《图形的变换与坐标》教案
华东师大初中数学九上《23.6.2 图形的变换与坐标教案
![华东师大初中数学九上《23.6.2 图形的变换与坐标教案](https://img.taocdn.com/s3/m/86d30034c850ad02de8041f5.png)
图形的交换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1 如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2 如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC 沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3 如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4 如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?(2)△AOB 的顶点坐标发生了什么变化?【归纳结论】横纵坐标都变为原来的21. 思考 将例4中的△AOB 以O 为位似中心,将△AOB 放大到原来的2倍得到△A ′OB ′.(1)△A ′OB ′可以画几个?(2)△AOB 的顶点坐标发生了什么变化?4.概括:填充完成教材92页的表格.三、运用新知,深化理解1.如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x,y )为△AOB 边上任一点,依次写出这几次变换后点P 对应点的坐标.【教学说明】教师适当点拨,学生分组讨论.四、师生互动,课堂小结这节课你学到哪些知识?有哪些收获?还有哪些疑问?1.布置作业:从教材相应练习和“习题23.6”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课采用集体讨论和活动探究`的数学方法,“以教师为主导,学生为主体”,教师的“导”立足于学生的学,以学为重心,放手让学生自主探索、归纳结论,体验学习的快乐,从而激发学生的学习兴趣.。
华师版九年级数学上册(HS)教案 图形的变换与坐标
![华师版九年级数学上册(HS)教案 图形的变换与坐标](https://img.taocdn.com/s3/m/8de5a70e0a4c2e3f5727a5e9856a561253d32163.png)
2.图形的变换与坐标1.使学生掌握平面直角坐标系中的点或图形平移或对称、位似变换引起的点的坐标的变化规律;(重点、难点)2.使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念.一、情境导入观察如图所示的坐标系.试着发现坐标系中几个图形间的联系,然后自己作出一个类似的图形.二、合作探究探究点一:平面直角坐标系中点的平移将点(1,2)向左平移1个单位,再向下平移2个单位后得到的对应点的坐标是________.解析:向左平移1个单位,横坐标减1,向下平移2个单位,纵坐标减2,于是点(1,2)变为(0,0).故答案为(0,0).方法总结:根据平移前后图形的坐标关系:①上加下减(纵坐标变化),左减右加(横坐标变化);②正加负减,即向x(y)轴正方向平移,横(纵)坐标增加;负方向平移,横(纵)坐标减小.探究点二:关于x 轴、y 轴对称的点的坐标点A(2a -3,b)与点A′(4,a +2)关于x 轴对称,求a ,b. 解析:此题应根据关于x 轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a -3与4相等,b 与a +2互为相反数.解:由点A(2a -3,b)与点A′(4,a +2)关于x 轴对称得2a -3=4,a +2=-b.所以a =72,b =-112.方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标规律:若A(,n)关于,y =-n ;若A(,n)关于y 轴对称,则有,y =-n.探究点三:平面直角坐标系中的位似【类型一】 利用位似求点的坐标如图,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1)解析:∵线段AB 的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 的横坐标和纵坐标都变为A 点的一半,∴端点C 的坐标为(3,3).故选A.方法总结:关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y)经过位似变化得到的对应点的坐标是(kx ,ky)或(-kx ,-ky).【类型二】 在坐标系中确定位似比△ABC 三个顶点A(3,6)、B(6,2)、C(2,-1),以原点为位似中心,得到的位似图形△A′B′C′三个顶点分别为A′(1,2),B ′(2,23),C ′(23,-13),则△A′B′C′与△ABC 的位似比是________. 解析:∵△ABC 三个顶点A(3,6)、B(6,2)、C(2,-1),以原点为位似中心,得到的位似图形△A′B′C′三个顶点分别为A′(1,2),B ′(2,23),C ′(23,-13),∴△A ′B ′C ′与△ABC 的位似比是1∶3.