【3套精选】人教版七年级下册数学第七章平面直角坐标系单元综合练习题(含答案解析)(1)

合集下载

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

【3套打包】厦门市七年级下册数学第七章平面直角坐标系单元小结及答案

【3套打包】厦门市七年级下册数学第七章平面直角坐标系单元小结及答案

人教版七年级下册第七章《平面直角坐标系》单元测试卷一、选择题(每小题5分,共25分)1、在平面直角坐标系中,若点P的坐标为(3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)4、线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)5、若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每小题5分,共25分)6、如果点M(3,x)在第一象限,则x的取值范围是.7、点A在y轴上,位于原点的上方,距离坐标原点5个单位长度,则此点的坐标为.8、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3)、(-2,3),则移动后猫眼的坐标为.9、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为.10、如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.三、解答题(共50分)11、写出如图中“小鱼”上所标各点的坐标.12、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.13、王明从A处出发向北偏东40°走30m,到达B处;李刚也从A处出发,向南偏东50°走了40m,到达C处.(1)用1cm表示10m,画出A,B,C三处的位置;(2)在图上量出B处和C处之间的距离,再说出王明和李刚两人实际相距多少米.14、如图,把△ABC向上平移4个单位长度,再向右平移2个单位得△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15、在平行四边形ACBO中,AO=5,则点B坐标为(-2,4).(1) 写出点C坐标;(2) 求出平行四边形ACBO面积.《平面直角坐标系》单元测试卷参考答案一、选择题1、A2、D3、B4、C5、B二、填空题6、x>07、(0,5)8、(-4,6)、(-2,6)9、(3,2) 10、(5,﹣5)三、解答题11、解:A(-2,0),B(0,-2),C(2,1),D(2,1),E(0,2), O(0,0). 12、解:图略.体育场(-4,3),文化宫(-3,1),宾馆(2,2),市人教版七年级数学下册第七章平面直角坐标系培优训练卷一.选择题(共10小题,每小题3分,共30分)1.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°2.在平面直角坐标系中,点A(20,-20)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度4.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)8.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1 B.-4 C.2 D.39.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2)黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,-1) D.(2,1)10.在平面直角坐标系中,电子跳蚤从原点出发,按向右、向上、向左再向上的方向依次跳A的坐标是()动,每次跳动1个单位长度,其行走路线如图,则点2018A.(0,1008) B.(1,1008) C.(1,1009) D.(0,1010)二.填空题(共7小题,每小题4分,共28分)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,点(2,3)到x轴的距离是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.16.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为4时,m的值是.当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示)三.解答题(共6小题,共42分)17.(6分)(1)点P的坐标为(x,y)且不在原点上,若x=y,则点P在坐标平面内的位置可能在第象限,若x+y=0,则点P在坐标平面内的位置可能在第象限;(2)已知点Q的坐标为(2-2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.18.(8分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.19.(8分)如图,已知△ABC经过平移后得到111,A B C点A与1,A点B与1,B点C与1C分别是对应点,观察各对应点坐标之间的关系,解答下列问题:(1)分别写出点A与1,A点B与1,B点C与1C的坐标;(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求p点坐标.20.(10分)在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上; (2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.21.(10分)已知:如图,在直角坐标系中1234,(1,0),(1,1),(1,1),(1,1)A A A A --- (1)继续填写()()()567;;A A A :(2)依据上述规律,写出点20172018,A A 的坐标.答案:1-5 DDCAA6-10 DDADC11.-112.313. (2,5)14.四15.216.3, 6n-317.(1)一或三,二或四(2))∵点Q到两坐标轴的距离相等,∴|2-2a|=|8+a|,∴2-2a=8+a或2-2a=-8-a,解得a=-2或a=10,当a=-2时,2-2a=2-2×(-2)=6,8+a=8-2=6,当a=10时,2-2a=2-20=-18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(-18,18).18.解:(1)如图所示:食堂(-5,5)、图书馆的位置(2,5);(2)如图所示:办公楼和教学楼的位置即为所求;(3)宿舍楼到教学楼的实际距离为:8×30=240(m).19.解:(1)由图知A(1,2)、A1(-2,-1);B(2,1)、B1(-1,-2);C(3,3)、C1(0,0);(2)由(1)知,平移的方向和距离为:向左平移3个单位、向下平移3个单位,由x−3=3 解得x=6;由y−3=5解得y=8 ;则点P的坐标为(6,8).20.解:(1)由题意得:2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)由题意得:m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

人教版初1数学7年级下册 第7章(平面直角坐标系)单元练习试卷(含答案)

人教版初1数学7年级下册 第7章(平面直角坐标系)单元练习试卷(含答案)

七年级下册第7章《平面直角坐标系》单元练习题一.选择题1.在平面直角坐标系中,点M(2,﹣5)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,将点P(3,2)向上平移2个单位长度,得到的点的坐标是( )A.(3,4)B.(1,2)C.(5,2)D.(3,0)3.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)4.在平面直角坐标系中,点P在x轴上,则点P的坐标可以是( )A.P(2,5)B.P(﹣4,1)C.P(﹣5,0)D.P(0,4)5.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于( )A.(1,3)B.(5,3)C.(6,1)D.(8,2)6.下列各组中两个点的连线与y轴平行的是( )A.(1,1)与(﹣1,﹣1)B.(3,2)与(2,3)C.(3,2)与(5,2)D.(2,3)与(2,5)7.已知点P(x,y)为第四象限内一点,且满足|x|=3,y2=4,则P点的坐标为( )A.(﹣3,2)B.(3,2)C.(3,﹣2)D.(﹣3,﹣2)8.某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2021的坐标为( )A.(22020﹣1,22020+1)B.(22021﹣1,22021+1)C.(22021﹣2,22021+2)D.(22020﹣2021,22020+2021)二.填空题9.教室里,第6列第3个座位记作(6,3),则第3列第5个座位记作 .10.在平面直角坐标系中,点A(﹣3,1)在第 象限.11.一只蚂蚁由点(2,3)先向上爬2个单位长度,再向右爬4个单位长度,再向下爬1个单位长度后,它所在位置的坐标是 .12.已知点P(2m+4,m﹣1)在第一象限,到x轴的距离为2,则m= .13.如果点P(a,﹣b)在第二象限,那么点Q(a+b,﹣ab)在第 象限.14.“健步走”越来越受到人们的喜爱.一个健步走小组将自己的活动场地定在奥林匹克公园(路线:森林公园﹣玲珑塔﹣国家体育场﹣水立方),如图,假设在奥林匹克公园设计图上规定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为 .三.解答题15.如图是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若光岳楼的坐标为(﹣3,1),请建立平面直角坐标系,并用坐标表示动物园的位置.16.已知点P(m+2,3),Q(﹣5,n﹣1),根据以下条件确定m、n的值.(1)P、Q两点在第一、三象限角平分线上;(2)PQ∥x轴,且P与Q的距离为3.17.在平面直角坐标系中,△ABC经过平移得到三角形△A′B′C′,位置如图所示:(1)分别写出点A、A'的坐标:A ,A' ;(2)若点M(m,n)是△ABC内部一点,则平移后对应点M'的坐标为 ;(3)求△ABC的面积.18.在直角坐标系中描出下列各组点,并组各组的点用线段依次连接起来.(1)(1,0),(6,0),(6,1),(5,0),(6,﹣1),(6,0);(2)(2,0),(5,3),(4,0);(3)(2,0),(5,﹣3),(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x轴上方,那么至少要向上平移几个单位长度?19.如图,已知在平面直角坐标系中,四边形各顶点的坐标分别为A(0,0),B(9,0),C(7,4),D(2,8),求四边形ABCD的面积.20.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…(1)填写下列各点的坐标:P9( ),P12( 、 ),P15( 、 )(2)写出点P3n的坐标(n是正整数);(3)点P60的坐标是( 、 );(4)指出动点从点P210到点P211的移动方向.参考答案一.选择题1.解:∵2>0,﹣5<0,∴点M(2,﹣5)在第四象限.故选:D.2.解:将点P(3,2)向上平移2个单位长度所得到的点坐标为(3,2+2),即(3,4),故选:A.3.解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.4.解:∵点P在x轴上,∴纵坐标为0,故点P的坐标为(﹣5,0).故选:C.5.解:如图所示:“马”位于(6,1).故选:C.6.解:∵点(1,1)与(﹣1,﹣1)的横、纵坐标互为相反数,∴(1,1)与(﹣1,﹣1)的连线过原点,与y轴不平行,∵(3,2)与(2,3)的横坐标不相等,∴(3,2)与(2,3)两点的连线与y轴不平行,∵(3,2)与(5,2)的纵坐标相等,∴(3,2)与(5,2)两点的连线与x轴平行,∵(2,3)与(2,5)的横坐标相等,∴(2,3)与(2,5)两点的连线与y轴平行,故选:D.7.解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,y2=4,∴x=3,y=﹣2,∴点P的坐标是(3,﹣2).故选:C.8.解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2021的坐标为:(22021﹣1,22021+1),故选:B.二.填空题9.解:位于第3列第5个座位应记作(3,5).故答案为:(3,5).10.解:点A(﹣3,1)在第二象限,故答案为:二.11.解:点(2,3)先向上爬2个单位长度,所得点的坐标为(2,5),再向右爬4个单位长度,所得点的坐标为(6,5),再向下爬1个单位长度后,所得点的坐标为(6,4),故答案为:(6,4).12.解:∵点P(2m+4,m﹣1)在第一象限,且到x轴的距离是2,∴m﹣1=2,解得:m=3,故答案为:3.13.解:∵P(a,﹣b)在第二象限,∴a<0,b<0,∴a+b<0,﹣ab<0,∴点Q(a+b,﹣ab)在第三象限.故答案为:三.14.解:根据题意,可建立如图所示平面直角坐标系,则水立方的坐标为(﹣2,﹣4),故答案为:(﹣2,﹣4).三.解答题15.解:如图所示:动物园(4,4).16.解:(1)∵P、Q两点在第一、三象限角平分线上,∴m+2=3,n﹣1=﹣5,解得m=1,n=﹣4;(2)∵PQ∥x轴,∴n﹣1=3,∴n=4,又∵PQ=3,∴|m+2﹣(﹣5)|=3,解得m=﹣4或m=﹣10.∴m=﹣4或﹣10,n=4.17.解:(1)由图知A(1,0),A'(﹣4,4);(2)A(1,0)对应点的对应点A′(﹣4,4)得A向左平移5个单位,向上平移4个单位得到A′,故△ABC内M(m,n)平移后对应点M'的坐标为(m﹣5,n+4);(3)△ABC的面积为:4×4﹣×4×2﹣×3×2﹣×1×4=7.18.解:描点,连线可得,图案像飞机.要将此图形向上平移到x轴上方,那么至少要向上平移3个以单位长度.19.解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×2×8+×(8+4)×5+×2×4=42.故四边形ABCD的面积为42平方单位.20.解:(1)由动点运动方向与长度可得P3(1,0),P6(2,0),可以发现脚标是3的倍数的点,依次排列在x轴上,且相距1个单位,即动点运动三次与横轴相交,故答案为P9(3,0),P12(4、0 ),P15(5、0 ).(2)由(1)可归纳总结点P3n的坐标为P3n(n,0),(n是正整数);(3)根据(2),∵60=3×20,∴点P60的横坐标是20故点P60的坐标是(20、0 )故答案为(20、0 ).(4)∵210=3×70,符合(2)中的规律∴点P210在x轴上,又由图象规律可以发现当动点在x轴上时,偶数点向上运动,奇数点向下运动,而点P210是在x轴上的偶数点所以动点从点P210到点P211的移动方向应该是向上.。

