2018年九年级数学中考专题--函数实际应用题 精炼卷(含答案)
2018年中考数学真题演练之二次函数专题(解析版)
2018年中考数学真题演练之二次函数专题(2019年备战中考)1.已知抛物线。
(1)证明:该抛物线与x轴总有两个不同的交点。
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C 三点都在圆P上。
①试判断:不论m取任何正数,圆P是否经过y轴上某个定点?若是,求出该定点的坐标,若不是,说明理由;②若点C关于直线的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为,圆P的半径记为,求的值。
2.如图,已知抛物线过点A 和B ,过点A作直线AC//x轴,交y轴与点C。
(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由。
3.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B 的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.4.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
动点M,N同时从A 点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t秒。
连接MN。
(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。
5.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.6.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF 折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.7.已知顶点为抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.8.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分;(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.9.如图,抛物线与坐标轴交点分别为,,,作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;(3)条件同,若与相似,求点P的坐标.10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?11.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.12.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ 的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC 的值最大时,求点M的坐标.13.如图1,直线l:与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<),以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.14.在平面直角坐标系中,已知抛物线的顶点坐标为,且经过点.如图,直线与抛物线交于点两点,直线为.(1)求抛物线的解析式;(2)在上是否存在一点,使取得最小值?若存在,求出点的坐标;若不存在,请说明理由.(3)已知为平面内一定点,为抛物线上一动点,且点到直线的距离与点到点的距离总是相等,求定点的坐标.15.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)16.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.17.如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.18.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.19.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.20.如图,抛物线经过原点O(0,0),点A(1,1),点B(,0).(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.21.如图,抛物线y=ax2+bx﹣与x 轴交于A(1,0)、B(6,0)两点,D 是y 轴上一点,连接DA,延长DA 交抛物线于点E.(1)求此抛物线的解析式;(2)若E 点在第一象限,过点 E 作EF⊥x 轴于点F,△ADO 与△AEF 的面积比为= ,求出点E 的坐标;(3)若D 是y 轴上的动点,过D 点作与x 轴平行的直线交抛物线于M、N 两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D 的坐标;若不存在,请说明理由.22.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;(3)②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.23.综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为________;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)24.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q(1)【探究一】在旋转过程中,①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________②如图3,当时E P与EQ满足怎样的数量关系?,并说明理由.________③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为________,其中的取值范围是________(直接写出结论,不必证明)(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.25.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.26.已知直线分别交x轴、y轴于A、B两点,抛物线经过点A,和x 轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求面积的最大值;(3)如图2,经过点的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求的值.备注:抛物线顶点坐标公式27.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.28.如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断的形状,并说明理由.参考答案与解析1.【答案】(1)证明:当抛物线与x轴相交时,令y=0,得:x2+mx-m-4=0∴△=m2+4(2m+4)=m2+8m+16=(m+4)2∵m>0,∴(m+4)2>0,∴该抛物线与x轴总有两个不同的交点。
【中考专题】2018年九年级数学 中考专题复习--函数实际应用 培优练习卷(含答案)
2018年九年级数学 中考专题复习--函数实际应用 培优练习卷1.某地区准备筹办特色小商品展销会,芙蓉工艺厂设计一款成本为10元/件的工艺品投放市场进行试销。
经过调查,得到如下数据:(1)已知y 与x 之间是一次函数关系,求出此函数关系式; (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)2.如图,小河上有一拱桥,拱桥及河道的截面轮廓有抛物线的一部分ACB 和矩形的三边AE,ED,DB 组成,已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系。
(1)求抛物线的解析式;(2)已知从某时刻开始的40个小时内,水面与河底ED 的距离h (米)随时间(时)的变化满足函数关系:)400(8)19(12812≤≤+--=t t h ,且当顶点C 到水面的距离不大于5米时,需禁止船只通行。
请通过计算说明:在这一时段内,需多少小时禁止船只通过?3.某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其它费用450元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利润w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利润最大?最大利润是多少元?4.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?5.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元。
九年级数学中考专项复习——函数图像与实际问题应用题(附答案)
中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。
2018年中考数学精选题专练一次函数(含答案)
20. 在一条笔直的公路上有 A.B 两地,甲骑自行车从 A 地到 B 地;乙骑自行车从 B 地到 A 地,
到达 A 地后立即按原路返回,如图是甲、乙两人距
B 地的距离 y(km)与行驶时间 x( h)之间
的函数图象,根据图象解答以下问题:
( 1)写出 A. B 两地之间的距离;
( 2)求出点 M的坐标,并解释该点坐标所表示的实际意义;
将 C(3, 2)代入 y=kx ,得 2=3k,∴ k= ;故答案为: ;
( 2)k 的值不会发生变化,理由:∵正方形边长为
a,∴ AB=a,
在直线 y=2x 中,当 y=a 时, x= ,∴ OA= , OD= ,∴ C( , a),
将 C( , a)代入 y=kx ,得 a=k× ,∴ k= .
路径 A→ D→C→ E运动,则△ APE的面积 y与点 P经过的路径长 x之间的函数关系用图象表示大致是 ()
二、填空题 :
9. 若将一次函数 y=﹣2x+1 的图象向
(上或下)平移
单位,使平移后的图象过点
( 0, ﹣ 2).
10. 已知直线 y=( k+2) x+
的截距为 1,那么该直线与 x 轴的交点坐标为
别表示行驶距离和时间,则这两人骑自行车的速度相差
km/ h.
s,t 分
15. 如图,在平面直角坐标系中,已知点 A(0, 4), B(﹣ 3, 0)轴上的点 A′处,折痕所在的直线交 y 轴正半轴于点 C,则点 C的坐
