2021届高考数学一轮基础反馈训练:第二章第14讲 函数模型及其应用
2021届新高考数学一轮:第二章 第14讲 函数模型及其应用
用 y1,y2 分别是 2 万元和 8 万元,那么要使这两项费用之和最 小,仓库应建在离车站( )
A.5 千米处
B.4 千米处
C.设仓库应建在离车站 x 千米处. 由仓库每月占用费 y1 与仓库到车站的距离成反比, 令反比例系数为 m(m>0),则 y1=mx . 当 x=10 时,y1=1m0=2,∴m=20. 由每月车载货物的运费 y2 与仓库到车站的距离成正比, 令正比例系数为 n(n>0),则 y2=nx. 当 x=10 时,y2=10n=8,∴n=45.
入,可得42k02k+2+b=b=3200,, 解得kb2==4-002.0, ∴y=400-20x.∴y
=
f(x)
=
80x,0≤x≤4, 400-20x,4<x≤20.
由
y≥240
,
得
0≤x≤4, 80x≥240
或
4<x≤20, 400-20x≥240.
解得 3≤x≤4 或 4<x≤8.∴3≤x≤8.故第二次
3.00
3.94
5.10
6.12
y
0.97
1.59
1.98
2.35
2.61
A.y=2x C.y=12(x2-1)
B.y=log2x D.y=2.61cos x
解析:方法一,由表格知当 x=3 时,y=1.59,而 A 中 y =23=8,不合要求;C 中,当 x=3 时,y=12(32-1)=4,不合
48
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每 100 千米平均耗油量为( B )
A.6 升 C.10 升
B.8 升 D.12 升
3.(2018 年黑龙江哈师大附中模拟)某城市出租车起步价为 10 元,最远可租乘 3 km(含 3 km),以后每 1 km 增加 1.6 元(不 足1 km按1 km计费),则出租车的费用y(元)与行驶的路程 x(km) 之间的函数图象大致为( C )
高考数学一轮复习讲义第二章函数模型与其应用
本题的难点是函数模型是一个分段函数,由于月处理量在不 同范围内,处理的成本对应的函数解析式也不同,故此类最 值的求解必须先求出每个区间内的最值,然后将这些区间内 的最值进行比较确定最值.
变式训练 2
某市居民自来水收费标准如下:每户每月用水不超过 4 吨时, 每吨为 1.80 元,当用水超过 4 吨时,超过部分每吨 3.00 元.某 月甲、乙两户共交水费 y 元,已知甲、乙两户该月用水量分 别为 5x,3x(吨). (1)求 y 关于 x 的函数; (2)若甲、乙两户该月共交水费 26.4 元,分别求出甲、乙两 户该月的用水量和水费. 解 (1)当甲的用水量不超过 4 吨时,即 5x≤4,乙的用水量 也不超过 4 吨, y=1.8(5x+3x)=14.4x; 当甲的用水量超过 4 吨,乙的用水量不超过 4 吨,即 3x≤4, 且 5x>4 时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8.
200x
80
000,
x
[144,500],
)且每处理一吨二氧化碳得
到可利用的化工产品价值为 200 元,若该项目不获利,国
家将给予补偿.
(1)当 x∈[200,300]时,判断该项目能否获利?如果获利,
求出最大利润;如果不获利,则国家每月至少需要补贴多
少元才能使该项目不亏损?
②当 x∈[144,500]时, xy=12x+80 x000-200≥2 12x×80 x000-200=200, 当且仅当12x=80 x000,即 x=400 时,xy取得最小值 200. 因为 200<240,所以当每月的处理量为 400 吨时,才能使每 吨的平均处理成本最低.
(1)分别将 A、B 两种产品的利润表示为投资的函数关系式; (2)已知该企业已筹集到 18 万元资金,并将全部投入 A,B 两 种产品的生产. ①若平均投入生产两种产品,可获得多少利润? ②问:如果你是厂长,怎样分配这 18 万元投资,才能使该企 业获得最大利润?其最大利润约为多少万元?
江苏省2015高考数学一轮复习 第二章 第14课 函数模型及其应用检测与评估答案
解析:A种方式:s1=k1t+20,B种方式:s2=k2t,当t=100时,100k1+20=100k2,即
1 k2-k1= 5 ,所以150k2-150k1-20=10.
3. a(1+x)3
b 1- 4. a ·m%
10
5. 4.24
解析:f(5.5)=1.06×(0.5×6+1)=4.24.
2 53 296 2 所以 5 x - 5 x+ 5 ≤0,即2x2-53x+296≤0, 37 解得8≤x≤ 2 .
故该口罩每只售价最多为18.5元.
11. 因为一次喷洒4个单位的净化剂,
64 -4,0 x 4, 8-x 20-2x,4 x 10. 所以浓度f(x)=4y= 64 则当0≤x≤4时,由 8-x -4≥4,解得x≥0,所以0≤x≤4;
150 由B地返回A地共需 60 =2.5(h),
50t,0 t 3, 150,3 t 5, 150-60(t-5),5 t 7.5. 所以s=
函数图象如图所示.
(第9题)
x-8 0.2 5 万只. 10. 设每只售价为x元,则月销售量为 0.5 x-8 0.2 5 (x-6)≥(8-6)×5, 由已知得 0.5
当4<x≤10时,由20-2x≥4,解得x≤8,所以4<x≤8.
综上,得0≤x≤8. 故一次投放4个单位的课
1. 14
函数模型及其应用
解析:设每个涨价x元,则实际销售价为10+x元,每天销售的个数为100-10x,
2
利润为y=(10+x)(100-10x)-8(100-10x)=-10(x-4) +360(0≤x≤10).因此,x=4时,y 取最大值,即售价定为每个14元时,利润最大.
高考数学一轮总复习第二章函数、导数及其应用2.9函数模型及其应用课时训练理(2021年整理)
2019年高考数学一轮总复习第二章函数、导数及其应用2.9 函数模型及其应用课时跟踪检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习第二章函数、导数及其应用2.9 函数模型及其应用课时跟踪检测理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习第二章函数、导数及其应用2.9 函数模型及其应用课时跟踪检测理的全部内容。
2.9 函数模型及其应用[课时跟踪检测][基础达标]1.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大( )A.8元/件B.10元/件C.12元/件D.14元/件解析:设单价为6+x,日均销售量为100-10x,则日利润y=(6+x-4)(100-10x)-20=-10x2+80x+180=-10(x-4)2+340(0<x<10).∴当x=4时,y max=340.即单价为10元/件,利润最大,故选B。
答案:B2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0。
500.99 2.01 3.98y-0.990.010。
982。
00则对x,yA.y=2x B.y=x2-1C.y=2x-2 D.y=log2x解析:根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2。
01,y =0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.答案:D3.向一杯子中匀速注水时,杯中水面高度h随时间t变化的函数h=f (t)的图象如图所示.则杯子的形状是( )解析:从题图看出,在时间段[0,t1],[t1,t2]内水面高度是匀速上升的,在[0,t1]上升慢,在[t1,t2]上升快,故选A。
高考数学复习第2章 函数模型及其应用
函数模型及其应用
【知识重温】
一、必记2个知识点
1.三种函数模型的性质
函数
性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上
的增减性
增函数
________
增函数
________
增函数
________
增长速度
________
越来越快
________
越来越慢
相对平稳
函数问题求解.
函数y=x+ 模型的应用
考点二
[例1] “水资源与永恒发展”是2015年联合国世界水资源日主题,
近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供
水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水
几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段
函数模型求解;
②构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;
③分段函数的最值是各段的最大(或最小)者的最大者(最小者).
[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.
