方程解应用题
解:设每千克黄瓜 元。
20-8 =4
8 =16
=2
答:每千克黄瓜2元。
(二)例题4:(13分)
芭啦啦综合教育学校五年级(1)班学生采集标本。采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人。全班学生共有40人,没有采集标本的有多少人?
师:就采集标本来说,全班的人数分为两部分,哪两部分?
40×6+6 =600
6 =600-240
6 =360
=60
答:货车每小时行驶60千米。
三、小结:(5分)
列方程解应用题的步骤:
1.弄清题意,确定未知数并用 表示;
2. 找出题中的数量之间的相等关系;
3. 列方程、解方程;
4. 检查或验算,写出答案。
第二课时(50分)
一、复习导入(3分)
上节课我们学习了列方程解应用题,相信同学们对列方程解应用题的步骤都有了一定的掌握。这节课就让我们继续探讨列方程解应用题,感受方程给我们带来的便利。
板书:
解:设下层原来有书 本,则上层原来有书4 本。
4 -60= +60
3 =120
=40
4×40=160(本)
答:上层原来有书160本,下层原来有书40本。
三、总结:(5分)
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个等式,再设未知数,并将这个相等的关系用含有未知数的式子表示出来。
块。
师:很好.那有谁知道女同学搬砖多少块?
生3:女同学有30人,每人搬砖的块数不知道,可以设为 。这样女同学就搬
砖30 块。
师:大家听明白了吗?有不同意见吗?(没有)掌声送给他。
师:根据等量关系找到未知量,设为 ,下一步干什么?
【小升初】小学数学《列方程解应用题专题课程》含答案
21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。
二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。
2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。
3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。
列方程解应用题,关键是寻找题中的等量关系。
方法:(1)直接设未知数;(2)间接设未知数。
途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。
考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去,乙用去后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x元,则乙原有(100-x)。
甲剩下的钱可以用 -元表示,乙剩下的钱可以用--元表示,然后根据两人一共剩下60元列出方程。
【答案】设甲原有x元,则乙原有(100-x)。
---答:甲原来有72元钱。
【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。
考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。
体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。
【答案】设借球的班级数为x个。
篮球:58=40个足球:403=120个答:体育室里原有足球120个,篮球40个。
【归纳总结】隐含的等量关系是借的班数相同,间接设未知数,设班数为x。
考点3 列方程解含比例的应用题【例3】李叔叔与王叔叔8月份收入的钱数之比是8:5,8月份支出的钱数之比是8:3,月底李叔叔结余800元,王叔叔结余980元,8月份两人各收入多少元?【精析】由题意可知:收入比是8:5,设李叔叔的收入为8x元,王叔叔的收入为5x 元,收入减去结余等于支出,由此可列方程。
六年级数学上册试题 一课一练 《解决问题的策略》习题 -苏教版(含答案)
《解决问题的策略》习题一.判断题1、列方程解应用题的关键就是理解题意,找出题中的等量关系,列出方程.()2、学校买来200本科技书,买的故事书比科技书的2倍少50本,买故事书多少本?解:设买故事书x本.2x﹣50=200,x=125.()3、x个同学站成8行,每行有6人.8x=6 ()改正:4、5个人种南瓜,每人种了x株,一共种了40株.5x=40.()改正:5、一条公路修了全长的,离中点还有40米,这条公路全长多少千米?列式是设全长为X千米:X×=40.()二.选择题1、牧羊人正在放牧,一个人牵着一只羊问他.“你的羊群有多少只?”牧羊人答道:“这群羊加上一倍,再加上原来羊群的一半.又加上原来羊群的四分之一,算上你牵来的羊,正好满一百只.”请问,牧羊人的羊群有多少只?()A.32只B.34只C.36只D.38只2、小亮和姐姐一共有240张邮票,小亮的邮票张数是姐姐的.如果设姐姐的邮票为x张,下列方程中符合题意的是()A.x﹣x=240 B.(1+)x=240C.240+x=x3、张大爷家收了780千克苹果,装了30筐,还剩下15千克.平均每筐装x千克,下面的方程中,错误的是()A.780﹣30x=15 B.30x+15=780 C.30x﹣15=7804、一只鸵鸟和一只天鹅共重108千克,鸵鸟的体重是天鹅的8倍,如果设天鹅的体重为x千克,那么列方程是()A.8+x=108 B.8x=108 C.8x+x=108 D. x+x=1085、某校六年级女生有120人,比男生少10%,六年级男生有多少人?设男生有x人,下列方程不正确的是()A.x﹣10% x=120 B.(1﹣10%)x=120C.x+10% x=120 D.120+10% x=x6、有60个苹果,苹果是桃的2倍,桃有多少个?如果设桃有x个,那么下面方程中()是错误的.A.2x=60 B.60÷x=2 C.x÷2=607、下面不能用方程“x+x=60”来表示的是.三.填空题1、家乐福超市运来10箱饮料,每箱x瓶,卖出了650瓶,还剩250瓶.根据题意写一个等量关系:,根据这个关系式列出相应的方程.2、只列方程,不计算.(1)(2)3、用方程表示如图的数量关系式是.4、奶奶今年78岁,比玲玲年龄的5倍大8岁.玲玲今年几岁?解:设玲玲今年x岁,可列方程,解得x=.5、世界杯足球赛用的足球,白色皮共20块,比黑色皮的2倍少4块,共有多少块黑色皮?要用方程解答,所用的等量关系是.6、看图列方程.