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题含答案

七年级数学(下)第七章《平面直角坐标系》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.点P(3,–2)在平面直角坐标系中所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由点的坐标特征可得点P(3,–2)在第四象限,故选D.2.已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为A.(2,5)B.(5,2)C.(2,5)或(–2,5)D.(5,2)或(–5,2)【答案】D【解析】由题意得P(5,2)或(–5,2).故选D.3.在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A故选A.4.如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.5.在平面直角坐标系中,将点P(–1,–3)向右平移2个单位后得到的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先确定移动后的点,再根据各象限符号特征进行判断.由题意得移动后的点为(1,–3),再由1>0和–3<0可知移动后的该点位于第四象限.故选D.二、填空题:请将答案填在题中横线上.6.点A的坐标(–3,4),它到y轴的距离为__________.【答案】3【解析】点A的坐标(–3,4),它到y轴的距离为|–3|=3,故答案为:3.7.直线a平行于x轴,且过点(–2,3)和(5,y),则y=__________.【答案】3∴y=3.故填3.8.在平面直角坐标系中,若点A坐标为(–1,3),AB∥y轴,线段AB=5,则B点坐标为__________.【答案】(–1,8)或(–1,–2)【解析】∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=5,∴A点纵坐标为:3+5=8,或3−5=−2,∴A点的坐标为:(−1,8)或(−1,−2).故答案为:(−1,8)或(−1,−2).9.在平面直角坐标系中,已知点A的坐标为(a–2,7–2a),若点A到两坐标轴的距离相等,则a的值为__________.【答案】3或5【解析】∵点A(a–2,7–2a)到两坐标轴的距离相等,∴|a–2|=|7–2a|,∴a–2=7–2a或a–2=–(7–2a),解得a=3或a=5.故答案为:3或5.10.将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B,则点B所在象限是第__________象限.【答案】一【解析】将点A(–2,–3)先向右平移3个单位长度再向上平移4个单位长度得到点B(–2+3,–3+4),即(1,1),在第一象限.故答案为:一.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.【解析】A(1,2),B(2,1),C(–2,1),D(–1,–2).12.在直角坐标系中,标出下列各点的位置,并写出各点的坐标.(1)点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B在y轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.【解析】(1)如图所示:A(-4,0);(2)如图所示:B(0,4);(3)如图所示:C(-4,4).。

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。

人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级下册第7章平面直角坐标系单元测试题(含答案解析)

人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)

七年级数学下册第七章《平面直角坐标系》综合测试卷-人教版(含答案)一、选择题(每小题3分,共18分)1.根据下列表述,能确定位置的是( ).A.红星电影院第2排 B.北京市四环路C.北偏东30° D.东经118°,北纬40°2.下列关于有序数对的说法正确的是( ).A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置3.点P(3,﹣1)在第()象限.A.一 B.二 C.三 D.四a a>,那4.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)么所得的图案与原来图案相比().A.形状不变,大小扩大到原来的a倍; B.图案向右平移了a个单位;C .图案向上平移了a 个单位;D .图案向右平移了a 个单位,并且向上平移了a 个单位.5.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),用这种方法表示目标B 的位置,正确的是( ).A .(﹣4,150°) B .(4,150°)C .(﹣2,150°) D .(2,150°)6.已知点P 在第二象限,有序数对(m ,n )中的整数m ,n 满足m -n =-6,则符合条件的点P 共有( )A .5个B .6个C .7个D .无数个 二,填空题(每小题3分,共18分)7.七(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 8.如果点P (x -4,y +1)是坐标原点,则2xy =_________9.若点P (x ,y )在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标是_________10. 在平面直角坐标系中,若A 点坐标为(﹣3,3), B 点坐标为(2,0),则△ABO 的面积为__________. 11.若点P (a ,b )在第四象限,则点M (b -a ,a -b ) 在第________象限.(第5题)(第10题)12.线段AB与线段CD平行且相等,若端点坐标为A(1,3),B(2,7),C(2,-4),则另一个端点D的坐标为__________.三,解答题(每小题6分,共30分)13.已知平面直角坐标系中有一点)1m2(mM+,3-(1)若点M在y轴上,求M的坐标.(2)若点M在x轴上,求M的坐标.14.已知△ABC中,点A(1,-2),B(3,-2),C(2,0),D(4,1),E(2,4),F(0,1).在直角坐标系中,标出各点并按A—B—C—D—E—F—C—A顺次连接.(第14题)15.如图,如果“士”所在位置的坐标为(-2,-2),“相”所在位置的坐标为(1,-2),(1)画出直角坐标系.(2)“炮”现在所在位置的坐标为____ _. (3)下一步如果走“相”则走完后其坐标是______________.16.如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系,然后写出点B,点B’的坐标:B(_____________),B’(______________).17.一个等腰直角三角形如图放置于直角坐标系内,∠ABO=90°,∠AOB=45°,若A点坐标为(8-6x,3x+1),求B点的坐标. (第15题)(第16题)(第17题)四,解答题(每小题8分,共24分)18.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足0+b2a,点C的坐标为(0,3).4-=+(1)求A,B的坐标(2)求三角形ABC的面积(第18题)19.在平面直角坐标系中,点M的坐标为(a+3,a﹣3).(1)当a=﹣1时,点M在坐标系的第______象限;(直接填写答案)(2)无论a为何值,点M一定不在第______象限;(直接填写答案)(3)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N到两坐标轴距离相等时,求a的值.20.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.(第20题)五,解答题(每小题9分,共18分)21.如图,长方形ABCD 的各边与坐标轴都平行,点A ,C 的坐标分别为 (-1,1),(2,-3).(1)求点B 的坐标是_____.点D 的坐标是_____.(2)一动点P 从点A 出发,沿长方形的边AB ,BC 运动至点C 停止,运动速度为每秒1个单位长度,设运动时间为t s . ①当t =1 时,点P 的坐标是_____. ②当t =4.5 时,点P 的坐标是_____. ③当t =4.5 时,求三角形PDC 的面积.22.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P 1(x 1,y 1)、P 2(x 2,y 2),其两点间的距离公式P 1P 2=212212)()(y y x x -+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|. (1)已知P (-3,4)试求线段OP ;(第21题)(2)已知M、N在平行于y轴的直线上,点M的纵坐标为5,点N的纵坐标为-1,试求M、N两点间的距离.(3)已知A(3,2),点B在x轴上,若AB=5,求点B 的坐标.六,解答题(12分)23.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)点C的坐标为,点D的坐标为(2)在y轴上是否存在一点P,连接P A,PB,使△P AB的面积与四边形ABDC的面积相等,若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点Q从点C出发,沿“CD→DB”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,∠QOB=∠CAB;②当t= 秒时,∠QBA=∠CAB;(第23题)参考答案一、选择题(每小题3分,共18分)1. D. 2.C 3.D 4.D. 5.B. 6.A.二、填空题(每小题3分,共18分)7.(5,2) 8.-8 9.(-2,-3)10.3 11.二 12.(3,0)或(1,-8)三、解答题(每小题6分,共30分)13.解:(1)∵点M在y轴上∴2m-3=0解得:m=1.5 则m+1=2.5∴M的坐标为(0,2.5)(2)∵点M在x轴上∴m+1=0解得:m=-1 则2m-3=-5∴M的坐标为(-5,0)14.解:如图15.解:(1)如图所示(2) (-4,1) (3)(-1,0)或(3,0)16.解:(1)如图所示(2)B (1,2),B ’(3,5).17.解:由题意可知AB =BO ∵A 点坐标为(8-6x ,3x +1) ∴-(8-6x )=3x +1解得:x =3, 则8-6x= -10 ∴ B 点的坐标为(-10,0) 四、解答题(每小题8分,共24分) 18.解:(1)∵0=4-+2+b a ∴a =-2,b =4yxO∴A点的坐标为(-2,0), B点的坐标为(4,0)(2)∵A(-2,0), B(4,0)∴AB=6∵C(0,3).∴OC=3∴三角形ABC的面积S=6×3÷2=919.解:(1)四(2)二(3)∵M(a+3,a﹣3)向左平移2个单位向上平移1个单位得到点N∴N(a+1,a﹣2)∵点N到两坐标轴距离相等∴∣a+1│=∣a﹣2│∵a+1≠a﹣2∴a+1=-(a﹣2)解得a=0.520.解:S△ABO=S△ADO+S梯形ABCD-S△OBC=1×3÷2+(1+3)×2÷2-3×1÷2=4五、解答题(每小题9分,共18分)21.解(1)B的坐标是(2,1).点D的坐标是(-1,-3)P(2)①点P的坐标坐标是(0,1)②∵A(-1,1),B(2,1),C(2,-3).∴DC=AB=3,BC=4∵当t =4.5 时AB+BP=4.5,∴CP=3+4-4.5=2.5∴P 的坐标坐标是(2,-0.5)三角形PDC 的面积=3×2.5÷2=415 22.解(1)OP=525040322==+)()(---(2)MN=|y 2-y 1|=|5-(-1)|=6(3)由点B 在x 轴上可设B 的坐标为(x,0) 则AB =4)3)02()3222+=+x x ---(( ∵AB =5∴54)32=+x -(∴(3-x )2=1 解得:x =2或x =4∴B 的坐标为(2,0)或(4,0)六、解答题(12分)23.解(1)点C 的坐标为(0,2),点D 的坐标为(4,2)(2)由题意可知OC=2,AB=4,∴四边形ABDC 的面积=2×4=8∵△P AB 的面积=四边形ABDC 的面积=8且AB=4, ∴OP=4∴P的坐标为(0,4)或(0,-4)(3)①当t=1秒时,∠QOB=∠CAB;②当t=2秒时,∠QBA=∠CABQ。

