高三复习电磁感应计算题集锦

合集下载

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。

在此题中,导线不运动,所以感应电动势为零。

因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。

答案:电路中的电流为0A。

题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。

当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。

在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。

根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。

根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。

答案:环中的新磁场强度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。

在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。

答案:导线在磁场中的运动速度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高考电磁感应经典题型汇总

高考电磁感应经典题型汇总

1.(单选)如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t 的变化关系如图乙所示.在0﹣2T 时间内,直导线中电流向上,则在2T﹣T 时间内,线框中感应电流的方向与所受安培力情况是( )A .感应电流方向为顺时针,线框受安培力的合力方向向左B .感应电流方向为逆时针,线框受安培力的合力方向向右C .感应电流方向为顺时针,线框受安培力的合力方向向右D .感应电流方向为逆时针,线框受安培力的合力方向向左答案及解析:.C 解:在﹣T 时间内,直线电流方向向下,根据安培定则,知导线右侧磁场的方向垂直纸面向外,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生顺时针方向的感应电流.根据左手定则,知金属框左边受到的安培力方向水平向右,右边受到的安培力水平向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属框所受安培力的合力水平向右.故C 正确,A 、B 、D 错误.故选:C .2.(单选)如图所示,a 、b 、c 三个线圈是同心圆,b 线圈上连接有直流电源E 和电键K ,则下列说法正确的是( )A .在K 闭合的一瞬间,线圈a 中有逆时针方向的瞬时电流,有收缩趋势B .在K 闭合的一瞬间,线圈c 中有顺时针方向的瞬时电流,有收缩趋势C .在K 闭合电路稳定后,再断开K 的一瞬间,线圈c 中有感应电流,线圈a 中没有感应电流D .在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势答案及解析:.D 解:A 、K 闭合时线圈b 中顺时针的电流,根据右手定则可知内部有向里增大的磁场,则a 线圈产生阻碍原磁通量变化的电流;根据楞次定律可知,电流方向为逆时针,线圈受到向外的安培力,故有扩张的趋势;故A 错误;B 、根据楞次定律可知,c 中感应电流为逆时针且有收缩的趋势;故B 错误;C 、在K 闭合电路稳定后,再断开K 的一瞬间,两线圈中均有磁通量的变化,故线圈中均有感应电流;故C 错误D 、在K 闭合的一瞬间,线圈b 中有感应电动势;在K 闭合电路稳定后,再断开K 的一瞬间,线圈b 中仍然有感应电动势;故D 正确;故选:D .3.(多选)如图所示,一电子以初速度v 沿与金属板平行方向飞入MN 极板间,突然发现电子向M 板偏转,若不考虑磁场对电子运动方向的影响,则产生这一现象的原因可能是( )A .开关S 闭合瞬间B .开关S 由闭合后断开瞬间C .开关S 是闭合的,变阻器滑片P 向右迅速滑动D .开关S 是闭合的,变阻器滑片P 向左迅速滑动答案及解析:AD 解:电子向M 板偏转,说明电子受到向左的电场力,两金属板间的电场由M 指向N ,M 板电势高,N 板电势低,这说明:与两金属板相连的线圈产生的感应电动势:左端电势高,与N 板相连的右端电势低;A 、开关S 闭合瞬间,由安培定则可知,穿过线圈的磁通量向右增加,由楞次定律知在右侧线圈中感应电流的磁场方向向左,产生左正右负的电动势,电子向M板偏振,A正确;B、开关S由闭合后断开瞬瞬间,穿过线圈的磁通量减少,由楞次定律知在右侧线圈中产生左负右正的电动势,电子向N板偏振,B错误;C、开关S是闭合的,变阻器滑片P向右迅速滑动,变阻器接入电路的电阻增大,电流减小,穿过线圈的磁通量减小,由楞次定律知在上线圈中产生左负右正的电动势,电子向N偏振,C错误;D、开关S是闭合的,变阻器滑片P向左迅速滑动,滑动变阻器接入电路的阻值减小,电流增大,穿过线圈的磁通量增大,由楞次定律知在上线圈中感应出左正右负的电动势,电子向M偏振,D 正确.故选:AD.4.(单选)如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是()A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d答案及解析:B解:由静止释放到最低点过程中,磁通量减小,且磁场方向向上,由楞次定律,感应电流产生磁场也向上,再由右手螺旋定则可知,感应电流的方向:d→c→b→a→d;同理,当继续向右摆动过程中,向上的磁通量增大,根据楞次定律可知,电流方向是d→c→b→a→d;故选:B.5.(单选)如图甲所示,电路的左侧是一个电容为C的电容器,电路的右侧是一个环形导体,环形导体所围的面积为S.在环形导体中有一垂直纸面向里的匀强磁场,磁感应强度的大小随时间变化的规律如图乙所示.则在0~t0时间内电容器()A.上极板带正电,所带电荷量为012)( t BB CS-B.上极板带正电,所带电荷量为012)(t BBC-C.上极板带负电,所带电荷量为012)( t BB CS-D.上极板带负电,所带电荷量为012)(t BBC-答案及解析:.A解:根据法拉第电磁感应定律,电动势E=,电容器两端的电压等于电源的电动势,所以电容器所带的带电量.根据楞次定律,在环形导体中产生的感应电动势的方向为逆时针方向,所以电容器的上极板带正电.故A正确,B、C、D错误.故选A.6.(单选)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣21Bl 2ω,金属框中无电流D .U bc =21Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a 答案及解析:.C 解:AB 、导体棒bc 、ac 做切割磁感线运动,产生感应电动势,根据右手定则,感应电动势的方向从b 到c ,或者说是从a 到c ,故U a =U b <U c ,磁通量一直为零,不变,故金属框中无电流,故A 错误,B 错误; CD 、感应电动势大小=Bl ()=Bl 2ω,由于U b <U c ,所以U bc =﹣Bl 2ω,磁通量一直为零,不变,金属框中无电流,故C 正确,D 错误;故选:C .7.(多选)如图所示,一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出.已知匀强磁场区域的宽度L 大于线框的高度h ,那么下列说法中正确的是( )A .线框只在进入和穿出磁场的过程中,才有感应电流产生B .线框从进入到穿出磁场的整个过程中,都有感应电流产生C .线框在进入和穿出磁场的过程中,都是机械能变成电能D .整个线框都在磁场中运动时,机械能转变成内能答案及解析:AC 解:A 、B 、线框在进入和穿出磁场的过程中,穿过线框的磁通量发生变化,有感应电流产生,而整个线框都在磁场中运动时,线框的磁通量不变,没有感应电流产生.故A 正确,B 错误.C 、线框在进入和穿出磁场的过程中,产生感应电流,线框的机械能减小转化为电能.故C 正确.D 、整个线框都在磁场中运动时,没有感应电流产生,线框的重力势能转化为动能,机械能守恒.故D 错误.故选:AC .8.(多选)如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场一直到ab 边离开磁场为止):( )A .感应电流所做的功为2mgdB .线圈的最小速度可能为22L B mgR C .线圈的最小速度一定是)(2d L h g -+D .线圈穿出磁场的过程中,感应电流为逆时针方向答案及解析:.ABC解:A、据能量守恒,研究从cd边刚进入磁场到cd边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q=mgd.cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以从cd边刚穿出磁场到ab边离开磁场的过程,线框产生的热量与从cd边刚进入磁场到ab边刚进入磁场的过程产生的热量相等,所以线圈从cd边进入磁场到ab边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.B、线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg=,解得可能的最小速度v=,故B正确.C、因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg(h+L)=Q+,解得最小速度v=,故C正确.D、线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D错误.故选:ABC.9.(单选)在竖直方向的匀强磁场中,水平放置一个矩形的金属导体框,规定磁场方向向上为正,导体框中电流的正方向如图所示,当磁场的磁感应强度B随时间t如图变化时,下图中正确表示导体框中感应电流变化的是()A.B.C.D.答案及解析:.C解:根据法拉第电磁感应定律有:E=n=n s,因此在面积、匝数不变的情况下,感应电动势与磁场的变化率成正比,即与B﹣t图象中的斜率成正比,由图象可知:0﹣2s,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向顺时针(俯视)即为正值,而在2﹣4s斜率不变,电流方向为逆时针,整个过程中的斜率大小不变,所以感应电流大小不变;根据楞次定律,向上的磁场先减小,再向下磁场在增大,则感应电流方向为逆时针,即为负方向,故ABD错误,C正确.故选:C.10.(多选)如图甲所示,正六边形导线框abcdef放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流顺时针方向为正、竖直边cd所受安培力的方向水平向左为正.则下面关于感应电流i和cd所受安培力F随时间t变化的图象正确的是()A.B.C.D.答案及解析:.AC解:A、0~2s内,磁场的方向垂直纸面向里,且逐渐减小,根据楞次定律,感应电流的方向为顺时针方向,为正值.根据法拉第电磁感应定律,E==B0S为定值,则感应电流为定值,.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据楞次定律,感应电流方向为顺时针方向,为正值,大小与0~2s 内相同.在3~4s内,磁感应强度垂直纸面向外,且逐渐减小,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,根据楞次定律,感应电流方向为逆时针方向,为负值,大小与0~2s内相同.故A正确,B错误.C、在0~2s内,磁场的方向垂直纸面向里,且逐渐减小,电流恒定不变,根据F A=BIL,则安培力逐渐减小,cd边所受安培力方向向右,为负值.0时刻安培力大小为F=2B0I0L.在2s~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,根据F A=BIL,则安培力逐渐增大,cd 边所受安培力方向向左,为正值,3s末安培力大小为B0I0L.在2~3s内,磁感应强度方向垂直纸面向外,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向右,为负值,第4s初的安培力大小为B0I0L.在4~6s内,磁感应强度方向垂直纸面向里,且逐渐增大,则安培力大小逐渐增大,cd边所受安培力方向向左,6s末的安培力大小2B0I0L.故C正确,D错误.故选AC.11.(单选)圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向外,磁感应强度B随时间变化规律如图示,若规定逆时针方向为感应电流i的正方向,下列图中正确的是()A.B.C.D.