方程:7、妈妈去水果店买回苹果和香蕉各4千克,共用去了56元.已知苹果每千克7.5元,香蕉每千克x元.根据条件把下面的关系式补充完整,(1)+ =56(2)(+ )×4=568、用方程表示下面的数量关系.方程:方程:9、看图写出等量关系,并列出方程.等量关系是.方程是.四.应用题1、光明小学四年级有320人,比三年级人数的多20人.光明小学三年级共有多少人?(用方程解)2、某工程队铺一段路,原计划每天铺9.6千米,15天铺完.因工期有变,需提前3天完成,实际每天要比原计划多铺多少千米?(用方程解)3、一本书共96页,小军前4天看了24页,照这样的速度,看完全书需要多少天?(列比例解答)4、只列方程不计算.(1)明明的体重是25kg,他的体重比爸爸的体重轻了,爸爸的体重是多少千克?解:设明明爸爸的体重是x千克.(2)甲、乙两艘轮船同时从上海出发开往青岛.经过18小时后,甲船落后乙船72千米.甲船每小时行32千米,乙船每小时行多少千米?解:设乙船每小时行x千米.5、甲乙两城相距400千米,一列客车和一列货车同时从两地相对开出,4小时后相遇.客车每小时行驶55千米,货车每小时行驶多少千米?(用方程解)6、王老师为学校买了篮球和足球共6个,共用去231元,已知篮球每个42元,足球每个35元,篮球和足球各买多少个?(用方程解)7、李兵买7支铅笔和10本练习本,一共用了19.2元,每本练习本1.5元.每支铅笔多少元?(列方程解答)8、甲、乙两车同时从A地出发,甲车向东开,每时行55千米,乙车向西开,3时后两车相距315千米.乙车每时行多少千米?(用方程解)9、果园里有荔枝树270棵,比龙眼树棵数的多60棵,龙眼树有多少棵?(用方程解答)10、果园里的桃树比杏树多40棵,杏树的棵数是桃树的,桃树和杏树各有多少棵?(用方程解)11、买1支水性笔比买5支铅笔便宜12元,每支铅笔0.75元,每支水性笔多少元?(用方程解答.)12、图书馆购进科技书与童话书的本数比为3:2,其中科技书有165本,童话书有多少本?(用方程解)答案一、判断题1、√.2、×.3、×,x÷8=6.4、√,﹣﹣﹣﹣.5、×.二.选择题1、C.2、B.3、C.4、C.5、C.6、C.7、C、D.三.填空题1、饮料箱数×每箱瓶数=卖出瓶数+剩下瓶数,10x=650+250.2、2x=150; x=120.3、3x+14.8=74.2.4、5x+8=78;14.5、黑色皮块数×2﹣4=白色皮块数.6、50+x=200.7、苹果的总价,香蕉的总价;苹果的单价,香蕉的单价.8、2x=50,4x+10=40.9、三个篮球的价钱+一个足球的价钱=总价,3x+48=234.四、应用题1、解:设三年级人数是x人,x+20=320x=300x=250答:光明小学三年级共有250人.2、解:设实际每天比原计划多x千米(9.6+x)×(15﹣3)=9.6×15115.2+12x=14412x=28.9x=2.4答:实际每天要比原计划多铺2.4千米.3、解:设看完全书需要x天,96:x=24:424x=96×4x=96×4÷24x=16答:看完全书需要16天.4、解:(1)设明明爸爸的体重是x千克,(1﹣)x=25(2)设乙船每小时行x千米,18(x﹣32)=72故答案为:(1﹣)x=25;18(x﹣32)=72.5、解:设货车每小时行驶x千米(55+x)×4=400(55+x)×4÷4=400÷455+x=10055+x﹣55=100﹣55x=45答:货车每小时行驶45千米.6、解:设买来了x个篮球,则足球个数为(6﹣x)个,42x+35×(6﹣x)=23142x+210﹣35x=2317x=21x=36﹣3=3(个)答:篮球买了3个,足球买了3个.7、解:设每支铅笔x元,1.5×10+7x=19.215+7x=19.27x=4.2x=0.6答:每支铅笔0.6元.8、解:设乙车每小时行x千米,3(55+x)=31555+x=105x=50答:乙车每小时行50千米.9、解:设龙眼树有x棵x+60=270x+60﹣60=270﹣60x=210x×=210×x=280答:龙眼树有280棵.10、解:设桃树有x棵,则杏树有x棵,x﹣x=40x=40x×5=40×5x=200200﹣40=160(棵)答:桃树有200棵,杏树有160棵.11、解:设每支水性笔x元x﹣0.75×5=12x﹣3.75=12x﹣3.75+3.75=12+3.75x=15.75答:每支水性笔15.75元.12、解:设童话书有x本3:2=165:x3x=2×165x=x=110答:童话书有110本.。
列方程解应用题的口诀
列方程解应用题的口诀
解应用题的口诀可以简单总结为以下几点:
1. 仔细阅读题目,理解问题所涉及的情境和条件。
2. 定义变量,让问题中的未知数用字母表示。
3. 建立方程,根据题目中提供的信息,用代数式表示出各个量之间的关系。
4. 解方程,通过适当的运算方法求得未知数的值。
5. 检验答案,将求得的未知数代入原方程中验证是否符合题目要求的条件。
这个口诀可以帮助我们在解应用题时有条不紊地进行思考和计算,确保不会遗漏重要的步骤或信息。
希望这个简单的口诀可以帮到你。
2021年小升初奥数22讲-第17讲 列方程(组)解应用题
第17讲列方程(组)解应用题知识要点应用题是中学数学的重要内容,也是初中数学竞赛中的常见题型.应用题涉及的知识面广、解法灵活,对培养学生分析问题解决问题的能力、逻辑推理能力以及创造能力具有非常重要的意义.列方程解应用题的关键是合理选择未知元,并根据题意建立等量关系.列方程组解应用题的基本方法与列一元一次方程解应用题相同,关键是合适地选择未知元,通过认真仔细地审题,分析出问题中包含的等量关系.未知元选择得是否合适,常常直接影响解题的难易程度.另有一些应用题,我们还采用下列所谓“设而不求”未知数的方法,即在我们解决数学问题时,除了应设的未知数外,增设一些辅助未知数(也叫做参数).其目的不是要具体地求出它们的值,而是以此作为桥梁,沟通数量之间的关系,连接已知量和未知量.“设而不求”这种方法也叫做参数法(或辅助元素法等).典例精讲典例1 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B 地到A 地共用112小时.间:A 、B 两地相距多少千米? 解 设A 地到B 地坡长x 千米,则下坡需12x 小时,下坡后通过平路需111212x -小时,从B 地回到A 地,上坡需4x 小时,上坡前通过平路需1124x -小时,因此平路长为1191212x ⎛⎫- ⎪⎝⎭千米或18124x ⎛⎫- ⎪⎝⎭千米,于是得方程111981121224x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.解之得3x =.所以平路长113961212⎛⎫-= ⎪⎝⎭千米,共长639+=千米. 答:A B 、两地相距9千米.说明 本题采用了设间接元的方法。