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元小结(解析版)

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元小结(解析版)

人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空1.如,在平面直角坐系中: A(1 , 1) ,B( - 1, 1) , C( - 1,- 2) , D(1,- 2) ,把一条 2 018 个位度且没有性的 ( 的粗忽视不 ) 的一端固定在点 A ,并按A→B→C→D→A→⋯的律在四形ABCD的上,另一端所在地点的点的坐是(1,- 1).2.平面直角坐系内有一点P(x , y) ,若点 P 在横上,y= 0;若点 P 在上,x =0;若点 P 坐原点,x= 0 且 y= 0.3.如是某学校的表示,若合楼在点( -2,- 1) ,食堂在点 (1 ,2) ,教课楼在点( -4,1) .4.如,小在小明的北偏 60°方向的 500 m,小明在小的南偏西 60°方向的 500m. ( 用方向和距离描绘小明相于小的地点)5. 将点 A(1 ,1) 先向左平移 2 个位度,再向下平移 3 个位度获得点B,点 B的坐是 ( -1,- 2) .6.如,点P 在平面直角坐系中按中箭所示的方向运,第 1 次从原点运到点(1 ,1) ,第 2 次接着运到点(2 ,0) ,第 3 次接着运到点 (3 ,2) ,⋯,按的运律, 2 019 次运后,点 P 的坐 (2__019 , 2) .二、7.用 7 和 8 成一个有序数,能够写成( D )A.(7 ,8)B. (8,7)C.7,8 或 8,7D. (7 ,8) 或 (8 ,7) 8.如,一个方正沿着箭所指的方向前, A 的地点三列四行,表示(3 , 4) ,那么C的地点是(D)A.(4 ,5)B. (5,4)C.(4 ,2)D.(4 ,3) 9.平面直角坐系中,点(1 ,- 2) 在 ( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如是某游城的平面表示,用(8 ,2) 表示进口的地点,用(6 ,- 1) 表示球幕影的地点,那么坐原点表示的地点是( D )A.太空秋千B.梦幻C.海底世界D.激光11.在平面直角坐系中,将点 P(3,- 2) 向下平移 4 个位度,获得点 P 的坐 ( B ) A.( -1,- 2)B. (3,- 6)C.(7 ,- 2)D.(3 ,- 2)12.点 N(- 1, 3) 能够看作由点M(- 1,- 1)( A )A.向上平移 4 个位度所获得的B.向左平移4个位度所获得的C.向下平移 4 个位度所获得的D.向右平移4个位度所获得的13. 如,在平面直角坐系中,有若干个横坐分整数的点,其序 (1 ,0) ,(2 ,0) , (2 ,1) ,(1 ,1) ,(1 ,2) ,(2 ,2) ,⋯,依据个律,第 2 018 个点的坐 ( C ) A. (45 , 9)B. (45 , 11)C. (45 , 7)D. (46 , 0)14.王宁在班里的座位号为(2 ,3) ,那么该同学所坐的地点是( D )A.第 2 排第 3 列B.第 3 排第 2 列C.第5排第 5列D.不好确立15.在平面直角坐标系中,点(0 ,- 10) 在 ( D )A. x轴的正半轴上B. x 轴的负半轴上C. y轴的正半轴上D. y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋同样,深受广大棋友的喜欢,其规则是:在15×15的正方形棋盘中,由黑方先行,轮番弈子,在任一方向上连成五子者为胜.如图是两个五子棋喜好者甲和乙的棋战图 ( 甲执黑子先行,乙执白子后走 ) ,察看棋盘思虑:若 A 点的地点记作 (8 ,4) ,甲一定在哪个地点上落子,才不会让乙在短时间内获胜?为何?解:甲一定在 (1 ,7) 或 (5 ,3) 处落子.由于若甲不第一截断以上两处之一,而让乙在(1 ,7)或(5 , 3) 处落子,则无论截断哪处,乙总有一处落子可连成五子,乙必胜无疑.17.在以下图的平面直角坐标系中,描出以下各点,并将各点用线段挨次连结起来.(0,- 4) ,(3 ,- 5),(6 ,0) ,(0 ,- 1),( -6,0) ,( -3,- 5) ,(0 ,- 4).解:如图.18.如图, A(- 1, 0) ,C(1 , 4) ,点 B 在 x 轴上,且AB= 3.(1)求点 B的坐标;(2)求三角形 ABC的面积;(3) 在 y 轴上能否存在点P,使以 A, B, P 三点为极点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明原因.解: (1) 当点 B 在点 A 的右侧时,点 B 的坐标为 (2 , 0) ;当点 B 在点 A 的左侧时,点 B 的坐标为 ( - 4, 0) .因此点 B 的坐标为 (2,0) 或( -4, 0) .1(2)三角形 ABC的面积为×3×4= 6. 2(3)设点 P到 x 轴的距离为 h,则1202×3h= 10,解得 h=3 .20①当点 P 在 y 轴正半轴时,点 P 的坐标为 (0, 3);②当点 P 在 y 轴负半轴时,点20P 的坐标为 (0 ,- ) .3综上所述,点 P 的坐标为 (0 ,20) 或(0 ,-20) .3 319.如图是某动物园平面表示图的一部分 ( 图中小正方形的边长代表 100 米 ) ,请问:(1) 在大门东南方向有哪些景点?(2) 从大门向东走 300 米,再向北走 200 米,抵达哪个景点?(3) 以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向成立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解: (1) 猴山,大象馆.(2) 蛇山.(3)如图,蛇山的坐标为 (300,200),水族馆的坐标为 (500,0),大象馆的坐标为 (300,-300) . 20. 如图,点 A , B 的坐标分别为 (1 , 0) , (0 , 2) ,若将线段 AB 平移到 A 1B 1,点 A 1, B 1的坐 标分别为 (2 , a) , (b , 3) ,试求 a 2- 2b 的值.解:∵ A(1, 0) , A 1(2 ,a) , B(0 , 2) , B 1(b , 3) ,∴平移方法为向右平移1 个单位长度,向上平移 1 个单位长度.∴ a = 0+ 1= 1, b = 0+ 1= 1.2 2∴a- 2b = 1 -2×1= 1-2=- 1.21.如图,三角形ABC的三个极点的坐标分别是A(4, 0) , B( -2, 0) , C(2,4) ,求三角形ABC的面积.人教版七年级下册数学第七章平面直角坐标系单元达标练习题一、选择题 (每题只有一个正确答案)1.假如7 年2 班记作,那么表示()A.7年 4 班B.4年7班C.4年8班D.8年4 班2.在以下所给出的坐标中,在第二象限的是()A. (2, 3)3.在平面直角坐标系中,点B(. 2, -3)M (-1,3),先向右平移C(. -2, -3)2 个单位,再向下平移D(. -2,3)4 个单位,获得的点的坐标为()A. (-3, -1)4.如图,已知点B(. -3, 7)C(. 1, -1)A,B 的坐标分别为(4, 0)、( 0,3),将线段 AB 平移到D(.1, 7)CD,若点 C 的坐标为( 6, 3),则点 D 的坐标为()A. (2, 6)B(. 2, 5)C(. 6, 2)D(.3, 6)5.以下图为某战斗潜藏仇敌防守工亭坐标地图的碎片,一号暗堡的坐标为(4, 2),四号暗堡的坐标为(-2, 4),由原有情报得悉:敌军指挥部的坐标为(0, 0),你以为敌军指挥部的地点大体()A. A处B. B处C. C处D. D处6.在平面直角坐标系xOy 中,线段 AB 的两个端点坐标分别为A(﹣ 1,﹣ 1),B( 1,2),平移线段 AB,获得线段A′B,′已知 A′的坐标为( 3,﹣ 1),则点 B′的坐标为()A. (4, 2)B(. 5, 2)C(. 6, 2)D(.5, 3)7.察看以下数对:( 1,1) , ( 1,2) , ( 2,1) , ( 1,3) , ( 2,2) , (3,1) , ( 1,4) , ( 2,3) ,(3,2) , ( 4,1) , ( 1,5) , ( 2,4) ...那么第 32 个数对是()A. (4, 4)B(. 4, 5)C(. 4, 6)D(.5, 4)8.若点 P( x,y)的坐标知足xy= 0( x≠y),则点 P 必在()A. 原点上B. x 轴上C. y 轴上D. x 轴上或 y 轴上(除原点)9.若点 P 是第二象限内的点,且点P到x轴的距离是 4 ,到 y 轴的距离是3,则点 P 的坐标是()A. (- 4,3)B.( 4,- 3)C.(- 3,4)D. (3,- 4)10.P 点横坐标是 -3,且到 x 轴的距离为5,则 P 点的坐标是 ( )A.