(2)对构造的较复杂的函数模型,要适时地用换元法转化为熟悉的
B.y=ax+b(a>1)
C.y=ax2+b(a>0) D.y=logax+b(a>1)
解析:由所给数据可知,y随x的增大而增大,且增长速度越来越快,而A,D
中的函数增长速度越来越慢,B中的函数增长速度保持不变.故选C.
四、走进高考
6.[2020·全国卷Ⅲ]Logistic模型是常用数学模型之一,可应用于
)
A.y=6x
B.y=log6x
2021届高考数学一轮总复习第二章函数导数及其应用2.9函数模型及应用课件苏教版
【解】 (1)若 m=2,则 θ=2·2t+21-t=22t+21t, 当 θ=5 时,2t+21t=52,令 2t=x(x≥1),则 x+1x=52, 即 2x2-5x+2=0,解得 x=2 或 x=12(舍去),此时 t=1. 所以经过 1 分钟,物体的温度为 5 摄氏度. (2)物体的温度总不低于 2 摄氏度,即 θ≥2 恒成立, 即 m·2t+22t≥2 恒成立. 亦即 m≥221t-212t恒成立.令21t=y,则 0<y≤1,
(2)由题意,可知二氧化碳的每吨处理成本为
yx=1312xx2+-8800x0x0+0-5 024000,,xx∈∈[[112404,,154040],,
当 x∈[120,144)时,yx=13x2-80x+5 040=13(x-120)2+240,
所以当 x=120 时,xy取得最小值 240.
1.思考辨析 判断下列结论正误(在括号内打“√”或“×”) (1)某种商品进价为每件 100 元,按进价增加 10%出售,后因库存
积压降价,若按九折出售,则每件还能获利.( × ) (2)函数 y=2x 的函数值比 y=x2 的函数值大.( × ) (3)不存在 x0,使 ax0<xn0<logax0.( × )
且每处
理 1 吨二氧化碳得到可利用的化工产品价值为 200 元,若该项目不获利, 国家将给予补偿.
(1)当 x∈[200,300]时,判断该项目能否获利?如果获利,求出最大 利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏 损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最 低?
高考数学一轮复习练习 数学建模——函数模型及其应用
数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=1t2米,那么,此人()2A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图像大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L 汽油的行驶路程可大于5 km,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80 km,消耗8 L 汽油,所以选项C 错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3 000+20x-0.1x 2)=0.1x 2+5x-3 000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N ),则y=(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204 800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n ≤0.1%,即23n ≤120, 所以n lg 23≤-1-lg 2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解 (1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a =4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m,则CD 的长为(16-x ) m,则矩形ABCD 的面积为x (16-x ) m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图像可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1 300×1.12n 万元,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6. 综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解 (1)当声强为10-6 W/m 2时,由公式Y=10lgI 10-12,得Y=10lg 10-610-12=10lg 106=60(分贝).(2)当Y=0时,由公式Y=10lg I 10-12,得10lgI 10-12=0.所以I10-12=1,即I=10-12 W/m 2,则最低声强为10-12 W/m 2.(3)当声强为5×10-7 W/m 2时,声强级为Y=10lg 5×10-710-12=10lg(5×105)=50+10lg 5(分贝),因为50+10lg 5>50,故这两位同学会影响其他同学休息.。
2021高考数学一轮复习考点通关练第二章函数、导数及其应用考点测试9指数与指数函数(含解析)苏教版
考点测试9 指数与指数函数高考概览高考在本考点的常考题型为选择题,分值5分,中等难度 考纲研读1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点4.体会指数函数是一类重要的函数模型一、基础小题 1.设2x=8y +1,9y=3x -9,则x +y 的值为( )A .18B .21C .24D .27答案 D 解析 因为2x=8y +1=23(y +1),所以x =3y +3,因为9y =3x -9=32y,所以x -9=2y ,解得x =21,y =6,所以x +y =27.2.化简(a >0,b >0)的结果是( )A.b aB .abC .a 2b D .a b答案 D 解析 原式==ab -1=ab .故选D.3.若f (x )=(2a -3)a x为指数函数,则f (x )在定义域内( ) A .为增函数 B .为减函数 C .先增后减 D .先减后增答案 A解析 由指数函数的定义知2a -3=1,解得a =2,所以f (x )=2x,所以f (x )在定义域内为增函数.故选A.4.已知,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A 解析 a =,由2<3得a <c ,由23>25,得a >b ,故c >a >b .故选A.5.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是( ) A .1<a <2B .-1<a <1C .a >2或a <- 2D .-2<a < 2答案 C解析 ∵x >0时,f (x )=(a 2-1)x 的值总大于1,∴a 2-1>1,即a 2>2.∴a >2或a <- 2.故选C.6.下列函数中,在(0,+∞)内单调递减的是( ) A .y =22-xB .y =x -11+xC .D .y =-x 2+2x +a答案 A解析 根据题意,依次分析选项:对于A ,y =22-x=4×⎝ ⎛⎭⎪⎫12x,在(0,+∞)内单调递减,符合题意;对于B ,y =x -1x +1=1-2x +1,在(0,+∞)内单调递增,不符合题意;对于C ,y ==log 2x ,在(0,+∞)内单调递增,不符合题意;对于D ,y =-x 2+2x +a =-(x -1)2+a +1,在(0,1)内单调递增,不符合题意.故选A.7.已知函数f (x )满足对一切x ∈R ,f (x +2)=-1f x都成立,且当x ∈(1,3]时,f (x )=2-x,则f (2019)=( )A.14 B .18 C .116 D .132答案 B解析 由已知条件f (x +2)=-1f x可得f (x )=-1fx -2,故f (x +2)=f (x -2),易得f (x )是周期为4的周期函数,∴f (2019)=f (3+504×4)=f (3),∵当x ∈(1,3]时,f (x )=2-x ,∴f (3)=2-3=18,即f (2019)=18.故选B.8.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x+31+2x +1,则函数y =[f (x )]的值域为( ) A.⎝ ⎛⎭⎪⎫12,3 B .(0,2] C .{0,1,2} D .{0,1,2,3}答案 C解析 因为f (x )=2x+31+2x +1=121+2x +1+521+2x +1=12+521+2x +1,2x +1>0,所以0<11+2x +1<1,所以12<12+521+2x +1<3,即12<f (x )<3,所以y =[f (x )]的值域为{0,1,2},故选C. 9.下列说法中,正确的是( ) ①任取x ∈R 都有3x >2x;②当a >1时,任取x ∈R 都有a x >a -x; ③y =(3)-x是增函数; ④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称. A .①②④ B .④⑤ C .②③④ D .①⑤答案 B解析 ①中令x =-1,则3-1<2-1,故①错误;②中当x <0时,a x <a -x,故②错误;③中y =(3)-x =⎝⎛⎭⎪⎫33x ,∵0<33<1,∴y =⎝ ⎛⎭⎪⎫33x为减函数,故③错误;④中x =0时,y 取最小值1,故④正确;⑤由函数图象变换,可知y =2x与y =2-x的图象关于y 轴对称,故⑤正确.故选B.10.已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x-1,则在(1,3)上,f (x )≤1的解集是( )A.⎝ ⎛⎦⎥⎤1,32 B .⎣⎢⎡⎦⎥⎤32,52C.⎣⎢⎡⎭⎪⎫32,3 D .[2,3)答案 C解析 ∵0≤x ≤1时,f (x )=4x-1,∴f (x )在区间[0,1]上是增函数,又f (x )是奇函数,∴f (x )在区间[-1,1]上是增函数.∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称,∴f (x )在区间(1,3)上是减函数,又f ⎝ ⎛⎭⎪⎫12=1,∴f ⎝ ⎛⎭⎪⎫32=1,∴在区间(1,3)上不等式f (x )≤1的解集为⎣⎢⎡⎭⎪⎫32,3,故选C.11.求值:=________.答案14380解析 原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.12.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.答案 e解析 由题意得,f (x )=⎩⎪⎨⎪⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x≥e(当x =1时,取等号);当x <1时,f (x )=e|x -2|=e2-x>e.故f (x )的最小值为f (1)=e.二、高考小题13.(2019·全国卷Ⅰ)已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a答案 B解析 因为a =log 20.2<0,b =20.2>1,0<c =0.20.3<1,所以a <c <b .故选B. 14.