标为
.
16. 如图是某汽车行驶的路程 s( km)与时间 t ( m/n)的函数关系图,观察图中所提供的信息,
解答下列问题:
( 1)汽车在前 9 分钟内的平均速度是
九年级函数专题试卷及答案
九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。
()2. 反比例函数的图像是一条经过原点的直线。
()3. 一次函数的图像是一条直线。
()4. 二次函数的图像是一条抛物线。
()5. 函数y = kx + b是一次函数当且仅当b = 0。
()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。
2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。
3. 反比例函数的一般形式是______。
4. 二次函数的一般形式是______。
5. 一次函数的图像是一条______。
四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。
2. 请简述反比例函数的定义。
3. 请简述一次函数的定义。
4. 请简述二次函数的定义。
5. 请简述函数图像的斜率是什么。
五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。
2018年安徽中考数学专题复习函数的实际应用题
2018年安徽中考数学专题复习 题库:函数的实际应用题类型一 最大利润问题★1. 某企业推销自己的品牌,设计了一款篮球工艺品投放市场进行试销.根据市场调查,这种工艺品一段时间内每周的销售量y (个)与销售单价x (元/个)之间的对应关系如图所示(x 为大于6的整数).(1)试判断y 与x 的函数关系,并求出y 关于x 的函数表达式;(2)已知篮球工艺品的进价为10元/个,按照上述销售规律,当销售单价x 定为多少时,试销该工艺品每周获得的利润w (元)最大?最大利润是多少?(3)某体育超市每周购进该种篮球工艺品的进货成本不超过1000元,要想每周获得的利润最大,试确定该工艺品的单价(规定取整数),并求出此时每周所获得的最大利润.第1题图解:(1)根据一个篮球每增加2元销售量减少的个数相同知:y 是x 的一次函数. 设此一次函数表达式为y =kx +b ,把x =10时,y =300;x =12时,y =240代入得:⎩⎪⎨⎪⎧10k +b =30012k +b =240,解得 ⎩⎪⎨⎪⎧k =-30b =600, ∴y 与x 之间的函数表达式为y =-30x +600;(2)由题意可得:w =(x -10)(-30x +600) =-30x 2+900x -6000=-30(x 2-30x +225)+6750-6000 =-30(x -15)2+750, ∵a =-30<0,∴当x =15时,w 有最大值,最大销售利润为750元; (3)由题意得10(-30x +600)≤1000, 解得x ≥503,由(2)知其图象的对称轴为直线x =15, ∵a =-30<0,,∴抛物线开口向下,当x ≥503时,w 随x 的增大而减小,又∵x 为整数,∴当x =17时,w 最大,且w 最大=(17-10)(-30×17+600)=630(元),即以17元/个的价格销售这批篮球工艺品可获得最大利润,且最大利润为630元. ★2. 某企业投资120万元人民币生产甲、乙两种商品,经调查发现:甲商品获得的年利润y 1(万元乙商品获得的年利润y 2(万元)与投资的资金x 2(万元)之间的关系满足y 2= ⎩⎪⎨⎪⎧0.6x 2(0≤x 2≤50)14x 2+12(50<x 2≤120). (1)请你根据表中数据,在三个函数模型:①y =kx +b (k 、b 为常数,k ≠0);②y =kx (k 为常数,k ≠0);③y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中,选取一个适合的函数模型,求出y 1关于x 1的函数关系式(不需写出x 1的取值范围);(2)在投资保证甲商品获得最大年利润的前提下,将剩下的资金投给乙商品,会取得多少总利润;(3)要想获得的年总利润最大,应怎样分配投资金额?并求出最大年总利润. 解:(1)经判断①②两种函数模型不符合要求,设y 1=ax 12+bx 1+c ,把(10,7),(20,14),(30,19)代入关系式,得⎩⎪⎨⎪⎧100a +10b +c =7400a +20b +c =14,900a +30b +c =19解得⎩⎪⎨⎪⎧a =-1100b =1c =-2,∴y 1=-1100x 12+x 1-2,把(40,22)代入也满足上述关系式,故该函数关系式为y 1=-1100x 12+x 1-2;(2)∵y 1=-1100x 12+x 1-2=-1100(x 1-50)2+23,∴当x 1=50时,y 1取得最大值23,∴剩下的资金为120-50=70(万元), 即投给乙商品70万元, ∴y 2=14×70+12=29.5(万元),∴取得的总利润为:23+29.5=52.5(万元);(3)设投资给乙商品的资金为x ,获得的总利润为w 万元,则投资给甲商品的资金为(120-x )万元,①当0≤x ≤50时,w =y 1+y 2=-1100(120-x )2+(120-x )-2+0.6x=-1100x 2+2x -26=-1100(x -100)2+74,∵当0≤x ≤50时,w 随x 的增大而增大,∴当x =50时,w 最大=-1100(50-100)2+74=49(万元);②当50<x ≤120时,w =y 1+y 2=-1100(120-x )2+(120-x )-2+14x +12=-1100x 2+3320x -14=-1100(x -1652)2+86516,∵50<1652=82.5<120,∴当x =82.5时,w 最大=86516,∵86516>49, ∴投资甲商品120-82.5=37.5(万元),乙商品82.5万元时,年总利润最大,最大年总利润为86516万元.类型二 最优方案问题★1. 随着互联网的普及,某手机加工厂商采用先网络预订,然后根据订单量生产手机的方式销售.2017年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x 元,预定量为y 台,写出y 与x 的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w (元)与x (元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?解:(1)由题意得:y =20000+x100×10000=100x +20000;(2)w =(2200-1200-x )(100x +20000) =-100x 2+80000x +20000000 =-100(x -400)2+36000000, ∵2200-400=1800,∴当定价为1800元时所获利润最大; (3)50000×(1-5%)=47500, ∵100x +20000=47500,解得x =275,2200-275=1925,∴每天最多接受预订量为47500台,且每台售价为1925元.★2. A 城有某种农机30台,B 城有该农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台.从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城往C ,D 两乡运送农机的费用分别为150元/台和240元/台.(1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来.解:(1)依题意知,从A 城至D 乡运(30-x )台,从B 城至C 乡运(34-x )台,从B 城至D 乡运(x +6)台,∴W =250x +200(30-x )+150(34-x )+240(x +6) =140x +12540(0≤x ≤30); (2)∵W ≥16460,∴140x +12540≥16460, 解得x ≥28, ∴28≤x ≤30,∴x 可取28,29,30,∴有三种不同的调运方案:当x =28时,从A 城至C 乡运28台,从A 城至D 乡运2台,从B 城至C 乡运6台,从B 城至D 乡运34台;当x =29时,从A 城至C 乡运29台,从A 城至D 乡运1台,从B 城至C 乡运5台,从B 城至D 乡运35台;当x =30时,从A 城至C 乡运30台,从A 城至D 乡运0台,从B 城至C 乡运4台,从B 城至D 乡运36台.类型三 抛物线型问题★1. 如图是某高速单向过山隧道截面设计图,隧道横截面呈抛物线型,设计AB =6米,最高点P 距地面8米.(1)若以AB 所在直线为横轴,AB 的中垂线为纵轴建立平面直角坐标系,试确定该抛物线的解析式;(2)在距地面3米高处,隧道的宽度是多少?(3)若设计要求隧道通过的截面矩形CDFE 的宽CD 不小于4米,高CE 不小于4.2米,则该隧道设计是否符合要求?第1题图解:(1)建立平面直角坐标系如解图所示,可得各点坐标为A (-3,0),B (3,0),P (0,8). 由题知P 点为抛物线的顶点,设该抛物线的解析式为y =ax 2+8,把B (3,0)代入抛物线的解析式得9a +8=0, 解得a =-89,则该抛物线的解析式为y =-89x 2+8;第1题解图(2)令y =3,代入抛物线的解析式中,得-89x 2+8=3,解得x 1=3104,x 2=-3104,所以距地面三米高处,隧道的宽度是3102米;(3)依题意知CD =4米,则D 点坐标为D (2,0), 令x =2,代入抛物线的解析式中,得 y =-89×22+8 =409≈4.4(米),因为4.4>4.2,所以该隧道设计符合要求.★2. 某部队官兵在一次演习中,在山脚下向山坡上的一据点进行打击,假设炮弹的运行路线为抛物线,且当炮口方向一定时,炮弹的飞行路线不变,即抛物线形状不变.经多次校正后发现炮弹水平飞行150 m 时达到最大高度为225 m ;斜坡的坡度i =1∶2.(1)若以水平地面所在直线为x 轴,炮弹发射地为原点,竖直向上方向为y 轴建立坐标系,如图所示,求炮弹飞行路线的抛物线解析式及斜坡所在的直线解析式;(2)求炮弹落地点A 在山坡上的位置;(3)现要想命中高出A 点竖直方向3 m 的山坡上的B 点,有人认为只需把炮沿竖直方向架高3 m 而炮口方向不变即可,这种说法正确吗?请说明理由.第2题图解:(1)由题意,抛物线顶点坐标为(150,225),可设抛物线解析式为: y =a (x -150)2+225(a ≠0),把(0,0)代入得:0=a (0-150)2+225, 解得:a =-1100,∴抛物线的解析式为:y =-1100(x -150)2+225. 