方法总结:以原点为位似中心的位似图形的位似比是对应点的对应坐标的比.【类型三】 位似变换与平移、旋转、轴对称的综合如图,点A 的坐标为(3,4),点O 的坐标为(0,0),点B 的坐标为(4,0).(1)将△AOB 沿x 轴向左平移1个单位后得△A 1O 1B 1,则点A 1的坐标为(________),△A 1O 1B 1的面积为________;(2)将△AOB 绕原点旋转180°后得△A 2O 2B 2,则点A 2的坐标为(________);(3)将△AOB 沿x 轴翻折后得△A 3O 3B 3,则点A 3的坐标为(________); (4)以O 为位似中心,按比例尺1∶2将△AOB 放大后得△A 4O 4B 4,若点B 4在x 轴的负半轴上,则点A 4的坐标为(________),△A 4O 4B 4的面积为________.解析:(1)将△AOB 沿x 轴向左平移1个单位后得△A 1O 1B 1,则点A 1的坐标为(2,4),△A 1O 1B 1的面积为12×4×4=8;(2)将△AOB 绕原点旋转180°后得△A 2O 2B 2,则点A 2的坐标为(-3,-4);(3)将△AOB 沿x 轴翻折后得△A 3O 3B 3,则点A 3的坐标为(3,-4);(4)以O 为位似中心,按比例尺1∶2将△AOB 放大后得△A 4O 4B 4,若点B 4在x 轴的负半轴上,则点A 4的坐标为(-6,-8),△A4O4B4的面积为12×8×8=32.故答案为(1)2,4;8;(2)-3,-4;(3)3,-4;(4)-6,-8;32.方法总结:此题主要考查了图形的旋转以及平移和位似变换、三角形面积求法等知识,得出对应点坐标是解题关键.三、板书设计1.平移变换的坐标特征:(1)沿x轴平移:纵坐标不变,右加左减;(2)沿y轴平移:横坐标不变,上加下减.2.对称变换的坐标特征:(1)点(x,y)关于x轴的对称点的坐标为(x,-y);(2)点(x,y)关于y轴的对称点的坐标为(-x,y).3.位似变换的坐标特征:关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y)经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).这节课主要是让学生感受在平面直角坐标系中的位似图形根据坐标的变化而变化,教学过程中要提高学生学习积极性、使心情愉悦、思维活跃,这样才能真正激发学生学习数学的兴趣,提高课堂学习效率.。
九年级数学上册23.6图形与坐标23.6.2图形的变换与坐标教案1华东师大版(new)
![九年级数学上册23.6图形与坐标23.6.2图形的变换与坐标教案1华东师大版(new)](https://img.taocdn.com/s3/m/cf150235b9f3f90f76c61bf0.png)
23。
6.2图形的变换与坐标
缩小,变成⊿COD,它们的相似比是多少?对应点的坐标有什么变化?
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part
of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
图形的变换与坐标教案
![图形的变换与坐标教案](https://img.taocdn.com/s3/m/8267e69a0d22590102020740be1e650e52eacf91.png)
图形的变换与坐标教案第一章:图形的认识与坐标系的建立1.1 平面直角坐标系的认识讲解平面直角坐标系的定义和构成演示坐标轴上的点与实际物体的对应关系让学生通过实例理解坐标系在几何中的应用1.2 坐标与图形的关系解释点的坐标表示方法分析直线、三角形等基本图形在坐标系中的表示让学生通过实例掌握坐标与图形之间的关系第二章:图形的平移变换2.1 平移变换的概念讲解平移变换的定义和特点演示平移变换对图形的影响让学生通过实例理解平移变换的性质2.2 平移变换的坐标表示讲解平移变换的坐标表示方法分析平移变换对点的坐标的影响让学生通过实例掌握平移变换的坐标表示方法第三章:图形的旋转变换3.1 旋转变换的概念讲解旋转变换的定义和特点演示旋转变换对图形的影响让学生通过实例理解旋转变换的性质3.2 旋转变换的坐标表示讲解旋转变换的坐标表示方法分析旋转变换对点的坐标的影响让学生通过实例掌握旋转变换的坐标表示方法第四章:图形的缩放变换4.1 缩放变换的概念讲解缩放变换的定义和特点演示缩放变换对图形的影响让学生通过实例理解缩放变换的性质4.2 缩放变换的坐标表示讲解缩放变换的坐标表示方法分析缩放变换对点的坐标的影响让学生通过实例掌握缩放变换的坐标表示方法第五章:图形变换的应用5.1 图形变换在几何中的应用讲解图形变换在几何问题中的应用分析实例问题,让学生理解图形变换对几何问题的重要性让学生通过练习题巩固图形变换在几何中的应用5.2 图形变换在实际问题中的应用讲解图形变换在实际问题中的应用分析实例问题,让学生理解图形变换在实际问题中的作用让学生通过练习题巩固图形变换在实际问题中的应用第六章:组合图形的变换6.1 组合图形变换的概念讲解组合图形变换的定义和特点演示组合图形变换对图形的影响让学生通过实例理解组合图形变换的性质6.2 组合图形变换的坐标表示讲解组合图形变换的坐标表示方法分析组合图形变换对点的坐标的影响让学生通过实例掌握组合图形变换的坐标表示方法第七章:坐标与图形变换的综合应用7.1 