(2017·全国卷Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z答案 D解析 令t =2x =3y =5z,∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t lg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t 2lg 3-3lg 2lg 2×lg 3=lg t lg 9-lg 8lg 2×lg 3>0,∴2x >3y .又2x -5z =2lg t lg 2-5lg t lg 5=lg t 2lg 5-5lg 2lg 2×lg 5=lg t lg 25-lg 32lg 2×lg 5<0,∴2x<5z ,∴3y <2x <5z .故选D.15.(2018·上海高考)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q=36pq ,则a =________.答案 6解析 由已知条件知f (p )=65,f (q )=-15,所以⎩⎪⎨⎪⎧2p2p+ap =65, ①2q 2q+aq =-15, ②①+②,得2p2q +aq +2q2p+ap2p +ap 2q+aq=1, 整理得2p +q=a 2pq ,又2p +q=36pq ,∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,∴a =6. 16.(2015·江苏高考)不等式<4的解集为________.答案 {x |-1<x <2} 解析 不等式<4可转化为<22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.17.(2015·福建高考)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.答案 1解析 因为f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以a =1.函数f (x )=2|x -1|的图象如图所示.因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.三、模拟小题18.(2020·河北张家口摸底)化简的结果为( )A .-4aB .4aC .11aD .4ab答案 B 解析 原式==4ab 0=4a ,故选B.19.(2019·湖北八校联考)若,则函数y =2x 的值域是( )A.⎣⎢⎡⎭⎪⎫18,2 B .⎣⎢⎡⎦⎥⎤18,2 C.⎝ ⎛⎦⎥⎤-∞,18 D .[2,+∞)答案 B 解析 因为=24-2x,则x 2+1≤4-2x 即x 2+2x -3≤0,所以-3≤x ≤1.所以18≤y ≤2.20.(2019·沧州模拟)已知函数f (x )=e x -1-e-x +1,则下列说法正确的是( )A .函数f (x )的最小正周期是1B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 D解析 函数f (x )=ex -1-e-x +1,即f (x )=ex -1-1e x -1,可令t =e x -1,即有y =t -1t,由y =t -1t在t >0时单调递增,t =e x -1在R 上单调递增,可得f (x )在R 上为增函数,则A ,B 均错误;由f (2-x )=e1-x-ex -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选D.21.(2020·湖南衡阳高三摸底考试)设函数f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f x,f x ≤K ,K ,f x >K .给出函数f (x )=2x +1-4x,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1答案 D解析 根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1时恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.22.(2019·江苏省镇江市期末)已知函数f (x )=12x -2x ,则满足f (x 2-5x )+f (6)>0的实数x 的取值范围是________.答案 (2,3)解析 根据题意,函数f (x )=12x -2x ,f (-x )=12-x -2-x=-⎝ ⎛⎭⎪⎫12x -2x =-f (x ),即f (x )为奇函数,又由y =12x 在R 上为减函数,y =-2x在R 上为减函数,则f (x )在R 上为减函数,则f (x 2-5x )+f (6)>0⇒f (x 2-5x )>-f (6)⇒f (x 2-5x )>f (-6)⇒x 2-5x <-6,解得2<x <3,即x 的取值范围为(2,3).23.(2019·浦东新区模拟)已知函数f (x )=⎩⎪⎨⎪⎧x4x 2+16,x ≥2,⎝ ⎛⎭⎪⎫12|x -a |,x <2,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(-∞,2),满足f (x 1)=f (x 2),则实数a 的取值范围为________.答案 [-2,6)解析 当x 1∈[2,+∞)时, x 14x 21+16=14x 1+16x 1∈⎝ ⎛⎦⎥⎤0,116.当x 2∈(-∞,2)时,(1)若a ≥2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎝ ⎛⎭⎪⎫12a -x 在(-∞,2)上是单调递增函数,所以f (x 2)∈⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2.若满足题目要求,则⎝ ⎛⎦⎥⎤0,116⊆⎝ ⎛⎭⎪⎫0,⎝ ⎛⎭⎪⎫12a -2,所以⎝ ⎛⎭⎪⎫12a -2>116=⎝ ⎛⎭⎪⎫124,∴a -2<4,a <6.又a ≥2,所以a ∈[2,6).(2)若a <2,则f (x )=⎝ ⎛⎭⎪⎫12|x -a |=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12a -x,x <a ,⎝ ⎛⎭⎪⎫12x -a,a ≤x <2.如果f (x )在(-∞,a )上是单调递增函数, 此时f (x 2)∈(0,1);如果f (x )在[a,2)上是单调递减函数,此时f (x 2)∈⎝ ⎛⎦⎥⎤⎝ ⎛⎭⎪⎫122-a ,1. 若满足题目要求,则116≤⎝ ⎛⎭⎪⎫122-a,∴a ≥-2,又a <2,所以a ∈[-2,2). 综上,a ∈[-2,6).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2019·兰州模拟)已知函数.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求实数a 的值; (3)若f (x )的值域是(0,+∞),求实数a 的值. 解 (1)当a =-1时,,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而指数函数y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,实数a 的值等于1. (3)由指数函数的性质知,要使的值域为(0,+∞),则应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.2.(2020·河南洛阳高三阶段考试)已知函数f (x )=a|x +b |(a >0,a ≠1,b ∈R ).(1)若f (x )为偶函数,求实数b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求实数a ,b 应满足的条件. 解 (1)因为f (x )为偶函数,所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得实数b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是增函数, 所以-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.所以f (x )在区间[2,+∞)上是增函数时,实数a ,b 应满足的条件为a >1且b ≥-2. 3.(2019·渭南模拟)已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求实数a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得实数b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得实数a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数, 所以由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13.故实数k 的取值范围为⎝⎛⎭⎪⎫-∞,-13. 4.(2020·山东枣庄高三摸底考试)已知函数f (x )=e x +a ·e -x,x ∈R . (1)当a =1时,证明:f (x )为偶函数;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围;(3)若a =1,求实数m 的取值范围,使m [f (2x )+2]≥f (x )+1在R 上恒成立. 解 (1)证明:当a =1时,f (x )=e x+e -x,定义域(-∞,+∞)关于原点对称,而f (-x )=e -x +e x =f (x ),所以f (x )为偶函数.因为x 1<x 2,函数y =e x为增函数,所以,则,又因为f (x )在[0,+∞)上单调递增,所以f (x 1)<f (x 2),故f (x 1)-f (x 2)<0, 所以对任意的0≤x 1<x 2恒成立,所以a ≤1.故实数a 的取值范围为(-∞,1].(3)由(1)(2)知函数f (x )=e x +e -x在(-∞,0]上单调递减,在[0,+∞)上单调递增,所以其最小值f (0)=2,且f (2x )=e 2x+e-2x=(e x +e -x )2-2,设t =e x +e -x,则t ∈[2,+∞),1t ∈⎝ ⎛⎦⎥⎤0,12,则不等式m [f (2x )+2]≥f (x )+1恒成立, 等价于m ·t 2≥t +1,即m ≥t +1t 2恒成立, 而t +1t 2=1t 2+1t =⎝ ⎛⎭⎪⎫1t +122-14, 当且仅当1t =12,即t =2时t +1t 2取得最大值34,故m ≥34.因此实数m 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
函数模型及其应用
1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。
2021届高考数学一轮复习第二章函数的概念与基本初等函数课时跟踪训练13函数模型及其应用文