典例2 某校初一年级举行数学竞赛,参加的人数是未参加人数的3倍.如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2:1.求参加竞赛的人数与初一年级的总人数.解 设未参加竞赛的人数为x ,则参赛人数为3x ,全年级共有4x 人,据题意得()62646x x x +++=-(),解之得24x =.参加竞赛的学生人数为32472⨯=人,初一年级的总人数为42496⨯=人.答:参加竞赛有72人,初一年级的总人数为96人.典例3 两个容器内共有48干克水,从甲容器内给乙容器加水一倍,然后乙容器又给甲容器加甲容器剩余水的一倍,则两个容器内的水量相等问:最初两个容器内各有水多少千克? 分析 此题的关键是用代数式来表达两个容器内的水量,可直接设未知元,根据题目中加水的步骤列出代数式.解 设最初甲容器内盛水x 千克,则乙容器内有水48x -()千克.甲容器给乙容器加水一倍后,甲容器有水48[()]x x --千克,乙容器有水248x -()千克.然后乙容器又给甲容器加甲容器剩余水的一倍后,这时甲容器有水248[()]x x --千克,乙容器有水()24848[()]x x x ----千克.由题意得()()[]24824848)x x x x x --=----⎡⎤⎣⎦(,解方程得30x =,4818.x -= 答:最初甲容器内有水30千克,乙容器内有水18千克.典例4 一工人在工期内要制造出一定数量的同样零件.若他每天多做10个,则提前142天完成;若他每天少做5个,则要误期3天.问:他要做多少个零件?工期是多少天?解 设工人要做x 个零件,工期为y 天,则他每天做x y个,据题意得 ()1104,253.x y x y x y x y ⎧⎛⎫⎛⎫+-=⎪ ⎪⎪⎝⎭⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩ 整理得 110445,25315.x y y x y y ⎧-⨯=⎪⎪⎨⎪-+⨯=⎪⎩②×2+①得50x y=,50x y =.将代人②得27501350y x y ===,.即135027x y ==,. 答:工人要做1350个零件,工期为27天.典例5 某团体从甲地到乙地,甲、乙两地相距100千米.团体中的一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那一部分人.已知人步行时速8千米,汽车时速40千米.问:要使大家在下午4点钟同时到达乙地,必须在什么时候出发?分析 这个问题实质上要求的是如果按题设的行走方式,至少需要多少个小时.注意到先坐车后步行的人和先步行后坐车的人所用的时间总量是相等的,利用这个等量关系可列方程. 解 设先坐车的一部分人下车地点距甲地x 千米,这一部分人下车地点距另一部分人的上车地点y 千米,示意图如图17-1所示.图17-1汽车走()x y +千米的时间与先步行后乘车的那一部分人从甲地步行到上车点所 用的时间相等,得方程()840x y x y +-=.① 先乘车后步行的一部分人从下车点步行到终点所用的时间等于汽车从下车点返回接另一部分人到终点所用的时间,又得方程100100.84040x y y x -+-=+② 联立①②,并解之得7550.x y =⎧⎨=⎩, 所以从甲地到乙地共用1005408x x -+=小时,故须在中午11点出发. 答:必须在中午11点出发.典例6 旅行者从下午3时步行到晚上8时,他先走平路然后上山;到达山顶后就按原路下山,再走平路返回出发地.若他走平路够小时行4千米,上山每小时行3千米,下山每小时行6千米.问:旅行者一共行多少干米?解 如图17-2,设旅行者所走的全程为x 千米,山路长为y 千米,则他上山需3y 小时,下山需6y 小时,走平路来回需24x y -小时,依题意有方程 283,364y y x y =-++- 42365,20.12y y x y x ++-==图17-2答:旅行者一共行了20千米.说明 这里的y 是设而不求的未知数,它在解题过程中消去了.典例7 甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将只有其中1人解出的题叫做难题,3人都解出的题叫做容易题,试问难题多还是容易题多?(多的比少的)多几道题?解 设有x 道难题,y 道容易题,中等的(有两人解出的)题为z 道,则由题意可得 方程组1003260 3.x y z x y z ++=⎧⎨++=⨯⎩,①②①×2-②得 20.x y -=答:难题多,且难题比容易题多20道.典例8 游泳者在河中逆流而上,水壶于桥A 下遗失被水冲走.继续向前游了20分钟后他发现水壶遗失,于是立即返回,在桥A 下游距桥A 2千米的桥B 下追到水壶,求该河水流的速度.解 设该河水流的速度为每小时x 千米,游泳者每小时游a 千米,则游泳者自桥A 逆流游了()2060a x -到C 处,在返回中用了 ()()20260x a a x ⎡⎤÷+⎢⎥⎣-⎦+小时,比水壶在遗失后漂流时间2x小时少20分钟,因此得()20222060,60a x a x x +-=-+()120202012020,6060x a x a x x -+-=+120202012020,x a x a x x -+-=+2012020a x a x-=(利用了合分比),所以2012020,x x =-3x =.答:水流的速度是每小时3千米.典例9 组装甲、乙、丙3种产品,需用A B C 、、 3种零件.每件产品甲需用A B 、各2个;每件产品乙需用B C 、各1个;每件产品丙需用2个A 和1个C .用库存的A B C 、、3种零件,如组装成p 件甲产品、q 件乙产品、r 件丙产品,则剩下2个A 和1个B C 、恰好用完.说明:无论怎样改变生产甲、乙、丙的件数,也不能把库存的A B C 、、3种零件都恰好用完.解 由题意可知,库存的A B C 、、3种零件的个数分别为:A 种()222p r ++个,B 种21p q ++()个,C 种()q r +个.