答案及解析:C解:由B﹣t图象可知,0﹣1s内,线圈中磁通量增大,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向,故BD错误;由楞次定律可知,1﹣2s内电路中的电流为顺时针,为正方向,2﹣3s内,电路中的电流为顺时针,为正方向,3﹣4s内,电路中的电流为逆时针,为正方向,A错误,C正确;故选:C.12.(单选)一正三角形导线框ABC(高度为a)从图示位置沿x轴正向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、方向相反、垂直于平面、宽度均为a.图乙反映感应电流I与线框移动距离x的关系,以逆时针方向为电流的正方向.图象正确的是()A.B.C.D.答案及解析:.C解:A、x在a~2a范围,线框穿过两磁场分界线时,BC、AC边在右侧磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,AC边在左侧磁场中切割磁感线,产生的感应电动势E2增大,两个电动势串联,总电动势E=E1+E2增大.故A错误;B、x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故B错误;CD、在2a~3a,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值.故C正确,D错误.故选:C.13.(多选)如图,A、B为两个完全相同的灯泡,L为自感线圈(自感系数较大;直流电阻不计),E为电源,S为开关.下列说法正确的是()A.闭合开关稳定后,A、B一样亮B.闭合开关的瞬间,A、B同时亮,但A很快又熄灭C.闭合开关稳定后,断开开关,A闪亮后又熄灭D.闭合开关稳定后,断开开关,A、B立即同时熄灭答案及解析:.BC解:A、B刚闭合S的瞬间,电源的电压同时加到两灯上,由于L的自感作用,L瞬间相当于断路,所以电流通过两灯,两灯同时亮.随着电流的逐渐稳定,L将A灯短路,所以A灯很快熄灭,B灯变得更亮,故A错误,B正确.C、D闭合S待电路达到稳定后,再将S断开,B灯立即熄灭,而L与A灯组成闭合回路,线圈产生自感电动势,相当于电源,A灯闪亮一下而后熄灭,故C正确,D错误.故选:BC14.(单选)如图所示,E为电池,L是电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同的灯泡,S 是控制电路的开关、对于这个电路,下列说法中不正确的是()A.刚闭合S的瞬间,通过D1、D2的电流大小相等B.刚闭合S的瞬间,通过D1、D2的电流大小不等C.闭合S待电路达到稳定后,D1熄灭,D2比S刚闭合时亮D.闭合S待电路达到稳定后,再将S断开的瞬间,D1不立即熄灭,D2立即熄灭答案及解析:.B解:A、S闭合瞬间,由于自感线圈相当于断路,所以两灯是串联,电流相等,故A正确,B错误;C、闭合开关S待电路达到稳定时,D1被短路,D2比开关S刚闭合时更亮,C正确;D、S闭合稳定后再断开开关,D2立即熄灭,但由于线圈的自感作用,L相当于电源,与D1组成回路,D1要过一会在熄灭,故D正确;本题选择错误的,故选:B.15.(单选)如图所示的电路中,A1、A2是完全相同的灯泡,线圈L的自感系数较大,它的电阻与定值电阻R相等.下列说法正确的是()A.闭合开关S,A1先亮、A2后亮,最后它们一样亮B.闭合开关S,A1、A2始终一样亮C.断开开关S,A1、A2都要过一会才熄灭D.断开开关S,A2立刻熄灭、A1过一会才熄灭答案及解析:C解:A、闭合开关S,电阻R不产生感应电动势,A2立即发光.线圈中电流增大,产生自感电动势,根据楞次定律得知,自感电动势阻碍电流的增大,电流只能逐渐增大,A1逐渐亮起来,所以闭合开关S,A2先亮、A1后亮,最后它们一样亮.故AB错误.C、D断开开关S时,A2灯原来的电流突然消失,线圈中电流减小,产生感应电动势,相当于电源,感应电流流过A1、A2和R组成的回路,所以A1、A2都要过一会才熄灭.故C正确,D错误.16.(多选)如图所示,相同电灯A和B的电阻为R,定值电阻的阻值也为R,L是自感线圈.当S1闭合、S2断开且电路稳定时,A、B亮度相同.再闭合S2,待电路稳定后将S1断开.下列说法中正确的是()A.A灯将比原来更亮一些后再熄灭B.B灯立即熄灭C.没有电流通过B灯D.有电流通过A灯,方向为b→a答案及解析:.BCD解:A、由于自感形成的电流是在L原来电流的基础上逐渐减小的,并没有超过A灯原来电流,故A灯虽推迟一会熄灭,但不会比原来更亮,故A错误.B、S1闭合、S2断开且电路稳定时两灯亮度相同,说明L的直流电阻亦为R.闭合S2后,L与A灯并联,R与B灯并联,它们的电流均相等.当断开后,L将阻碍自身电流的减小,即该电流还会维持一段时间,在这段时间里,因S2闭合,电流不可能经过B灯和R,只能通过A灯形成b→A→a→L→c→b的电流,所以BCD正确;故选:BCD.17.(多选)如图中甲、乙两图,电阻R和自感线圈L的阻值都较小,接通开关S,电路稳定,灯泡L发光,则()A.在电路甲中,断开S,L逐渐变暗B.在电路甲中,断开S,L突然亮一下,然后逐渐变暗C.在电路乙中,断开S,L逐渐变暗D.在电路乙中,断开S,L突然亮一下,然后逐渐变暗答案及解析:AD解:A、在电路甲中,断开S,由于线圈阻碍电流变小,导致L将逐渐变暗.故A正确;B、在电路甲中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比电阻的电流小,当断开S,L将不会变得更亮,但会渐渐变暗.故B错误;C、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故C错误;D、在电路乙中,由于电阻R和自感线圈L的电阻值都很小,所以通过灯泡的电流比线圈的电流小,断开S时,由于线圈阻碍电流变小,导致L将变得更亮,然后逐渐变暗.故D正确;故选:AD.18.(单选)如图所示装置中,cd杆光滑且原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左匀速运动答案及解析:.B解:A、ab杆向右匀速运动,在ab杆中产生恒定的电流,该电流在线圈L1中产生恒定的磁场,在L2中不产生感应电流,所以cd杆不动.故A错误.B、ab杆向右加速运动,根据右手定则,知在ab杆上产生增大的a到b的电流,根据安培定则,在L1中产生向上增强的磁场,该磁场向下通过L2,根据楞次定律,在cd杆上产生c到d的电流,根据左手定则,受到向右的安培力,向右运动.故B正确.C、ab杆向左加速运动,根据右手定则,知在ab杆上产生增大的b到a的电流,根据安培定则,在L1中产生向下增强的磁场,该磁场向上通过L2,根据楞次定律,在cd杆上产生d到c的电流,根据左手定则,受到向左的安培力,向左运动.故C错误.D、ab杆向左匀速运动,根据右手定则,知在ab杆上产生不变的b到a的电流,根据安培定则,在L1中产生向下不变的磁场,该磁场向上通过L2,因此没有感应电流,则没有安培力,所以不会移动.故D错误.故选:B.20.截面积为0.2m 2的100匝圆形线圈A 处在匀强磁场中,磁场方向垂直线圈平面向里,如图所示,磁感应强度正按t B ∆∆=0.02T/s 的规律均匀减小,开始时S 未闭合.R 1=4Ω,R 2=6Ω,C=30µF ,线圈内阻不计.求:(1)S 闭合后,通过R 2的电流大小;(2)S 闭合后一段时间又断开,则S 切断后通过R 2的电量是多少?解:(1)磁感应强度变化率的大小为=0.02 T/s ,B 逐渐减弱, 所以E=n S=100×0.02×0.2 V=0.4 V I== A=0.04 A , (2)R 2两端的电压为U 2=E=×0.4 V=0.24 V所以Q=CU 2=30×10﹣6×0.24 Q=7.2×10﹣6 C .21.如图,两足够长的平行粗糙金属导轨MN ,PQ 相距d=0.5m .导轨平面与水平面夹角为α=30°,处于方向垂直导轨平面向上、磁感应强度B=0.5T 的匀强磁场中,长也为d 的金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,导体棒质量m=0.lkg ,电阻R=0.lΩ,与导轨之间的动摩擦因数μ=63,导轨上端连接电路如图,已知电阻R 1与灯泡电阻R L 的阻值均为0.2R ,导轨电阻不计,取重力加速度大小g=10m/s 2,(1)求棒由静止刚释放瞬间下滑的加速度大小a ;(2)假若导体棒有静止释放向下加速度运动一段距离后,灯L 的发光亮度稳定,求此时灯L 的实际功率P 及棒的速率v .解:(1)金属棒刚刚开始时,棒受到重力、支持力和摩擦力的作用,垂直于斜面的方向:N=mgcosα沿斜面的方向:mgsinα﹣μN=ma 代入数据解得:a=0.25g=2.5m/s 2(2)当金属棒匀速下滑时速度最大,达到最大时有mgsinα﹣μN=F 安又 F 安=Bid I= R 总=Ω联立以上方程得金属棒下滑的最大速度为:v m ==m/s=0.8m/s电动势:E=Bdv m =0.5×0.5×0.8=0.2V 电流: A灯泡两端的电压:U L =E ﹣IR=0.2﹣1×0.1=0.1V 灯泡的功率:W22.如图所示,表面绝缘且光滑的斜面MM′N′N固定在水平地面上,斜面所在空间有一边界与斜面底边NN′平行、宽度为d的匀强磁场,磁场方向垂直斜面.一个质量m=0.15kg、总电阻R=0.25Ω的正方形单匝金属框,放在斜面的顶端(金属框上边与MM′重合).现从t=0时开始释放金属框,金属框将沿斜面下滑.图2给出了金属框在下滑过程中速度v的二次方与对应的位移x的关系图象.取重力加速度g=l0m/s2.求:(1)斜面的倾角θ;(2)匀强磁场的磁感应强度B的大小;(3)金属框在穿过磁场的过程中电阻上生热的功率.解:(1)s=0到s=0.4 m由公式v2=2as,该段图线斜率:,所以有:a==5m/s2,根据牛顿第二定律mgsinθ=ma,得:sinθ=,所以:θ=30°(2)线框通过磁场时,v2=4,v=2 m/s,此时安培力等于重力沿斜面向下的分量:F安=mg sinθ,即:,所以解得: =T(3)由图象可知线框匀速穿过磁场,该过程中线框减少的重力势能转化为焦耳热,所以金属框在穿过磁场的过程中电阻上生热的功率等于重力做功的功率,即:P R=P G=mgsinθ•v=0.15×10×0.5×2W=1.5W23.如图所示,倾角θ为30°的光滑斜面上,有一垂直于斜面向下的有界匀强磁场区域PQNM,磁场区域宽度L=0.1m.将一匝数n=10匝、质量m=0.02kg、边长L=0.1m、总电阻R=0.4Ω的正方形闭合线圈abcd由静止释放,释放时ab边水平,且到磁场上边界PQ的距离也为L,当ab边刚进入磁场时,线圈恰好匀速运动.(g=10m/s2).求:(1)ab边刚进入磁场时,线圈所受安培力的大小及方向;(2)ab边刚进入磁场时,线圈的速度及磁场磁感应强度B的大小;(3)线圈穿过磁场过程产生的热量.解:(1)ab边刚进入磁场时线框做匀速运动,对线圈受力分析,如图所示,可知:线圈所受安培力的大小 F安=mgsinθ=0.1N方向沿斜面向上.(2)线框进入磁场前沿斜面向下做匀加速直线运动,设ab边刚进磁场时的速度为v,则由机械能守恒定律得:v2=mgL•sin30°得:v=1m/s线框切割磁感线产生的感应电动势 E=nBLv 线框中的感应电流 I=底边所受的安培力 F安=nBIL由以上各式解得:B=0.2T(3)分析可知线圈穿过磁场的过程中一直匀速运动,由能量守恒可得:Q=2mgL•sin30°=0.01J24.如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场.质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab 相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动.棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8.(1)求棒ab与导轨间的动摩擦因数μ;(2)求当棒ab刚要向上滑动时cd速度v的大小;(3)若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q.解:(1)当ab刚好不下滑,静摩擦力沿导轨向上达到最大,由平衡条件得:mgsin37°=μmgcos37°则μ=tan37°=0.75(2)设ab刚好要上滑时,cd棒的感应电动势为E由法拉第电磁感应定律有 E=BLv设电路中的感应电流为I,由闭合电路欧姆定律有 I=设ab所受安培力为F安,有 F安=BIL此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安cos37°=mgsin37°+μ(mg cos37°+F安sin37°)代入数据解得:F安==mg又F安=代入数据解得 v=(3)设ab棒的运动过程中电路中产生的总热量为Q总,由能量守恒有 F•x﹣2Q=mv2解得Q=F•x﹣mv2=F•x﹣。