( -3,5)或( -3,-5)B.( 5,-3)或( -5,-3)C.( -3,5)D. ( -3,-5)11.若点 P( a﹣ 2, a)在第二象限,则 a 的取值范围是()A. 0< a< 2B. ﹣ 2< a< 0C. a> 2D. a< 012.在如图的方格纸上,若用(-1, 1)表示 A 点,(0, 3)表示 B 点,那么 C 点的地点可表示为()A. (1, 2)B(. 2, 3)C(. 3, 2)D(.2, 1)二、填空题13.点 P(m-1 ,m+3)在平面直角坐系的y 上,P 点坐 ________.14.假如点 P 在第二象限内,点 P 到的距离是4,到的距离是 3,那么点 P 的坐________.15.如,把“ QQ”笑放在直角坐系中,已知左眼 A 的坐是,嘴唇C点的坐、,此“QQ”笑右眼 B 的坐 ________.16.如,在平面直角坐系中,从点P1( 1, 0),P2( 1, 1), P3(1 , 1), P4( 1,1), P5( 2, 1), P6( 2, 2),⋯挨次展下去,P2018的坐 ________.17.三角形 ABC 的三个点A( 1,2),B(- 1,- 2),C(- 2,3),将其平移到点A′(- 1,-2),使 A 与 A′重合, B、 C 两点的坐分 ________, ________.18.如 ,在直角坐系中,右的蝴蝶是由左的蝴蝶去此后获得的 ,左案中左右翅尖的坐分是 (- 4,2)、 (- `2, 2),右案中左翅尖的坐是 (3, 4),右案中右翅尖的坐是 ________.19.以下,五亭的地点是________,虹的地点是________,下棋亭的地点是________,碑亭的地点是 ________.20.以下图,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是________21.已知线段MN平行于x 轴,且MN的长度为 5 ,若M 的坐标为(2, -2),那么点N 的坐标是 ________;22.在平面直角坐标系中,假如一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点 P(,)在第四象限,则m 的值为 ________;三、解答题23.以以下图所示,从2 街 4 巷到 4 街 2 巷,走最短的路线,共有几种走法?24.以以下图所示, A 的地点为( 2,6) ,小明从 A 出发 ,经( 2,5)→( 3,5)→(4,5)→( 4,4)→(5,4)→( 6,4) ,小刚也从 A 出发 ,经( 3,6)→( 4,6)→( 4,7)→( 5,7)→( 6,7) ,则此时两人相距几个格 ?25.王林同学利用暑期观光了幸福村果树栽种基地如图,他出发沿的路线进行了参观,请你按他观光的次序写出他路上经过的地方,并用线段挨次连结他经过的地址.26.如图,已知火车站的坐标为,文化宫的坐标为.(1)请你依据题目条件,画出平面直角坐标系;(2)写出体育场、市场、商场、医院的坐标.27.如图,这是某市部分简图,为了确立各建筑物的地点请达成以下步骤.(1)请你以火车站为原点成立平面直角坐标系;(2)写出市场的坐标是 ________;商场的坐标为 ________;(3)请将体育场为A、旅馆为 C 和火车站为 B 看作三点用线段连起来,得△ABC,而后将此三角形向下平移 4 个单位长度,画出平移后的△A1 B1C1,并求出其面积.参照答案一、选择题DDCA BBBD C A AA二、填空题13. (0,4)14.(﹣ 3, 4)15.16. (-505,-505)17.(- 3,- 6);(- 4,- 1)18. (5,4)19.(0, 0);(- 2, 0);(- 3,- 1);(- 2,- 2)20.( -1, 2)21.(7, -2)或( -3, -2)22.0三、解答题23.解:有 6 种走法分别为:①( 2,4)→( 3,4)→(4,4)→( 4,3)→( 4,2);②( 2,4)→( 3,4)→(3,3)→( 4,3)→( 4,2);③( 2,4)→( 3,4)→(3,3)→( 3,2)→( 4,2);④( 2,4)→( 2,3)→(3,3)→( 4,3)→( 4,2);⑤( 2,4)→( 2,3)→(3,3)→( 3,2)→( 4,2);⑥( 2,4)→( 2,3)→(2,2)→( 3,2)→( 4,2)24.解:以以下图所示,可知小明与小刚相距 3 个格 .25.解:由各点的坐标可知他路上经过的地方:葡萄园杏林桃林梅林山楂林枣林梨园苹果园.以下图:26.(1)解:以下图(2)解:体育场、市场、商场、医院.27.(1)解:以下图:(2)( 4, 3);( 2,﹣ 3)(3)解:以下图:△A1B1 C1的面积 =3×6﹣×2×2﹣×4×3﹣×6×1=7.人教版七年级数学下册第七章平面直角坐标系单元综合测试题含详尽答案一、(本大题共10 小题,每题 3 分,共 30 分 . 在每题所给出的四个选项中,只有一项为哪一项符合题意的 .把所选项前的字母代号填在题后的括号内. 相信你必定会选对!)1.在仪仗行列中,共有八列,每列8 人,若战士甲站在第二列以前方数第 3 个,能够表示为(2, 3),则战士乙站在第七列倒数第 3 个,应表示为()A.(7, 6)B.(6, 7)C.(7,3)D.(3,7)2.若点P 的坐标是(2,1),则点P 在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图 ,以下各点在暗影地区内的是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)4. 点 E( a,b)到x 轴的距离是4,到y 轴距离是3,则有()A. a=3, b=4B. a=±3,b=± 4C. a=4, b=3D. a=± 4,b=± 35.已知线段AB=3,且AB∥x轴,若A(-2,4),则将线段向下平移 4 个单位长度后,点 B 的对应点的坐标为(D)A.(1,0)B.(0,1)C.(-5,1)D.(1,0)或 (-5,0)6.如图 3,将三角形向右平移 2 个单位长度,再向上平移 3 个单位长度,则平移后三个的坐标是()A.( 2, 2)(3, 4)( 1, 7)C.(一 2, 2)(3, 4)( 1,7)B.(一 2, 2)( 4,3)( 1, 7)D.(2,一 2)( 3, 3)( 1,7)7.点A(-4,3)和点B(-8,3),则A,B 相距 ()A.4 个单位长度8.在座标系中,已知B.12 个单位长度C.10 个单位长度A( 2, 0), B( - 3,- 4), C( 0,0),则△D.8 个单位长度ABC的面积为()A.4 B. 6 C.8D.39.如图 1 所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下边哪条线路最短()A.( 1, 3)→ (1, 2)→( 1, 1)→(1, 0)→( 2, 0)→(3, 0)→( 4, 0)B.(1, 3)→( 0, 3)→( 2, 3)→( 0, 0)→( 1, 0)→( 2,0)→(4, 0)C.( 1, 3)→( 1,4)→( 2, 4)→(3, 4)→( 4, 4)→( 4,3)→( 4, 2)→( 4,0)D.以上都不对10.如图将三角形ABC的纵坐标乘以2,原三角形 ABC 坐标分别为A(- 2,0),B( 2,0),C( 0, 2)得新三角形A′ B′以下C′图像中正确的选项是()A B C D二、仔细填一填:(本大题共有 6 小题,每题 4 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)11.已知点 P 在第二象限 ,且横坐标与纵坐标的和为1,试写出一个切合条件的点P..12.某一本书在印刷上有错别字,在第 20页第 4 行从左数第 11 个字上 ,假如用数序表示可记为(20,4,11), 你是电脑打字员 ,你以为 (100,20,4) 的意义是第.13.某雷达探测目标获得的结果以下图,若记图中目标 A 的地点为 (3,30 ),°目标 B 的地点为(2,180 ),°目标 C 的地点为 (4,240 ),°则图中目标 D 的地点可记为.14.,AB=3,AB x,A(1,2),B是.P 15.如图 ,三角形A'B'C'是三角形ABC 经过某种变换后获得的图形,假如三角形ABC中有一点的坐标为(a,2),那么变换后它的对应点Q 的坐标为.16.在平面直角坐系中,点 P(x,y)某种后获得点P'(-y+1,x+2),我把点P'(-y+1,x+2)叫做点 P(x,y)的点 .已知点 P1的点P2,点 P2的点P3,点 P3的点P4 ,依次获得 P1,P2,P3 ,P4, ⋯,P n⋯,若点 P1的坐 (2,0),点 P2 017的坐.三、真答一答:(本大共 5 小,共46 分.只需你真思虑, 仔运算, 必定会解答正确的 !)17.(6 分)如所示,是一个格8 8 的球桌,小明用 A 球撞 B 球,到 C 反,再撞桌 D ,适合的平面直角坐系,并用坐表示各点的地点.18.(10 分)以点 A 心的可表示⊙ A。