设直线的解析式为y =kx (k ≠0),由题意把(2m ,m )代入得:2mk =m ,∴k =12,∴直线的解析式为:y =12x ;(2)根据题意联立方程组得⎩⎨⎧y =-1100(x -150)2+225y =12x, 解得⎩⎪⎨⎪⎧x 1=0y 1=0,⎩⎪⎨⎪⎧x 2=250y 2=125. ∴A 点坐标为(250,125);(3)这种说法不正确.理由如下:设大炮向上升高b 米,则由题意可得抛物线解析式为y =-1100(x -150)2+225+b .点B 在竖直方向上比A 点高3 m ,即B 点的纵坐标为128 m ,将128代入y =12x 中,得点B 的横坐标为256,即B 点坐标为(256,128),把⎩⎪⎨⎪⎧x =256y =128代入y =-1100(x -150)2+225+b 得:128=-1100(256-150)2+225+b ,b ≈15.36≠3,所以上述说法错误.类型四 几何面积最值问题★1. 某市准备在一公园门口做装饰:如图,在一块正方形装饰盘ABCD 上摆三种不同类型的花,即在正方形EFCG 部分摆甲型花,在△ABE 部分摆乙型花,其余部分摆丙型花,已知甲、乙、丙三种类型的花每平方米的价格分别为60元、80元、40元.(1)如果装饰盘的边长为2米,FC =1米,则按要求完成该装饰盘的费用为多少元; (2)如果装饰盘的边长为1米,求按要求完成该装饰盘的最少费用.第1题图解:(1)由题意可知,S正方形EFCG=12=1平方米,S △ABE =12×2×1=1平方米,S其余部分=S正方形ABCD-S 正方形EFCG -S △ABE =22-1-1=2平方米.故按要求完成该装饰的费用为1×60+1×80+2×40=220(元);(2)如解图,延长GE 交AB 于点M ,则EM ⊥AB . 设EG =x 米,则EM =(1-x )米,∴S 正方形EFGE =x 2平方米,S △ABE =12(1-x )平方米,S 其余部分=1-x 2-12(1-x )=(-x 2+12x +12)平方米,设按要求完成该装饰盘的费用为y 元,则y =60x 2+80×12(1-x )+40(-x 2+12x +12)=20x 2-20x +60=20(x -12)2+55,∵20>0.∴当x =12时,y 有最小值,最小值为55,答:按要求完成该装饰盘的最少费用为55元.第1题解图类型五 行程问题★1. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如图所示.(1)根据图象,求出y 1、y 2关于x 的函数图象关系式;(2)问两车同时出发后经过多长时间相遇,相遇时两车离甲地多少千米?第1题图解:(1)设y 1的解析式为y 1=k 1x (k 1≠0), 由题图可知,函数图象经过点(10,600), ∴10k 1=600, 解得k 1=60,∴y 1=60x (0≤x ≤10),设y 2的解析式为y 2=k 2x +b (k 2≠0), ∵函数图象经过点(0,600),(6,0),则⎩⎪⎨⎪⎧b =6006k 2+b =0, 解得⎩⎪⎨⎪⎧k 2=-100b =600,∴y 2=-100x +600(0≤x ≤6);(2)由题图可知,点M 即为两车相遇点,则⎩⎪⎨⎪⎧y =60x y =-100x +600, 解得:⎩⎪⎨⎪⎧x =154y =225,故两车同时出发后经过154小时相遇,相遇时两车离甲地的距离是225千米.。
浙江2018年中考数学复习函数第11课时一次函数的实际应用含近9年中考真题试题
专题课件考点研究第一部分方程(组)与不等式(组)第二单元一次函数的实际应用第11课时 2009-2017)浙江近9年中考真题精选()2考阶梯费用问题(绍兴类型一立18立方米)和用水某市规定了每月用水18立方米以内(含18绍兴1.(201718题8分)y的函)x(立方米(元)是用水量方米以上两种不同的收费标准.该市的用户每月应交水费数,其图象如图所示.立方米,则应交水费多少元?若某月用水量为18(1)xxy元,则这个月用水量为时,的函数表达式.若小敏家某月交水费关于(2)求当81>18 多少立方米?题图第1yx表元(km)表示行驶里程,)(8(20132.绍兴18题分)某市出租车的计费方法如图所示,示车费,请根据图象回答下面的问题: x的函数解析式;关于出租车的起步价是多少元?当(1)x>3时,求y 元,求这位乘客乘车的里程.(2)若某乘客有一次乘出租车的车费为32题图第2 1类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需3Q和开始排水后的时间全部排完,游泳池内的水量)(m要暂停排水,游泳池的水在11:30t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?tQt的函数表达式.当2≤关于≤3.5时,求(2)第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已ay(人)知检票的前与检票分钟只开放了两个检票口.某一天候车室排队等候检票的人数x(分钟)时间的关系如图所示.a的值;求(1)(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图2类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家yx(分))米和所经过的时间之间的函数图象如图所示.超市返回家中,小敏离家的路程请(根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运st(分钟)之间的函数关系如图所示,动员离开起点的路程其中从起点到(千米)与跑步时间紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:a的值;求图中 (1)CC点到第二次过,组委会在距离起点2.1千米处设立一个拍摄点该运动员从第一次过(2)C点所用的时间为68分钟.AB所在直线的函数解析式;①求②该运动员跑完赛程用时多少分钟?第6题图AB两人沿同一公路从甲地出发到km90 ,,分绍兴7.(201418题8)已知甲、乙两地相距ABDEOCABs(km)与时间乙地,骑摩托车,骑电动车.图中,分别表示,离开甲地的路程3t(h)的函数关系图象,根据图象解答下列问题.ABB的速度是多少?后出发几个小时?比 (1)B出发后几小时,两人相遇?在 (2)第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两yt(小时)的关系如图所(千米)人恰好同时到达游乐园,他们离开衢州的距离与乘车时间示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图M地出发沿)方成同学看到一则材料:甲开汽车,乙骑自行车从23杭州题12分9.(2015Ntyyt 与一条公路匀速前往(km)地.设乙行驶的时间为(h),甲乙两人之间的距离为,的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:4BCCD所在直线的函数表达式;分别求出线段,(1)yt的取值范围; <30(2)当20<时,求sst 的函数表达式,并在图②所给的直角坐标,(3)分别求出甲,乙行驶的路程与时间乙甲系中分别画出它们的图象;4NM地.若丙经过 h丙骑摩托车与乙同时出发,从与乙相遇,地沿同一条公路匀速前往(4)3问丙出发后多少时间与甲相遇?第9题图类型四分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数t. 倍,设规划建造单人间的房间数为是单人间的2t的值; 200个,求①若该养老中心建成后可提供养老床位②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?2CAB、将一块面积为、900 m的园圃分成某农业观光园计划)1022(201511.温州题分株,已知1263三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲株或乙株或丙 52AAB).倍,设区域面积为x(m区域面积是的2yx的函数表达式;关于(1)求该园圃栽种的花卉总株数ABC三个区域的面积分别是多少?,, (2)若三种花卉共栽种6600株,则(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:xy元,租用乙公司的车所需费用为小时,租用甲公司的车所需费用为(1)设租车时间为1yyyx的函数表达式.、关于元,分别求出212(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)ykxbx>18),184581(2)由元>元,得用水量超过立方米,设函数表达式为=+(6ykxb过点(18,45),(28∵直线,=75)+,18k+b=45k=3????,(5分,解得∴) ??b=-9=28k+b75????yxx>18),(6∴分=3)-9(yxx=30. =81,解得=81时,3-当9答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)xyxykxb,与+的函数关系式为设当=>3时,8=3k+b??,由函数图象,得?b5k+12=??k=2??,解得?2=b??yxyxx>3);(42(与分的函数解析式为) =2+故y=32时,(2)当x+22,=32x=15解得,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分);(3300 m排水孔的排水速度为900÷3=分)3/h450 m 后暂停排水,此时游泳池的水量为900-300×1.5=由题图可知排水(2)1.5 h bktQtQt关3,于的函数表达式为+=设当2≤时,≤3.5, 0)代入得450),(3.5,把(2,,+2kb450=??) 分,(6?b+=03.5k?? 7b=1050??解得,?k=-300??tQtt+1050.(8分Q2≤=-≤3.5时,300关于) 的函数表达式为∴当aa=520,-2×14 6404.解:(1)由图象知,+16a=10;(2分)所以ykxb,+= 520)和(30,0)的直线解析式为(2)设过(10,10k+b=520k=-26????得,解得,??30k+b=0b=780????yxxy=260,,当=因此20=-26时,+780即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)nn×15≥640+16×15(7分14(3)设需同时开放) 个检票口,由题意知:4n≥4,解得:21nn =为整数,∴∵5.5个检票口.(10分)最小答:至少需要同时开放5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.ykxbk≠0),设小敏返家过程中的函数解析式为=(+(2)40k+b=3000??把点(40,3000),(45,2000)代入上式,得,?45k+b=2000??k=-200??解得,?b=11000??yxy=0时,-200x+11000=,当200∴小敏返家过程中的函数解析式为=-+110000,x=55.