(试题版)电磁感应 超全

(试题版)电磁感应 超全

高三物理电磁感应计算题集锦4、(16分)如图甲所示, 两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m =0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示. (取重力加速度g=10m/s2)求:(1)t=10s时拉力的大小及电路的发热功率.(2)在0~10s内,通过电阻R上的电量.图乙6、(12分)如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。

整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。

AC 端连有阻值为R 的电阻。

若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。

现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。

求: (1)金属棒下滑过程中的最大速度。

(2)金属棒棒自BD 端出发又回到BD 端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)?7.(12分)如图所示,一矩形金属框架与水平面成θ=37°角,宽L =0.4m ,上、下两端各有一个电阻R 0 =2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B =1.0T .ab 为金属杆,与框架良好接触,其质量m=0.1Kg ,杆电阻r =1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0. 5J .(sin 37°=0.6,cos 37°=0.8)求: (1)流过R 0的最大电流;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离; (3)在时间1s 内通过杆ab 横截面积的最大电量.13.(20分)如图所示,在磁感应强度为B 的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直。

高中物理电磁感应测试题及参考答案

高中物理电磁感应测试题及参考答案

高中物理电磁感应测试题及参考答案一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有:()A、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是:()A、阻碍引起感应电流的磁通量;B、与引起感应电流的磁场反向;C、阻碍引起感应电流的磁通量的变化;D、与引起感应电流的磁场方向相同。

3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是()A. B. C. D.5、如图所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB可在平行导轨MN上滑动,接触良好,轨道电阻不计电流计中有如图所示方向感应电流通过时,AB的运动情况是:()A、向右加速运动;B、向右减速运动;C、向右匀速运动;D、向左减速运动。

完整版高三物理总复习名师《电磁感应经典训练题》含答案Word文档

完整版高三物理总复习名师《电磁感应经典训练题》含答案Word文档

高三物理总复习名师优选《电磁感觉经典训练题》大连市物理名师工作室门贵宝一.单项选择题1. 一闭合导线环垂直置于匀强磁场中,若磁感觉强度随时间变化如左图所示,则环中的感觉电动势变化状况是: ( A )2, 以以以下图 , 两个互连的金属圆环 , 粗金属环的电阻为细金属环电阻的二分之一. 磁场垂直穿过粗金属环所在地域. 当磁场的磁感觉强度随时间均匀变化时, 在粗环内产生的感觉电动势为ε,则 a、 b 两点间的电势差为(C).( A ) 1( B )1( C)2( D) ε2333.以以以下图,匀强磁场方向竖直向下,磁感觉强度大小为B,在磁场中水平固定一个 V 字形金属框架 CAD,已知∠ A=θ,导体棒 MN 在框架上从 A 点开始在外力 F 作用下,沿垂直 MN 方向以速度 v 匀速向右平移,平移过程中导体棒和框架素来接触优异,且构成等腰三角形回路。