坐标与图形变换在几何问题中的应用讲解坐标与图形变换在几何问题中的应用分析实例问题,让学生理解坐标与图形变换对几何问题的重要性让学生通过练习题巩固坐标与图形变换在几何中的应用7.2 坐标与图形变换在实际问题中的应用讲解坐标与图形变换在实际问题中的应用分析实例问题,让学生理解坐标与图形变换在实际问题中的作用让学生通过练习题巩固坐标与图形变换在实际问题中的应用第八章:计算机辅助几何设计8.1 计算机辅助几何设计的基本概念讲解计算机辅助几何设计的基本概念和特点演示计算机辅助几何设计在图形变换中的应用让学生通过实例理解计算机辅助几何设计的基本原理8.2 计算机辅助几何设计软件的使用讲解计算机辅助几何设计软件的基本操作分析实例问题,让学生掌握计算机辅助几何设计软件的使用方法让学生通过练习题熟练使用计算机辅助几何设计软件第九章:图形变换与坐标系的拓展9.1 非平面直角坐标系中的图形变换讲解非平面直角坐标系中的图形变换方法演示非平面直角坐标系中图形变换对图形的影响让学生通过实例理解非平面直角坐标系中图形变换的性质9.2 变换群与图形变换讲解变换群的基本概念和性质分析变换群在图形变换中的应用让学生通过实例理解变换群与图形变换的关系第十章:复习与拓展10.1 复习本章所学内容复习本章所学的基本概念、方法和技巧分析典型问题,让学生巩固本章所学知识让学生通过练习题检验自己的学习成果10.2 拓展图形变换的应用领域讲解图形变换在其他学科领域中的应用分析实例问题,让学生了解图形变换的广泛应用激发学生对图形变换在实际问题中应用的兴趣重点和难点解析重点环节一:平面直角坐标系的认识重点关注学生对坐标系的理解和实际物体的对应关系。
图形的变换与坐标教案
![图形的变换与坐标教案](https://img.taocdn.com/s3/m/1dedd617a9956bec0975f46527d3240c8447a13b.png)
图形的变换与坐标教案一、教学目标:1. 知识与技能:理解坐标系的概念,掌握坐标系的建立方法。
学习图形的平移、旋转和缩放等基本变换。
能够运用坐标表示和计算图形的变换。
2. 过程与方法:通过实际操作和观察,培养学生的空间想象能力和抽象思维能力。
学会使用坐标系解决实际问题,提高解决问题的能力。
3. 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情。
培养学生的团队协作能力和交流表达能力。
二、教学内容:1. 坐标系的概念和建立方法学习直角坐标系的定义和建立方法。
理解坐标轴和坐标点的含义。
2. 图形的平移变换学习图形的平移概念和规律。
掌握图形平移的坐标表示和计算方法。
3. 图形的旋转变换学习图形的旋转概念和规律。
掌握图形旋转的坐标表示和计算方法。
4. 图形的缩放变换学习图形的缩放概念和规律。
掌握图形缩放的坐标表示和计算方法。
5. 实际问题应用通过实际问题,运用坐标系和图形变换解决实际问题。
培养学生的解决问题能力和创新思维能力。
三、教学资源:1. 教学课件和教学素材。
2. 坐标纸和绘图工具。
3. 实际问题案例。
四、教学过程:1. 导入:通过实际例子,引入坐标系的概念,激发学生的兴趣。
2. 教学内容讲解:结合课件和教学素材,讲解坐标系的概念和建立方法,图形的平移、旋转和缩放变换的规律和计算方法。
3. 课堂练习:布置相关的练习题,让学生巩固所学内容。
4. 实际问题应用:给出实际问题案例,引导学生运用坐标系和图形变换解决实际问题。
五、教学评价:1. 课堂练习:通过课堂练习题,评估学生对知识的掌握程度。
2. 实际问题应用:通过实际问题解决情况,评估学生的应用能力和创新能力。
3. 学生互评和自评:鼓励学生进行互评和自评,提高学生的交流和表达能力。
六、教学活动设计:1. 导入活动:通过一个简单的图形变换游戏,让学生感受图形变换的乐趣,引发学生对图形变换的好奇心。
2. 主体活动:引导学生通过合作探究,自主发现图形变换的规律,并通过实际操作验证自己的发现。
图形的变换与坐标教案设计
![图形的变换与坐标教案设计](https://img.taocdn.com/s3/m/f2c363b75fbfc77da269b19b.png)
图形的变换与坐标【教学目标】1.在同一直角坐标系中,感受到图形经过平移、旋转、轴对称放大或缩小的变换之后,点的坐标相应发生变化。
2.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律。
【教学重难点】1.图形运动与坐标变换的关系。
2.图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律。
【教学过程】一、复习1.△ABC中,AB=AC,BC=6,AC=5,建立直角坐标系,写出各顶点的坐标。
2.你能画与△ABC成轴对称的三角形吗?请画一个以直线BG为对称轴的三角形。
二、新课讲解如果以C为坐标原点,CB所在直线为x轴,建立直角坐标系,各顶点坐标为多少?(画成与厚纸片相符)。
1.把厚纸片的三角形向右边移动3个单位,问:(1)这时三角形的位置发生了什么变化?向右平移3个单位。
(2)这时三角形三个顶点的坐标有什么变化,写出它们这个位置时三个顶点坐标。
(3)比较相应顶点的坐标,它们之间存在什么相同之处?相应顶点的横坐标都增加了3个单位,而纵坐标都不变。
2.把纸片三角形向左平移4个单位,后以同样的问题回答。