2021届高考数学一轮复习第二章函数的概念与基本初等函数课时跟踪训练13函数模型及其应用文[基础巩固]一、选择题1.物价上涨是当前的要紧话题,专门是菜价,我国某部门为尽快实现稳固菜价,提出四种绿色运输方案.据推测,这四种方案均能在规定的时刻T 内完成推测的运输任务Q 0,各种方案的运输总量Q 与时刻t 的函数关系如图所示,在这四种方案中,运输效率(单位时刻的运输量)逐步提高的是( )[解析] 由运输效率(单位时刻的运输量)逐步提高得,曲线上的点的切线斜率应逐步增大,故函数的图象应一直是下凹的.[答案] B2.(2020·河南洛阳期中)已知某种动物繁育量y (只)与时刻x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们进展到( )A .100只B .200只C .300只D .400只[解析] 由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 39=200.[答案] B3.(2021·福建质检)当生物死亡后,其体内原有的碳14的含量大约每通过5730年衰减为原先的一半,那个时刻称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一样的放射性探测器就测不到了.若某死亡生物体内的碳14用一样的放射性探测器探测不到,则它通过的“半衰期\”个数至少是( )A .8B .9C .10D .11[解析] 设死亡生物体内原有的碳14含量为1,则通过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.因此,若探测不到碳14含量,则至少通过了10个“半衰期”.故选C.[答案] C4.某学校开展研究性学习活动,一组同学获得的一组实验数据如下表所示:( )A .y =2x -2B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)[解析] 直线是平均分布的,故选项A 不符合要求;指数函数y =⎝ ⎛⎭⎪⎫12x是单调递减的,也不符合要求;对数函数y =log 2x 的增长是缓慢的,也不符合要求;将表中数据代入选项D 中的函数,差不多符合要求.[答案] D5.(2021·湖南、衡阳、长郡中学等十三校联考)某公司为鼓舞创新,打算逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.3)( )A .2020年B .2021年C .2020年D .2021年[解析] 设开始超过200万元的年份是n ,则130×(1+12%)n -2021>200,化简得(n -2021)lg1.12>lg2-lg1.3,因此n -2021>lg2-lg1.3lg1.12=3.8,因此n =2020,因此开始超过200万元的年份是2020年,故选C.[答案] C6.国家规定个人稿费纳税方法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,则那个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元[解析] 设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧0, 0≤x ≤800,x -800×14%, 800<x ≤4000,11%·x , x >4000.假如稿费为4000元应纳税为448元,现知某人共纳税420元,因此稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.[答案] C 二、填空题7.(2021·江西六校联考)A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km/h ,B 的速度是16 km/h ,通过________小时,AB 间的距离最短.[解析] 设通过x h ,A ,B 相距为y km , 则y =145-40x 2+16x2⎝ ⎛⎭⎪⎫0≤x ≤298,求得函数的最小值时x 的值为258. [答案]2588.(2021·北京海淀一模)某购物网站在2020年11月开展“全场6折”促销活动,在11日当天购物还能够再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为__________.[解析] 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额许多于500元.由于每件原价48元,因此每张订单至少11件,因此最少需要下的订单张数为3张.[答案] 39.某食品的保鲜时刻t (单位:小时)与储藏温度x (单位:℃)满足函数关系t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0且该食品在4℃的保鲜时刻是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时刻变化如图所示.给出以下四个结论:①该食品在6℃的保鲜时刻是8小时;②当x ∈[-6,6]时,该食品的保鲜时刻t 随着x 增大而逐步减少;③到了此日13时,甲所购买的食品还在保鲜时刻内;④到了此日14时,甲所购买的食品已然过了保鲜时刻.其中,所有正确结论的序号是__________.[解析] ∵食品的保鲜时刻t (单位:小时)与储藏温度x (单位:℃)满足函数关系t =⎩⎪⎨⎪⎧64,x ≤02kx +6,x >0且该食品在4℃的保鲜时刻是16小时.∴24k +6=16,即4k +6=4,解得k =-12,∴t =⎩⎨⎧64,x ≤02-12x +6 ,x >0当x =6时,t =8.①该食品在6℃的保鲜时刻是8小时,正确;②当x ∈[-6,0]时,保鲜时刻恒为64小时,当x ∈(0,6]时,该食品的保鲜时刻t 随着x 增大而逐步减少,故错误;③到了此日10时,温度超过8度,现在保鲜时刻不超过4小时,故到13时,甲所购买的食品不在保鲜时刻内,故错误;④到了此日14时,甲所购买的食品已然过了保鲜时刻,故正确.故正确的结论的序号为①④.[答案] ①④ 三、解答题10.已知某物体的温度θ(单位:摄氏度)随时刻t (单位:分钟)的变化规律:θ=m ·2t+21-t(t ≥0,同时m >0).(1)假如m =2,求通过多少时刻,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范畴. [解] (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t +12t =52,令2t=x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),现在t =1.因此通过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立. 亦m ·2t+22t ≥2恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范畴是⎣⎢⎡⎭⎪⎫12,+∞.[能力提升]11.(2021·陕西西安模拟)某校为了规范教职工绩效考核制度,现预备拟定一函数用于依照当月评判分数x (正常情形0≤x ≤100,且教职工平均月评判分数在50分左右,若有突出奉献能够高于100分)运算当月绩效工资y 元.要求绩效工资不低于500元,不设上限且让大部分教职工绩效工资在600元左右,另外绩效工资越低、越高人数要越少.则下列函数最符合要求的是( )A .y =(x -50)2+500B .y =10x25+500 C .y =11000(x -50)3+625 D .y =50[10+lg(2x +1)][解析] 由题意知,函数应满足单调递增,且先慢后快,在x =50左右增长缓慢,最小值为500,A 是先减后增,不符合要求;B 由指数函数知是增长越来越快,不符合要求;D 由对数函数知增长速度越来越慢,不符合要求;C 是由y =x 3通过平移和伸缩变换而得,最符合题目要求,故选C.[答案] C12.(2021·石家庄质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时刻t (单位:分钟)满足函数关系p =at2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.依照上述函数模型和实验数据,能够得到最佳加工时刻为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟[解析] 依照图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.因此p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t 2-152t +22516+4516-2=-15⎝⎛⎭⎪⎫t -1542+1316,因此当t =154=3.75时,p 取得最大值,即最佳加工时刻为3.75分钟.[答案] B13.一个容器装有细沙a cm 3,细沙镇定器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-b t(cm 3),通过8 min 后发觉容器内还有一半的沙子,则再通过________min ,容器中的沙子只有开始时的八分之一.[解析] 当t =0时,y =a ,当t =8时,y =a e -8b=12a , ∴e-8b=12,容器中的沙子只有开始时的八分之一时, 即y =a e-b t=18a ,e -b t =18=(e -8b )3=e -24b, 则t =24,因此再通过16 min. [答案] 1614.为了在夏季降温顺冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建筑隔热层.某幢建筑物要建筑可使用20年的隔热层,每厘米厚的隔热层建筑成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建筑费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. [解] (1)由已知条件得C (0)=8,则k =40, 因此f (x )=6x +20·C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥26x +108003x +5-10 =70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.因此当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元. 15.(2021·吉林长春模拟)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (1≤m ≤4且m ∈R )克的药剂,药剂在血液中的含量y (克)随着时刻x (小时)变化的函数关系式近似为y =m ·f (x ),其中f (x )=⎩⎪⎨⎪⎧104+x ,0≤x <6,4-x2,6≤x ≤8.(1)若病人一次服用3克的药剂,则有效治疗时刻可达多少小时?(2)若病人第一次服用2克的药剂,6个小时后再服用m 克的药剂,要使接下来的2小时中能够连续有效治疗,试求m 的最小值.[解] (1)因为m =3,因此y =⎩⎪⎨⎪⎧304+x,0≤x <6,12-3x2,6≤x ≤8.当0≤x <6时,由304+x ≥2,解得x ≤11,现在0≤x <6;当6≤x ≤8时,由12-3x2≥2,解得x ≤203,现在6≤x ≤203.综上所述,0≤x ≤203.故若一次服用3克的药剂,则有效治疗的时刻可达203小时.(2)当6≤x ≤8时,y =2×⎝ ⎛⎭⎪⎫4-12x +m ⎣⎢⎡⎦⎥⎤104+x -6=8-x +10m x -2,因为8-x +10mx -2≥2对6≤x ≤8恒成立, 即m ≥x 2-8x +1210对6≤x ≤8恒成立,等价于m ≥⎝ ⎛⎭⎪⎫x 2-8x +1210max,6≤x ≤8. 令g (x )=x 2-8x +1210,则函数g (x )=x -42-410在[6,8]上是单调递增函数,当x =8时,函数g (x )=x 2-8x +1210取得最大值为65,因此m ≥65,因此所求的m 的最小值为65.。