已知导体棒与框架的资料和横截面积均同样,其单位长度的电阻均为R,导体棒和框架均足够长,导体棒运动中素来与磁场方向垂直。

关于回路中的电流I、电功率 P、经过导体棒横截面的电荷量q 和外力 F 这四个物理量随时间t 的变化图象,以以下图象中正确的选项是( AD )4. 以以以下图,水平圆滑 U 形框架串入一个电容器,横跨在框架上的金属棒ab 在外力作用下,以速度 v 向右运动一段距离后忽然停止运动,金属棒停止后,不再受图以外物体的作用,导轨足够长,则此后金属棒的运动状况是:(D)A.向右作初速度为零的匀加快运动B.向右作出速度为零的匀加快运动,此后又作减速运动C.在某一地点周边振动D.向右先作加快度逐渐减小加快运动,后作匀速运动5. 以以以下图,一根长为 L 的细铝棒用两个劲度系数为 k 的轻弹簧水平川悬挂在匀强磁场总,磁场方向垂直纸面向里,当铝棒中经过的电流I 从左向右时,弹簧缩短x;当电流反向且强度不变时,弹簧伸长x,则该磁场的磁感觉强度是:(A)A. 2k x/ILB. 2IL/k xC. k x/ILD. kIL/6.以以以下图,线框内有方向正交的匀强电场和匀强磁场,一离子束1垂直于电场和磁场方向飞入此地域,恰好做匀速直线运动,从 O 点此地域,假如仅有电场,离子将从 a 点飞离此地域,经历时间为t1,飞离速度为 v1;假如仅有磁场,离子将从 b 点飞离此地域,经历时间为t2,飞离速度为v2,则以下说法正确的选项是:(A)A.v1>v 2B. aO>BoC. t1>t2D. 以上均不正确7.将一条形磁铁分两次插入一闭合线圈中,两次插入的时间比是2:1,则两次:( C )A.产生的感觉电动势之比是2:1B.产生的电热之比是2:1C.经过导线横截面的电量之比是1:1D.产生的电功率之比是4:1二.多项选择题14.一电子在匀强磁场中,以一正电荷为圆心在一圆轨道上运动,磁场方向垂直于运动平面,电子所受电场力恰好是洛仑兹力的3 倍,电子电量为 e,质量为 m,磁感觉强度为 B,那么电子运动的角速度可能:( AC )A.4Be/mB. 3Be/mC.2Be/mD. Be/m15.以下单位与磁感觉强度的单位T 相当的是: (ABCD )A.Wb/m 2B. kg/A.s 2 D.216.一金属圆环所围面积为 S,电阻为 R,放在磁场中,让磁感线垂直穿过金属环所在平面,若在t 时间内磁感觉强度的变化量为 B ,则经过金属环的电量和下面物理量有关的是:( BCD)A.t 的长短B. R 的大小C. S 的大小D. B 的大小17.以以以下图,正方形容器处在匀强磁场中,一束电子从 a 孔沿水平方向垂直射入容器内的匀强磁场中,结果一部分电子从小孔 c 射出,一部分电子从小孔d 射出,则从c、 d 两孔射出的电子:(ABD)A.速度之比 v c:v d=2:1B.在容器中运动时间之比 t c:t d=1:2C.在容器中运动的加快度大小之比a c:a d= 2 :1D.在容器中运动的加快度大小之比 a :a =2:1c d18.半径为 a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为 R0。

电磁感应计算题高考题

电磁感应计算题高考题

16.(11分)如图所示,矩形导线圈边长分别为L 1、L 2,共有N 匝,内有一匀强磁场,磁场方向垂直于线圈所在平面向里,圈通过导线接一对水平放置的平行金属板,两板间的距离为d ,板长为L .t = 0时,磁场的磁感应强度B 按照B =B 0+kt 的函数规律开始变化,同时一带电量为+q 、质量为m 的粒子从两板间的中点以水平初速度v 0向右进入两板间,不计重力,若该粒子恰能从上板的右端射出.(1)磁感应强度随时间的变化率k ; (2)两板间电场对带电粒子做的功16.(11分)解:(1)线圈中产生的感应电动势大小1212BE NNL L NL L k t tφ∆∆===∆∆ ① 3分 两板间的电压U =E ② 粒子在极板间的加速度qE qUam md== ③ 2分粒子通过平行金属板的时间为t 0,L =v 0t 0 ④ 1分20122d at = ⑤ 1分 由①②③④⑤联立解得:22212md v k NqL L L =⑥ 1分(2)电场力对带电粒子做的功W ,12WqU =⑧ 2分由③④④⑤⑧联立解得2222md v W L =⑨ 1分2.如图所示,水平方向的匀强磁场呈带状分布,各区域磁感应强度不同,,宽度都是L ,间隔都是2L .边长为L 、质量为M 、电阻为R 的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,距磁场B 1的上边界也是L .线框从静止开始自由下落,当线框穿过各磁场区域时恰好都能匀速穿过.若重力加速度为g ,求(1)第一个磁场区域的磁感应强度B 1;(2)第n 个磁场区域的磁感应强度B 2;(3)线框从开始下落到穿过第n 个磁场区域的过程中产生的电热Q2.解析:(1) 线框穿过第一个磁场区域时gL v 21=(1分)111Lv B E = (1分) RE I 11= (1分)L B I F 111= (1分)又1F Mg = (1分)解得:gLLMgR B 221=(1分)(2) 线框穿过第n 个磁场区域时ngL v n 2= (1分)n n nLv B E = (1分)RE I n n= (1分)L B I F n n n = (1分)又n F Mg = (1分)解得:ngLLMgR B n22=(1分)(3) 从开始到穿过第n 个磁场区域,共下落了3nL 高度. 由能量守恒定律 Q Mv nL Mg +=2213 (2分) 解得 :nMgL Q2= (1分)32.(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。

高中物理电磁感应经典计算题

高中物理电磁感应经典计算题

电磁感应综合练习1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。

导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。

金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。

若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。

2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g 。

(1)求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。

(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。

3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。

高考电磁感应专题汇编(含答案)

高考电磁感应专题汇编(含答案)

磁场对电流的作用1. 如图所示,两根长直通电导线互相平行,电流方向相同,它们的截面处于一个等边三角形abc 的顶点a 、b 处。

两通电导线在c 处的磁场的磁感应强度的值都是B ,则 c 处磁场的总磁感应强度是( ) A 、2B B 、B C 、0 D 、B 32. 如图所示,垂直纸面放置的两根直导线a 和b 的位置固定并通有相等的电流I 。

在a 、b 连线的中垂线上放有另一直导线c ,导线c 与导线a 、b 所在的平面垂直,c 可以自由运动。

当c 中通入电流I 1时,c 并未发生运动,则可以判定a 、b 中的电流 ( ) A 、方向相同,都向里 B 、方向相同,都向外 C 、方向相反D 、只要a 、b 中有电流,c 就不可能静止3. 如图3,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O ’,并处于匀强磁场中。

当导线中通以沿x 正方向的电流I ,且导线保持静止时,悬线与竖直方向夹角为θ。

则磁感应强度的方向和大小可能为( )A .z 正向,mgIL tan θ B .y 正向,mgILC .z 负向,mgILtan θD .沿悬线向上,mgILsin θ4. 如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直纸面向外,比荷为e/m 的电子以速度v 0从A 点沿AB 方向射入,现欲使电子能经过BC 边,则磁感应强度B 的取值应为( )A .B>3mv 0ae B .B<2mv 0aeC .B<3mv 0ae D .B>2mv 0ae5. 如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO′与SS′垂直。

a 、b 、c 三个质子先后从S 点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b 的速度方向与SS′垂直,a 、c 的速度方向与b 的速度方向间的夹角分别为,且。

三个质子经过附加磁场区域后能达到同一点S′,则下列说法中正确的有( )αβ、αβ>A .三个质子从S 运动到S′的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO′轴上C .若撤去附加磁场,a 到达SS′连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同6. 如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场区域,一质量为m 、电荷量为e 的电子从y 轴上a(0,L)点以初速度v 0平行于x 轴正方向射入磁场,经磁场偏转后从x 轴上的b 点射出磁场,此时速度的方向与x 轴正方向的夹角为60°,且此磁场区域恰好是满足此电子偏转的最小圆形磁场区域(此最小圆形磁场未画出),下列说法正确的是:( ) A .此圆形磁场区域边界不会经过原点OB .电子在磁场中运动的时间为2πL 3v 0C .该圆形磁场区域的圆心坐标为(3L 2,L 2) D .电子在磁场中做圆周运动的圆心坐标为(0,-2L) 7. 两个电荷量分别为q 和-q 的带电粒子分别以速度v a 和v b 射入匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,磁场宽度为d,两粒子同时由A 点出发,同时到达B 点,如图6所示,则()A.a 粒子带正电,b 粒子带负电B.两粒子轨道半径之比R a ∶R bC.两粒子质量之比m a ∶m b =1∶2D.两粒子的速度之比v a ∶v b =1∶28. 有两根长直导线a 、b 互相平行放置,图所示为垂直于导线的截面图。