发现相应顶点横坐标有变化,减少了4个单位,纵坐标不变。
3.把纸片三角形再变换一个位置后,向左、右两边平移,观察各对应顶点的坐标的变化。
问:由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标,横坐标各有什么变化?它们的纵坐标都不变,横坐标有变化。
向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。
4.若把这个三角形沿y轴上、下平移呢?思考:△AOB关于x轴的轴对称图形△OA′B,对应顶点的坐标有什么变化呢?关于x轴对称,由于O、B在对称轴上,其坐标不变,那么点A与对称点A′关于x轴对称,它们的横坐标相同,纵坐标是互为相反数,这就得出关于x轴对称的对称点的坐标的特点是:横坐标不变,纵坐标互为相反数。
△AOB关于y轴的轴对称图形△AlOBl,对应顶点的坐标有什么变化?得出关于x轴或y轴成对称的对应点的坐标的关系:(1)关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
图形的变换与坐标教案
![图形的变换与坐标教案](https://img.taocdn.com/s3/m/d829ad12e55c3b3567ec102de2bd960590c6d9cf.png)
图形的变换与坐标教案一、教学目标1. 让学生理解图形变换的概念,掌握图形变换的基本方法。
2. 让学生掌握坐标系中图形的变换规律,能够运用坐标解决实际问题。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的变换规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的变换规律。
2. 教学难点:图形变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。
2. 利用多媒体辅助教学,直观展示图形变换过程。
3. 结合实际例子,让学生动手操作,加深对图形变换的理解。
五、教学准备1. 教学课件:图形变换的动画演示。
2. 教学素材:纸张、剪刀、直尺等。
3. 练习题:巩固所学知识。
教案内容请参考下述示例:教案示例:一、教学目标1. 让学生了解图形变换的概念,掌握图形变换的基本方法。
2. 让学生掌握坐标系中图形的平移和旋转规律。
3. 培养学生的观察能力、动手操作能力和逻辑思维能力。
二、教学内容1. 图形变换的概念及基本方法2. 坐标系中图形的平移和旋转规律3. 实际问题中的坐标变换应用三、教学重点与难点1. 教学重点:图形变换的概念,坐标系中图形的平移和旋转规律。
2. 教学难点:图形变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究图形变换的规律。
2. 利用多媒体辅助教学,直观展示图形变换过程。
3. 结合实际例子,让学生动手操作,加深对图形变换的理解。
五、教学准备1. 教学课件:图形变换的动画演示。
2. 教学素材:纸张、剪刀、直尺等。
3. 练习题:巩固所学知识。
六、教学内容1. 图形缩放的概念及方法2. 坐标系中图形的缩放规律3. 实际问题中的图形缩放应用七、教学重点与难点1. 教学重点:图形缩放的概念,坐标系中图形的缩放规律。
2. 教学难点:图形缩放在实际问题中的应用。
华师大版九年级数学上册《图形的变换与坐标》教学设计范文
![华师大版九年级数学上册《图形的变换与坐标》教学设计范文](https://img.taocdn.com/s3/m/5565545191c69ec3d5bbfd0a79563c1ec4dad77c.png)
华师大版九年级数学上册《图形的变换与坐标》教学设计范文一. 教材分析《图形的变换与坐标》是华师大版九年级数学上册的一章重要内容。
本章主要介绍了图形的平移、旋转和坐标系的应用。
通过本章的学习,学生能够理解平移、旋转的性质,掌握坐标系中图形的变换方法,并能够运用坐标解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形和坐标有一定的了解。
但学生在学习过程中,可能会对图形的变换和坐标系的应用产生困惑,因此需要教师在教学过程中进行细致的讲解和引导。
三. 教学目标1.理解平移、旋转的性质和坐标系的应用。
2.学会用坐标表示平移、旋转后的图形。
3.能够运用坐标解决实际问题。
四. 教学重难点1.平移、旋转的性质。
2.坐标系中图形的变换方法。
3.坐标在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究来获得知识。
2.利用多媒体演示和实际操作,帮助学生直观地理解平移、旋转的性质。
3.以小组合作的形式,让学生在探究中互相学习,提高合作能力。
六. 教学准备1.多媒体教学设备。
2.坐标纸、直尺、圆规等学习工具。
3.相关的教学课件和练习题。
七. 教学过程1.导入(5分钟)通过一个简单的图形变换实例,引导学生思考:图形是如何发生变化的?激发学生的学习兴趣,引出本节课的主题。
2.呈现(10分钟)介绍平移、旋转的性质,以及坐标系中图形的变换方法。
通过多媒体演示和实际操作,让学生直观地理解平移、旋转的性质。