2021年高考数学一轮总复习 2-10 函数模型及其应用练习 新人教A版
2021年高考数学一轮总复习 2-10 函数模型及其应用练习新人教A版一、选择题(本大题共6小题,每小题5分,共30分)1.(xx·南昌质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,则他应付邮费( )A.3.20元B.2.90元C.2.80元D.2.40元解析由题意得20×3<72.5<20×4,则应付邮费0.80×4=3.20(元).故选A.答案A2.(xx·广州模拟)在某个物理实验中,测量得变量x和变量y的几组数据,如下表:A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x解析根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.答案 D3.(xx·陕西卷)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接矩形花园(阴影部分), 则其边长x(单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]解析 如右图:过A 作AM ⊥BC 交M ,交DE 于N ;AM =40,由相似三角形得:DE BC =x40=AD AB =AN AM =AN40,解得AN =x ,MN =40-x ,则阴影部分的面积为S =x (40-x )≥300,解得10≤x ≤30,故选C.答案 C4.国家规定个人稿费纳税办法:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿费的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2 800元B .3 000元C .3 800元D .3 818元解析 设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得 y =⎩⎪⎨⎪⎧0 x ≤800,x -800×14% 800<x ≤4 000,11%·x x >4 000.如果稿费为4 000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4 000元之间,∴(x -800)×14%=420.∴x =3 800(元). 答案 C5.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A.45.606万元B.45.6万元C.45.56万元D.45.51万元解析依题意可设在甲地销售x辆,则在乙地销售(15-x)辆,总利润S=L1+L2,则总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+0.15×10.22+30(x≥0).故当x=10时,S max=45.6(万元).答案 B6.已知某食品厂生产100克饼干的总费用为1.80元,现该食品厂对饼干采用两种包装,其包装费及售价如下表所示:①买小包装实惠;②买大包装实惠;③卖3包小包装比卖1包大包装盈利多;④卖1包大包装比卖3包小包装盈利多.所有正确的说法是( )A.①④ B.①③C.②③ D.②④解析1包小包装每元买饼干1003克,1包大包装每元可买饼干3008.4>1003克,因此,买大包装实惠.卖3包小包装可盈利2.1元,卖1包大包装可盈利2.2元,因此,卖3包小包装比卖1包大包装盈利少.答案 D二、填空题(本大题共3小题,每小题5分,共15分)7.计算机的价格大约每3年下降23,那么今年花8 100元买的一台计算机,9年后的价格大约是________元.解析方法1:设计算机价格平均每年下降p%,由题意,可得13=(1-p %)3,∴p %=1-⎝ ⎛⎭⎪⎫1313 .∴9年后的价格为8 100×⎣⎢⎢⎡⎦⎥⎥⎤1+⎝ ⎛⎭⎪⎫13 13 -19=8 100×⎝ ⎛⎭⎪⎫133=300(元). 方法2:9年后的价格为8 100×⎝ ⎛⎭⎪⎫1-233=8 100×⎝ ⎛⎭⎪⎫133=300(元).答案 3008.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,cA ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是________.解析 由题意⎩⎪⎨⎪⎧cA=15,c4=30,解得⎩⎪⎨⎪⎧c =60,A =16.答案 60 169.(xx·湖北武昌调研)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________; (2)最低种植成本是________(元/100 kg).解析 根据表中数据可知函数不单调,所以Q =at 2+bt +c 且开口向上,对称轴t =-b 2a =60+1802=120.代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01.所以西红柿种植成本最低时的上市天数是120.最低种植成本是14 400a +120b +c =14 400×0.01+120·(-2.4)+84+14 000×0.01=80.答案 (1)120 (2)80三、解答题(本大题共3小题,每小题10分,共30分)10.(xx·成都诊断)某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本500万元,生产与销售均以百台计数,且每生产100台,还需增加可变成本1 000万元.若市场对该产品的年需求量为500台,每生产m 百台的实际销售收入(单位:万元)近似满足函数R (m )=5 000m -500m 2(0≤m ≤5,m ∈N ).(1)试写出第一年的销售利润y (万元)关于年产量x (单位:百台,x ≤5,x ∈N *)的函数关系式;(说明:销售利润=实际销售收入-成本)(2)因技术等原因,第一年的年生产量不能超过300台,若第一年人员的年支出费用u (x )(万元)与年产量x (百台)的关系满足u (x )=500x +500(x ≤3,x ∈N *),问年产量x 为多少百台时,工厂所得纯利润最大?解 (1)由题意得y =5 000x -500x 2-500-1 000x , 即y =-500x 2+4 000x -500(x ≤5,x ∈N *). (2)记工厂所得纯利润为h (x ),则h (x )=-500x 2+4 000x -500-u (x )=-500x 2+3 500x -1 000,∵-500(x 2-7x )-1 000=-500⎝ ⎛⎭⎪⎫x -722+5 125(x ≤3,x ∈N *),∴当x =3(百台)时,h (x )max =5 000(万元).故当年生产量为300台时,厂家的纯利润最大,且最大值为5 000万元.11.(xx·日照模拟)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如右图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解 (1)由图象可知:当t =4时,v =3×4=12, ∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2,当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈10,20],-t 2+70t -550,t ∈20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35,∴t =30.∴沙尘暴发生30 h 后将侵袭到N 城.12.(xx·潍坊模拟)某工厂生产某种商品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)∵每件商品售价为0.05万元,则x 千件商品销售额为(0.05×1 000x )万元,依题意得当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250;当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x+1 450-250=1 200-⎝ ⎛⎭⎪⎫x +10 000x .则L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250 0<x <80,1 200-⎝ ⎛⎭⎪⎫x +10 000x x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元.当x ≥80时,L (x )=1 200-⎝⎛⎭⎪⎫x +10 000x≤1 200-2x ·10 000x=1 200-200=1 000.此时,当x =10 000x,即x =100时,L (x )取得最大值1 000万元.∵950<1 000,则当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1 000万元.333018215 舕 fWwrGz25795 64C3 擃 21861 5565 啥k24540 5FDC 応。
2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版
考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。
2021届高考数学一轮复习第二章函数导数及其应用课堂达标12函数模型及应用文新人教版20210723
2021届高考数学一轮复习第二章函数导数及其应用课堂达标12函数模型及应用文新人教版20210723487[A 基础巩固练]1.向一杯子中匀速注水时,杯中水面高度h 随时刻t 变化的函数h =f (t )的图象如图所示.则杯子的形状是( )[解析] 从题图看出,在时刻段[0,t 1],[t 1,t 2]内水面高度是匀速上升的,在[0,t 1]上升慢,在[t 1,t 2]上升快,故选A.[答案] A2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12[解析] 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.[答案] A3.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保证交通安全,某地依照《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少通过 ________ 小时才能开车.(精确到1小时)[解析] (1)设通过x 小时才能开车.由题意得0.3(1-25%)x ≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈4.19. ∴x 最小为5. [答案] 54.(2020·北京朝阳区统一考试)设某公司原有职员100人从事产品A 的生产,平均每人每年制造产值t 万元(t 为正常数).公司决定从原有职员中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,连续从事产品A 生产的职员平均每人每年制造产值在原有的基础上增长了 1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18[解析] 由题意,分流前每年制造的产值为100t (万元),分流x 人后,每年制造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,100-x1+1.2x %t ≥100t,解得0<x ≤503.