列方程解应用题的方法

合集下载

列方程解应用题的四种方法

列方程解应用题的四种方法

列方程解应用题的四种方法列方程(组)解应用题就是将已知量与未知量的关系列成等式,通过解方程(组)求出未知量的过程. 其目的是考查学生分析问题和解决问题的能力. 如何解决这类问题,其方法很多,现结合实例给出几种解法,以供参考.一、直译法设元后,把元看作未知数,根据题设条件,把数学语言直译为代数式,即可列出方程组. 例1(2007年南京市)某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量增长率的2倍,今年南瓜的总产量为60 000kg ,求南瓜亩产量的增长率. 分析:若设南瓜亩产量的增长率为x ,则南瓜种植面积的增长率为2x .由此可知今年南瓜的亩产量为2000(1)x +kg ,共种植了10(12)x +亩南瓜,根据总产量是60 000kg 即可列出方程.解:设南瓜亩产量的增长率为x .根据题意列方程,得10(12)2000(1)60000x x ++= .解得10.550%x ==,22x =-(不合题意,舍去). 答:南瓜亩产量的增长率为50%.二、列表法设出未知数后,视元为未知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程组.例2(2007年沈阳市)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 分析:解工程问题的关键是抓住工作总量、工作效率、工作时间三者间的关系,工作总量通常看作单位1. 根据题意,将关键数据分别填入表格即可列出方程.解:设甲队单独完成此项工程需要x 天,则乙队单独完成此项工程需要45x 天. 由题意得1012145x x +=.解得25x =. 经检验,25x =是原方程的解. 当25x =时,4205x =. 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.三、参数法对复杂的应用题,可设参数,则往往起到桥梁的作用.例3 (2007年滨州市)某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据图1,求电车每隔几分钟(用t 表示)从车站开出一部?分析:本题给人数量少,条件不足,好象无从下手的感觉,因此可把需要的量以辅助未知数(参数)的形式表示出来.解决本题的关键是正确求出两部电车的间隔距离,如图1(甲)所示,则从行人身后(人车同向)发来的两辆电车间的距离为:6×(电车行进的速度-行人骑车的速度);如图1(乙)所示,则从行人前方(人车异向)发来的两辆电车间的距离为:2×(电车行进的速度+行人骑车的速度).解:设电车的速度为1u ,行人的速度为2u ,电车每隔t 分钟从车站开出一部.根据题意得1211216()2()u u u t u u u t -=⎧⎨+=⎩,解得122u u =. 再把122u u =代入所列方程组的任意一个方程中,均可解得3t =(分钟).答:电车每隔3分钟从车站开出一部.四、线示法运用图线,把已知和未知条件间的数量关系,用线性图表示出来,再把数量关系写在直线图上,则等量关系可一目了然.例4(2007年梅州市)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km 的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.分析:(1)可把单独用一辆小汽车来回接送学生所需要的时间与42分钟做比较即可;(2)若确定去县城的最短时间,可充分考虑“汽车”和“人”这两个运动因素. 显然当汽车到达时,人也同时到达这一情况可使运送学生的总时间最短. 最短时间可利用速度比求得.解:(1)不能在限定时间内使考生到达考场.图1理由如下:如果单独用一辆小汽车来回接送,那么小汽车需要跑3趟,所需要的时间为1533(h)45604⨯==(分钟),由于45分钟42>分钟,所以不能在限定时间内到达考场. (2)方案不惟一,具有开放性. 最短时间的方案设计如下:先让4人乘车,另4人步行,如果恰当的选取第一批学生下车的位置,然后让他们步行到车站,同时第二批4人也步行;小汽车返回后接第二批步行的4人追赶第一批步行的人,使这8人同时到达火车站. 在这个过程中,8个人始终在步行或乘车,没有因为等车而浪费时间,因而应该最节约时间. 其运动过程如图2所示.设先步行的4人的行走路程AB 为km x ,后步行的4人的行走路程CD 为km z ,中间的汽车行走路程BC 为km y . 则汽车在路线A C B →→上所用时间与先步行的4人在路线A B →上所用的时间相等;汽车在路线C B D →→上所用时间与后步行的4人在路线C D →上所用的时间相等. 根据在相等的时间内,路程之比等于速度之比,可以得到::(2)5:60:(2)5:60x x y z z y +=⎧⎨+=⎩ 整理得212212x y x z y z+=⎧⎨+=⎩ 解得2,112.11x y z y ⎧=⎪⎪⎨⎪=⎪⎩ 又因为15x y z ++=,所以可得:2x =,11y =,2z =. 由题知所用最短时间为汽车行走的路程与汽车的速度之比,即3376060x y z ++=(时)37=(分钟). 因为3742<,所以他们能在截止进考场的时刻前到达考场. 图2。