解得8答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,a=0.3×35=10.5(千米).(2∴分)OAOA(35,10.5),,(2)①∵线段经过点(0,0)OAs=0.3t(0≤t≤35).的函数解析式是∴stt=7.(3分2.1,解得=2.1时,0.3)∴当=CC点所用的时间为68点到第二次过分钟,∵该运动员从第一次过C点共用的时间是7+68=∴该运动员从起点到第二次过75(分钟).AB经过(35,10.5),(75,2.1)两点.(4∴分)AB所在直线的函数解析式是s=kt设+b,35k+b=10.5k=-0.21????,解得,∴(5分) ??75k+b=2.1b=17.85????∴AB所在直线的函数解析式是s=-0.21t+17.85.(6分)ABx轴交点横坐标的值.与②∵该运动员跑完赛程所用的时间即为直线st+17.85=0,∴当0.21=0时,-t=85.解得∴该运动员跑完赛程用时85分钟.(8分)AB后出发1小时;由题图可知,(2比分) 7.解:(1)B的速度为60÷3=20 km/h;(4分) DCE(3,90),,0),,(360)由题图可知点(2),(1OCskt,设直线=的解析式为kk=20,60,解得则3=OCst,20∴直线的解析式为=DEsmtn,设直线的解析式为=+9m+n=0m=45????则,解得,??3m+n=90n=-45????DEst-45,(6的解析式为分=45)∴直线s=20t??联立两函数解析式,得,?s=45t-45??9??t=5?,解得??s=369B出发后小时,两人相遇.(8分∴在)58.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时,ykt,设乐乐离衢州的距离与乘车的时间之间的函数关系式为=k, 120=1.5则有kyt,(5分80,故) =解得80=ty=80×2=160,=2时,当从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)yt=2.7,18分钟=0.3小时,(3)当216=时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)107100BCDBCD(4,0))、.(1.5,0)由题图①可知9.解:(1)、、、(三点的坐标,,33BC解析式为y=kt+b(k≠0),设直线1.5k+b=0???CB,、把两点坐标分别代入得:1007k+b=??33k=40??解得,?b=-60??7BCytt≤).40(2-60 (1.5≤分∴直线)的解析式为=3CDyk′tbk′≠0),解析式为=′(设直线+7100??k′+b′=710033?D两点坐标分别代入得、0)(4,,把C(,)33??04k′+b′=k′=-20??解得:,?b′=80??7CDytt ≤4).(4分)=-2080(∴直线+的解析式为≤3CDyt+80,的解析式为=-(2)由直线20可得乙的速度为20 km/h.A点坐标为(1,20),(5分∴)yy<3020<由题图①可知,两人的距离必是在第一次相遇之后到第二次相遇这段时满足间之内,y<30时,当20<t-60<30 ①<2040t+80<30 ②(62020<-分)t<2.25,2解①得:<11t<3.解②得:2.5<tty<30.(7分) <3 时,有<∴当220<2.25和2.5<<BCy=40t-60的解析式:,(3)由直线1007则乙在出发1.5小时后,两人之间的差距以每小时÷(-1.5)=40 km的速度拉开,33v=20 km/h,又乙v=20+40=60 km/h.(8∴分) 甲7ttst),60=-60(1≤60(≤∴-1)=甲3st≤4).(9分)=20t(0≤乙在直角坐标系中画出它们的图象如解图.第9题解图MN地,地到达由前述题意可知:乙出发4小时可以从 (4)v=20 km/h,∵乙MN的总路程为20×4=80 km,∴到小时,当丙出发3480s=20×= km,乙3380160s=80-= km,∴丙33 12 1604v=÷=40 km/h.∴丙33t) km,40 M地的距离为(80-∴丙距tt-60,=60 若丙与甲相遇,则80-40 t=1.4小时.解方程得(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2x)(2分=2.882(1+,)xx).=-2.2(=0.2=20%,解得不合题意,舍去21) 分答:该市这两年拥有的养老床位数的平均年增长率为20%.(4ttt) 分200,3(100-3(7(2)①由题意得,)+4=+t.25(符合题意解得)=t)分的值是25.(8答:tttty10≤-3②由题意得,提供养老床位≤30,=)+4,其中+3(100yt +300.=-4kyt的增大而减小.随着=-4<0,所以因为ty的最大值为300-4×10=260(个)当.=10时,ty的最小值为300-4×30=180(个当)=30时,.答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)22xxCxB) -区域的面积为(900 m,则2区域的面积为3 m,A11.解:(1)若区域的面积为2 m,yxxxx+10800;(321)=-分)3=3+12+12(900-yx+10800=6600, (2)当6600=时,-21x=200,解得xx=300.-,∴2=4009003 13222CB;(6分,区域的面积为区域的面积为400 m300 m,答:A区域的面积为200 m)abc元,元、元、 (3)设甲、乙、丙三种花卉的单价分别为由题意可知,a+b+c=45??,?600a+2400b+3600c=84000??5(19-c)b,整理得=3abc为正整数,∵、、abc可能取的值如下表,∴、、14710131630252015105a 141618202224abc的差不超过10,、又∵、abc=10,(8分20,=15,∴) =2B,最大,区域的面积为400 m ∵∴种植面积最大的花卉总价为400×6×15=36000(元).答:种植面积最大的花卉总价为36000元.(10分)ykx+80,(1分12.解:(1)由题意可知) =11且图象过点(1,95),k+80,=则有951k=15,∴1yxx≥0),(2分) ∴=15+80(1yxx≥0).(4分=由题意易得30() 2 1416yyx=;(5=分时,解得)(2)当21316yyx<;(6时,解得分当>)yyx>.(7分当<)21316时,解得2131616∴当租车时间为小时,选择甲、乙公司一样合算;当租车时间小于小时,选择乙公司3316合算;当租车时间大于小时,选择甲公司合算.(8分)316x=之后,观察函数图象得到结论.)也可求出(315。
2018年全国各省市初中数学中考-函数真题汇编含解析
2018年全国各省市中考数学函数与几何综合压轴题汇编含解析函数(共8小题)1.(2018•上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.2.(2018•江西)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.解:(1)把A(1,a)代入y=2x得a=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,解方程组得或,∴B点坐标为(﹣1,﹣2);(2)作BD⊥AC于D,如图,∴∠BDC=90°,∵∠C+∠CBD=90°,∠CBD+∠ABD=90°,∴∠C=∠ABD,在Rt△ABD中,tan∠ABD===2,即tanC=2.3.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.4.(2018•福建)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a ﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a <时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a <时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;教习网-课件试卷试题含解析免费下载当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.5.(2018•江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.解:(1)设y与x的函数关系式为y=kx+b,将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=﹣10x+300(8≤x≤30);(2)设每天销售获得的利润为w,则w=(x﹣8)y=(x﹣8)(﹣10x+300)=﹣10(x﹣19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=﹣10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批蜜柚.6.(2018•上海)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t ,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).7.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;教习网-课件试卷试题含解析免费下载(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x 1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k 2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.8.(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ﹣4 ,顶点坐标为(﹣2,1),该抛物线关于点(0,1)成中心对称的抛物线表达式是y=x2﹣4x+5 .抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).