3.操练(10分钟)让学生在坐标纸上进行实际操作,尝试完成一些简单的图形变换。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)呈现一些有关平移、旋转的练习题,让学生独立完成。
教师选取部分学生的作业进行讲解,巩固所学知识。
5.拓展(10分钟)引导学生运用坐标系解决实际问题,如计算物体在坐标系中的位置、绘制物体的运动轨迹等。
6.小结(5分钟)对本节课的主要内容进行总结,强调平移、旋转的性质和坐标系的应用。
初中数学教案:图形的坐标与变换
![初中数学教案:图形的坐标与变换](https://img.taocdn.com/s3/m/2fa1c80cf6ec4afe04a1b0717fd5360cba1a8df7.png)
初中数学教案:图形的坐标与变换一、引言数学是一门重要而有趣的学科,图形的坐标和变换作为初中数学的一部分,是培养学生空间想象能力和几何直观感的重要内容。
本教案旨在帮助学生理解和掌握图形的坐标与变换的概念,建立起与实际生活和几何图形之间的联系。
二、坐标系引入1.1 坐标系的概念坐标系是解决空间位置问题的重要工具。
常用的坐标系有二维直角坐标系和极坐标系。
简单来说,坐标系就是由两条互相垂直的数轴组成的,用于描述平面上的点位置。
1.2 二维直角坐标系二维直角坐标系由横轴和纵轴组成。
横轴称为x轴,纵轴称为y轴。
坐标系的原点为(0,0)。
1.3 坐标的表示在二维直角坐标系中,一个点的位置可由它在横轴上的位置和纵轴上的位置共同表示出来。
例如,点A在横轴上的位置是3,纵轴上的位置是4,则点A的坐标表示为(3,4)。
三、图形的坐标表示2.1 点的坐标表示一个点的坐标表示了它在二维直角坐标系中的位置。
通过坐标,我们可以准确地描述一个点的位置。
2.2 线段的坐标表示线段是由两个点确定的,因此可以用两个点的坐标来表示。
通过计算两个点的横纵坐标的差值,我们可以求得线段的长、斜率等属性。
2.3 三角形的坐标表示三角形是由三个点确定的,因此可以用三个点的坐标来表示。
根据三角形的性质,我们可以计算它的周长、面积等。
四、图形的平移变换3.1 平移变换的概念平移变换是指将一个图形在平面上沿着某个方向平行地移动一段距离,保持图形的形状和大小不变。
平移变换也被称为位移变换。
3.2 平移变换的表示方法平移变换可由向量表示。
平移向量的大小和方向决定了图形平移的距离和方向。
3.3 平移变换的性质平移变换具有以下性质:- 保持图形的形状和大小不变;- 保持图形内部的点与原图形相对应,每个点的坐标都增加了平移向量的坐标值。
五、图形的旋转变换4.1 旋转变换的概念旋转变换是指围绕一个点或固定轴旋转图形,使图形在平面内按一定的角度旋转。
旋转变换也被称为转动变换。
小学数学说课稿-图形的变换与坐标
![小学数学说课稿-图形的变换与坐标](https://img.taocdn.com/s3/m/96860d79ec630b1c59eef8c75fbfc77da2699790.png)
小学数学说课稿:图形的变换与坐标(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、规章制度、应急预案、条据书信、合同协议、评语大全、演讲致辞、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, rules and regulations, emergency plans, policy letters, contract agreements, comprehensive reviews, speeches, insights, teaching materials, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!小学数学说课稿:图形的变换与坐标小学数学说课稿:图形的变换与坐标(精选11篇)在教学工作者开展教学活动前,通常需要用到说课稿来辅助教学,借助说课稿可以有效提升自己的教学能力。
图形的变换与坐标最佳教案设计
![图形的变换与坐标最佳教案设计](https://img.taocdn.com/s3/m/6f1a472a6d85ec3a87c24028915f804d2b168702.png)
§23.6.2 图形的变换与坐标一、教学目标1.知识目标:经历图形坐标变化与平移、轴对称、伸长、压缩之间关系的探索过程,发展形象思维能力和数形结合意识2.能力目标:通过寻找坐标变化前后图形之间的关系,提高观察,归纳能力 二、教学重点、难点1.教学重点:探索图形上的点坐标的平移、轴对称、伸长和压缩之间的关系2.教学难点:理解图形上的坐标变化与图形变化的关系 三、教学过程在同一直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?例 如图,△AOB 沿x 轴向右平移3个单位之后,得到△A ′O ′B ′.三个顶点的坐标有什么变化呢? 解:△AOB 的三个顶点的坐标是A (2,4)、O (0,0)、B (4,0). 平移之后的△A ′O ′B ′对应的顶点是A ′(5,4)、O ′(3,0)、B ′(7,0). 沿x 轴向右平移之后,三个顶点的纵坐标都没有改变,而横坐标都增加了3. 思考如图,△AOB 关于x 轴的轴对称图形是△A ′OB .对应顶点的坐标有什么变化? 试一试请在下图的直角坐标系中画一个平行四边形,写出它的四个顶点的坐标,然后画出这个四边形关于x 轴的对称图形,写出对称图形四个顶点的坐标,观察对应顶点的坐标有什么变化.