方程(列方程解应用题)

方程(列方程解应用题)

方程(列方程解应用题)word格式-可编辑-感谢下载支持方程(列方程解应用题)知识概述】列方程解应用题的关键是设未知数,根据题意找出等量关系。

列方程解应用题的一般步骤是:1、弄清题意,找出未知数,并用X表示;2、找出应用题题中数量间的相等关系,列方程;3、解方程;4、检验,写出答案。

例题精学例1、XXX买2张桌子和5把椅子共付220元,每张桌子的价格是每把椅子价格的3倍,每张桌子和每把椅子各多少元?思路点拨】根据“每张桌子的价格是每把椅子价格的3倍”,设一份数为X,也就是设每把椅子X元,每张桌子的价格是每把椅子价格的3倍,是3X元,再根据“2张桌子和5把椅子共付220元”得到:2张桌子的钱数+5把椅子的钱数=220元,根据这个等量关系列方程解答。

同步精练1、幼儿园买来花毛巾和白毛巾各40条,共用640元,已知花毛巾单价是白毛巾单价的3倍,一条花毛巾和一条白毛巾共多少元?2、买30千克精粉和70千克小米共付人民币312元,1千克精粉的价格是1千克小米价格的2倍,买精粉和XXX各用多少元?word格式-可编辑-感谢下载支持3、买10个排球和4个篮球共付510元,每个篮球比每个排球贵5元,篮球和排球的单价各是多少元?例2、有一群鸭,在河里的只数是岸上的3倍,如果有26只上岸,那么,岸上的鸭子就与河里的鸭子一样多,这群鸭子一共多少只?思路点拨】根据“在河里的只数是岸上的3倍”,设岸上的鸭子有X只,河里的鸭子有3X只,再根据“如果有26只上岸,那么岸上的鸭子就与河里的鸭子一样多”,得到:河里的只数-26只=岸上的只数+26只,根据这个等量关系列方程解答。

同步精练1、甲筐有梨400个,乙筐有梨240个,目前从两筐相等数目标梨,剩下的梨数,甲筐恰好是乙筐的5倍,求两筐所剩的梨数各多少?2、六(1)班与六(2)班原有图书一样多,后来六(1)班又买来新书38本,六(2)班从原有的图书中取出72本送给一年级同学,这时六(1)班的图书是六(2)班的3倍,两班原有图书各多少本?3、有甲乙两个班,如果从甲班调8个同学到乙班,则两个班人数相等,如果从乙班调8个同学到甲班,则甲班的人数就是乙班的2倍,甲乙两班各多少人?word格式-可编纂-感谢下载支持例3、出产一批零件,原打算10天完成,实际天天比原打算多出产42个零件,结果提早3天完成任务,这批零件有多少个?思路点拨】这道题的等量关系不明显,细心分析一下,就发现这批零件的总个数是一定的,因此这道题的等量关系是:计划每天生产零件的个数×计划的天数=实际每天生产零件的个数×实际的天数,设计划每天生产X个,列方程解答。