解:求解体验:(1)∵抛物线y=﹣x2+bx﹣3经过点(﹣1,0),∴﹣1﹣b﹣3=0,∴b=﹣4,∴抛物线解析式为y=﹣x2﹣4x﹣3=﹣(x+2)2+1,∴抛物线的顶点坐标为(﹣2,1),∴抛物线的顶点坐标(﹣2,1)关于(0,1)的对称点为(2,1),即:新抛物线的顶点坐标为(2,1),令原抛物线的x=0,∴y=﹣3,∴(0,﹣3)关于点(0,1)的对称点坐标为(0,5),设新抛物线的解析式为y=a(x﹣2)2+1,∵点(0,5)在新抛物线上,∴5=a(0﹣2)2+1,∴a=1,∴新抛物线解析式为y=(x﹣2)2+1=x2﹣4x+5,故答案为﹣4,(﹣2,1),y=x2﹣4x+5;抽象感悟:(2)∵抛物线y=﹣x2﹣2x+5=﹣(x+1)2+6①,∴抛物线的顶点坐标为(﹣1,6),抛物线上取点(0,5),∴点(﹣1,6)和(0,5)关于点(0,m)的对称点为(1,2m﹣6)和(0,2m﹣5),设衍生抛物线为y′=a(x﹣1)2+2m﹣6,∴2m﹣5=a+2m﹣6,∴a=1,∴衍生抛物线为y′=(x﹣1)2+2m﹣6=x2﹣2x+2m﹣5②,联立①②得,x2﹣2x+2m﹣5=﹣x2﹣2x+5,整理得,2x2=10﹣2m,∵这两条抛物线有交点,∴10﹣2m≥0,∴m≤5;问题解决:(1)①抛物线y=ax2+2ax﹣b=a(x+1)2﹣a﹣b,∴此抛物线的顶点坐标为(﹣1,﹣a﹣b),∵抛物线y的衍生抛物线为y′=bx2﹣2bx+a2=b(x﹣1)2+a2﹣b,∴此函数的顶点坐标为(1,a2﹣b),∵两个抛物线有两个交点,且恰好是它们的顶点,∴,∴a=0(舍)或a=3,∴b=﹣3,∴抛物线y的顶点坐标为(﹣1,0),抛物线y的衍生抛物线的顶点坐标为(1,12),∴衍生中心的坐标为(0,6);②抛物线y=ax2+2ax﹣b的顶点坐标为(﹣1,﹣a﹣b),∵点(﹣1,﹣a﹣b)关于点(0,k+n2)的对称点为(1,a+b+k+n2),∴抛物线y n的顶点坐标A n为(1,a+b+k+n2),同理:A n+1(1,a+b+k+(n+1)2)∴A n A n+1=a+b+k+(n+1)2﹣(a+b+k+n2)=2n+1.几何综合(共10小题)9.(2018•上海)如图,已知△ABC中,AB=BC=5,tan∠ABC=.教习网-课件试卷试题含解析免费下载(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.10.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.11.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.12.(2018•江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.解:(1)如图1所示,AF即为所求:(2)如图2所示,BH即为所求.13.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF 过点D.(1)求∠BDF的大小;(2)求CG的长.解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.14.(2018•江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.解:(1)过点O作OE⊥AB于点E,∵AD⊥BO于点D,∴∠D=90°,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,又∵BC为⊙O的切线,∴AC⊥BC,∴∠BOC=∠D=90°,∵∠BOC=∠AOD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切线;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC•tan∠ABC=8,则AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴=,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴=,即=,∴AD=2.15.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,教习网-免费精品课件试卷任意下载∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.16.(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠NCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴=,=,∴=,∴EM∥AN.17.(2018•上海)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,∴S △ACD=AC•DF=××(1﹣)=.18.(2018•江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP 为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是BP=CE ,CE与AD的位置关系是AD⊥CE ;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2,BE=2,求四边形ADPE的面积.解:(1)如图1中,结论:PB=EC,CE⊥AD.理由:连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.故答案为PB=EC,CE⊥AD.(2)结论仍然成立.理由:选图2,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.选图3,连接AC交BD于O,设CE交AD于H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴△BAP≌△CAE,∴BP=CE,∠BAP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.(3)∴△BAP≌△CAE,由(2)可知EC⊥AD,CE=BP,在菱形ABCD中,AD∥BC,∴EC⊥BC,教习网-免费精品课件试卷任意下载教习网-课件试卷试题含解析免费下载∵BC=AB=2,BE=2,在Rt △BCE 中,EC==8, ∴BP=CE=8,∵AC 与BD 是菱形的对角线,∴∠ABD=∠ABC=30°,AC ⊥BD ,∴BD=2BO=2AB•cos30°=6,∴OA=AB=,DP=BP ﹣BD=8﹣6=2,∴OP=OD+DP=5,在Rt △AOP 中,AP==2,∴S 四边形ADPE =S △ADP +S △AEP =×2×+×(2)2=8.。
【中考培优】2018年九年级数学中考复习专题函数实际问题培优练习(含答案)
【中考培优】2018年九年级数学中考复习专题函数实际问题培优练习(含答案)2018年九年级数学中考复习专题函数实际问题培优练习1、某网站策划了A、B两种上网的月收费方式:设每月上网学习时间为x(h)小时,方案A,B的收费金额分别为y A (元)、y B(元).如图是y B与x之间函数关系的图象:(友情提示:若累计上网时间不超出“包时上网时间”,则只收”月使用费“;若累计上网时间不超出“包时上网时间”,则对超出部分再加收”超时费“)(1)m=________;n=________p=________.(2)写出y A与x之间的函数关系式.(3)若每月上网的时间为29小时,请说明选取哪种方式能节省上网费?2、做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A 款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?(2)怎样分配这60件服装能保证在甲店铺获利润不少于950元的前提下,使王老板获利的总利润最大?最大的总利润是多少?3、某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元。
2月份用水20吨,交水费32元(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式?(3)小黄家3月份用水26吨,他家应交水费多少元?4、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?5、甲乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式;(不要求写取值范围)(2)如果某学校目前的绿化面积是1200平方米.试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.6、如图,在平面直角坐标系中,直线l1:y=kx+b经过第一象限的点A(1,2)和点B(m,n)(m>1),且mn=2,过点B作BC⊥y轴,垂足为C,△ABC的面积为2.(1)求B点的坐标;(2)求直线l1的函数表达式;(3)直线l2:y=ax经过线段AB上一点P(P不与A、B重合),求a的取值范围.7、某厂按用户的月需求量x(件/月)完成一种产品的生产,其中x >0,每件的售价为18万元,每件的成本y(万元/件)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差很大,求m.8、为了预防流感,某校在休息天用药薰消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,生才能进入教室?9、为了预防“甲型H1N1”,某校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min 燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量低于1.6mg时,生方可进教室,那么从消毒开始,至少需要几分钟后,生才能进入教室?(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?10、已知直线经过点A(,3)(其中>4),与双曲线(>0)交于点P,过A作AB∥x轴,AC∥y轴,分别交双曲线于点B、C(1)求的值(用含有字母a的代数式表示);(2)过B作x轴垂线,垂足为E,交OA于D,连接CD①求证:四边形ABDC是矩形;②连接BP、CP,求的值。
中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)