人教版数学七年级下册 第7章 平面直角坐标系 单元练习卷 含解析

人教版数学七年级下册 第7章 平面直角坐标系  单元练习卷  含解析

第7章平面直角坐标系一.选择题(共6小题)1.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0 B.b≤0 C.b≥0 D.b>03.已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则()A.a可取任意实数,b=5 B.a=﹣1,b可取任意实数C.a≠﹣1,b=5 D.a=﹣1,b≠54.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知PA⊥PB,则线段PC的最大值为()A.3 B.5 C.8 D.105.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)6.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1012,1011)B.(1009,1008)C.(1010,1009)D.(1011,1010)二.填空题(共6小题)7.点P(﹣3,4)到x轴和y轴的距离分别是.8.已知A(x+2,2y﹣3)在第二象限,则B(1﹣x,5﹣4y)在第象限.9.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,)…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是.10.如图,已知等边△AOC的周长为3,作OD⊥AC于点D,在x轴上取点C1,使CC1=DC,以CC1为边作等边△A1CC1;作CD1⊥A1C1于点D1,在x轴上取点C2,使C1C2=D1C1,以C1C2为边作等边△A2C1C2;作C1D2⊥A2C2于点D2,在x轴上取点C3,使C2C3=D2C2,以C2C3为边作等边△A3C2C3;…,且点A,A1,A2,A3,…都在第一象限,如此下去,则等边△A2019C2018C2019的顶点A2019坐标为.11.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为.12.如图所示是某市区部分平面示意图,根据图中信息回答下列问题:(1)若公园的位置可表示为(2,1),那么市政府可表示为,动物园可表示为,图书馆可表示为.(2)商业大厦的东北方是,客运站位于商业大厦的方向,市政府在的西南方向,在的东南方向.(3)若图中每个小正方形的边长为0.5cm,则火车站到中国银行的图上距离是,实际距离为.(4)找出图中两处距离相同的地点.三.解答题(共10小题)13.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?14.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?15.如图,已知火车站的坐标为(2,2),文化馆的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(﹣2,﹣2),(2,﹣2),请在图中标出A,B,C的位置.16.如图,描出A(﹣3,﹣2)、B(2,﹣2)、C(﹣2,1)、D(3,1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成的图形是什么图形?17.如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).18.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O ﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并写出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.19.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,PQ=3,求Q点的坐标.20.在平面直角坐标系中,(1)已知点P(a﹣1,3a+6)在y轴上,求点P的坐标;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围;(3)在(1)(2)的条件下,如果线段AB的长度是5,求以P、A、B为顶点的三角形的面积S.21.如图,三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG的三个顶点坐标;(2)求三角形EFG的面积.22.在平面直角坐标系xOy中,点A的坐标为(1,0),点B的坐标为(3,2),将点A向左平移两个单位,再向上平移4个单位得到点C.(1)写出点C的坐标;(2)求三角形ABC的面积.参考答案与试题解析一.选择题(共6小题)1.若点P在x轴的下方,y轴的左方,到x轴的距离是3,到y轴的距离是2.则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】根据点P的位置确定P点坐标即可.【解答】解:∵点P在x轴的下方,到x轴的距离是3,∴P点纵坐标为﹣3,∵P在y轴的左方,到y轴的距离是2,∴P点横坐标为﹣2,∴P(﹣2,﹣3),故选:D.2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0 B.b≤0 C.b≥0 D.b>0【分析】第三象限内横纵坐标均为负数,从而可得答案.【解答】解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则()A.a可取任意实数,b=5 B.a=﹣1,b可取任意实数C.a≠﹣1,b=5 D.a=﹣1,b≠5【分析】根据平行于x轴的直线纵坐标相等解答可得.【解答】解:∵AB∥x轴,∴b=5,a≠﹣1,故选:C.4.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知PA⊥PB,则线段PC的最大值为()A.3 B.5 C.8 D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP ≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵PA⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.5.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故选:D.6.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1012,1011)B.(1009,1008)C.(1010,1009)D.(1011,1010)【分析】根据点的坐标、坐标的平移寻找规律即可求解.【解答】解:因为A1(﹣1,1),A2(2,1)A3(﹣2,2)A4(3,2)A5(﹣3,3)A6(4,3)A7(﹣4,4)A8(5,4)…A2n﹣1(﹣n,n)A2n(n+1,n)(n为正整数)所以2n=2020,n=1010所以A2020(1011,1010)故选:D.二.填空题(共6小题)7.点P(﹣3,4)到x轴和y轴的距离分别是4;3 .【分析】首先画出坐标系,确定P点位置,根据坐标系可得答案.【解答】解:点P(﹣3,4)到x轴的距离为4,到y轴的距离是3,故答案为:4;3.8.已知A(x+2,2y﹣3)在第二象限,则B(1﹣x,5﹣4y)在第四象限.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数求出x、y的取值范围,然后确定出点B的横坐标与纵坐标的正负情况,【解答】解:∵A(x+2,2y﹣3)在第二象限,∴x+2<0,2y﹣3>0,∴x<﹣2,y>,∴1﹣x>3,5﹣4y<﹣1,∴点B在第四象限.故答案为:四.9.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,)…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为,0,﹣2,﹣2,0,,0,﹣2,﹣2,0,…,每5次一轮这一规律,进而求出即可.【解答】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别为,0,﹣2,﹣2,0,第6到10次运动纵坐标分别为为,0,﹣2,﹣2,0,…第5n+1到5n+5次运动纵坐标分别为,0,﹣2,﹣2,0,∵2019÷5=403…4,∴经过2019次运动横坐标为=4×403+4=1616,经过2019次运动纵坐标为﹣2,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).故答案为:(1616,﹣2)10.如图,已知等边△AOC的周长为3,作OD⊥AC于点D,在x轴上取点C1,使CC1=DC,以CC1为边作等边△A1CC1;作CD1⊥A1C1于点D1,在x轴上取点C2,使C1C2=D1C1,以C1C2为边作等边△A2C1C2;作C1D2⊥A2C2于点D2,在x轴上取点C3,使C2C3=D2C2,以C2C3为边作等边△A3C2C3;…,且点A,A1,A2,A3,…都在第一象限,如此下去,则等边△A2019C2018C2019的顶点A2019坐标为(,).【分析】根据等边三角形的性质分别求出C1C2,C2C3,C3C4,…,∁n C n+1的边长即可解决问题.【解答】解:解:∵等边△A1C1C2的周长为3,作OD⊥AC于点D,∴OC=1,C1C2=CD=OC=,∴OC,CC1,C1C2,C2C3,…,C2018C2019的长分别为1,,,,…,,OC2019=OC+CC1+C1C2+C2C3,…+C2018C2019=1++++…+=,等边△A2019C2018C2019顶点A2019的横坐标=﹣=,等边△A2019C2018C2019顶点A2019的纵坐标=×=.故答案为:(,).11.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为().【分析】(1)先证明△AOB∽△BCD,所以=,因为DC=1,BC=2,所有=;(2)利用三角形相似与三角形全等依次求出F1,F2,F3,F4的坐标,观察求出F2019的坐标.【解答】解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2)解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)…F2019(,),即(,405),故答案为即(,405).12.如图所示是某市区部分平面示意图,根据图中信息回答下列问题:(1)若公园的位置可表示为(2,1),那么市政府可表示为(0,0),动物园可表示为(9,3),图书馆可表示为(2,2).(2)商业大厦的东北方是动物园,客运站位于商业大厦的正北方向,市政府在图书馆的西南方向,在中国银行的东南方向.(3)若图中每个小正方形的边长为0.5cm,则火车站到中国银行的图上距离是cm,实际距离为5km.(4)找出图中两处距离相同的地点图书馆与火车站、火车站与客运站.【分析】由公园的位置可表示为(2,1),那么市政府可表示为原点,即(0,0).从而可确定其它地点的位置坐标.根据上北下南左西右东可知各个地点的方位.【解答】解:由公园的位置可表示为(2,1),那么市政府可表示为原点,建立直角坐标系.通过观察,易得相关结论填空.(1)(0,0),(9,3),(2,2);(2)动物园,正北,图书馆,中国银行;(3),5km;(4)图书馆与火车站、火车站与客运站.三.解答题(共10小题)13.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?【分析】(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.【解答】解:(1)∵|2m+3|=12m+3=1或2m+3=﹣1∴m=﹣1或m=﹣2;(2)∵|m﹣1|=2m﹣1=2或m﹣1=﹣2∴m=3或m=﹣1.14.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?【分析】(1)根据题意可知2m+3的绝对值等于1,从而可以得到m的值,进而得到件M 的坐标;(2)根据题意可知点M的纵坐标等于点N的纵坐标,从而可以得到m的值,进而得到件M的坐标.【解答】解:(1)∵点M(m﹣1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=﹣1或m=﹣2,当m=﹣1时,点M的坐标为(﹣2,1),当m=﹣2时,点M的坐标为(﹣3,﹣1);(2)∵点M(m﹣1,2m+3),点N(5,﹣1)且MN∥x轴,∴2m+3=﹣1,解得,m=﹣2,故点M的坐标为(﹣3,﹣1).15.如图,已知火车站的坐标为(2,2),文化馆的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(﹣2,﹣2),(2,﹣2),请在图中标出A,B,C的位置.【分析】(1)火车站向左2个单位,向下2个单位确定出坐标原点,然后建立平面直角坐标系即可;(2)根据平面直角坐标系写出各位置的坐标即可;(3)根据三点坐标,标出即可.【解答】解:(1)如图:(2)体育场(﹣2,5)、市场(6,5)、超市(4,﹣1);(3)如上图所示.16.如图,描出A(﹣3,﹣2)、B(2,﹣2)、C(﹣2,1)、D(3,1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成的图形是什么图形?【分析】根据四点的坐标可以得到AB∥CD,且AB=CD,就可以确定四边形的形状.【解答】解:如图,AB∥CD,且AB=CD=5,因而四边形ABDC是平行四边形.17.如图,在平面直角坐标系中,O为坐标原点,点A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)(1)在坐标系中描出各点,画出△AEC,△BCD.(2)求出△AEC的面积(简要写明简答过程).【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据三角形面积公式计算可得.【解答】解:(1)如图所示:(2)△AEC取EC为底,则EC为6,EC边上高AC=4所以S△AEC=×6×4=12.18.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O ﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周).(1)写出B点的坐标(4,6 );(2)当点P移动了4秒时,描出此时P点的位置,并写出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.【分析】(1)根据矩形的性质以及点的坐标的定义写出即可;(2)先求得点P运动的距离,从而可得到点P的坐标;(3)根据矩形的性质以及点到x轴的距离等于纵坐标的长度求出OP,再根据时间=路程÷速度列式计算即可得解.【解答】解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);故答案为:4,6.(2)如图所示,∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)点P到x轴距离为5个单位长度时,点P的纵坐标为5,若点P在OC上,则OP=5,t=5÷2=2.5秒,若点P在AB上,则OP=OC+BC+BP=6+4+(6﹣5)=11,t=11÷2=5.5秒,综上所述,点P移动的时间为2.5秒或5.5秒.19.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为(0,5);(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,PQ=3,求Q点的坐标.【分析】(1)利用y轴上点的坐标特征得到2m﹣6=0,然后解方程求出m即可得到P点坐标;(2)利用点P的纵坐标比横坐标大6得到2m﹣6+6=m+2,然后解方程求出m得到P点坐标,从而可判断点P所在的象限;(3)利用与x轴平行的直线上的点的坐标特征得到点P和点Q的纵坐标都为3,然后利用PQ=3得到Q点的横坐标,从而得到Q点坐标.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)根据题意得2m﹣6+6=m+2,解得m=2,∴P点的坐标为(﹣2,4),∴点P在第二象限;(3)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).20.在平面直角坐标系中,(1)已知点P(a﹣1,3a+6)在y轴上,求点P的坐标;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围;(3)在(1)(2)的条件下,如果线段AB的长度是5,求以P、A、B为顶点的三角形的面积S.【分析】(1)根据y轴上点的横坐标为0列方程求出a的值,再求解即可;(2)根据第一象限内点的横坐标是正数,平行于x轴的直线上的点的纵坐标相等解答;(3)先确定出点P到AB的距离,再根据三角形的面积公式列式计算即可得解.【解答】解:(1)∵点P(a﹣1,3a+6)在y轴上,∴a﹣1=0,解得a=1,所以,3a+6=3×1+6=9,故P(0,9);(2)∵AB∥x轴,∴m=4,∵点B在第一象限,∴n>0,∴m=4,n>0;(3)∵AB=5,A、B的纵坐标都为4,∴点P到AB的距离为9﹣4=5,∴以P、A、B为顶点的三角形的面积S=×5×5=12.5.21.如图,三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG的三个顶点坐标;(2)求三角形EFG的面积.【分析】(1)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(2)利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)如图:E(4,1),F(0,﹣2),G(5,﹣3).(2)S△EFG=4×5﹣3×4×﹣1×5×﹣4×1×=20﹣6﹣2.5﹣2=9.5.22.在平面直角坐标系xOy中,点A的坐标为(1,0),点B的坐标为(3,2),将点A向左平移两个单位,再向上平移4个单位得到点C.(1)写出点C的坐标;(2)求三角形ABC的面积.【分析】(1)利用点平移的坐标规律写出C点坐标;(2)根据三角形面积公式,用正方形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【解答】解:(1)C(﹣1,4);(2)如图,过点B作BD⊥x轴于D,过点C分别作x轴,y轴的垂线,与x轴交于点E,与BD交于点F.∵点B,C的坐标分别为(3,2),(﹣1,4),∴点D,E,F的坐标分别为(3,0),(﹣1,0),(3,4),∴AD=AE=BD=BF=2,CE=CF=DE=DF=4,∴正方形CFDE的面积为16,∵△ACE的面积为4,△ABD的面积为2,△BCF的面积为4.∴△ABC的面积为16﹣4﹣2﹣4=6.。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。