思考如图表示△AOB 和它缩小后得到的△COD ,你能求出它们的相似比吗?练习:拿出方格纸,并在方格纸上建立直角坐标系,根据我读出的点的坐标在纸上找到相应的点,并依次用线段将这些点连接起来.坐标是(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0).(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)纵坐标保持不变,横坐标变成原来的1/2倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?纵坐标保持不变,横坐标乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?横坐标保持不变,纵坐标乘以2,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?横坐标、纵坐标同时乘以2,将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?横坐标、纵坐标都乘以-1,将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?课堂小结师生共同总结:先由学生说,教师补充.一、平移1.纵坐标不变,横坐标分别增加(减少)a 个单位时,图形平移a 个单位;2.横坐标不变,纵坐标分别增加(减少)a 个单位时,图形平移a 个单位;向右(向左)向上(向下)二、伸长(压缩)3.纵坐标不变,横坐标分别变为原来的a 倍,则图形为原来的a 倍(a>1)4.横坐标不变,纵坐标分别变为原来的a 倍,则图形为原来的a 倍(a>1)5.横坐标与纵坐标同时变为原来的a 倍,则图形为原来的a 倍(a>1)…横向伸长或图形横向缩短为原来的a 倍(0<a<1)。
3.6.2图形的变换与坐标教案
![3.6.2图形的变换与坐标教案](https://img.taocdn.com/s3/m/924ecea249649b6649d74738.png)
图形的变换与坐标教学目标:知识与能力目标:1、探索图形经过平移、对称、相似等变换后对应坐标的变化。
2、能按要求作出简单的平面图形运动后的图形以及对应的坐标变化。
方法与过程目标:让学生体会图形经过平移、对称、相似等变换后对应坐标的变化情况,加深对变换的认识。
情感态度价值观:经历对图形变换的观察、分析、以及动手操作的过程,发展学生的审美观。
教学重点:图形变换后对应坐标的变化情况。
教学难点:对图形变换后对应坐标的变化情况的探索。
教学过程:一.创设情景1.我们学过那些图形的变换?2.这些变换的共同特征是什么?3.图形的位置发生了变化,那点的坐标会有什么变化呢?二.探索新知1.探索发现1(1)将点A(-3,3),B(4,5)分别做以下平移变换,并写出平移后点的坐标。
右移5个单位、左移5个单位、上移5个单位、下移5个单位。
(2)平移前后对应点的坐标有什么变化?2.沿坐标轴平移过程中(1)左右移,横坐标变,纵坐标不变。
(2)上下移,纵坐标边,横坐标不变。
3.做一做(1)已知点A的坐标为(-2,-3),分别求点经下列平移变换后所得的点的坐标。
①向上平移3个单位、②向左平移3个单位、③向右平移3个单位,再向下平移3个单位。
(2)△ABC各点坐标为A(-1,-1),B(1,-2),C(2,1),向下平移两个单位后各点坐标A1(),B1( ),C1( ).(3)教材65页例题4.探索发现2。
教材65页思考,△ABC关于x轴的轴对称图形是△A'OB.对应顶点的坐标有什么变化?5、关于x轴对称的图形对应点的横坐标不变,纵坐标互为相反数;关于y轴对称的图形对应点的纵坐标不变,横坐标互为相反数。
6.△ABC各点坐标为A(-1,-1),B(1,-2),C(2,1),关于X轴对称后各点坐标A1(),B1( ),C1( ).关于Y轴对称后各点坐标A2(),B2( ),C2( ).7.探索发现3。
下图表示△AOB和它缩小后得到的△COD,你能求出它们的相似比吗?顶点坐标发生了什么变化? 对任意位置的三角形都有这样的变化规律吗?8.位似中心是原点的位似变换中,,坐标扩大或缩小相同的倍数.9.小结:1).在平移过程中(1)左右移,横坐标变,纵坐标不变.(2)上下移,纵坐标边,横坐标不变.2).关于x轴对称的图形对应点的横坐标不变,纵坐标互为相反数;关于y轴对称的图形对应点的纵坐标不变,横坐标互为相反数.3).位似中心是原点的位似变换中,坐标扩大或缩小相同的倍数.三.试试你的身手:1.线段AB的端点坐标是A(-3,2),B(1,4),将线段(1)向右平移1个单位后坐标A1(),B1()(2)向下平移3个单位后坐标A2(),B2()(3关于Y轴对称后坐标A3(),B3()(4)以O为原点相似比为3的位似变换后坐标是A4(),B4()2..如图, △ABC沿Y轴向上平移5个单位长度得到△A1B1C1,再作关于X轴对称的△A2B2C2,不画图,写出变换后两三角形对应顶点的坐标.3.已知四边形ABCD个顶点的坐标分别是A(3,0),B(-1,-3),C(-4,1),D(0,4) •(1).写出将四边形向左平移四个单位长度后各顶点对应坐标.•(2)在(1)的前提下,以0为位似中心,相似比为2做位似变换,求变换后的各坐标。