中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【答案】(1)()y 309601032x x =−+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入可得203603060k b k b +⎧⎨+⎩==,解得30960k b =−⎧⎨=⎩, 则()y 309601032x x =−+≤≤;(2)解:每月获得利润()()3096010P x x =−+−()()303210x x =−+−()23042320x x =−+−()230213630x =−−+. ∵300−<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2.某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x −−+∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1)232252w x x =-+-(2)①第一年的售价为每件16元,②第二年的最低利润为61万元.【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;(2)①把4w =代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.(1)解:由题意得:()860w x y =--()()82460x x =---232252,x x =-+-(2)①由(1)得:当4w =时,则2322524,x x -+-=即2322560,x x -+=解得:1216,x x ==即第一年的售价为每件16元, ② 第二年售价不高于第一年,销售量不超过13万件,16,2413x x ì£ï\í-?ïî解得:1116,x # 其他成本下降2元/件,∴()()2624430148,w x x x x =---=-+-对称轴为()3015,21x =-=? 10,a =-<∴ 当15x =时,利润最高,为77万元,而1116,x #当11x =时,513461w =?=(万元)当16x =时,108476w =?= (万元)6177,w \#所以第二年的最低利润为61万元.【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示: 时间(天)x 销量(斤)120﹣x 储藏和损耗费用(元) 3x 2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?【答案】(1)10%;(2)y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x (1≤x <10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该水果每次降价的百分率为x ,10(1﹣x )2=8.1,解得,x 1=0.1,x 2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y =(8.1﹣4.1)×(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380, ∵1≤x <10,∴当x =9时,y 取得最大值,此时y =377,由上可得,y 与x (1≤x <10)之间的函数解析式是y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示: 水果单价甲 乙 进价(元/千克)x 4x + 售价(元/千克) 20 25已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x 的值; (2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+,解得:x=16,经检验:x=16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A 为400包时,总利润最大.最大总利润为2800元【分析】(1)设乙食材每千克进价为a 元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;(2)①设每日购进甲食材x 千克,乙食材y 千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;②设A 为m 包,根据题意,可以得到每日所获总利润与m 的函数关系式,再根据A 的数量不低于B 的数量,可以得到m 的取值范围,从而可以求得总利润的最大值.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802012a a−=,解得20a =. 经检验,20a =是所列方程的根,且符合题意.∴240a =(元).答:甲、乙两种食材每千克进价分别为40元、20元.(2)①设每日购进甲食材x 千克,乙食材y 千克.由题意得()402018000501042x y x y x y +=⎧⎨+=+⎩,解得400100x y =⎧⎨=⎩ 答:每日购进甲食材400千克,乙食材100千克.②设A 为m 包,则B 为()500200040.25m m −=−包. 记总利润为W 元,则 ()45122000418000200034000W m m m =+−−−=−+.A 的数量不低于B 的数量,∴20004m m ≥−,400m ≥.30k =−<,∴W 随m 的增大而减小。
2018年中考数学总复习函数训练试卷(江西有答案和解释)
第三单元限时检测卷(时间:120分钟 分值:120分)一、选择题(本大题共6小题,每小题3分,共18分)1.在平面直角坐标系中,点A 、点B 关于y 轴对称,点A 的坐标是(2,-8),则点B 的坐标是( )A .(-2,-8)B .(2,8)C .(-2,8)D .(8,2)2.已知点P (0,a )在y 轴的负半轴上,则点Q (-a 2-1,-a +1)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.在同一平面直角坐标系中,若一次函数y =-x +3与y =3x -5的图象交于点M ,则点M 的坐标为( )A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)4.(2017阜新)如图1,在平面直角坐标系中,点P 是反比例函数y =kx (x <0)图象上的一点,分别过点P 作P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,若四边形P AOB 的面积为6,则k 的值是( )图1A .12B .-12C .6D .-65.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他加快了骑车速度继续匀速行驶,下面是行驶路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图象大致是( )6.已知二次函数y =(x +m )2-n 的图象如图2所示,则一次函数y =mx +n 与反比例函数y =mnx的图象可能是( )图2二、填空题(本大题共6小题,每小题3分,共18分) 7.函数y =12x -3中,自变量x 的取值范围是__________.8.若点A (1,y 1),点B (-2,y 2)在双曲线y =-3x 的图象上,则y 1与y 2的大小关系为y 1________y 2.(填“>”“<”或“=”)9.在平面直角坐标系中,如果点(x,4),(0,8),(-4,0)在同一条直线上,则x =__________. 10.把抛物线y =-2x 2+4x +1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是________________.11.已知一次函数y =kx +3和y =-kx +2,则两个一次函数图象的交点在第__________象限.12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,给出以下结论:①2a -b =0;②abc >0;③4ac -b 2<0;④9a +3b +c >0;⑤关于x 的一元二次方程ax 2+bx +c +3=0有两个相等实数根.其中正确结论的序号为__________.图3三、(本大题共5小题,每小题6分,共30分) 13.(本题共2小题,每小题3分) (1)求y =2x -1的自变量的取值范围.(2)如图4,在平面直角坐标系中,直线y =kx +4与x 轴正半轴交于点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式.图414.已知一次函数y =ax +b 的图象经过点A (2,0)与B (0,4). (1)求一次函数的解析式;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的x 的值在什么范围内.15.(2017随州)如图5,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数y =k x 的图象于点B ,AB =32.(1)求反比例函数的解析式;(2)若P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限?并简要说明理由.图516.(2017东营)如图6,一次函数y =kx +b 的图象与坐标轴分别交于A ,B 两点,与反比例函数y =nx 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3.图6(1)求一次函数与反比例函数的解析式; (2)直接写出当x >0时,kx +b -nx <0的解集.17.如图7,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.图7(1)求b ,c 的值.(2)结合函数的图象,当y >0时,求x 的取值范围.四、(本大题共3小题,每小题8分,共24分)18.(2017永州改编)永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:(1)(2)请用求出的函数表达式预测该水库今年4月6日的水位.19.如图8,在平面直角坐标系中,边长为2的正方形ABCD 在第一象限内,AD ∥y 轴,点A 的坐标为(5,3),已知直线l :y =12x -2.(1)将直线l 向上平移m 个单位,使平移后的直线恰好经过点A ,求m 的值; (2)在(1)的条件下,平移后的直线与正方形的边BC 交于点E ,求△ABE 的面积.图820.如图9,已知点A (4,0),B (0,4 3),把一个直角三角尺DEF 放在△OAB 内,使其斜边FD 在线段AB 上,点D 与点A 重合.其中∠EFD =30°,ED =2,点G 为边FD 的中点.图9(1)求直线AB 的解析式;(2)求经过点G 的反比例函数y =kx (k ≠0)的解析式.五、(本大题共2小题,每小题9分,共18分)21.如图10,直线y =x +1与y 轴交于A 点,与反比例函数y =kx (x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO =12.图10(1)求k 的值;(2)设点N (1,a )是反比例函数y =kx (x >0)图象上的点,在y 轴上是否存在点P ,使得PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明理由.22.