电磁感应定律典型计算题

电磁感应定律典型计算题

.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。

高三复习电磁感应计算题集锦

高三复习电磁感应计算题集锦

电磁感应计算题集锦1.如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数53=μ,导轨平面的倾角为030=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让金属杆AB 由静止开始下滑从杆静止开始到杆AB 恰好匀速运动的过程中经过杆的电量1C q =,求: (1)当AB 下滑速度为s m /2时加速度的大小 (2)AB 下滑的最大速度(3)从静止开始到AB 匀速运动过程R 上产生的热量解析:取AB 杆为研究对象其受力如图示建立如图所示坐标系sin X B F mg F f ma θ=--= ① cos 0g F N mg θ=-= ②f N μ= ③ B F BIL = ④I R rε=+ ⑤Bl ευ= ⑥联立上面①②③④⑤⑥解得22cos ()B l va gsim m R r θμθ=--+(4分)当2/v m s =时2210.52121010 1.5(/)20.1(28)a m s ⨯⨯=⨯-=⨯+(2分)②由上问可知 22sin cos ()B l a g g m R r υθμθ=--+故AB 做加速度减小的加速运动当0a =222210.110(28)(()(sin cos )2528/0.51m mg R r v m s B l θμθυ⨯⨯+-+-====⨯(3分) ③从静止开始到运速运动过程中tφε∆=∆ ⑦PNI R rε=+ ⑧ Q I t =∆ ⑨联立⑦⑧⑨可知E R rφ∆=+(3分) 而BlS φ∆= ()1(82)20()0.51Q R r S m Bl +⨯+∴===⨯(2分)设两电阻发热和为R r Q Q +,由能量守恒可知21s i n c o s 0.85()2m RrR r m g S m v m g SQ Q Q Q J θμθ=+⋅++⇒∴+=(4分)::R r Q Q R r = ⑩ (2分) R r R r Q Q Q ++= ○11联立⑩ ○11得80.80.64()82R R r R Q Q J R r +==⨯=++(1分)2.(20分)在质量为M=1kg 的小车上,竖直固定着一个质量为m=0.2kg ,宽L=0.05m 、总电阻R=100Ω的n=100Ω的n=100匝矩形线圈。

(完整版)力-电电磁感应计算题精选——含答案,推荐文档

(完整版)力-电电磁感应计算题精选——含答案,推荐文档

1、如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:(1)金属杆所受拉力的大小为F;(2)0-15s匀强磁场的磁感应强度大小为;(3)15-20s内磁感应强度随时间的变化规律。

2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。

整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。

为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F, g=10m/s2求:(1)当t=2s时,外力F1的大小;(2)当t=3s前的瞬间,外力F2的大小和方向;(3)请在图丙中画出前4s外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图33-11甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量m=0.20 kg、阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物P 相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v与时间t之间的关系如图33-11乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:甲乙图33-11(1)0~0.3 s内棒通过的位移;(2)金属棒在0~0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 W 的电阻连接,右端通过导线与阻值R L =4 W 的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 W 的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B 随时间变化如图22乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.参考答案一、计算题1、(1)0.24N ;(2)0.4T ;(3)(2)在10—15s时间段杆在磁场中做匀速运动,因此有以F=0.24N,μmg=0.16N代入解得B0=0.4T(3)由题意可知在15—20s时间段通过回路的磁通量不变,设杆在15—20s内运动距离为d,15s后运动的距离为x B(t)L(d+x)=B0Ld其中d=20mx=4(t-15)-0.4(t-15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化.J2 L2 L3【答案解析】(1)0;(2)0.5N,方向沿斜面向下;(3)如图所示.解析:(1)当t=2s时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab所受的安培力沿轨道向上;ab棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30°-B2IL1-F1=0可解得:F1=mgsin30°-B2IL1=0.2×10×sin30°-1×1×1=0(2)当t=3s前的瞬间,由图可知,B3=1.5T,设此时外力沿轨道向上,则根据平衡条件得:F2+B3IL1-mg sin30°=0则得:F2=mg sin30°-B3IL1=0.2×10×sin30°-1.5×1×1=-0.5N,负号说明外力沿斜面向下.(3)规定F方向沿斜面向上为正,在0-3s内,根据平衡条件有:mgsin30°-BIL1-F=0而B=0.5t(T)则得:F=mgsin30°-BIL1=0.2×10×sin30°-0.5T×1×1=1-0.5T(N)当t=0时刻,F=1N.在3-4s内,B不变,没有感应电流产生,ab不受安培力,则由平衡条件得:F=mgsin30°=0.2×10×sin30°N=1N画出前4s外力F随时间变化的图象如图所示.【思路点拨】(1)由图知,0-3s时间内,B均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s时,外力F1的大小.(2)与上题用同样的方法求出外力F2的大小和方向.(3)由B-t图象得到B与t的关系式,根据平衡条件得到外力F与t的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析:(1)金属棒在0.3~0.6 s内通过的电量是q1=I1t1=金属棒在0~0.3 s内通过的电量q2==由题知q1=q2,代入解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2,代入解得x=0.75 m根据能量守恒定律Mgx-mgx sinθ-Q=(M+m)v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案:(1)0.3 m (2)1.9 J5、【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与R L 串联,电路的总电阻=5Ω①此时感应电动势=0.5×2×0.5V=0.5V ②通过小灯泡的电流为:=0.1A ③(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与R L并联,再与r串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为=0.3A ⑤电动势⑥解得棒PQ在磁场区域中v=1m/s。

高中物理【电磁感应】专题分类典型题(带解析)

高中物理【电磁感应】专题分类典型题(带解析)