假设生产甲x 件,乙y 件,丙之件恰好将3种零件 都用完(x y 、、z 均为正整数),则由题意可得22222221,x z p r x y p q y z q r +=++⎧⎪+=++⎨⎪+=+⎩,①②,③①+③-②,得331z r =+,它的左边是3的倍数,右边是3的倍数加1,矛盾,不成立,所以不能把库存的A B C 、、3种零件都恰好用完.水平测试ABCA 卷一、填空题1. 三个数的和是22,甲数是丙数的2倍,乙数的10倍比甲、乙两数和的4倍还多 10,则这三个数是 .2. 两个车间1月份共生产摩托车300辆,2月份第一车间增产12%,第二车间增产8%,结果两个车间2月份共生产330辆,1月份两车间各生产 辆.3. 甲、乙两人今年年龄之和为60岁.当甲的年龄是乙现在的年龄的13时,乙恰是 甲现在的年龄,则甲、乙两人今年分别为 岁.4. 甲、乙两种浓度不同的药水,甲种药水含水与药之比为5:3;乙种药水含水与药的比为7:3.那么这两种药水里分别取 ,才能配成含水6千克、含药3千克的混合药水.5. 配制10%的硫酸溶液1000千克,已用60%的硫酸85千克,还需要98%的硫酸 千克, 水 千克.6. 有一根铁丝,第一次用去它的一半少1米,第二次用去的比剩下的一半多1米,最后剩下7.25米,则原来铁丝长是 米.7.某商店将彩电接原价提高了40%,然后在广告中写了“大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电原价应是元.8 某手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,与当天上午该手表指示时间是10点50分时,准确时间应该是.9.甲、乙两桶水,若将甲桶中的水倒2千克到乙桶中,此时甲桶中的水是乙桶中的3倍;若将乙桶中的水倒1千克到甲桶中,此时甲桶中的水比乙桶多8倍,则原来甲、乙两桶中各有水千克.10. 40只脚的蜈蚣和3个头的龙在同一个笼子里,共有26个头和208只脚,如果每只40只脚的蜈蚣只有一个头,则每条3个头的龙有只脚.二、解答题11. 甲、乙两人在一圆形跑道上跑步,甲用40秒钟就能跑完一圈,乙反向跑每15秒钟和甲相遇一次.问:乙跑完一圈需要多少时间?12.某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场,回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆.问:从第一辆出租汽车开出后,经过多少时间停车场就没有出租汽车了?B卷一、填空题1. 四个数中每三个数相加得到的和分别是31、30、29、27,那么原来的四个数中最大的一个数是.2.一条轮船从A港到B港顺水航行需6小时,从B港到A港逆水航行需8小时.若在静水条件下,从A港到B港需小时.3.如果n个人m天可以做p个零件(假定每人工效一样),那么m个人做n个零件需天.4.已知苹果1000克、雪架500克、蜜桃2000克共价32元,又知苹果2000克、雪梨11000克、蜜桃1000克共价28元.今要买苹果2000克、雪梨1000克、蜜桃2500克,应付钱元.5.四个数之和为100.如果第一个数加上4,第二个数减去4,第三个数乘以4,第四个数除以4,所得的和、差、积、商全相等,那么这四个数依次为.6.一个两位数加上2以后,其和的各数字之和只有原数字的各位数字之和的一半,这个两位数是.7.有一种货物,甲把原价压低10元卖掉,从售价中取10%作为手续费;乙把原价压低20元卖掉,从售价中取20%作为手续费.若两人得到的手续费一样多,那么原价是元. 8.小华同学经常去海边散步,一条船迎面驶来,从他身旁开过用了3秒钟;过一会儿,该船追上小华从他身旁开过用了142秒钟.若小华步行的速度为每小时 3.6千米,则这条船长米.9.有一个两位数,如果用它去除以个位数字,得商为9余数为6;如果用这个两位数除以个位数字与十位数字之和,则得商为5余数为3.这个两位数是.10.甲对乙说:“当我像你现在这么大时,你那时的年龄是我现在年龄的一半;当你像我现在这么大时,我们俩的年龄和是63岁.”甲、乙两人今年各岁.二、解答题11. 甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29、23、21和1717.问:这四人中最大年龄与最小年龄的差是多少?12. 假设五家共用一井取水,甲用绳2根不够,差乙家绳子1根;乙用绳3根不够,差丙家绳子1根;丙用绳子4根不够,差丁家绳子1根;丁用绳子5根不够,差戊家绳子1根;戊用绳6根不够,差甲家绳子1根.如果各得所差的绳子1根,都能到达井深.问:井深、各家的绳长各是多少?(井深为小于1000的整数)C 卷一、填空题1. 近日的亚洲足球十强赛引起初三学生王欣对足球的研究,他发现足球是用黑白两色皮黏合而成,黑块皮为正五边形,白块皮为正六边形,且数出黑皮有12块,那么白皮有 块.2. 如右表,a b c d e f 、、、、、均为有理数,表中各行、各列及两条对角线上三个数的和相等,则a b d f c e +++++= .3. 2016年中国足球超级联赛前23轮比赛,广州恒大队胜15场,平5场,负3场,我50分;江标苏宁队胜13场,平5场,负5场,积44分,上海上港队胜10场,平8场:负5场,积38分;则每队胜1场,平1场,负1场各得 分.4. 在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47、61、 60.那么这三个人中最大年龄与最小年龄的差是 .5. 有一个六位数6abcde ,若把个位数字6移至第一位的前面变成6abcde ,则新六位数是原数的4倍,则此六位数是 .6. 甲、乙两列客车的长分别为150米和200米,它们相向行就在平行的轨道上.已知甲车上某乘客测得乙车在窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是 秒.7. 江堤边一洼地发生了管涌,江水不断涌出,假定每分钟涌出的水量相等,.如果用两台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完;如果要在10分钟内抽完水,那么至少需要抽水机 台.8. 上午8点8分,小明骑自行车从家里出发.8分钟后,爸爸骑摩托车去追他,在离家4干米的地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明.再追上他的时候,离家恰好是8千米,这时的时间是 .9. 甲、乙两个同学从A 地到B 地,甲步行的速度为每小时3千米,乙步行的速度为每小时5千米,两人骑自行车的速度都是每小时15千米.