七年级列方程解应用题技巧

七年级列方程解应用题技巧

七年级列方程解应用题技巧
引言
列方程解应用题是初中数学研究中的一个重要内容。

掌握了列方程的技巧,可以帮助我们更好地理解和解决实际生活和研究中的问题。

本文将介绍一些七年级列方程解应用题的常用技巧。

技巧一:读题仔细,理解问题
在解决列方程问题之前,我们首先要仔细阅读题目,理解问题的要求和限制条件。

有时候,一个关键的细节可能会影响到我们列方程的过程和方程的解。

技巧二:定义未知数
在列方程时,我们需要定义一个或多个未知数来表示问题中的未知量。

我们可以使用字母或其他符号来表示未知数,并结合题目信息设定其含义。

技巧三:利用问题中的已知条件
题目中往往会给出一些已知条件,我们可以利用这些条件列出方程,从而推导出未知数的值。

在列方程时,我们要根据已知条件设定等式的两边,并进行适当的运算。

技巧四:解方程求解未知数
列好方程后,我们可以通过解方程的方法来求解未知数。

常用的解方程方法有平衡法、代入法、加减消元法等。

根据题目的要求选择合适的方法进行求解,并得出未知数的值。

技巧五:检查解的合理性
在解决问题后,我们应该对得到的解进行检查,以确保解的合理性。

如果解符合题目的要求和已知条件,那么我们可以得出最终的答案;如果不符合,我们需要重新检查方程的列写和解方程的过程。

总结
通过掌握这些列方程解应用题的技巧,我们可以更好地解决七年级数学中的列方程问题。

在实际操作中,我们应该多做练,加强对技巧的熟练掌握,提高解决问题的能力。

文档结束。

列分式方程解应用题的步骤

列分式方程解应用题的步骤

列分式方程解应用题的步骤
列分式方程解应用题的步骤
一. 列分式方程解应用题的步骤:
(1)设未知数:若把题目中要求的未知数直接用字母表
示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量
表示出来,必要时作出表示图或列成表格,帮助理顺各个量
之间的关系 ;
(3) 列出方程:依照题目中明显的 ' 也许隐含的相等关系列出方程 ;
(4) 解方程并检验 ;
(5) 写出答案。

二 . 列分式方程解应用题的注意事项:
由于列方程解应用题是对实责问题的解答,所以检验时
除从方面进行检验外,还应试虑题目中的实质情况,凡不吻
合实质的,应舍去。

列方程解应用题的方法

列方程解应用题的方法
列方程解应用题的方法
列方程解应用题就是将已知量与未知量的关系列成等式,通过解方程求出未知量的过程。其目的是考查学生分析问题和解决问题的能力。一直以来,列方程解应用题都是一大难点,对于如何掌握解题方法技巧,是个让很多学生头疼的问题。那么,如何解决这类问题,才能使学生易于理解和掌握呢?其实方法有很多,教师平时要注意引导学生总结归纳,适时渗透建 立数学模型思想。下面结合几道题目,说说我的几种方法。
去分母,得x2-14x-120=0
解得x1=20,x2=-6
经检验,x1,x2都是原方程的根,但因时间不能为负数,所以只能取x=20。
答:乙队单独完成此项工程需要30天。
点评:设甲单独完成工程需x天后,视x为已知,则根据题意,把语言直译成代数式后得到等式,则方程很快列出。
二. 列表法
所谓列表法就是设出未知数后,视元为已知数,然后综合已知条件,把握数量关系,分别填入表格中,则等量关系不难得出,进而列出方程(组)。
点评:通过列表格,将题目中的数量关系显露出来,使人一目了然。从胜、平、负的场数之和等于12,总得分22分是胜场、平场、负场得分之和列方程组,直观易懂。
三.线段图法
所谓线段图就是运用线段,把已知和未知条件间的数量关系,用线段图表示出来,则等量关系可一目了然。
例3. A、B两地间的路程为36千米,甲从A地,乙从B地同时出发相向而行,二人相遇后,甲再走2小时30分钟到达B地,乙再行走1小时36分钟到达A地,求二人的速度。
例2.在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分。某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场?平几场?
解:设此队胜x场,平y场。列表得
胜场
平场
负场

列方程解应用题的一般步骤

列方程解应用题的一般步骤

用字母代替应用题中的未知数,根据等量关系列出方程,再解所列出的方程,从而得到应用题的答案,这个过程叫做列方程解应用题.列方程解应用题的一般步骤是:(1)分析题意.认真读题,反复审题,弄清问题中的已知量是什么,未知量是什么,它们之间有什么等量关系:(2)设未知数为x.合理选择未知数是解题的关键步骤之一.一般设题目里所求的未知数是x,特殊情况下也可设与所求量相关的另一个未知数为x;(3)列方程.根据所设的未知量x和题目中的已知条件,利用等量关系列出方程;(4)解方程.求未知数x的值;(5)检验并答题.对方程的解进行检查验算,看是否符合题意,针对问题作出答案.例1 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?分析:先找相等的关系.乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解.解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船.例2 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离.分析:甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5)根据这样的等量关系,可以列出方程求解.解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米.例3 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?分析:解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为他们的年龄差不变.解:设哥哥现在的年龄为x,则方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?例4 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少?分析:设小强买了x个练习本,由于小红买的本数比小强少2本,所以小红买的本数为x-2个,小丽买的本数比小强多3本,所以小丽买的本数为x+3个.根据三人买练习本花的钱数相同,可以列出方程.解:设小强买了x个练习本,则0.6×(x-2)=0.4×(x+3)0.6x-1.2=0.4x+1.20.6x-0.4x=1.2+1.20.2x=2.4x=12代入0.6×(x-2)=0.6×(12-2)=66÷12=0.5答:小强买了12个练习本,每本价格0.5元。