在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A 地步行到B 地后按原路返回,队伍乙由A 地步行经B 地继续前行到C 地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x (分钟),甲、乙两支队伍距B 地的距离为y 1(千米)和y 2(千米)(甲、乙两队始终保持匀速运动).如图11所示的折线分别表示y 1,y 2与x 之间的函数关系,请你结合所给的信息回答下列问题:图11(1)A ,B 两地之间的距离为________千米,B ,C 两地之间的距离为________千米; (2)求队伍乙由A 地出发首次到达B 地所用的时间,并确定线段MN 表示的y 2与x 的函数关系式;(3)请你直接写出点P 的实际意义.六、(本大题共12分)23.如图12,抛物线C :y =x 2经过变化可得到抛物线C 1:y 1=a 1x (x -b 1),C 1与x 轴的正半轴交与点A 1,且其对称轴分别交抛物线C ,C 1于点B 1,D 1,此时四边形OB 1A 1D 1恰为正方形;按上述类似方法,如图13,抛物线C 1:y 1=a 1x (x -b 1)经过变换可得到抛物线C 2:y 2=a 2x (x -b 2),C 2与x 轴的正半轴交与点A 2,且其对称轴分别交抛物线C 1,C 2于点B 2,D 2,此时四边形OB 2A 2D 2也恰为正方形;按上述类似方法,如图14,可得到抛物线C 3:y 3=a 3x (x -b 3)与正方形OB 3A 3D 3.请探究以下问题:(1)填空:a 1=__________,b 1=__________; (2)求出C 2与C 3的解析式;(3)按上述类似方法,可得到抛物线C n :y n =a n x (x -b n )与正方形OB n A n D n (n ≥1). ①请用含n 的代数式直接表示出C n 的解析式;②当x 取任意不为0的实数时,试比较y 2 015与y 2 016的函数值的大小并说明理由.图12 图13 图14第三单元限时检测卷1.A 2.B 3.D 4.D 5.C 6.C 7.x ≠328.< 9.-210.y =-2(x +1)2+6 11.一或二 12.②③⑤ 13.解:(1)根据题意得,2x -1≥0,解得x ≥12.(2)当y =0时,kx +4=0,解得x =-4k ,则A ⎝⎛⎭⎫-4k ,0, 当x =0时,y =kx +4=4,则B (0,4). 因为△OAB 的面积为10, 所以12·⎝⎛⎭⎫-4k ·4=10,解得k =-45. 所以直线解析式为y =-45x +4.14.解:(1)∵一次函数y =ax +b 的图象经过点A (2,0)与B (0,4),∴⎩⎪⎨⎪⎧ 2a +b =0,b =4,解得⎩⎪⎨⎪⎧a =-2,b =4.∴一次函数的解析式为y =-2x +4.(2)当y =-4时,-2x +4=-4,解得x =4, 当y =4时,-2x +4=4,解得x =0. ∴0≤x ≤4.15.解:(1)由题意B ⎝⎛⎭⎫-2,32, 把B ⎝⎛⎭⎫-2,32代入y =kx 中,得k =-3, ∴反比例函数的解析式为y =-3x .(2)P 在第二象限,Q 在第四象限. 理由:∵k =-3<0,∴反比例函数在每个象限y 随x 的增大而增大.∵P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2, ∴P ,Q 在不同的象限.∴P 在第二象限,Q 在第四象限.16.解:(1)∵S △AOB =3,OB =3,∴OA =2. ∴B (3,0),A (0,-2).代入y =kx +b 得⎩⎪⎨⎪⎧3k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =23,b =-2.∴一次函数的解析式为y =23x -2.∵OD =6,∴D (6,0).当x =6时,y =23×6-2=2.∵CD ⊥x 轴,∴C (6,2). ∴n =6×2=12.∴反比例函数的解析式是y =12x. (2)当x >0时,kx +b -nx<0的解集是0<x <6.17.解:(1)∵正方形OABC 的边长为2,∴B (2,2),C (0,2). 把B (2,2),C (0,2)代入y =-23x 2+bx +c 得⎩⎪⎨⎪⎧ -23×4+2b +c =2,c =2,解得⎩⎪⎨⎪⎧b =43,c =2. (2)二次函数解析式为y =-23x 2+43x +2,当y =0时,-23x 2+43x +2=0,解得x 1=-1,x 2=3,∴抛物线与x 轴的交点坐标为(-1,0),(3,0). ∴当-1<x <3时,y >0.18.解:(1)水库的水位y 随日期x 的变化是均匀的, ∴y 与日期x 之间的函数为一次函数. 设y =kx +b ,把(1,20)和(2.20.5)代入得⎩⎪⎨⎪⎧ k +b =20,2k +b =20.5,解得⎩⎪⎨⎪⎧k =0.5,b =19.5.∴y =0.5x +19.5.(2)当x =6时,y =3+19.5=22.5. 即该水库今年4月6日的水位为22.5米. 19.解:(1)设平移后的直线解析式为y =12x +b ,∵y =12x +b 过点A (5,3),∴3=12×5+b .∴b =12.∴平移后的直线解析式为y =12x +12.∴m =12-(-2)=52.(2)∵正方形ABCD 中,AD ∥y 轴,点A 的坐标为(5,3), ∴点E 的横坐标为5-2=3.把x =3代入y =12x +12,得y =12×3+12=2,∴点E 的坐标为(3,2).∴BE =1. ∴S △ABE =12×2×1=1.20.解:(1)设直线AB 的解析式为y =kx +b , ∵A (4,0),B (0,4 3),∴⎩⎨⎧ 4k +b =0,b =4 3,解得⎩⎨⎧k =-3,b =4 3.∴直线AB 的解析式为y =-3x +4 3. (2)∵在Rt △DEF 中,∠EFD =30°,ED =2, ∴EF =2 3,DF =4.∵点D 与点A 重合,∴D (4,0). ∴F (2,2 3). ∴G (3,3).∵反比例函数y =kx 经过点G ,∴k =3 3.∴反比例函数的解析式为y =3 3x. 21.解:(1)由y =x +1可得A (0,1),即OA =1. ∵tan ∠AHO =OA OH =12,∴OH =2.∵MH ⊥x 轴,∴点M 的横坐标为2. ∵点M 在直线y =x +1上, ∴点M 的纵坐标为3,即M (2,3). ∵点M 在y =kx上,∴k =2×3=6.(2)∵点N (1,a )在反比例函数y =6x 的图象上,∴a =6,即点N 的坐标为(1,6).过N 作N 关于y 轴的对称点N 1,连接MN 1,交y 轴于P (如图1),图1此时PM +PN 最小.∵N 与N 1关于y 轴对称,N 点坐标为(1,6), ∴N 1的坐标为(-1,6).设直线MN 1的解析式为y =kx +b ,把M ,N 1的坐标代入得⎩⎪⎨⎪⎧-k +b =6,2k +b =3,解得⎩⎪⎨⎪⎧k =-1,b =5.∴直线MN 1的解析式为y =-x +5. 令x =0,得y =5, ∴点P 坐标为(0,5). 22.解:(1)5,1;(2)乙队伍60分钟走6千米,走5千米用时606×5=50(分钟),即由A 地出发首次到达B 地所用的时间为50分钟. ∴M (50,0),N (60,1).设直线MN 的解析式为y =kx +b (k ≠0),则有⎩⎪⎨⎪⎧60k +b =1,50k +b =0,解得⎩⎪⎨⎪⎧k =110,b =-5.∴线段MN 表示的y 2与x 的函数解析式为 y 2=110x -5 (50≤x ≤60). (3)实际意义:当x =60011分钟时,甲乙距B 地都为511千米.【提示】设队伍甲从A 地到B 地运动过程中离B 地距离y 与运动时间x 之间的函数解析式为y =mx +n (m ≠0),则点(0,5),(60,0)在该函数图象上,∴⎩⎪⎨⎪⎧ n =5,60m +n =0,解得⎩⎪⎨⎪⎧ m =-112,n =5.∴当0≤x ≤60时,队伍甲的运动函数解析式为y =-112x +5. 令110x -5=-112x +5,解得x =60011. 将x =60011代入到y =-112x +5中得y =511. ∴P ⎝⎛⎭⎫60011,511.23.解:(1)1,2;【提示】当y 1=0时,a 1x (x -b 1)=0,解得x 1=0,x 2=b 1.∴A 1(b 1,0).由正方形OB 1A 1D 1得OA 1=B 1D 1=b 1,∴B 1⎝⎛⎭⎫b 12,b 12.∵B 1在抛物线C 上,∴b 12=⎝⎛⎭⎫b 122,即b 1(b 1-2)=0. ∴b 1=0(不符合题意),b 1=2.∴D 1(1,-1).把D 1(1,-1)代入y 1=a 1x (x -b 1)中得-1=-a 1, ∴a 1=1.(2)当y 2=0时,a 2x (x -b 2)=0,解得x 1=0,x 2=b 2. ∴A 2(b 2,0).由正方形OB 2A 2D 2得OA 2=B 2D 2=b 2,∴B 2⎝⎛⎭⎫b 22,b 22.∵B 2在抛物线C 1上,∴b 22=⎝⎛⎭⎫b 222-2×b 22, 即b 2(b 2-6)=0.∴b 2=0(不符合题意),b 2=6.∴D 2(3,-3).把D 2代入C 2的解析式得-3=3a 2(3-6),∴a 2=13. ∴C 2的解析式为y 2=13x (x -6)=13x 2-2x .同理可得:C3的解析式为y3=19x2-2x.(3)①C n的解析式:y n=13n-1x2-2x(n≥1).②由①可得:抛物线C2 015的解析式为y2 015=132 014x2-2x,抛物线C2 016的解析式为y2 016=132 015x2-2x,∴两抛物线的交点为(0,0).如图2,由图象得:当x≠0时,y2 015>y2 016.图2。
【中考数学】2018最新版本中考数学专题训练_-函数综合题(历年真题-可打印)
yxOCBA中考数学专题训练附参考答案函数综合题专题1.如图,一次函数b kx y +=与反比例函数x y 4=的图像交于A 、B 两点,其中点A 的横坐标为1,又一次函数b kx y +=的图像与x 轴交于点()0,3-C .(1)求一次函数的解析式; (2)求点B 的坐标.2.已知一次函数y=(1-2x )m+x+3图像不经过第四象限,且函数值y 随自变量x 的减小而减小。
(1)求m 的取值范围;(2)又如果该一次函数的图像与坐标轴围成的三角形面积是4.5 ,求这个一次函数的解析式。
3. 如图,在平面直角坐标系中,点O 为原点,已知点A 的坐标为(2,2),点B 、C 在x 轴上,BC =8,AB=AC ,直线AC 与y 轴相交于点D .(1)求点C 、D 的坐标;(2)求图象经过B 、D 、A 三点的二次函数解析式及它的顶点坐标.图2Oy x1 2-11-12 y D A4.如图四,已知二次函数223y ax ax =-+的图像与x 轴交于点A ,点B ,与y 轴交于点C ,其顶点为D ,直线DC 的函数关系式为y kx b =+,又tan 1OBC ∠=. (1)求二次函数的解析式和直线DC 的函数关系式; (2)求ABC △的面积.5.已知在直角坐标系中,点A 的坐标是(-3,1),将线段OA 绕着点O 顺时针旋转90°得到OB .(1)求点B 的坐标; (2)求过A 、B 、O 三点的抛物线的解析式; (3)设点B 关于抛物线的对称轴λ的对称点为C ,求△ABC 的面积。