最新人教版七年级下册数学第七章平面直角坐标系单元综合练习题(含答案)(1)

最新人教版七年级下册数学第七章平面直角坐标系单元综合练习题(含答案)(1)

人教版七年级下册第七章平面直角坐标系单元测试卷一、选择题:1.若点 P(x , y) 在第三象限,且点 P 到 x 轴的距离为 3,到 y 轴的距离为 2,则点 P 的坐标是( )A.(-2 ,-3)B.(-2, 3)C.(2, -3)D.(2, 3)2.若点 A(2 , m)在 x 轴上,则点 B(m﹣ 1, m+1)在 ()A. 第一象限B.第二象限C.第三象限D. 第四象限3.点 A(5,– 7) 对于 x轴对称的点 A 的坐标为 ().12A.( – 5,–7)B.( –7 , –5)C.(5, 7)D.(7,– 5)4.一个长方形在平面直角坐标系中,三个极点的坐标分别是(-1 ,-1) 、 (-1,2) 、(3 ,-1) ,则第四个极点的坐标是()A.(2 , 2)B.(3, 2)C.(3 , 3)D.(2 , 3)5.若点 A(m,n) 在第二象限 , 那么点 B(-m,│ n│ ) 在 ()A. 第一象限B. 第二象限 ;C. 第三象限D. 第四象限6.若点 P 对于 x 轴的对称点为 P (2a+b , 3) ,对于 y 轴的对称点为P (9 , b+2) ,则点 P的坐12标为()A.(9 , 3)B.(﹣9, 3)C.(9,﹣ 3)D.( ﹣ 9,﹣ 3)7.已知点 P(x , y) ,且,则点 P 在()A. 第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,若点P(m- 3, m+ 1) 在第二象限,则 m的取值范围为 ()A. - 1< m<3B.m> 3C.m<- 1D.m >- 19.坐标平面上有一点 A,且 A 点到 x 轴的距离为3, A 点到 y 轴的距离恰为到 x 轴距离的 3倍. 若 A 点在第二象限,则A点坐标为 ()A.(-9 , 3)B.(-3, 1)C.(-3, 9)D.(-1, 3)10. 在平面直角坐标系中,线段BC∥轴,则 ()A. 点 B 与 C的横坐标相等B. 点 B 与 C的纵坐标相等C. 点 B 与 C的横坐标与纵坐标分别相等D. 点 B 与 C的横坐标、纵坐标都不相等11. 如图,在 5× 4 的方格纸中,每个小正方形边长为1,点 O,A,B 在方格纸的交点 ( 格点 )上,在第四象限内的格点上找点C,使△ ABC的面积为3,则这样的点C共有()A.2 个B.3 个C.4个D.5个12.如图,一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点 (0,0) 运动到 (0,1) ,而后接着按图中箭头所示方向运动,即(0,0)→ (0,1)→ (1,1)→ (1,0),?且每秒挪动一个单位,那么第80 秒时质点所在地点的坐标是()A.(0 , 9)B.(9 , 0)C.(0,8)D.(8 , 0)二、填空题:13.若点 A在第二象限,且到 x 轴的距离为 3,到 y 轴的距离为 2,则点 A 的坐标为 __________.14.在平面直角坐标系中,点C(3 , 5) ,先向右平移了 5 个单位,再向下平移了 3 个单位到达 D 点,则 D 点的坐标是.15.若 A(a,b) 在第二、四象限的角均分线上,a 与 b 的关系是 _________.16.已知点 A(0, 1) , B(0, 2) ,点 C 在 x 轴上,且,则点 C的坐标.17.在平面直角坐标系中,对于平面内随意一点 (x ,y) ,若规定以下两种变换:① f(x,y)=(x+2,y).② g(x,y)=(- x, - y),比如依据以上变换有:f(1,1)=(3,1); g(f(1,1)) =g(3,1)=(-3, -1).假如有数a、 b, 使得f(g(a,b)) = (b,a),则g(f(a+b,a- b))=.18. 将自然数按以下规律摆列:表中数 2 在第二行,第一列,与有序数对(2,1) 对应;数 5 与 (1,3)对应;数14 与(3,4)对应;依据这一规律,数2014 对应的有序数对为.三、解答题:19. 如图,在单位正方形网格中,成立了平面直角坐标系xOy,试解答以下问题:(1)写出△ ABC三个极点的坐标;(2)画出△ ABC向右平移 6 个单位,再向下平移 2 个单位后的图形△A1B1C1;(3)求△ ABC的面积 .20.如图,方格纸中的每个小方格都是边长为1 个单位的正方形,在成立平面直角坐标系后,点 A, B, C均在格点上 .(1)请值接写出点 A, B,C 的坐标 .(2)若平移线段 AB,使 B 挪动到 C的地点,请在图中画出A 挪动后的地点 D,挨次连结 B,C,D,A,并求出四边形ABCD的面积 .21.如图,已知 A(-2 , 3) 、 B(4, 3) 、 C(-1 , -3)(1) 求点 C到 x 轴的距离;(2)求△ ABC的面积;(3)点 P 在 y 轴上,当△ ABP的面积为 6 时,请直接写出点 P 的坐标 .22. 如图,直角坐标系中,△ABC的顶点都在网格点上,此中, C 点坐标为 (1 ,2).(1)写出点 A、 B 的坐标: A(________ , ________) 、B(________ , ________)(2)将△ ABC先向左平移 2 个单位长度,再向上平移 1 个单位长度,获得△ A′ B′ C′,则 A′B′ C′的三个极点坐标分别是A′ (_______ , _______) 、 B′ (_______ , _______) 、 C′(________ , ________).(3) △ ABC的面积为.人教版七年级数学下册单元综合卷:第七章平面直角坐标系一、仔细填一填:(本大题共有8 小题,每题 3 分,共 24 分.请把结果直接填在题中的横线上.只需你理解观点,认真运算,踊跃思虑,相信你必定会填对的!)1.如图是小刚画的一张脸,他对妹妹说,假如我用 (0,2)表示左眼,用 (2,2) 表示右眼,那么嘴的地点能够表示成 __________.2.如图,△ ABC 向右平移 4 个单位后获得△A′B′C′,则 A′点的坐标是 __________ .3.如图,中国象棋中的“象”,在图中的坐标为( 1,0),?若“象”再走一步,试写出下一步它可能走到的地点的坐标 ________.4.点 P(- 3,- 5)到 x 距离 ______,到 y 距离 _______.5.如,正方形ABCD的4,点 A 的坐 (- 1,1),平行于X,点C的坐___.6.已知点( a+1,a-1)在 x 上, a 的是。

人教版七年级数学下册《第七章平面直角坐标系》单元练习题含答案

人教版七年级数学下册《第七章平面直角坐标系》单元练习题含答案