六年级数学解方程答题技巧+解方程应用题练习(有答案)

六年级数学解方程答题技巧+解方程应用题练习(有答案)

同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。

列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。

如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。

一、首先是审题,确定未知数。

审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键。

“含有未知数的等式称为方程”,因而 “等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。

解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

列方程解决应用题——差倍问题

列方程解决应用题——差倍问题

列方程解决应用题——差倍问题差倍问题是常见的数学应用题类型,通常涉及两个数的关系及其差或倍数的计算。

解决差倍问题的关键是建立数学方程,通过列方程解题,求解未知数。

本文将主要介绍差倍问题的解题思路以及列方程的方法。

一、差倍问题的解题思路差倍问题常常涉及两个有关联的数,其中一个数是另一个数的差或倍数。

解决差倍问题的一般步骤如下:1.明确问题:仔细阅读题目,理解问题的背景和要求。

2.设定未知数:根据题目中的信息,设定未知数,通常用字母表示。

3.建立方程:根据题目中给出的关系,建立数学方程。

4.解方程:根据所建立的方程,解方程求解未知数的值。

5.检验答案:将求得的未知数代入原问题中,验证解的正确性。

二、列方程解决差倍问题的方法下面将通过一些具体的例子,来介绍列方程解决差倍问题的方法。

例1:甲数是乙数的5倍,如果甲数减去乙数的30等于60,求甲数和乙数各是多少?解题思路:1.明确问题:甲数是乙数的5倍,并且甲数减去乙数的30等于60。

2.设定未知数:设乙数为x,则甲数为5x。

3.建立方程:根据题目中的关系,得到方程5x - x - 30 = 60。

4.解方程:解方程可以得到x = 18。

5.检验答案:将x的值代入原问题中,验证:5 * 18 - 18 - 30 = 60,答案正确。

6.答案:甲数为5 * 18 = 90,乙数为18。

例2:两个数之差是60,其中较大的数是较小的数的5倍,求两个数各是多少?解题思路:1.明确问题:两个数之差是60,并且较大的数是较小的数的5倍。

2.设定未知数:设较小的数为x,则较大的数为5x。

3.建立方程:根据题目中的关系,得到方程5x − x = 60。

4.解方程:解方程可以得到x = 15。

5.检验答案:将x的值代入原问题中,验证:5 * 15 − 15 = 60,答案正确。

6.答案:较小的数为15,较大的数为5 * 15 = 75。

通过以上两个例子,我们可以发现差倍问题的解题方法是相似的。

小学生方程解应用题的意义、步骤、方法(附例题及练习题)

小学生方程解应用题的意义、步骤、方法(附例题及练习题)

小学生列方程解应用题------意义、步骤、方法(附例题及练习题)1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数应用题;e比和比例应用题。

5、常见的一般应用题以总量为等量关系建立方程以相差数为等量关系建立方程以题中的等量为等量关系建立方程以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法一、以总量为等量关系建立方程例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米解法一:快车4小时行程+慢车4小时行程=总路程4X+60×4=5364X+240=5364X=296X=74答:快车每小时行驶74千米。

解法二:快车的速度+慢车的速度)×4小时=总路程(X+60)×4=536X+60=536÷4X=134一60X=74练一练:①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55。

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤

列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。

(2)根据题意找出能够表示应用题全部含义的一个相等关系。

(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。

(4)解方程:求出未知数的值。

(5)检验后明确地、完整地写出答案。

检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。

2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。

(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。

(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。

(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。

(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。

(6)行程类应用题基本关系:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。

环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。

(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。

1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?答:从乙处调3人到甲处.2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?得x =17.∴20-x =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x 立方米木料做桌面,用y 立方米木料做桌子腿,由题意可得:x y x y +=⨯=⎧⎨⎩514503002()() 解之可得:x y ==⎧⎨⎩32 即用3立方米木料做桌面,2立方米木料做桌腿。