y xDCA OB (图四)y6.如图,双曲线x y 5=在第一象限的一支上有一点C (1,5),过点C 的直线)0(>+-=k b kx y 与x 轴交于点A (a ,0)、与y 轴交于点B .(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限的另一交点D 的横坐标是9时,求△COD 的面积.AOCBDxy 第6题7.在直角坐标系中,把点A (-1,a )(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点的纵坐标为2. (1)求这条抛物线的解析式; (2)设该抛物线的顶点为点P ,点B 的坐标 为)1m ,(,且3<m ,若△ABP 是等腰三角形,求点B 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学中考专题--函数实际应用题精炼卷1.某商店需要采购甲、乙两种商品共15件,其价格如图所示:且要求乙商品的件数不得少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)求出y与x的函数关系式(要求写出自变量x的取值范围);(2)试利用函数的性质说明,当采购多少件甲种商品时,所需要的费用最少?2.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?3.某通讯移动通讯公司手机费用有A.B两种计费标准,如下表:月租费(元/部)通讯费(元/分钟)A种收费标准15 0.2B种收费标准0 0.25(1)按A类收费标准,该用户应缴纳费用y A(元)与通话时间x(分钟)之间的函数关系式是;按B类收费标准,该用户应缴纳费用y B(元)与通话时间x(分钟)之间的函数关系式是;(2)如果该用户每月通话时间为400分钟,应选择哪种收费方式?为什么?4.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用第(1)小题中y2与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值﹣总投资)5.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?6.为努力把我市建成“国家园林城市”,绿化公司计划购买A.B、C三种绿化树共800株,用20辆货车一次运回,对我市城区新建道路进行绿化.按计划,20辆货车都要装运,每辆货车只(1)设装运A种绿化树的车辆数为x,装运B种绿化树的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种绿化树的车辆数都不多于8辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若在活动中要求“厉行节约”办实事,则应采用(2)中的哪种安排方案?为什么?7.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.8.现从A.B向甲、乙两地运送蔬菜,A.B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?9.A.B两乡分别由大米200吨、300吨.现将这些大米运至C、D两个粮站储存.已知C粮站可储存240吨,D粮站可储存200吨,从A乡运往C、D两处的费用分别为每吨20元和25元,B乡运往C、D两处的费用分别为每吨15元和18元.设A乡运往C粮站大米x吨.A.B两乡运往两个粮站的运费分别为y A.y B元.(1)请填写下表,并求出y A.y B与x的关系式:(2)试讨论A.B乡中,哪一个的运费较少;(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少?10.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?11.病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?12.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= ,y乙= ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的1.5倍,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?13.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是________________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?14.某公司经销一种商品,每件商品的成本为50元,经市场的调查,在一段时间内,销售量w(件)随销售单价x(元/件)的变化而变化,具体关系式为w=-2x+240.设这种商品在这段时间内的销售利润为y(元),解答如下问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?15.如图,一个圆形喷水池的中央垂直于水面安装了一个柱形喷水装置OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,按如图所示建立直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用y=﹣x2+bx+c表示,且抛物线经过点B(0.5,2.5),C(2,1.75).请根据以上信息,解答下列问题;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?参考答案1.解:(1)y=60x+100(15﹣x)=﹣40x+1500,∵,∴0≤x≤5,即y=﹣40x+1500 (0≤x≤5);(2)∵k=﹣40<0,∴y随x的增大而减小.即当x取最大值5时,y最小;此时y=﹣40×5+1500=1300,∴当采购5件甲种商品时,所需要的费用最少.2.解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.3.(1) y A=0.2x+15 ;y B =0.25x(2) 当x=400时,算出y A=95元,y B =100元,4.解:(1)根据题意,y1=0.3x+200,y2=0.5x﹣(0.3x+200)=0.2x﹣200;(2)把x=900代入y2中,可得y2=0.2×900﹣200=﹣20<0,∴当总产量为900台时,公司会亏损,亏损额为20万元;(3)根据题意,当0.2x﹣200<0时,解得x<1000,说明总产量小于1000台时,公司会亏损;当0.2x﹣200>0时,解得x>1000,说明总产量大于1000台时,公司会盈利;当0.2x﹣200=0时,解得x=1000,说明总产量等于1000台时,公司不会亏损也不会盈利.5.解:(1)y=;(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣2x2+120x,当x=30时,y取得最大值=1400,∴顾客一次购买30件时,该网站从中获利最多.6.解:(1)由题意可知:装运C种绿化树的车辆数为(20﹣x﹣y),据题意可列如下方程:40x+48y+32(20﹣x﹣y)=800,解得:y=﹣x+10,故y与x之间的函数关系式为:y=﹣x+10;(2)由题意可得如下不等式组:,即,解得:4≤x≤8,∵y是整数,∴x是偶数,∴x=4,6,8,共三个值,因而有三种安排方案.方案二:6车装运A,7车装运B,7车装运C;方案三:8车装运A,6车装运B,6车装运C;(3)设绿化费用为w元,由(1)知w=20x×40+50(﹣x+10)×48+30(20﹣x+x﹣10)×32,整理,得w=﹣880x+33600,∵﹣880<0,∴w随x的增大而减小,∴当x=8时,w的值最小,最小值为:﹣880×8+33600=26560元.故采用(2)中的第三个方案,即8车装运A,6车装运B,6车装运C.7.解:(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.8.略9.解:(1)根据已知补充表格如下:C站D站总计A乡x吨200﹣x吨200吨B乡240﹣x吨x+60吨300吨总计240吨260吨500吨A乡运往两个粮站的运费y A=20x+25×(200﹣x)=﹣5x+5000(0≤x≤200);B乡运往两个粮站的运费y B=15×(240﹣x)+18×(x+60)=3x+4680(0≤x≤200).(2)令y A=y B,即﹣5x+5000=3x+4680,解得:x=40.故当x<40时,B乡运费少;当x=40时,A.B两乡运费一样多;当x>40时,A乡运费少.(3)令y B≤4830,即3x+4680≤4830,解得:x≤50.总运费y=y A+y B=﹣5x+5000+3x+4680=﹣2x+9680,∵﹣2<0,∴y=﹣2x+9680单调递减.故当x=50时,总运费最低,最低费用为9580元.10.解:(1)根据题意得:2a+b=80,3a+2b=135,解得:a=25,b=30;(2)①由题意得:y=(x﹣20)[100﹣5(x﹣30)]∴y=﹣5x2+350x﹣5000,②∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,∴当x=35时,y最大=1125,∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.11.解:(1)根据图象,正比例函数图象经过点(2,4),设函数解析式为y=kx,则2k=4,解得k=2,所以函数关系为y=2x(0≤x≤2);(2)根据图象,反比例函数图象经过点(2,4),(3)当y=2时,2x=2,解得x=1,8x-1=2,解得x=4,4﹣1=3小时,∴服药一次,治疗疾病的有效时间是3小时.12.解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥1.5(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,y随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.13.1)108 ;(2)180<x≤450 ;(3)0.6 .(4)设直线BC的解析式为y=kx+b,由图象,得解得∴y=0.9x-121.5.当y=328.5时,0.9x-121.5=328.5.解得x=500.答:这个月他家用电500千瓦时.14.15.。