因为x ∈N *,因此x 的最大值为16. [答案] B5.(2020·武汉检测)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元[解析] 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,因此可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x ∈[0,16]且x ∈N ,因此当x =10或11时,总利润取得最大值43万元. [答案] C6.(2020·石家庄模拟)在翼装飞行世界锦标赛中,某翼人空中高速飞行,如图反映了他从某时刻开始的15分钟内的速度v (x )与时刻x 的关系,若定义“速度差函数”u (x )为时刻段[0,x ]内的最大速度与最小速度的差,则u (x )的图象是( )[解析] 由题意可得,当x ∈[0,6]时,翼人做匀加速运动,v (x )=80+x ,“速度差函数”u (x )=403x .当x ∈[6,10]时,翼人做匀减速运动,速度v (x )从160开始下降,一直降到80,u (x )=160-80=80,当x ∈[10,12]时,翼人做匀减速运动,v (x )从80开始下降,v (x )=180-10x ,u (x )=160-(180-10x )=10x -20.当x ∈[12,15]时,翼人做匀加速运动,“速度差函数”u (x )=160-60=100,结合所给的图象,故选D.[答案] D7.(2020·河南安阳模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,能够生产最低档产品60件,每提高一个档次将少生产3件产品,则获得利润最大时生产产品的档次是______.[解析] 由题意,第k 档次时,每天可获利润为:y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10),配方可得y =-6(k -9)2+864,∴当k =9时,获得利润最大.[答案] 98.(2020·沈阳模拟)一个容器装有细沙a cm 3,细沙镇定器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),通过8 min 后发觉容器内还有一半的沙子,则再通过 ________ min ,容器中的沙子只有开始时的八分之一.[解析] 依题意有a ·e-b ×8=12a ,∴b =ln 28, ∴y =a ·e-ln 28·t ,若容器中只有开始时的八分之一,则有a ·e-ln 28·t =18a ,解得t =24,因此再通过的时刻为24-8=16 min. [答案] 169.某商人购货,进价已按原价a 扣去25%.他期望对物资订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种物资的件数x 与按新价让利总额y 之间的函数关系式为 ________ .[解析] 设新价为b ,依题意,有b (1-20%)-a (1-25%)=b (1-20%)·25%,化简得 b =54a .∴y =b ·20%·x =54a ·20%·x ,即y =a 4x (x ∈N *). [答案] y =a4x (x ∈N *)10.(2020·珠海模拟)某校学生社团心理学研究小组在对学生上课注意力集中情形的调查研究中,发觉其注意力指数p 与听课时刻t 之间的关系满足如图所示的曲线.当t ∈(0,14]时,曲线是二次函数图象的一部分,当t ∈[14,40]时,曲线是函数y =log a (t -5)+83(a >0且a ≠1)图象的一部分.依照专家研究,当注意力指数p 大于等于80时听课成效最佳.(1)试求p =f (t )的函数关系式.(2)老师在什么时段内安排核心内容能使得学生听课成效最佳?请说明理由.[解] (1)t ∈(0,14]时,设p =f (t )=c (t -12)2+82(c <0),将(14,81)代入得c =-14,∴当t ∈(0,14]时,p =f (t )=-14(t -12)2+82;t ∈[14,40]时,将(14,81)代入y =log a (t -5)+83,得a =13,∴当t ∈[14,40]时,p=f (t )=log 13(t -5)+83.因此p =f (t )=⎩⎪⎨⎪⎧-14t -122+82,t ∈0,14],log 13t -5+83,t ∈14,40].(2)t ∈(0,14]时,由-14(t -12)2+82≥80,解得12-22≤t ≤12+22,因此t ∈[12-22,14],t ∈(14,40]时,由log 13(t -5)+83≥80,解得5<t ≤32,因此t ∈(14,32],因此t ∈[12-22,32],即老师在t ∈[12-22,32]时段内安排核心内容使得学生听课成效最佳.[B 能力提升练]1.(2020·郑州模拟)某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但假如年产量超过150吨,会给环境造成危害,为爱护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年[解析] 第n 年的年产量y =⎩⎪⎨⎪⎧f 1,n =1,f n -f n -1,n ∈N ,n ≥2.因为f (n )=12n (n +1)(2n +1),因此f (1)=3,当n ≥2时,f (n -1)=12n (n -1)(2n -1),因此f (n )-f (n -1)=3n 2,n =1时,也满足上式.因此第n 年的年产量为y =3n 2,令3n 2≤150,因此n 2≤50,因为n ∈N ,n ≥1,因此1≤n ≤7,因此n max =7.[答案] C2.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8∶00第一次服药,为保证疗效,则第二次服药最迟的时刻应为( )A .上午10∶00B .中午12∶00C .下午4∶00D .下午6∶00[解析] 当x ∈[0,4]时,设y =k 1x ,把(4,320)代入, 得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入得⎩⎪⎨⎪⎧4k 2+b =320,20k 2+b =0.解得⎩⎪⎨⎪⎧k 2=-20,b =400.∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20.由y ≥240,得⎩⎪⎨⎪⎧0≤x ≤4,80x ≥240,或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240.∴3≤x ≤8.故第二次服药最迟应在当日下午4∶00.故选C. [答案] C3.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为______,该工厂的年产量为______件时,所得年利润最大(年利润=年销售总收入-年总投资).[解析] 当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.[答案] y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *);164.商家通常依据“乐观系数准则”确定商品销售价格,即依照商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).那个地点,x 被称为乐观系数.体会说明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于 ________ .[解析] 依题意得x =c -a b -a,(c -a )2=(b -c )(b -a ), ∵b -c =(b -a )-(c -a ),∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0,解得x =-1±52.∵0<x <1,∴x =5-12. [答案]5-125.如图所示,在矩形ABCD 中,已知AB =a ,BC =b (a >b ).在AB 、AD 、CD 、CB 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形EFGH 的面积最大?求出那个最大面积.[解] 设四边形EFGH 的面积为S ,由题意得S △AEH =S △CFG =12x 2,S △BEF =S △DHG =12(a -x )·(b -x ).由此得S =ab -2⎣⎢⎡⎦⎥⎤12x 2+12a -xb -x =-2x 2+(a +b )x =-2⎝⎛⎭⎪⎫x -a +b 42+a +b28.函数的定义域为{x |0<x ≤b },因为a >b >0,因此0<b <a +b2.若a +b4≤b ,即a ≤3b ,x =a +b4时面积S 取得最大值a +b28;若a +b4>b ,即a >3b 时,函数S =-2⎝⎛⎭⎪⎫x -a +b 42+a +b28在(0,b ]上是增函数,因此,当x =b 时,面积S 取得最大值ab -b 2.综上可知,若a ≤3b ,当x =a +b4时,四边形EFGH 的面积取得最大值a +b28;若a>3b ,当x =b 时,四边形EFGH 的面积取得最大值ab -b 2.[C 尖子生专练]有一种新型的洗衣液,去污速度专门快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在装有一定量水的洗衣机中,它在水中开释的浓度y (克/升)随着时刻x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎪⎨⎪⎧248-x -1,0≤x ≤4,7-12x ,4<x ≤14.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所开释的浓度之和.依照体会,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时刻可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.[解] (1)由题意知k ⎝ ⎛⎭⎪⎫248-2-1=3,∴k =1.(2)因为k =4,因此y =⎩⎪⎨⎪⎧968-x -4,0≤x ≤4,28-2x ,4<x ≤14.当0≤x ≤4时,由968-x -4≥4,解得-4≤x <8,因此0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12,因此4<x ≤12. 综上可知,当y ≥4时,0≤x ≤12,因此只投放一次4个单位的洗衣液的有效去污时刻可达12分钟. (3)在第12分钟时,水中洗衣液的浓度为2×⎝ ⎛⎭⎪⎫7-12×12+1×⎣⎢⎡⎦⎥⎤248-12-10-1=5(克/升),又5>4,因此在第12分钟时洗衣液还能起到有效去污的作用.。
山东2021新高考数学一轮复习第二章函数导数及其应用课时作业12函数模型及应用课件
解析:驾驶员醉酒 1 小时血液中酒精含量为 5-1=0.2 毫克/ 毫升,要使酒精含量≤0.02 毫克/毫升,则3513x≤0.02,∴x≥log330 =1+log310>1+log39=3,故此驾驶员至少要过 4 个小时后才能 开车.