列方程解应用题的技巧

列方程解应用题的技巧

列方程解应用题的技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。

列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。

如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。

一、首先是审题,确定未知数。

审题,理解题意。

就是全面分析已知数与已知数、已知数与未知数的关系。

特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。

即用x表示所求的数量或有关的未知量。

在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键。

“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。

所以寻找等量关系是解题的关键。

如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。

仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。

上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。

解方程时应当注意把等号对齐。

如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。

如果左右两边相等,说明方程解正确了。

如上题的检验过程为:检验:把x=224代入原方程。

小学五年级列方程解应用题步骤和方法

小学五年级列方程解应用题步骤和方法

列方程解应用题1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d 分数、百分数应用题;e 比和比例应用题。

5、常见的一般应用题⎧⎪⎪⎪⎨⎪⎪⎪⎩以总量为等量关系建立方程以相差数为等量关系建立方程以题中的等量为等量关系建立方程以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法一、以总量为等量关系建立方程例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米解法一:快车4小时行程+慢车4小时行程=总路程解法二:快车的速度+慢车的速度)⨯4小时=总路程4X+60×4=536 (X+60)×4=5364X+240=536 X+60=536÷44X=296 X=134一60X=74 X=74答:快车每小时行驶74千米。

练一练:①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55。

五年级列方程解应用题技巧

五年级列方程解应用题技巧

五年级列方程解应用题技巧.txt 五年级列方程解应用题技巧1. 什么是列方程解应用题列方程解应用题是指在解决实际问题时,通过建立数学方程式来求解未知数的过程。

这类题目通常包含文字描述的问题情境,要求我们找到或计算出问题中未知的数值。

通过列方程解应用题,我们可以锻炼自己的逻辑思维和数学解决问题的能力。

2. 如何列方程解应用题当我们遇到一个实际问题需要解决时,可以按照以下步骤来进行列方程解应用题:- 理解问题:仔细阅读问题描述,确保理解题目所给的信息和要求。

- 寻找未知数:确定问题中涉及的未知数,并用变量表示。

- 设立等式:根据问题情境,用变量建立数学等式,表达已知信息和未知数之间的关系。

- 解方程:通过求解方程,得到未知数的数值。

- 检查答案:将求解得到的数值代入原方程,验证是否满足题目要求。

3. 列方程解应用题的技巧以下是一些列方程解应用题的技巧,帮助我们更好地解决问题:- 画图辅助:对于涉及几何形状或空间问题的题目,可以通过绘制图形来更好地理解问题,并辅助建立方程。