高中物理电磁感应专题分类题型一、【电磁感应现象楞次定律】典型题1.如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b 两线圈的磁通量之比为()A.1∶1B.1∶2C.1∶4 D.4∶1解析:选A.磁通量Φ=B·S,其中B为磁感应强度,S为与B垂直的有效面积.因为是同一磁场,B相同,且有效面积相同,S a=S b,故Φa=Φb.选项A正确.2.如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大解析:选B.根据“来拒去留”可知,两环同时向左运动,又因两环中产生同向的感应电流,相互吸引,且右环受磁铁的排斥作用较大,故两环间距又减小,B正确.3.如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.若()A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向下运动,则环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向解析:选D.当金属环上下移动时,穿过环的磁通量不发生变化,根据楞次定律,没有感应电流产生,选项A、B错误;当金属环向左移动时,穿过环的磁通量垂直纸面向外且增加,根据楞次定律可知,环上产生顺时针方向的感应电流,故选项C错误;当金属环向右移动时,穿过环的磁通量垂直纸面向里且增加,根据楞次定律可知,环上产生逆时针方向的感应电流,故选项D正确.4.如图,在一根竖直放置的铜管的正上方某处从静止开始释放一个强磁体,在强磁体沿着铜管中心轴线穿过铜管的整个过程中,不计空气阻力,那么()A.由于铜是非磁性材料,故强磁体运动的加速度始终等于重力加速度B.由于铜是金属材料,能够被磁化,使得强磁体进入铜管时加速度大于重力加速度,离开铜管时加速度小于重力加速度C.由于铜是金属材料,在强磁体穿过铜管的整个过程中,铜管中都有感应电流,加速度始终小于重力加速度D.由于铜是金属材料,铜管可视为闭合回路,强磁体进入和离开铜管时产生感应电流,在进入和离开铜管时加速度都小于重力加速度,但在铜管内部时加速度等于重力加速度解析:选C.铜是非磁性材料,不能够被磁化,B错误;铜是金属材料,在强磁体穿过铜管的整个过程中,铜管始终切割磁感线,铜管中都有感应电流,强磁体受到向上的磁场力,加速度始终小于重力加速度,C正确,A、D错误.5.(多选)如图所示,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动解析:选AD.由电路可知,开关闭合瞬间,右侧线圈环绕部分的电流向下,由安培定则可知,铁芯中产生水平向右的磁场,由楞次定律可知,左侧线圈环绕部分产生向上的电流,则直导线中的电流方向由南向北,由安培定则可知,直导线在小磁针所在位置产生垂直纸面向里的磁场,则小磁针的N极朝垂直纸面向里的方向转动,A正确;开关闭合并保持一段时间后,穿过左侧线圈的磁通量不变,则左侧线圈中的感应电流为零,直导线不产生磁场,则小磁针静止不动,B、C错误;开关闭合并保持一段时间再断开后的瞬间,穿过左侧线圈向右的磁通量减少,则由楞次定律可知,左侧线圈环绕部分产生向下的感应电流,则流过直导线的电流方向由北向南,直导线在小磁针所在处产生垂直纸面向外的磁场,则小磁针的N极朝垂直纸面向外的方向转动,D正确.6.(多选)如图a,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图b 所示规律变化时()A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流解析:选AD.L收缩还是扩张取决于螺线管中产生感应电流的变化情况,t1~t2磁通量的变化率增大,感应电流变大,abcd线框内磁通量变大,L有收缩的趋势,A选项正确;t2~t3时间内磁通量的变化率为常数,产生的感应电流恒定不变,abcd线框内磁感应强度不变,L没有电流,也就没有扩张趋势,B、C选项错误;根据楞次定律,t3~t4时间内由于螺线管内磁通量变化引起的感应电流在线框中为dcba方向并减小,L线圈中原磁场的方向垂直于纸面向里且磁感应强度大小减小,根据楞次定律得L中的感应电流方向为顺时针方向,D选项正确.7.如图为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动,(O是线圈中心).则()A.从X到O,电流由E经G流向F,线圈的面积有收缩的趋势B.从X到O,电流由F经G流向E,线圈的面积有扩张的趋势C.从O到Y,电流由F经G流向E,线圈的面积有收缩的趋势D.从O到Y,电流由E经G流向F,线圈的面积有扩张的趋势解析:选D.在磁极绕转轴从X到O匀速转动中,穿过线圈平面的磁通量向上增大,根据楞次定律可知线圈中产生顺时针方向的感应电流,电流由F经G流向E;线圈的每部分受到指向圆心的安培力,线圈的面积有收缩的趋势,故A、B项错误;在磁极绕转轴从O到Y匀速转动中,穿过线圈平面的磁通量向上减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E经G流向F;线圈的每部分受到背离圆心的安培力,所以线圈的面积有扩张的趋势,故C项错误,D项正确.8.如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒中间用绝缘丝线系住.开始时匀强磁场垂直于纸面向里,磁感应强度B随时间t的变化如图乙所示,I和F T分别表示流过导体棒中的电流和丝线的拉力(不计电流之间的相互作用力),则在t0时刻()A.I=0,F T=0 B.I=0,F T≠0C.I≠0,F T=0 D.I≠0,F T≠0解析:选C.t0时刻,磁场变化,磁通量变化,故I≠0;由于B=0,故ab、cd所受安培力均为零,丝线的拉力为零,C项正确.9.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.10.如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f的情况,以下判断正确的是()A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.线圈中的电流方向始终不变解析:选A.当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右下方,则线圈对桌面的压力增大,即F N大于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.当磁铁远离线圈时,穿过线圈的磁通量减小,同理,根据楞次定律可知,线圈受到的安培力斜向右上方,则线圈对桌面的压力减小,即F N小于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.综上可知,F N先大于mg,后小于mg,F f始终向左,故选项B、C错误,A正确;当磁铁靠近线圈时,穿过线圈向下的磁通量增加,线圈中产生感应电流从上向下看是逆时针方向;当磁铁远离线圈时,穿过线圈向下的磁通量减小,线圈中产生感应电流从上向下看是顺时针方向,故选项D错误.11.自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:选C.N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.12. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B(构成电磁铁),线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A.闭合开关S时,B中产生与图示方向相同的感应电流B.闭合开关S时,B中产生与图示方向相反的感应电流C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间D.断开开关S时,弹簧K立即将衔铁D拉起解析:选BC.由题意可知,闭合S后,线圈A中产生磁场,穿过线圈B的磁通量要增加,根据楞次定律及右手螺旋定则可知,B中产生与图示方向相反的感应电流,故A错误,B正确;断开S,回路电流减小,铁芯中磁场减小,由楞次定律及右手螺旋定则可知,线圈B产生图示方向的电流,减缓磁场减小的趋势,电磁铁会继续吸住衔铁D 一小段时间,故C 正确,D 错误.13.(山东省2020等级考试)(多选)竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .t =T 4时刻,圆环有扩张的趋势B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 解析:选BC .t =T 4时刻,线圈中通有顺时针逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势.A 错误,B 正确;t =3T 4时刻,线圈中通有顺时针逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确.14.如图所示,在一有界匀强磁场中放一电阻不计的平行金属导轨,虚线为有界磁场的左边界,导轨跟圆形线圈M 相接,图中线圈N 与线圈M 共面、彼此绝缘,且两线圈的圆心重合,半径R M <R N .在磁场中垂直于导轨放置一根导体棒ab ,已知磁场垂直于导轨所在平面向外.欲使线圈N 有收缩的趋势,下列说法正确的是( )A .导体棒可能沿导轨向左做加速运动B .导体棒可能沿导轨向右做加速运动C .导体棒可能沿导轨向左做减速运动D .导体棒可能沿导轨向左做匀速运动解析:选C .导体棒ab 加速向左运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 中电流方向由b →a ,根据安培定则可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量增大,线圈面积越大抵消的磁感线越多,所以线圈N 要通过增大面积以阻碍磁通量的增大,故A 错误;导体棒ab 加速向右运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 电流方向由a →b ,根据安培定则判断可知M 产生的磁场方向垂直纸面向里,穿过N 的磁通量增大,同理可知B 错误;导体棒ab 减速向左运动时,导体棒ab中产生的感应电动势和感应电流减小,由右手定则判断知ab 中电流方向由b →a ,根据安培定则判断可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量减小,线圈面积越大抵消的磁感线越多,所以线圈N 要通过减小面积以阻碍磁通量的减小,故C 正确;导体棒ab 匀速向左运动时,导体棒ab 产生的感应电动势和感应电流恒定不变,线圈M 产生的磁场恒定不变,穿过线圈N 中的磁通量不变,没有感应电流产生,则线圈N 不受磁场力,没有收缩的趋势,故D 错误.二、【法拉第电磁感应定律 自感和涡流】典型题1. (多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:选AD .线框中的感应电动势为E =ΔB ΔtS ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,因为B 增大或减小时,ΔB Δt可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确.2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A .Ba 22ΔtB .nBa 22ΔtC .nBa 2ΔtD .2nBa 2Δt解析:选B .磁感应强度的变化率ΔB Δt =2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔB ΔtS ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. 3.如图所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板.磁场方向垂直于环面向里,磁感应强度以B =B 0+kt (k >0)随时间变化.t =0时,P 、Q 两极板电势相等,两极板间的距离远小于环的半径.经时间t ,电容器的P 极板( )A .不带电B .所带电荷量与t 成正比C .带正电,电荷量是kL 2C 4πD .带负电,电荷量是kL 2C 4π解析:选D .磁感应强度均匀增加,回路中产生的感应电动势的方向为逆时针方向,Q 板带正电,P 板带负电,A 错误;由L =2πR ,得R =L 2π,感应电动势E =ΔB Δt ·S =k ·πR 2,解得E =kL 24π,电容器上的电荷量Q =CE =kL 2C 4π,B 、C 错误,D 正确.4.在一空间有方向相反,磁感应强度大小均为B 的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆.从某时刻起磁感应强度在Δt 时间内均匀减小到B 2,则此过程中该线圈产生的感应电动势大小为( )A .πB (b 2-a 2)2ΔtB .πB (b 2-2a 2)ΔtC .πB (b 2-a 2)ΔtD .πB (b 2-2a 2)2Δt解析:选D .磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可以取垂直纸面向里的方向为正方向.磁感应强度大小为B 时线圈磁通量Φ1=πB (b 2-a 2)-πBa 2, 磁感应强度大小为B 2时线圈磁通量Φ2 =12πB (b 2-a 2)-12πBa 2,因而该线圈磁通量的变化量的大小为ΔΦ=|Φ2-Φ1|=12πB (b 2-2a 2).根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E =ΔΦΔt =πB (b 2-2a 2)2Δt.故选项D 正确. 5.在如图所示的电路中,两个灵敏电流表G 1和G 2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际情况的是( )A .G 1表指针向左摆,G 2表指针向右摆B .G 1表指针向右摆,G 2表指针向左摆C .G 1、G 2表的指针都向左摆D .G 1、G 2表的指针都向右摆解析:选B .电路接通后线圈中电流方向向右,当电路断开时,线圈L 中电流减小,产生与原方向同向的自感电动势,与G 2和电阻组成闭合回路,所以G 1中电流方向向右,G 2中电流方向向左,即G 1指针向右摆,G 2指针向左摆,B 正确.6.如图所示,水平“U 形”导轨abcd 固定在匀强磁场中,ab 与cd 平行,间距L 1=0.5 m ,金属棒AB 垂直于ab 且和ab 、cd 接触良好,AB 与导轨左端bc 的距离为L 2=0.8 m ,整个闭合回路的电阻为R =0.2 Ω,磁感应强度为B 0=1 T 的匀强磁场竖直向下穿过整个回路.金属棒AB 通过滑轮和轻绳连接着一个质量为m =0.04 kg 的物体,不计一切摩擦,现使磁场以ΔB Δt=0.2 T/s 的变化率均匀地增大.求:(1)金属棒上电流的方向;(2)感应电动势的大小;(3)物体刚好离开地面的时间(g 取10 m/s 2).解析:(1)由楞次定律可以判断,金属棒上的电流由A 到B .(2)由法拉第电磁感应定律得E =ΔΦΔt =S ΔB Δt=0.08 V . (3)物体刚好离开地面时,其受到的拉力F =mg而拉力F 又等于棒所受的安培力,即mg =F 安=BIL 1 其中B =B 0+ΔB Δtt I =E R解得t =5 s.答案:(1)由A 到B (2)0.08 V (3)5 s7. (多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,由于线圈L自感的影响,D2的电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.8.如图所示,三个灯泡L1、L2、L3的阻值关系为R1<R2<R3,电感线圈L的直流电阻可忽略,D为理想二极管,开关S从闭合状态突然断开时,下列判断正确的是()A.L1逐渐变暗,L2、L3均先变亮,然后逐渐变暗B.L1逐渐变暗,L2立即熄灭,L3先变亮,然后逐渐变暗C.L1立即熄灭,L2、L3均逐渐变暗D.L1、L2、L3均先变亮,然后逐渐变暗解析:选B.开关S处于闭合状态时,由于R1<R2<R3,则分别通过三个灯泡的电流大小I1>I2>I3,开关S 从闭合状态突然断开时,电感线圈产生与L中电流方向一致的自感电动势,由于二极管的反向截止作用,L2立即熄灭,电感线圈、L1、L3组成闭合回路,L1逐渐变暗,通过L3的电流由I3变为I1,再逐渐减小,故L3先变亮,然后逐渐变暗,选项B正确.9. (多选)如图所示,一导线弯成直径为d的半圆形闭合回路,虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C 点进入磁场为止,下列说法中正确的是()A .感应电流方向为逆时针方向B .CD 段直导线始终不受安培力C .感应电动势的最大值E =Bd vD .感应电动势的平均值E -=18πBd v解析:选AD .线圈进磁场过程,垂直平面向里的磁通量逐渐增大,根据楞次定律“增反减同”,感应电流方向为逆时针方向,选项A 正确;CD 端导线电流方向与磁场垂直,根据左手定则判断,安培力竖直向下,选项B 错误;线圈进磁场切割磁感线的有效长度是初、末位置的连线,进磁场过程,有效切割长度最长为半径,所以感应电动势最大值为Bd v 2,选项C 错误;感应电动势的平均值E -=ΔΦΔt =B ·12π⎝⎛⎭⎫d 22d v=Bd πv 8,选项D 正确.10. (多选)如图所示,水平面上固定一个顶角为60°的光滑金属导轨MON ,导轨处于磁感应强度大小为B 、方向竖直向下的匀强磁场中,质量为m 的导体棒CD 与∠MON 的角平分线垂直,导轨与棒单位长度的电阻均为r .t =0时刻,CD 在水平外力F 的作用下从O 点以恒定速度v 0沿∠MON 的角平分线向右滑动,在滑动过程中始终保持与导轨良好接触.若棒与导轨均足够长,则( )A .流过导体棒的电流I 始终为B v 03rB .F 随时间t 的变化关系为F =23B 2v 209r tC .t 0时刻导体棒的发热功率为23B 2v 3027r t 0D .撤去F 后,导体棒上能产生的焦耳热为12m v 20解析:选ABC .导体棒的有效切割长度L =2v 0t tan 30°,感应电动势E =BL v 0,回路的总电阻R =(2v 0t tan 30°+2v 0t cos 30°)r ,通过导体棒的电流I =E R =B v 03r ,选项A 正确;导体棒受力平衡,则外力F 与安培力平衡,即F =BIL ,得F =23B 2v 209r t ,选项B 正确;t 0时刻导体棒的电阻为R x =2v 0t 0tan 30°·r ,则导体棒的发热功率P 棒=I 2R x =23B 2v 3027r t 0,选项C 正确;从撤去F 到导体棒停下的过程,根据能量守恒定律有Q 棒+Q 轨=12m v 20-0,得导体棒上能产生的焦耳热Q 棒=12m v 20-Q 轨<12m v 20,选项D 错误. 11.如图所示,abcd 为水平放置的平行“匚”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ解析:选A .根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,故选项A 正确;根据右手定则可知金属杆中感应电流的方向是由M 流向N ,故选项B 错误;由于切割磁感线的金属杆长度逐渐变短,E =12B ⎝⎛⎭⎫l sin θ2ω,R =l sin θ r ,I =E R =Bl ω2r sin θ,θ增大,回路中的感应电流逐渐变小,故选项C 错误;由于金属杆在电路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,R >lr ,根据法拉第电磁感应定律有q =I Δt =ΔΦΔt ·R·Δt =ΔΦR <Bl2r tan θ,故选项D 错误.12.如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T .导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s.求:(1)感应电动势E 和感应电流I ; (2)在0.1 s 时间内,拉力冲量I F 的大小;(3)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U . 解析:(1)由法拉第电磁感应定律可得,感应电动势 E =BL v =1×0.4×5 V =2 V , 感应电流I =E R =21 A =2 A .(2)拉力大小等于安培力大小 F =BIL =1×2×0.4 N =0.8 N ,冲量大小I F =F Δt =0.8×0.1 N ·s =0.08 N ·s. (3)由闭合电路欧姆定律可得,电路中电流。