现在甲先步行,乙先骑自行车,两人同时出发,走了一段路程后,乙放下车步行,甲走到乙停放自行车处改骑自行车.以后不断交替行进,两个恰好同时到达B 地,甲走全程的平均速度是 千米/时.10. 公共汽车每隔x 分钟发车一次,小宏在大街上行走,发现从背后每隔6分钟开 过一辆公共汽车,而每隔247分钟迎面开来一辆公共汽车.如果公共汽车与小宏行进的速度都是均匀的,则x 等于 分钟.二、解答题11. 某果品商店进行组合销售,甲种搭配:2千克A 水果,4千克B 水果;乙种搭配:3千克A 种水果,8千克B 水果,1千克C 水果;丙种搭配:2千克A 水果,6千克B 水果,1千克C 水果.已知A 水果每千克2元,B 水果每千克1.2元,C 水果每千克10元,某天该商店销售这三种搭配共得441.2元,其中A 水果的销售额为16元.问:C 水果的销售额为多少元?12. 有4位小朋友的体重都是整数干克,他们两两合称体重,共称了5次,称得的千克数分别为99、113、125、130、144,其中有两人没有一起称过,那么这两人中体重较重的人重多少千克?。
列方程解应用题的技巧
列方程解应用题的技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。
列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。
一、首先是审题,确定未知数。
审题,理解题意。
就是全面分析已知数与已知数、已知数与未知数的关系。
特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。
即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
二、寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。
所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。
上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。
解方程时应当注意把等号对齐。
如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。
2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。
如果左右两边相等,说明方程解正确了。
如上题的检验过程为:检验:把x=224代入原方程。
人教版小学数学五年级上册第四章教案B列方程解应用题
列方程解应用题教学目标1、初步学会列方程解比较容易的两步应用题。
2、知道列方程解应用题的关键是找应用题中相等的数量关系。
教学重点列方程解应用题的方法步骤。
教学难点根据题意分析数量间的相等关系。
教学步骤一、铺垫孕伏1、口算2、出示复习题(课件演示:列方程解应用题例1例2下载)商店原有一些饺子粉,卖出35千克以后,还剩40千克。
这个商店原来有饺子粉多少千克?(1)读题,现解题意。
(2)引导学生用学过的方法解答。
(3)要求用两种方法解答。
(4)集体订正:(5)针对解法二教师说明:这种方法就是我们今天要学习的列方程解应用题。
(板书课题:列方程解应用题)二、探究新知(一)教学例1(继续演示课件:列方程解应用题例1例2下载)例1、商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。
这个商店原来有多少千克饺子粉?1、读题理解题意。
2、提问:通过读题你都知道了什么?3、引导学生知道:已知条件和所求问题:题中涉及到原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。
教师板书:原有的重量-卖出的重量=剩下的重量4、教师提问:等号左边表示什么?等号右边表示什么?(等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。
)卖出的饺子粉重量直接给了吗?应该怎样表示?(卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)改写:原有的重量-每袋的重量×卖出的袋数=剩下的重量5、引导学生根据等量关系式列出方程。
6、让学生分组解答。
教师板书:解:设原来有千克饺子粉。
答:原来有75千克饺子粉。
7、指导看书教师提问:你能用书上讲的检验方法检验例1吗?小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)(二)教学例2 (继续演示课件:列方程解应用题例1例2下载)例2、小青买4节五号电池,付出8.5元,找回0.1元。
每节五号电池的价钱是多少元?1、读题,理解题意。
2020年七年级上第三章一元一次方程3.4实际问题与一元一次方程课时3积分与行程问题及参考答案
人教版2020年七年级上第三章一元一次方程3.4实际问题与一元一次方程课时3积分问题与行程问题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x场,则根据以上信息所列方程正确的是()A.3x+2x=32B.3(11﹣x)+3(11﹣x)+2x=32C.3(11﹣x)+2x=32D.3x+2(11﹣x)=322.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.53.甲、乙两人从同一地点出发前往某地,若乙先走2小时,甲从后面追赶,当甲追上乙时()A.甲比乙多走2小时B.甲、乙两人行走路程之和等于出发地到相遇点的距离C.乙走的路程比甲多D.甲、乙两人行走的路程相等4.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,可列方程()A .408 3.6x x -=B .4083.6x=- C .3.6840x x -= D .3.6408x x-= 5.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .AD D .AB二、填空题6.一张试卷只有25道选择题,做对一题得4分,未做或做错一题倒扣1分,某同学做了全部试题共得85分,他做对了________道题.7.已知A 、B 两地相距1000米,甲、乙两人分别从A 、B 两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过_____秒两人相距100米.8.