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们 眼睛,
解析:设汽车经过 t 秒行驶的路程为 s 米,则 s=12t2,车与 人的间距 d=(s+25)-6t=12t2-6t+25=12(t-6)2+7,当 t=6 时, d 取得最小值为 7.
4.某市生产总值连续两年持续增加.第一年的增长率为 p,
第二年的增长率为 q,则该市这两年生产总值的年平均增长率为
铯 137 的衰变过程中,其含量 M(单位:太贝克)与时间 t(单位:
年)满足函数关系:M(t)=M02-3t0,其中 M0 为 t=0 时铯 137 的
含量.已知 t=30 时,铯 137 含量的变化率是-10ln2(太贝克/年),
则 M(60)=( D )
A.5 太贝克
B.75ln 2 太贝克
C.150ln 2 太贝克 D.150 太贝克
解:(1)每吨平均成本为yx(万元).
则yx=5x+8 0x00-48≥2
x8 5·
0x00-48=32,
当且仅当5x=8 0x00,即 x=200 时取等号.
所以年产量为 200 吨时,每吨产品的平均成本最低,
为 32 万元.
(2)设年获得总利润为 R(x)万元, 则 R(x)=40x-y=40x-x52+48x-8 000
=-x52+88x-8 000 =-15(x-220)2+1 680(0≤x≤210). 因为 R(x)在[0,210]上是增函数,所以 x=210 时,R(x)有最 大值,为-15(210-220)2+1 680=1 660. 所以年产量为 210 吨时,可获得最大利润 1 660 万元.
2021届高考数学一轮知能训练:第二章第14讲 函数模型及其应用 Word版含解析
姓名,年级:时间:第14讲函数模型及其应用1.(2015年北京)汽车的“燃油效率"是指汽车每消耗1 L汽油行驶的里程,图X2。
14。
1描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )图X2.14。
1A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h。
相同条件下,在该市用丙车比用乙车更省油2.(2019年浙江嘉兴模拟)为了预防信息泄露,保证信息的安全传输,在传输过程中需要对文件加密,有一种秘密密钥密码系统(Private-Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文(解密).现在加密密钥为y=kx3,若明文“4”通过加密后得到密文“2",则接收方接到密文“1256”,解密后得到的明文是( )A.错误! B。
错误! C.2 D。
错误!3.某汽车销售公司在A,B两地销售同一种品牌车,在A地的销售利润(单位:万元)为y1=4。
1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆).若该公司在两地共销售16辆这种品牌车,则能获得的最大利润是( )A.10。
5万元 B.11万元C.43万元 D.43.025万元4.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分)满足的函数关系为p =at2+bt+c(a,b,c是常数),图X214。
2记录了三次实验的数据.根据所述函数模型和实验数据,可以得到最佳加工时间为( )图X2。
142A.3.50分 B.3。
75分 C.4.00分 D.4。
25分5.某商场在节日期间举行促销活动,规定:(1)若所购商品标价不超过200元,则不给予优惠;(2)若所购商品标价超过200元但不超过500元,则超过200元的部分给予9折优惠;(3)若所购商品标价超过500元,其500元内(含500元)的部分按第(2)条给予优惠,超过500元的部分给予8折优惠.某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为( )A.1600元 B.1800元 C.2000元 D.2200元6.某厂有许多形状为直角梯形的铁皮边角料,如图X2。
2021届高考数学一轮复习课件:第二章函数及其应用2.9函数模型及其应用
2.(必修1P69习题2-3AT7改编)生产一定数量的商品的全部费用称为生产成本,某
企业一个月生产某种商品x万件时的生产成本为C(x)= 1 x2+2x+20(万元).一万件
2
售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.
【解析】利润L(x)=20x-C(x)=-1 (x-18)2+142,
【典例】牧场中羊群的最大蓄养量为m只,为保证羊群的生长空间,实际蓄养量 不能达到最大蓄养量,必须留出适当的空闲量.已知羊群的年增长量y只和实际 蓄养量x只与空闲率的乘积成正比,比例系数为k(k>0). (1)写出y关于x的函数关系式,并指出这个函数的定义域. (2)求羊群年增长量的最大值. (3)当羊群的年增长量达到最大值时,求k的取值范围.
【易错点索引】
序号 1 2 3 4 5
易错警示 忽略图象的横纵坐标的意义
忽略图象的变化趋势 忽略函数的表示方法(列表)
忽略自变量的取值 忽略基本不等式成立的条件
典题索引 考点一、T1 考点一、T2、4 考点二、T3 考点三、角度1 考点三、角度2
【教材·基础自测】 1.(必修1P67例4改编)某工厂一年中各月份的收入、支出情况的统计图如图所示, 则下列说法中错误的是( )
A.收入最高值与收入最低值的比是3∶1 B.结余最高的月份是7月 C.1至2月份的收入的变化率与4至5月份的收入的变化率相同 D.前6个月的平均收入为40万元
【解析】选D.由题图可知,收入最高值为90万元,收入最低值为30万元,其比是 3∶1,故A正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B正确;由题 图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C正确;由 题图可知,前6个月的平均收入为 1 ×(40+60+30+30+50+60)=45(万元),故D错误.