23.6.2图形的变换与坐标教学设计新部编版
![23.6.2图形的变换与坐标教学设计新部编版](https://img.taocdn.com/s3/m/c46cf8ffbb0d4a7302768e9951e79b89680268da.png)
精选教课教课方案设计| Excellent teaching plan教师学科教课方案[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校23.6.2 《图形的变换与坐标》教课方案固隆中学姬菲菲学习目标:1、经历在同向来角坐标系中的图形变换,研究图形变换与坐标的变化规律;2、能按要求画出简单的平面图形变换后的图形,写出对应的坐标;3、加深对图形变换的认识,领会数形联合的思想。
要点:图形变换后对应坐标的变化状况难点:对图形变换后对应坐标的变化规律的研究教课过程:联合生活实例,导入新课一、教案导航,自主学习学生活动:联合教材P88-91,自主学习,达成一下内容。
1、在给定直角坐标系中按要求作图(附坐标图);2、研读教材 P88“例 1”,联合 1 题中你所作出的图,研究规律图形沿 x 轴向右平移后,三个极点的坐标都没有改变,而坐标都增添了 3。
图形沿 x 轴平移后。
极点的坐标不变,坐标都发生了改变。
3、阅读教材 P89“例 2”,联合 1 题中你所作出的图,研究规律将△ ABC沿 y 轴向下平移 3 个单位后,三个极点的坐标都没有改变,而坐标都减小了 3。
图形沿 y 轴平移后。
极点的坐标不变,坐标都发生了改变。
4、阅读教材 P90达成“试一试”察看图形对于 y 轴对称的对应点的坐标都有什么变化?5、作出教材P91“研究”的图形,并察看获得的新图形与原图形之间有什么关系?6、试概括总结变换,达成表格沿 x 轴向图形以原变换前点的坐标对于 x对于 y对于原点沿 y 轴向变换后点的坐标右平移 a 点为位似轴对称轴对称对称右平移 b图形变换个单位中心缩放个单位k 倍( x, y)( x,-y )(x+a,y)教师活动:在学生自主学习过程中,教师在教室巡视,发现学生自主学习中碰到的问题,合时点拨。
二、小组沟通,合作研究学生活动:小组长联合本组自主学习达成状况,自觉组织本组进行沟通议论、合作研究。
23.6.2图形的变换与坐标教学设计
![23.6.2图形的变换与坐标教学设计](https://img.taocdn.com/s3/m/9f24aa3db52acfc788ebc925.png)
举例引导学生应用所学判断图形变换后的点的坐 标
《23.6.2 图形的变换与坐标》教学过程结构流程 图
《图形的变换与坐标》教学设计 泉港五中 吴建平
学科 章节名称
教学内容 分析
教学目标 分析
教学重难点 分析
数学
年级
初三
《图形的变换与坐标》
计划 学时
1
本节课是华师大版九年级数学上学期第 23 章的最后一节内容,是中学数学
的重要内容之一。一方面,这是在学习位似的基础上,对位似平移奠定了基础,是进一步研究二次函数平
情感目标:
经历对图形变换的观察、分析、以及动手操作的过程,发展学生的审美观。
1.重点:图形变换后对应坐标的变化情况。
2.难点:对图形变换后对应坐标的变化情况的探索。
信息化教学过程
步骤
目标与内容 教学方法
整合点与软件
通过回顾、 1、培养学生观察图
观察初中所学的 像的能力
二次函数、一次 2、引导学生通过观
移的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而
且起着承前启后的作用。
认知目标: 1、探索图形经过平移、对称、相似等变换后对应坐标的变化。 2、能按要求作出简单的平面图形运动后的图形以及对应的坐标变化。
技能目标:让学生体会图形经过平移、对称、相似等变换后对应坐标的变化情
况,加深对变换的认识。
法,然后通过实 4、解决有关图形变
际例题来教学。 换的问题的能力。
1.简易多媒体教学环境。 2.交互式多媒体教学环境。 3.网络多媒体教学环境。 4.移动学习。 5.其他
回顾初中所学图形变换
教学环境
19.4坐标与图形的变化教学设计
![19.4坐标与图形的变化教学设计](https://img.taocdn.com/s3/m/deb6f3613b3567ec112d8a3c.png)
第一课时
一、教学目标
初步掌握点的坐标变化与点的平移关系,进而理解图各个点的坐标变化与图形平移的关系,并解决与平移有关的问题.
经历探索点的平移与点的坐标变化之间的规律过程,体会数形结合思想.了解利用图形的平移变换解决简单问题.
培养学生主动探索的精神,提高学生的学习兴趣.
二、教学重点和难点
教学重点是让学生发现并归纳点的坐标变化与点的平移的关系;教学难点是文字语言、图形语言、坐标表示之间的转化以及应用.
三、教学方法和教学手段
本课采用教师的启发引导与学生的自主探究相结合的教学方法,利用多媒体等手段教学.
四、教学过程设计与实施
根据班级学生基础较好的特点,我把这节课分为五个环节:
(二)做一做
1、在图19-4-2中,将长方形ABCD沿y轴方向向下平移4个单位长度,画出平移后的长方形,写出其各顶点坐标,并说出平移前后各对应顶点坐标是如何变化的.
2、在图19-4-2中,将长方形ABCD沿x轴方向向右平移6个单位长度,再沿y轴方向向右平移5个单位长度.画出平移后的长方形,写出其各顶点坐标,并说出平移前后各对应顶点坐标是如何变化的.