第七章平面直角坐标系一、选择题1.若线段CD 是由线段AB 平移获取的,点A(-1,3)的对应点为C(2,2),则点 B(-3,-1)的对应点 D 的坐标是 ()A . (0,- 2)B . (1,- 2)C. (- 2,0)D . (4,6)2.如图,点A、点B的坐标分别为(2,0),(0,1) ,若将线段AB平移至A1B1,若A1(1,b ),B1(a,- 2),则 3a2()- b 的值为A .-3B . 3C. 1D.-13.以下各点中位于第四象限的点是()A . (3,4)B . (- 3,4)C. (3,- 4)D . (- 3,- 4)4.若是P(m+3,2m+4) 在y轴上,那么点P 的坐标是()A . (- 2,0)B . (0,- 2)C. (1,0)5.如图,一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4)表示的地址是()A. AB. BC.CD .D6.在平面直角坐标系中,线段BC∥ x 轴,则()A .点B与点C的横坐标相等B .点B与点C的纵坐标相等C.点B与点C的横坐标与纵坐标分别相等D.点 B 与点 C 的横坐标、纵坐标都不相等7.当m为任意实数时,点A(m 2+1,-2)在第几象限()A .第一象限B .第二象限C.第三象限D .第四象限8.如图,一个矩形的两边长分别是 4 和 2,建立直角坐标系,则以下不在矩形上的点为()A . (4,0)B . (2,4)C. (0,2)D . (4,2)9.如图,在国际象棋的棋盘上,左右两边标有数字 1 至 8,上下两边标有字母 a 至 h,若是黑色的国王棋子的地址用 (d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,请你分别写出棋盘中其他三个棋子的地址,分别是________________ .10.已知 AB∥x 轴, A 点的坐标为(-3,2),并且 AB =4,则 B 点的坐标为______________.11.同学们玩过五子棋吗?它的比赛规则是只要同色 5 子先成一条直线就算胜.如图,是两人玩的一盘棋,若白①的地址是 (0,1) ,黑②的地址是 (1,2),现轮到黑棋走,你认为黑棋放在________地址就成功了.12. 若图中的有序数对(4,1) 对应字母 D ,有一个英文单词的字母序次对应图中的有序数对为(1,1) 、 (2,3) 、(2,3) 、 (5,2)、(5,1) ;则这个英文单词是________.(大小写均可 )13.点 M (-1,5)向下平移 4 个单位得N点坐标是 ________.14.点 Q(5,-3)到两坐标轴的距离之和为________.15.点 P(,-)到x轴距离为 ________,到y轴距离为 ________.16.如图,小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1) ,则小明用手遮住的那个点的坐标为________ .17.如图,在平面直角系统中,描出下各点: A (-2,1), B(2,3), C(-4,-3), D(1,2), E(0,-3), F(-3,0),G(0,0), H(0,4),J(2,2),K(-3,-3).18.已知:点P(0, a)在 y 轴负半轴上,问点M (- a2-1,- a+1)在第几象限?19.正方形ABCD的边长为4,请你建立合适的平面直角坐标系,写出各个极点的坐标.20.已知 |x- 2|+ (y+ 1)2= 0,求P(x,y)的坐标,并说出它在第几象限内.21.以下列图,是某城市植物园周围街巷的表示图, A 点表示经 1 路与纬 2 路的十字路口,B点表示经 3 路与纬5路的十字路口,若是用(1,2) → (2,2) → (3,2) → (3,3)→ (3,4)→ (3,5)表示由 A 到 B 的一条路径,那么你能用同样的方式写出由 A 到 B 的尽可能近的其他几条路径吗?答案剖析1.【答案】 A(-1,3)(2,2),可知横坐标由-1变为2,向右搬动了3个单位,3变为2【剖析】点 A的对应点为 C,表示向下搬动了1个单位,于是(3,-1)的对应点 D 的横坐标为-3 30D的纵坐标为-112,故B-+=,点-=-D (0,-2).2.【答案】 B【剖析】由题意可得线段AB 向左平移1个单位,向下平移了 3个单位,因为 A、 B 两点的坐标分别为(2,0)、 (0,1),所以点 A1、 B1的坐标分别为(1,-3),(-1,-2),所以3a-2b =3.3.【答案】 C【剖析】第四象限的点的坐标的符号特点为(+,- ),观察各选项只有 C 吻合条件.4.【答案】 B【剖析】因为(3,2m +4)303,24=-2 P m +在 y 轴上,所以 m +=,解得 m =-m +,所以点 P 的坐标是(0,-2).5.【答案】 D【剖析】一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4) 表示的地址是 D.6.【答案】 B【剖析】依照线段BC∥ x 轴,则点 B 与 C 的纵坐标相等.7.【答案】 D【剖析】因为m 2≥0,所以 m 2+1≥1,所以点 A(m 2+1,-2)在第四象限.8.【答案】 B【剖析】因为矩形的两边长分别是 4 和 2,所以矩形上点的横坐标在0~4 之间,纵坐标在0~ 2 之间,所以 A 、 C、D 正确, B 错误.9. 【答案】 (d, 5), (f,5), (g, 2)【剖析】因为黑色的国王棋子的地址用( d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,所以棋盘中其他三个棋子的地址,分别是(d, 5), (f,5), (g,2) .【剖析】因为AB∥ x 轴,所以点 B 纵坐标与点 A 纵坐标相同,为2,又因为 AB =4,可能右移,横坐标为-3+4=- 1;可能左移横坐标为-3- 4=- 7,所以 B 点坐标为(1,2)或(-7,2),11. 【答案】 (1,6)或 (6,1)【剖析】建立平面直角坐标系如图,黑棋的坐标为(1,6) 或 (6,1).12. 【答案】 APPLE【剖析】有序数对(1,1)、 (2,3) 、 (2,3)、 (5,2) 、 (5,1) 分别对应的字母为: A , P, P, L , E;所以这个英文单词是APPLE.13.【答案】 (- 1,1)【剖析】点M (-1,5)向下平移4个单位得 N 点坐标是(-1,5-4),即为(-1,1).14.【答案】 8【剖析】因为点Q(5,-3),所以点 Q 到 y 轴的距离为|5|=5;到 x 轴的距离为|-3|=3,所以距离之和为3+5= 8.15.【答案】【剖析】点P(,-)到x轴距离为,到y轴距离为.16.【答案】 (2,- 2)【剖析】小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1),则小明用手遮住的那个点的坐标为(2 ,- 2).17.【答案】解:以下列图【剖析】注意描点法正确的找到点的地址.18.【答案】解:因为点 P(0, a)在 y 轴负半轴上,所以 a<0,所以- a2-1<0,- a+1>0,所以点 M 在第二象限.【剖析】先判断出 a 是负数,再求出点 M 的横坐标与纵坐标的正负情况,尔后依照各象限内点的坐标特点解答.19. 【答案】解: (这是开放题,答案不唯一)以AB所在的直线为x 轴, AD 所在的直线为y 轴,并以点 A 为坐标原点,建立平面直角坐标系,以下列图,则点 A、 B、C、 D 的坐标分别是(0,0)、(4,0)、(4,4)、(0,4).【剖析】可以以正方形中互相垂直的边所在的直线为坐标轴,建立平面直角坐标系,再依照点的地址和线段长表示坐标.20.【答案】解:由题意得, x-2=0, y +1=0,解得 x=2,y =-1,所以,点 P(2,-1)在第四象限.【剖析】依照非负数的性质列式求出x、y,再依照各象限内点的坐标特点解答.21.【答案】解:还有两条路线,一是:(1,2)→ (1,3)→ (1,4)→ (1,5)→; (2,5)→ (3,5)二是:(1,2)→ (2,2)→ (2,3)→ (2,4),5)→. (2,5)→ (3【剖析】依照已知的路线可以知道由 A 到 B 的一条路径只能向东,向北,所以依照这个方向即可确定其他的路径.。