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.9.某客运站行车时刻表如图,若全程保持匀速行驶,则当快车出发______小时后,两车相距25km.三、解答题10.为了促进全民健身运动的开展,某市组织了一次足球比赛,下表记录了比赛过程中部分代表队的积分情况.(1)本次比赛中,胜一场积______分;(2)参加此次比赛的F代表队完成10场比赛后,只输了一场,积分是23分,请你求出F代表队胜出的场数.11.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?12.盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积______分,胜一场积______分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.13.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?14.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.则:(1)动点P从点A运动至点C需要时间多少秒?(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少?(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案1.C【分析】设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键.2.C【详解】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4.答:小强胜了4盘.故选C.【点睛】本题考查了列一元一次方程解决实际问题,一般步骤是:①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.3.D【分析】两人从同一地点出发,甲追上乙,那么甲走的路程=乙走的路程.【详解】解:当甲追上乙时,乙比甲多走2小时,故A选项错误;甲、乙两人行走路程之和等于出发地到相遇点的距离的2倍,故B选项错误;甲、乙两人行走的路程相等,故C选项错误,D选项正确.【点睛】本题主要考查了行程问题中的数学常识:从同一地点出发的追及问题的等量关系是两人所走的路程相等,这也是建立等量关系列方程的依据. 4.C 【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可. 【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得: 3.6840x x-= 故选:C. 【点睛】列方程解应用题的关键是找出题目中的相等关系. 5.C 【分析】设乙x 分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇. 【详解】设乙x 分钟后追上甲, 由题意得,75x−65x =270, 解得:x =27, 而75×27=5×360+212×90, 即乙第一次追上甲是在AD 边上. 故选C . 【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上. 6.22设他做对了x道题,则做错了(25-x)道题,根据“做了全部试题共得85分,”列出方程并解答.【详解】-道题依题意,得解:设他做对了x道题,则做错了(25)xx x--=.4(25)85x=.解得:22故答案为:22.【点睛】此题主要考查了一元一次方程的应用,解题关键是弄清题意,找到合适的等量关系.难点是设出相应的未知数.7.90或110【分析】先设时间为x,利用:速度×时间=路程,列出方程,解出即可.【详解】解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.【点睛】本题考查一元一次方程的应用,关键在于对方程的熟悉,注意分类讨论.8.12km【分析】首先设这条公路的长为xkm,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A地沿这条公路到B地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm.由题意,得86401060x x -=-. 解得:12x =. 故答案为:12km . 【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.9.0.5小时或2.5小时. 【分析】先分别计算普通车和快车的速度,设快车出发x 小时后,两车相距25km ,根据普通车行驶路程-快车行驶路程=25和快车行驶路程-普通车行驶路程=25两种情况分别列出方程,解方程即可得出答案. 【详解】解:根据题意普通车的速度为:300÷4=75km/h 快车的速度为:300÷3=100km/h. 设快车出发x 小时后,两车相距25km ,此时慢车出发x+0.5小时 ①若快车追上慢车之前,则根据题意75(0.5)10025x x +-=解得0.5x =.此时时间为8:00符合题意; ②若快车追上慢车之后,则根据题意10075(0.5)25x x -+=解得 2.5x =.此时时间为10:30符合题意.故出发0.5小时或2.5小时之后,两车相距25km. 【点睛】本题考查应用一元一次方程解决追击问题. 解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.在本题中还应该注意因为时间不能超过10:30,所以应该对计算结果进行检验.10.(1)3;(2)7 【分析】(1)根据B 代表队的积分情况可直接得出胜一场的积分情况(2)先根据A,B,C,D 代表队的积分情况分别算出胜一场,平一场,负一场各自的积分情况,再列一元一次方程求解即可. 【详解】解:(1)根据B 代表队的积分情况可得胜一场的积分情况:1863÷=(分)(2)由A 代表队的积分情况得出平一场的积分情况:163511-⨯÷=()(分) 由C 代表队的积分情况得出负一场的积分情况:()11332110-⨯-⨯÷=(分) 设F 代表队胜出的场数为x ,则平场为(9-x )场,列方程得:3x+1⨯(9-x)=23解方程得:x=7答:F 代表队胜出的场数为7场. 