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。

长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。

导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。

线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。

将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。

电磁感应计算题大全

电磁感应计算题大全

a b s P Q 1.1. 如图所示,如图所示,MN MN MN、、PQ 是两条彼此平行的金属导轨,水平放置,匀强磁场的磁感线垂直导轨平面。

导轨左端连接一阻值R =1.5Ω的电阻,电阻两端并联一电压表,在导轨上垂直导轨跨接一金属杆ab ab,,ab 的质量m =0.1kg 0.1kg,电,电阻为r =0.50.5,,ab 与导轨间动摩擦因数μ=0.50.5,导轨电阻不计。

现用大小,导轨电阻不计。

现用大小恒定的力F =0.7N 水平向右拉ab 运动,经t=2s 后,后,ab ab 开始匀速运动,此时,电压表的示数为0.3V 0.3V。

求:。

求:。

求:(1)ab 匀速运动时,外力F 的功率的功率(2)从ab 开始运动到ab 匀速运动的过程中,通过电路中的电量匀速运动的过程中,通过电路中的电量2.2. 用电阻为18Ω的均匀导线弯成图9-5中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为6060°,°,将圆环垂直于磁感线方向固定在磁感应强度B=0.50T 的匀强磁场中,磁场方向垂直于纸面向里。

一根每米电阻为1.25Ω的直导线PQ PQ,,沿圆环平面向左以3.0m/s 的速度匀速滑行的速度匀速滑行((速度方向与PQ 垂直垂直)),滑行中直导线与圆环紧密接触线与圆环紧密接触((忽略接触处的电阻忽略接触处的电阻)),当它通过环上A 、B 位置时,求:位置时,求:(1)(1)直导线直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向。

段产生的感应电动势,并指明该段直导线中电流的方向。

(2)(2)此时圆环上发热损耗的电功率。

此时圆环上发热损耗的电功率。

此时圆环上发热损耗的电功率。

3.3. 如图所示,在磁感应强度为0.4T 的匀强磁场中,让长为0.5m 0.5m、电阻为、电阻为0.1Ω的导体ab 在金属框上以10m/s 的速度向右匀速滑动,如电阻R1=6Ω,R2=4Ω,其他导线上的电阻可忽略不计,求:其他导线上的电阻可忽略不计,求:(1)导体ab 中的电流强度与方向;中的电流强度与方向;(2)为使ab 棒匀速运动,外力的机械功率;棒匀速运动,外力的机械功率;4.4. 如图所示,两根足够长的平行光滑导轨,竖直放置在匀强磁场中,磁场的方向与导轨所在的平面垂直,金属棒PQ 两端套在导轨上且可以自由滑动,电源的电动势为3V 3V,电源内阻与金属棒的电阻相等,其余部分电阻不计。

高三物理 电磁感应计算题集

高三物理 电磁感应计算题集

高三物理 电磁感应计算题集1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。

开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。

已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p =,不计空气阻力及其它电阻。

求:(1)此时金属棒的速度多大? (2)这一过程中,R 所产生焦耳热Q R 多少? 2.(14分)如图所示,竖直向上的匀强磁场在初始时刻的磁感应强度B 0=0.5T ,并且以Bt∆∆=1T/s 在增加,水平导轨的电阻和摩擦阻力均不计,导轨宽为0.5m ,左端所接电阻R = 0.4Ω。

在导轨上l =1.0m 处的右端搁一金属棒ab ,其电阻R 0=0.1Ω,并用水平细绳通过定滑轮吊着质量为M = 2kg 的重物,欲将重物吊起,问:(1)感应电流的方向(请将电流方向标在本题图上)以及感应电流的大小; (2)经过多长时间能吊起重物。

3.(14分)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距l m ,导轨平面与水平面成θ=37°角,下端连接阻值为尺的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg 、电阻不计 的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. (1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻尺消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g =10rn /s 2,sin37°=0.6, cos37°=0.8)4、(14分)如图所示,倾角θ=30º、宽度L=1m的足够长的“U”形平行光滑金属导轨固定在磁感应强度B =1T,范围足够大的匀强磁场中,磁场方向垂直于斜面向下。