【高三】2021届高考数学第一轮复习:函数模型及其应用
【高三】2021届高考数学第一轮复习:函数模型及其应用高三理科数学复习46――函数模型及其应用【学习目标】:能够根据实际问题的情况创建合理的函数模型,可以根据实际问题中提供更多的数据在创建函数模型后用导数方法得出答疑.【例题精讲】1.某城市在发展过程中,交通状况逐渐受有关部门更多的高度关注,据有关统计数据表明,从上午点至中午点,车辆通过该市某一路段的用时(分钟)与车辆步入该路段的时刻之间关系可以对数地用如下函数得出:求从上午6点到中午12点,通过该路段用时最多的时刻.2.某集团为了赢得最小的收益,每年必须资金投入一定的资金用作广告降价。
经调查,每年资金投入广告费(百万元)。
可以减少销售额约为(百万元)().(1)若该公司将当年的广告费控制在300万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)贝内旺拉拜公司准备工作共资金投入300万元,分别用作广告降价和技术改造.经预测,每资金投入技术改造费和(百万元),可以减少的销售额约为(百万元).恳请设计一个资金分配方案,而因公司由此赢得的收益最小.(备注:收益=销售额导入).3.从边长为的正方形铁片的四角上各截去一小块边长为的正方形,再将四边向上折起,做成一个无盖的长方体铁盒,要求长方体的高度与底面正方形边长的比值不超过常数,则取何值时,容积有最大值.【矫正意见反馈】1.某天中午时整,甲船自以的速度向正东方向行驶,乙船自的正北处以的速度向正南方向行驶,则当天时分时两船之距离对时间的变化率是.2.体积为的圆柱,底面半经和低分别为_______,_________时,表面积最轻.3.从边长为的矩形纸板的四角,截去四个相同的小正方形,做成一个无盖的盒子,那么盒子容积的最大值为。
4.一区,必须把如图所示的一片碎石滩规划成一个矩形度假村。
未知矩形的顶点在近似于一段对数函数的图象的曲线段上,且,,,问如何规划,可以并使度假村占地面积最小?5.甲方是一农场,乙方是一工厂,由于乙方生产需占用甲方的资,因此甲方有权向乙方索赔以弥补经济损失并获得一定的净收入,在乙方不赔付甲方的情况下,乙方的年利润(元)与年产量(吨)满足函数关系,若乙方每生产一吨产品必须赔付甲方元(以下称为赔付价格)。
2021版新高考数学(山东专用)一轮课件:第2章+第10讲+函数模型及其应用
函数、导数及其应用第十讲 函数模型及其应用1 知识梳理 • 双基自测2 考点突破 • 互动探究3 名师讲坛 • 素养提升知识梳理•双基自测知识点 函数模型及其应用1.几类常见的函数模型2.三种函数模型的性质递增递增快慢y轴x轴3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:ABCD题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元D3.(必修1P104例5改编)某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),A设这种动物第2年有100只,到第8年它们将发展到( )A.200只B.300只C.400只D.500只[解析] ∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年有100只,∴100=a log3(2+1),∴a=100,∴y=100log3(x+1),∴当x=8时,y=100log3(8+1)=100×2=200.故选A.18题组三 考题再现5.(2015·北京,5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升B 加油时间加油量/升加油时的累计里程/千米2015年5月1日1235 0002015年5月15日4835 600[解析] 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.6.(2015·四川,5分)某食品的保鲜时间y(单位:时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间24是________小时.考点突破•互动探究(1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例 1A根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个D(3)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M.将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]的图象大致为( )B[解析] (1)通过题图可知A不正确,并不是逐月增加,但是每一年是递增的,所以B正确.从图观察C是正确的,D也正确,1月至6月比较平稳,7月至12月波动比较大.故选A.(2)由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;平均最高气温高于20 ℃的月份只有2个,D错误.故选D.1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.(2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =a e -kx ,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约_____________年.(参考数据:log 20.767≈-0.4). 2 292 例 2考向2 已知函数模型解决实际问题——师生共研〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y=a log4x+b(其中x为销售额,y为相应的奖金).某业务员要得到8万1 024元奖励,则他的销售额应为_____________万元.季节性商品的销售当旺季来临时,价格呈上升趋势,设某商品开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后旺季过去,平均每周减价2元,直到16周后,该商品不再销售.(1)试建立价格p 与周次t 之间的函数关系式;(2)若此商品每周进货一次,每件进价Q 与周次之间的关系式为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N ,试问该商品第几周每件销售利润最大?最大值是多少?考向3 构建函数模型解决实际问题——多维探究角度1 一次函数、二次函数分段函数模型例 3当t∈[0,5],t∈N时,L(t)max=L(5)=9.125;当t∈(5,10],t∈N时,L(t)max=L(6)=L(10)=8.5;当t∈(10,16],t∈N时,L(t)单调递减,L(t)max=L(11)=7.125.由9.125>8.5>7.125,知L(t)max=9.125.从而第5周每件销售利润最大,最大值为9.125元.(1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏.(3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值.角度2 指数函数与对数函数模型指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)(2020·四川绵阳诊断性测试)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这C个月实际用水为( )A.13立方米B.14立方米C.15立方米D.16立方米①从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为________________________;②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教0.6室,那么,药物释放开始,至少需要经过__________小时后,学生才能回到教室.名师讲坛•素养提升(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?〔变式训练3〕某村计划建造一个室内面积为800 m2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室40 m,20 m 648 m2的边长各为____________时,蔬菜的种植面积最大?最大面积是__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识反馈卡·2.14
时间:20分钟 分数:60分
一、选择题(每小题5分,共30分)
1.(2017年湖北模拟)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )
A B C D
2.某厂日产手套总成本y (单位:元)与手套日产量x (单位:副)的函数解析式为y =5x +4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )
A .200副
B .400副
C .600副
D .800副
3.做一个体积为32 m 3、高为2 m 的无盖长方体纸盒,用纸面积最小为( )
A .64 m 2
B .48 m 2
C .32 m 2
D .16 m 2
4.某一种商品降价10%后,欲恢复原价,则应提价( )
A .10%
B .9%
C .11%
D .1119
% 5.下列函数中随x 的增大,增长率最终最大的是( )
A .y =1000x
B .y =x 2
C .y =ln x
D .y =(1.01)x
6.用长度为24的材料围一个矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( ).
A .3
B .4
C .4
D .5
二、填空题(每小题5分,共15分)
7.在如图J2-14-1所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(图中阴影部分),则其边长x 为________m.
图J2-14-1
8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:
①如果不超过200元,则不予优惠;
②如果超过200元,但不超过500元,则按标价给予9折优惠;
③如果超过500元,其中500元按第②条给予优惠,超过500元的部分给予7折优惠.某两人去购物,分别付款170元和441元,若他们合并去一次购买上述同样的商品,则可节约______________元.
9.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品日销售价应定为每个________元.
三、解答题(共15分)
10.如图J2-14-2,某校有一块形如直角三角形ABC 的空地,其中角B 为直角,AB 长40
m,BC长50 m.现欲在此空地上建造一间健身房,其占地形状为矩形,且B为矩形的一个顶点,求该健身房的最大占地面积.
图J2-14-2
基础知识反馈卡·2.14 1.C 2.D
3.B 解析:底面积为16 cm 2,设一底边长为x cm ,则另一底边长为16x
cm.∴用纸面积S =2⎝⎛⎭⎫2×16x +2x +16=4⎝⎛⎭⎫16x +x +16≥4×2 16x
·x +16=48(当且仅当x =4时,等号成立).故选B.
4.D 5.D
6.A 解析:设隔墙的长为x (0<x <6),矩形面积为y ,
y =x ×24-4x 2
=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大. 7.20
8.49 解析:170<200×0.9=180<441<500×0.9=450,
不考虑优惠的实际价格为170+4410.9
=660元, 合并后实付款:500×0.9+160×0.7=562(元),可节约:170+441-562=49(元).
9.14 解析:设每个涨价x 元,则实际销售价为(10+x )元,销售的个数为100-10x ,则利润为y =(10+x )(100-10x )-8(100-10x )=-10(x -4)2+360(0≤x <10,x ∈N ).因此,当x =4,即售价定为每个14元时,利润最大.
10.解:如图DJ7,设矩形为EBFP ,FP 长为x m ,其中0<x <40,健身房占地面积为y m 2.
图DJ7
∵△CFP ∽△CBA ,∴FP BA =CF CB ,即x 40=50-BF 50
. 求得BF =50-54
x . 从而y =BF ·FP =⎝⎛⎭⎫50-54x x =-54
x 2+50x =-54
(x -20)2+500≤500. 当且仅当x =20时,等号成立.
答:该健身房的最大占地面积为500 m 2.
快乐分享,知识无界!感谢您的下载!
由Ruize收集整理!。