【点睛】本题是典型的比赛积分问题,清楚积分的组成部分及胜负积分的规则是解本题的关键.11.甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.(1) 1 , 2;(2)胜场数为11场时,胜场的积分等于负场的2倍. 【解析】 试题分析:(1)由表中最后一行的信息可知,22场全负积分为22,由此可得负一场积1分;结合表中第一行的信息即可求得胜一场积2分;(2)设该队胜了x 场,则该队负了(22)x -场,胜的场次共积2x 分,负的场次共积(22)x -分,由题意可得方程:22(22)x x =-,解方程即可得到答案. 试题解析:(1)由表中最后一行的信息可知,某队22场全负共积了22分, ∴负一场的积分为:22÷22=1(分);设胜一场积a 分,则由表中第一行信息可得:121034a +=,解得:2a =, ∴胜一场积2分;(2)设该队胜了x 场,根据题意可得:22(22)x x =-,解得:11x =,∴若某队赛完全部22场,胜了11场,则该队的胜场积分是负场积分的2倍. 答:若该队在22场比赛中胜了11场,则其胜场积分是负场积分的2倍.13.(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m. 【解析】 【分析】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据距离=速度差×时间即可得出关于x 的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m .分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑,根据距离=速度差×时间即可得出关于y 的一元一次方程,解之即可得出结论.【详解】(1)设小明的骑行速度为x 米/分钟,则爸爸的骑行速度为2x 米/分钟,根据题意得:2(2x-x )=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y 分钟,小明和爸爸跑道上相距50m ,①爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了50米,根据题意得:400y-200y=50,解得:y=14; ②爸爸第一次追上小明后,在第二次相遇前,爸爸又比小明多骑了350米,根据题意得:400y-200y=350,解得:y=74. 答:第二次相遇前,再经过14或74分钟,小明和爸爸跑道上相距50m . 【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据距离=速度差×时间列出关于x 的一元一次方程;(2)分第一次相遇后爸爸比小明多骑50米和350米两种情况考虑. 14.(1)21;(2)6;(3)当2,8,14,17t =时,OP BQ =.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P ,Q 两点在线段BO 上,根据BO =10,可得方程,根据解方程,可得答案;(3)根据PO 与BQ 的时间相等,可得方程,根据解方程,可得答案.【详解】解:(1)点P 运动至点C 时,所需时间t =12÷2+10÷1+10÷2=21(秒),答:动点P 从点A 运动至C 点需要21s ;(2)由题意可得10t s >,P ,Q 两点在线段BO 上相遇∴()()621010t t -+-=,∴12t =,∴M 所对的数字为12-6=6;(3)当点P 在AO 上,点Q 在CB 上时,122OP t =-,10BQ t =-,∵OP BQ =,∴12210t t -=-,∴2t =;当点P 在OB 上,点Q 在CB 上时,6OP t =-,10BQ t =-,∵OP BQ =,∴610t t -=-,∴8t =;当点P 在OB 上,点Q 在OB 上时,6OP t =-,()210BQ t =-,∵OP BQ =,∴()6210t t -=-,∴14t =,当点P 在OB 上,点Q 在OA 上时,61510t t -=-+,无解当点P 在BC 上,点Q 在OA 上时,()10216OP t =+-,()1015BQ t =+-, ∵OP BQ =,∴()()102161015t t +-=+-,∴17t =∴当2,8,14,17t =时,OP BQ =.【点睛】本题考查了一元一次方程的应用,利用PO 与BQ 的时间相等得出方程是解题关键,要分类讨论,以防遗漏.。
列方程解应用题②(5年级培优)教师版
1、意义:是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。
2、关键:能够正确地设立未知数,找出等量关系,从而建立方程。
而找出等量关系,在于熟练运用数量之间的各种已知条件。
掌握了这两点就能正确地列出方程。
3、步骤:(1)弄清楚题意,找出未知数,用x 表示;(2)通过分析,找出数量之间的等量关系,列出方程;(3)解方程,需要熟练掌握各种类型方程的解法。
(4)检验所求出的解是否符合题意,舍去不合题意的解。
列方程解(简单和差倍)应用题:某纺织厂女职工比男职工多1000人,且女职工人数比男职工的3倍少200人,问:男女职工各多少人?【答案】600人;1600人 【知识点】差倍问题 【难度】A【分析】解:设男职工有x 人,则女职工有()2003-x 人。
()10002003=--x x ,解得600=x女职工:3×600-200=1600(人)。
答:男职工600人,女职工1600人。
列方程解应用题:某纺织厂有职工2700人,女职工比男职工的3倍多100人,问:男女职工各多少人?【分析】解:设男职工有x 人,则女职工有()1003+x 人。
27001003=++x x ,解得650=x女职工:3×650+100=2050(人)答:男职工650人,女职工2050人。
列方程解(和差倍)应用题:被除数与除数的差是48,如果被除数与除数都减去9,那么被除数是除数的4倍,求原来被除数和除数各是几?【答案】73,25 【知识点】列方程解应用题 【难度】B【分析】根据题意,被除数比除数多48,如果被除数、除数都减去9,那么除数是一倍量,被除数是4倍量,那么本题的等量关系是(除数-9)×4=被除数-9解:设原除数为x ,则被除数为()48+x ,()()94894-+=-x x ,解得25=x所以被除数:25+48=73答:被除数为73,除数为25。