- 明确未知数:在列方程时,要明确哪些是已知数,哪些是未知数,以便建立正确的方程。

- 消除单位:当题目给出的数据单位不同或不方便计算时,可以通过单位转换或去除单位进行简化计算。

- 使用逻辑推理:当问题中给出的信息不足以直接列方程时,可以通过逻辑推理来确定方程式的关系。

- 解方程时注意:要注意方程是否需要进行整数运算、带分数运算或开方运算,以选择合适的解法。

通过熟练掌握以上列方程解应用题的技巧,我们能够更高效地解决实际问题,提升数学解题能力。

九年级列方程解应用题技巧

九年级列方程解应用题技巧

九年级列方程解应用题技巧列方程是数学中解决应用问题的重要方法之一。

在九年级数学研究中,掌握列方程解应用题的技巧对于提高解题能力至关重要。

下面将介绍一些列方程解应用题的技巧和方法。

1. 理解应用题目在解决应用题之前,首先要仔细阅读题目,理解其中的问题和条件。

清楚理解题目的意思,有助于确定问题的解决方法和所需要列的方程。

2. 确定未知量在列方程解应用题时,需要确定未知量。

未知量是我们要求解的问题中未知的数值。

通过仔细观察题目,确定与问题相关的未知量,并用字母表示。

3. 建立关系方程关系方程是根据问题中的条件建立起来的。

通过分析题目,找到问题的关系和条件,然后用代数方式表达出来,建立关系方程。

关系方程可以是一元方程、一元一次方程、二元一次方程等。

4. 解方程并验证利用代数解题的方法解决所建立的关系方程,并求解未知量。

在解方程的过程中,可以运用解方程的基本原则,如合并同类项、移项、消元等方法。

解得未知量后,要验证所求的解是否符合题目的条件。

将解代入原方程中进行验证,确保解是符合实际情况的。

5. 总结和归纳解题过程中要注意总结和归纳列方程解应用题的技巧。

通过总结归纳,可以发现一些常用的解题思路和方法,有助于提高解题效率。

列方程解应用题是数学研究中的重要内容,掌握了解应用题的技巧和方法,能够更好地解决实际问题。

通过反复练和实践,我们可以不断提高列方程解应用题的能力,为研究数学打下坚实的基础。

以上就是九年级列方程解应用题的技巧和方法。

希望能对你的研究有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样找相等关系
列方程解应用题的关键在于由题目中隐含的相等关系列出相应的方程,找相等关系基本可有如下几种方法:
一、根据数量关系找相等关系。

好多应用题都有体现数量关系的语句,即“…比…多…”、“…比…少…”、“…是…的几倍”、“…和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。

例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
例2合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?
例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
解:设调x人到甲处,则调(20-x)人到乙处,由题意得:
27+x=2(19+20-x),
解得x=17
所以 20-x=20-17=3(人)
答:应调往甲处17人,乙处3人。

二、根据熟悉的公式找相等关系。

单价×数量=总价,单产量×数量=总产量,路程=速度×时间,工作总量=工作效率×工作时间,售价=基本价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。

例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。

求这件商品的成本价为多少元?
例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?
例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40c平方厘米,求上底。

例4:商品进价1800元,原价2250元,要求以利润率为5%的售价打折出售,则此商品应打几折出售?
相等关系:售价-进价=进价×利润率
解:设最低可打x折。

据题意有:
2250x-1800=1800×5%
解得x=0.84
答:此商品应打8.4折。

三、根据总量等于各分量的和找相等关系。

即根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。

例1:甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔个买了多少支?
例2:把1400元奖学金按照两种奖项发给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少?
例3:希腊数学家丢番图,他一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年。

再过去七分之一的年程,他建立了幸福的家庭。

五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。

晚年丧子老人真可怜,悲痛之中度过了风烛残年。

请你算一算,丢番图活到多大和死神见面?”
解:设丢番图活了x年。

据题意可得:
x=x/6+x/12+x/7+5+x/2+4
解得x=84
答:丢番图共活了84岁。

四、用不同方法表示不变量找相等关系。

这类题目的解题原理是:如果一个不变的量能用两个不同的代数式表达,则这两个代数式必然相等。

这就要求我们找到这个量,可以根据题中的“比值一定”、“积一定”、“速度一定”等相关语句来找。

例1:汽车匀速行驶途径王家庄、青山、秀水三地,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

王家庄到翠湖的路程有多远?
例2:种一批树苗,如果每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗,有多少人种树?
例3:把一些糖果分给某班学生,如果每人分3个,则剩余20个,如果没人分4个,则还缺25个。

这个班共有多少学生?
五、根据事情发展的顺序找相等关系。

有些题目的相等关系需要根据事情发展的顺序才可以找到相等关系。

比如:原有的-用去的=还剩的,又如:付出的-用去的=还剩的,原有的+运来的=现在的。

例1:一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
例2:今年我国城镇居民平均可支配收入为5109元,比去年增长8.3%,去年这项收入为多少?
例3:一辆汽车已行驶了12000km,计划每月在行驶800km,几个月后这辆汽车将行使20800km?
当然,以上五种方法不是孤立使用的,如第四部分例1的解答必然要用到公式:“路程=速度×时间”。

并且一个题目的解法往往也不是唯一的,这就要我们根据情况而定,看到题后先分析已知条件和未知条件,找关键语句,发现各条件的联系,找到合适的相等关系,然后列方程。

未知数的设法
一、有比较关系时,如甲比乙多8,我们一般设较小的为x,这样计算时主要用的是加法不易出错;
二、有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为x,用乘法表示其余量利于计算;
三、在分数应用题中,我们设单位“1”为x;
四、在有比的问题中,我们设一份数为x;
五、在有和的问题中,我们设其中任意一个为x都可以,比如说两个班共有50人,设其中一个班有x人。

相关文档
最新文档