电磁感应现象习题专项复习及答案解析

电磁感应现象习题专项复习及答案解析

电磁感应现象习题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应计算题集锦1.如图所示PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值Ω=8R 的电阻;导轨间距为kg m m L 1.0;1==一质量为,电阻Ω=2r ,长约m 1的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数53=μ,导轨平面的倾角为030=θ在垂直导轨平面方向有匀强磁场,磁感应强度为0.5T B =,今让金属杆AB 由静止开始下滑从杆静止开始到杆AB 恰好匀速运动的过程中经过杆的电量1C q =,求: (1)当AB 下滑速度为s m /2时加速度的大小 (2)AB 下滑的最大速度(3)从静止开始到AB 匀速运动过程R 上产生的热量解析:取AB 杆为研究对象其受力如图示建立如图所示坐标系sin X B F mg F f ma θ=--= ①cos 0g F N mg θ=-= ②f N μ= ③B F BIL = ④I R rε=+ ⑤Bl ευ= ⑥ 联立上面①②③④⑤⑥解得22cos ()B l va gsim m R r θμθ=--+(4分)当2/v m s =时2210.52121010 1.5(/)20.1(28)a m s ⨯⨯=⨯=⨯+(2分)②由上问可知 22sin cos ()B l a g g m R r υθμθ=--+故AB 做加速度减小的加速运动当0a =222210.110(28)(()(sin cos )2528/0.51m mg R r v m s B l θμθυ⨯⨯+-+-====⨯(3分) ③从静止开始到运速运动过程中tφε∆=∆ ⑦PNI R rε=+ ⑧ Q I t =∆ ⑨联立⑦⑧⑨可知E R rφ∆=+(3分) 而BlS φ∆= ()1(82)20()0.51Q R r S m Bl +⨯+∴===⨯(2分) 设两电阻发热和为R r Q Q +,由能量守恒可知21s i n c o s 0.85()2m RrR r m g S m v m g SQ Q Q Q J θμθ=+⋅++⇒∴+=(4分)::R r Q Q R r = ⑩ (2分) R r R r Q Q Q ++= ○11 联立⑩ ○11得80.80.64()82R R r R Q Q J R r +==⨯=++(1分)2.(20分)在质量为M=1kg 的小车上,竖直固定着一个质量为m=0.2kg ,宽L=0.05m 、总电阻R=100Ω的n=100Ω的n=100匝矩形线圈。

线圈和小车一起静止在光滑水平面上,如图(1)所示。

现有一子弹以v 0=110m/s 的水平速度射入小车中,并立即与小车(包括线圈)一起运动,速度为v 1=10m/s 。

随后穿过与线圈平面垂直,磁感应强度B=1.0T 的水平有界匀强磁场,方向垂直纸面向里,如图所示。

已知子弹射入小车后,小车运动的速度v 随车的位移s 变化的v – s 图象如图(2)所示。

求:(1)子弹的质量m 0;(2)小车的位移s=10cm 时线圈中的电流大小I ;(3)在线圈进入磁场的过程中通过线圈某一截面的电荷量q ;(4)线圈和小车通过磁场的过程中线圈电阻的发热量Q 。

分析与解:(1)在子弹射入小车的过程中,由子弹、线圈和小车组成的系统动量守恒。

有1000)(v m m M v m ++= (2分)解得子弹的质量kg m 12.00=;(2分)(2)当s=10cm 时,由图象中可知线圈右边切割磁感线的速度v 2=8m/s (1分)由闭合电路欧姆定律得 线圈中的电流RnBlv R E I 2== (2分) 解得A A I 4.0100805.01100=⨯⨯⨯=(2分)(3)由图可知,从s=5cm 开始,线圈进入磁场,线圈中有感应电流,受安培力作用,小车做减速运动,速度v 随位移s 减小,当s=15cm 时,线圈完全进入磁场,线圈中感应电流消失,小车做匀速运动,因此线圈孤长为↑s=10cm 。

(2分)RsnBL R n q ∆=∆Φ=(2分) 解得 C C Q 31051001.005.01100-⨯=⨯⨯⨯=(2分) (4)由图象可知,线圈左边离开磁场时,小车的速度为v=2m/s 。

线圈进入磁场和离开磁场时,克服安培力做功,线卷的动能减少,转化成电能消耗在线圈上产生电热。

(1分)))((2123210v v m m M Q -++=(2分) 解得线圈电阻发热量Q=63.36J (2分)3.(19分)光滑平行金属导轨水平面内固定,导轨间距L=0.5m ,导轨右端接有电阻R L =4Ω小灯泡,导轨电阻不计。

如图甲,在导轨的MNQP 矩形区域内有竖直向上的磁场,MN 、PQ 间距d=3m ,此区域磁感应强度B 随时间t 变化规律如图乙所示,垂直导轨跨接一金属杆,其电阻r=1Ω,在t=0时刻,用水平恒力F 拉金属杆,使其由静止开始自GH 位往右运动,在金属杆由GH 位到PQ 位运动过程中,小灯发光始终没变化, 求:(1)小灯泡发光电功率;(2)水平恒力F 大小; (3)金属杆质量m.解析:(1)E=(L·d )△B / △t=0.5×3×2/4=0.75V…………………………………………2分I=E/(R+r)=0.75/5=0.15A …………………………………………………………………2分 P=I 2·Rl=0.152×4=0.09w ………………………………………………………………2分 (2)由题分析知:杆在匀强磁场中匀速运动,插入磁场区域之前匀加速运动…………1分 ∴F=F 安=ILB=0.15×0.5×2=0.15N ……………………………………………………2分 (3)E′=I(R+r)=0.15×5=0.75V ……………………………………………………2分 E′=BLV′ V′=0.75/ (2×0.5)=0.75 m/s …………………………………………2分 F=ma………………………………2分 V′=at………………………………………2分 m=F/a=0.15/ (0.75/4)=0.8kg………………………………………………………………2分4. (16分)如图甲所示, 两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示. (取重力加速度g =10m/s 2)求:(1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.解:(1)由v-t 图象可知:20.4/va m s t∆==∆① 由牛顿第二定律:F F ma -=安② F BIL 安=③ E BLv =④ E I R=⑤ v at =(或由图可知,t =10s 时,v =4m/s )⑥图乙联立以上各式,代入数据得:ma Rv L B F +=22=0.24N⑦W RE P 16.02==⑧(2) q I t =∆⑨R EI = ⑩tE ∆∆=φ ⑾ 212B S BLat φ∆=∆=⑿联立以上各式,代入数据得:2=2C 2BLat q R Rφ∆== ⒀5 . (20分)如图所示间距为 L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为α两根同材料、长度均为 L 、横截面均为圆形的金属棒CD 、 PQ 放在斜面导轨上.已知CD 棒的质量为m 、电阻为 R , PQ 棒的圆截面的半径是CD 棒圆截面的 2 倍。

磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上两根劲度系数均为 k 、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD 开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒 PQ .使金属棒 PQ 由静止开始运动当金属棒 PQ 达到稳定时弹簧的形变量与开始时相同,已知金属棒 PQ 开始运动到稳定的过程中通过CD 棒的电量为q,此过程可以认为CD 棒缓慢地移动,已知题设物理量符合αsin 54mg BL qRk =的关系式,求此过程中(l )CD 棒移动的距离; (2) PQ 棒移动的距离 (3) 恒力所做的功。

(要求三问结果均用与重力mg 相关的表达式来表示).解: PQ 棒的半径是CD 棒的2倍,PQ 棒的横截面积是CD 棒的截面积的4倍,PQ 棒的质量是CD 棒的质量的4倍,PQ 棒的质量m´=4m ,由电阻定律可知PQ 棒的电阻是CD 棒电阻 的41,即R´=4R ,两棒串的总电阻为R 0=R+4R =45R ………正确判断PQ 棒的质量和电阻积各给1分 共2分(1)开始时弹簧是压缩,当向上安培力增大时,弹簧的压缩量减少,安培力等于CD 棒平行于斜面的分量时,弹簧恢复到原长,安培力继续增大,弹簧伸长,由题意可知, 当弹簧的伸长量等于开始的压缩量时达到稳定状态,此时的弹力大小相等,方向相反, 两弹簧赂上的弹力等于CD 棒重力平行于斜面的分量。

即2F1=mgsinα,弹簧的形变量为△x, △x=kmg 2sin α……… 2分 CD 棒移动的距离为△S CD =2△x=k mg αsin ……… 2分 (2)在达到稳定过程中两棒之间距离增大△S ,由两金属棒组成的闭合回路中的磁通量发 生变化,产生感应电动势为E =,S t S BL t B ∆∆-=∆∆感应电流为I =tR tBL R E ∆∆=540 …… 2分所以,回路中通过的电量即CD 棒中的通过的电量为q=I △t=RtBL R E 540∆=…… 2分由此可得两棒距离增大值△S=BLqR45 …… 2分 PQ 棒沿导轨上滑动距离应为CD 棒沿斜面上滑动距离和两棒距离增大值之和 PQ 棒沿导轨上滑动距离为△S PQ =△S CD =BL qR 45+k mg αsin =kmg αsin 2 …… 2分 (3)CD 棒静止,受到向上的安培力与重力平行斜面的分量和弹力的合力平衡,安培力为F B =mgsinα+2F k =2mgsinα …… 2分金属棒PQ 达到稳定时,它受到的合外力为零,向上的恒力等于向下的安培力和重力平 行于斜面的分量,即恒力F=F B +m´gsinα=6mgsinα …… 2分恒为做功为W=F △S PQ =6mgsinα·k mg αsin 2=kmg 2)sin (12α …… 2分6、(12分)如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。

相关文档
最新文档