列方程解应用题:五(2)班有学生76人,其中13名女生与男生的一半参加数学竞赛,剩下的男、女生人数相等,这个班的男生比女生多多少人?【分析】解:设男生有x 人,则女生有(x -76)人。
列方程解应用题的关键——找等量关系
列方程解应用题的关键——找等量关系每次教到列方程解应用题这一环节,学生大都抱怨太难太难。
其实,只要把握住问题的关键,并不像有的同学说的那么难,关键在于由题目中隐含的相等关系列出相应的方程,现总结出找相等关系的以下几种方法:1、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“…比…少…”、“…是…的几倍”、“…和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?例2合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?2、根据熟悉的公式找相等关系。
常见公式:单价×数量=总价,单产量×数量=总产量,路程=速度×时间,工作总量=工作效率×工作时间,售价=基本价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元?例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40c平方厘米,求上底。
例4:商品进价1800元,原价2250元,要求以利润率为5%的售价打折出售,则此商品应打几折出售?相等关系:售价-进价=进价×利润率3、根据总量等于各分量的和找相等关系。
即根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。
例1:甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔个买了多少支?例2:把1400元奖学金按照两种奖项发给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少?例3:希腊数学家丢番图,他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。
列方程式解应用题时如何寻找等量关系
列方程解应用题时如何寻找等量关系列方程解应用题是初中数学教学中的重点和难点,而列方程解应用题的关键是寻找等量关系。
如何寻找等量关系,下面列举几种方法:一.利用常见的基本数量关系式确定等量关系一些应用题,本身有很好的相等关系,如:行程问题:路程=速度×时间工程问题:工作量=工作效率×工作时间浓度配比问题:溶质重量=溶液重量×百分比浓度利息问题:利息=本金×利率销售问题:商品利润=商品售价-商品进价商品利润率=×100% 等。
例1:(七年级教材上册84页第八题)一辆汽车已行驶了12000 千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:利用:路程=速度×时间,设X月后这辆汽车将行驶20800千米,则:12000+800X=20800评析:本题是行程问题,要求掌握基本关系式。
二.利用“三分法” 确定等量关系“三分法” 通常是指题目中有三个量,已知其中一个量,设定一个未知量(通常为题中所求未知数),然后用第三个量来寻找等量关系:例2:(七年级教材上册106页第四题)某中学学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成。
如果让七、八年级学生一起工作一小时,再由八年级学生单独完成剩余部分,共需多少时间完成?分析:此题是工程问题。
题中共有三个量:工作时间、工作效率、工作总量。
若设共需要X小时完成(也可设八年级学生单独完成剩余部分需X小时),七年级、八年级学生的工作效率是已知的,则应以工作总量为等量关系,那么,列出的方程为:评析:此题解题方法适用于题中有三个量的问题:行程问题、工程问题、浓度配比问题、销售问题等。
对于不同问题中的三个量,一定要弄清已知量、未知量,然后根据题中数量关系列出方程。
三.利用题中的关键性语句确定等量关系有些问题,根据题中的关键性语句反应的数量关系就可以找出等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题的关键是:仔细审题,找出能正确表达整个题数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
例如:
例1. 某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?
分析相等关系是:实际售出价-原售价=112(元)。
解设每台彩电的原售价为x元,根据题意,得:.
解得:x=2800
答:每台彩电的原售价是2800元。
例2. 为了鼓励居民用电,某市电力公司规定了如下的计费方法:每月用电不超过100度,按每度0.5元计算;每月用电超过100度,超出部分按每度0.4元计算。
(1)若某用户2006年7月份交电费72元,那么该用户7月份用电多少度?
(2)若某用户2006年8月平均每度电费0.45元,那么该用户8月份用电多少度?应交电费多少元?
分析:
(1)由计费方法判断7月份交电费72元时,用电量超过100度;(2)由0.5元>0.45元>0.40元知,该用户8月份用电超过100度。
解(1)100度的电费为0.5×100=50(元)。
因为72>50,所以该用户7月份的用电量超过了100度。
设超出x度,则0.4x=72-50,x=55.
故该用户7月份共用电100+55=155(度)。
(2)设该用户8月份用电x度,则应交电费为0.45x元。
因为8月份平均每度电费0.45元
<0.50元,所以8月份的用电量超过100度。
根据题意,得0.5×100+0.4(x-100)=0.45x.
解得:x=200.则0.45x=0.45×200=90(元)。
答:该用户7月份用电155度,8月份用电200度,应交电费90元。
练习
育英中学七年级(2)班决定派小聪、小明两人选购圆珠笔、钢笔共22支,捐给结对的山区某学校同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元。
(1)若他俩购买两类笔刚好用去120元,问钢笔、圆珠笔各买多少支?
(2)若圆珠笔9折优惠,钢笔8折优惠,在所需费用不超过100元的前提下,请你设计出一种选购方案。
(参考答案:(1)圆珠笔12支,钢笔10支;(2)答案不惟一,如圆珠笔18支,钢笔4支;
圆珠笔19支,钢笔3支等。
)。