总结规律:在平面直角坐标系中,对于坐标平面上任意一点P(x,y)将它沿x轴方向向右(或向左)平移k个单位长度,相当于将这点的横坐标都增加(或减少)k,纵坐标不变,即点将P(x,y)移动到P·(x+k,y)(或P·(x-k,y));将它沿y轴方向向上(或向下)平移k个单位长度,相当于将这点的横坐标不变,纵坐标都增加(或减少)k,即点将P(x,y)移动到P·(x,y+k)(或P·(x,y-k)).
P(x,y)
向左平移4个单位长度
向下平移3个单位长度
华师大版数学九年级上册教案:23.6.2图形的变换与坐标
![华师大版数学九年级上册教案:23.6.2图形的变换与坐标](https://img.taocdn.com/s3/m/ff1e531ebd64783e09122bf6.png)
华师大版九年级上册23.6.2图形的变换与坐标教案教学内容:课本P88~92页。
教学目标:1、理解在同一个平面直角坐标系中,一个图形经过变换之后,该图形上各点的坐标的变化规律。
2、会求图形经过平移、旋转、对称、相似变换后对应点的坐标。
教学重点:会求图形经过平移、旋转、对称、相似变换后对应点的坐标。
教学难点:会求图形经过平移、旋转、对称、相似变换后对应点的坐标。
教学准备:课件教学方法:讲授法。
教学过程一、练习1、如图所示,学校在李老师家的南偏东30°方向,距离500m,则李老师家在学校的()。
A.北偏东30°方向,相距500m处B. 北偏西30°方向,相距500m处C. 北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处2、如图所示,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为;二、学习新内容一、例题例1、如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′。
三个顶点的坐标有什么变化?例2、如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4,3)、和(-1,3),将△ABC沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向左平移4个单位得到△A′′B′′C′′。
试写出现在三个顶点的坐标,看看发生了什么变化。
练习:P90页思考和试一试。
例3、已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD。
以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动。
设移动时间为t秒,△A0E0D0与△BDC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC饶点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q,是否存在这样的,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的变换与坐标》教案
教学目标
知识与技能:
1.在同一直角坐标系中,感受到图形经过平移、旋转、轴对称放大或缩小的变换之后,点的坐标相应发生变化.
2.探索图形在平移、轴对称、放大或缩小的变换,它们点的坐标的变化规律.
过程与方法:
引导-自学-探究-交流-展示情感态度与价值观:经历知识产生的过程,探索新知识. 教学重点
探索图形在平移、轴对称、放大或缩小的变换,它们点的坐标的变化规律
教学难点
探索图形在平移、轴对称、放大或缩小的变换,它们点的坐标的变化规律
教学过程
上节课我们对于同一个点建立不同的坐标系后,他的坐标就会不一样,它们之间有什么变化规律吗?如果有,有什么样的规律呢?
A自学:请同学们用10---15分钟时间自学教科书上本节内容.
B交流:请同学上台总结
点评:1.如果是平移,纵坐标不变,横坐标作相应的变化
或横坐标不变,纵坐标作相应变化
2.如果是翻转,那么每个点的坐标就会关于对称轴对称,一般是关于x、y轴.
3.如果是放大或缩小,每个点的每个坐标都作相应的放大和缩小即可.
C探究:
例1:
线段AB的两端点A(1,3),B(2,-5).
(1)把线段AB向左平移2个单位,则点A、B的坐标为:A__B__.
(2)线段AB关于x轴对称的线段A′B′,则其坐标为:A′_,B′_.
(3)把线段AB向上平移2个单位得线段A1Bl,AlBl关于y轴对称的线段A2B2,那么点A 2的坐标为________,点B2的坐标为_________.
解:(1)A(3,3),B(4,-5)
(2) A ′(1,-3),
B ′(2,5)
(3) A 2(-3,3), B 2
(-4,-5)
例2:
将图中的△ABC 做下列运
动,画出相应的图形,指出三个顶
点的坐标所发生的变化.
(1)沿y 轴付方向平移一个
单位;
(2)关于x 轴对称;
(3)以A 点为位似中心,放大到1.5倍.
解:图略
(1)A (-5,-1),B (0,2),
C (0,-1)
(2)A (5,0),B (0,3),C (0,0)
(3)A (-5,0),B (2.5,0),C (2.5,4.5)
【课堂作业】
1.已知:点A (1,2),B (2,3),C (-2,4),将这几个点
向左、向上平移3个单位,则这三个点的坐标
变为什么?
2. 如图,将图中的△ABC 作下列变换,画
出相应的图形,指出三个指出三个顶点的
坐标所发生的变化.
(1)沿x 轴平移一个单位
(2)关于y 轴对称
教学反思
1.如果是平移,纵坐标不变,横坐标作相应的变化
或横坐标不变,纵坐标作相应变化
2.如果是翻转,那么每个点的坐标就会关于对称轴对称,一般是关于x 、y 轴.
3.如果是放大或缩小,每个点的每个坐标都作相应的放大和缩小即可
x
(第2题)。