人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题含答案

人教版七年级数学下册 第七章 平面直角坐标系  单元综合测试题含答案

人教版七年级数学下册 第七章 平面直角坐标系 单元综合测试题含答案一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A 可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A .(7,2)B .(2,6)C .(7,6)D .(4,5)2. 若4,5==b a ,且点M (a ,b )在第三象限,则点M 的坐标是( ) A.(5,4) B.(-5,4) C.(-5,-4) D.(5,-4)3.在平面直角坐标系中,点A (2,5)与点B 关于y 轴对称,则点B 的坐标是( ). A .(-5,-2)B .(-2,-5)C .(-2,5)D .(2,-5)4.平面直角坐标系中,点P 先向左平移1个单位,再向上平移2个单位,所得的点为Q (-2,1),则P 的坐标为( )A .(-3,-1)B .(-3,3)C .(-1,-1)D .(-1,3) 5.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度 6.已知点P 坐标为(2-a ,3a+6),且P 点到两坐标的距离相等,则点P 的坐标是( ) A .(3,3) B .(3,-3) C .(6,-6) D .(3,3)或(6,-6) 7.如图,已知正方形ABCD ,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 018次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2 016,2)B .(-2 016,-2)C .(-2 017,-2)D .(-2 017,2)8.已知线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)9.已知点A (1,0)B (0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( ) A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)10.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒钟,它从原点跳动到(0,1),然后按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24 s 时跳蚤所在位置的坐标是( )A .(0,3)B .(4,0)C .(0,4 )D .(4,4)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.在平面直角坐标系内,点P (-1,-2)在第 象限,点P 与横轴相距 个单位长度,与纵轴相距 个单位长度。

人教版数学七年级下册 第7章《平面直角坐标系》章节综合测试(含答案)

 人教版数学七年级下册  第7章《平面直角坐标系》章节综合测试(含答案)

人教版数学七年级下册第7章《平面直角坐标系》章节综合测试(含答案)一.选择题(共8小题,满分24分)1.在平面直角坐标系中,点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)3.在平面直角坐标系中,将点(﹣2,﹣3)向左平移2个单位长度得到的点的坐标是()A.(﹣2,﹣5)B.(﹣4,﹣3)C.(0,﹣3)D.(﹣2,1)4.点P(﹣3,2)到x轴的距离为()A.﹣3B.﹣2C.3D.25.在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3B.﹣3C.2D.﹣26.平行于x轴的直线上的任意两点的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等7.如图,A、B的坐标分别为(2,0)、(0,1).若将线段AB平移至A1B1,A1、B1的坐标分別(3,b)、(a,2),则a+b的值为()A.2B.3C.4D.58.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)二.填空题(共6小题,满分24分)9.点(2,﹣1)所在的象限是第象限.10.已知点P的坐标为(4,5),则点P到x轴的距离是.11.已知点P(m+2,2m﹣4)在x轴上,则m的值是.12.若线段AB=4,AB∥x轴,点A的坐标是(2,3),则点B的坐标为.13.已知A(0,﹣9),B(0,2),则AB=.14.在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标(﹣2,0)、(0,3)、(2,2),则点B′的坐标是.三.解答题(共7小题,满分52分)15.(7分)△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.16.(7分)在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.17.(7分)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(1,﹣3);C(3,﹣5);D(﹣3,﹣5);E(3,5);F(5,7).①B点到x轴的距离是,到y轴的距离是.②将点C向x轴的负方向平移个单位,它就与点D重合.③连接CE,则直线CE与y轴是关系.18.(7分)在平面直角坐标系中画出以A(4,2),B(2,0),C(﹣3,0)为顶点的三角形.19.(8分)中国棋盘中蕴含着平面直角坐标系,如图所示是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形对角线走.例如:图中“马”所在位置可以直接走到点A、B处.(1)如果“相”位于点(4,2),“帅”位于点(0,0),则“马”所在点的坐标为,点D的坐标为.(2)若“马”的位置在C点,为了到达“D”点,请按“马”走的规则,写出一种你认为合理的行走路线,(在答题纸图中标出行走路线即可).20.(8分)已知点M(3a﹣2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.21.(8分)国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.参考答案一.选择题(共8小题)1.【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.2.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.3.【解答】解:将点P(﹣2,﹣3)向左平移2个单位长度得到的点坐标为(﹣2﹣2,﹣3),即(﹣4,﹣3),故选:B.4.【解答】解:点P(﹣3,2)到x轴的距离是该点纵坐标的绝对值,即2,故选:D.5.【解答】解:在平面直角坐标系中,点P(3,﹣2)到y轴的距离为3.故选:A.6.【解答】解:平行于x轴的直线上的任意两点的坐标之间的关系是纵坐标相等.故选:B.7.【解答】解:观察图形可知将线段向右平移一个单位,再向上平移一个单位得到线段A1B1,∴a=1,b=1,∴a+b=2,故选:A.8.【解答】解:∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=﹣2,∴3a=﹣6,∴点P的坐标为(﹣6,0).故选:C.二.填空题(共6小题)9.【解答】解:点(2,﹣1)所在的象限是第四象限.10.【解答】解:∵点P的坐标为(4,5),∴点P到x轴的距离是:5.故答案为:5.11.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得m=2.故答案为:2.12.【解答】解:∵线段AB=4,AB∥x轴,若点A的坐标为(2,3),∴点B在点A的左侧或者在点A的右侧.当点B在点A的左侧时,点B的横坐标为:2﹣4=﹣2,纵坐标为:3,故点B的坐标为(﹣2,3).当点B在点A的右侧时,点B的横坐标为:2+4=6,纵坐标为:3,故点B的坐标为(6,3).故答案为:(﹣2,3),(6,3).13.【解答】解:∵A(0,﹣9),B(0,2),∴AB=2﹣(﹣9)=11,故答案为:1114.【解答】解:∵点A(﹣2,0)向右平移4个单位,向上平移2个单位得到A′(2,2),∴点B(0,3)向右平移4个单位,向上平移2个单位得到B′(4,5),故答案为(4,5).三.解答题(共7小题)15.【解答】解:如图所示:A(2,2),B(﹣1,﹣1),C(﹣2,﹣2).16.【解答】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.17.【解答】解:①B点到x轴的距离是3,到y轴的距离是1,故答案为:3、1;②将点C向x轴的负方向平移6个单位,它就与点D重合.③连接CE,则直线CE与y轴是平行的关系,故答案为:平行.18.【解答】解:建立直角坐标系,描点如下:19.【解答】解:(1)由“相”位于点(4,2),“帅”位于点(0,0),∴“马”的坐标为(﹣3,0),D的坐标(3,1),故答案为(﹣3,0),(3,1);(2)如图所示:20.【解答】解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)21.【解答】解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).。

人教新版数学七年级下学期 第7章 平面直角坐标系 单元训练 含解析

人教新版数学七年级下学期 第7章 平面直角坐标系  单元训练  含解析

第7章平面直角坐标系一.选择题(共8小题)1.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)2.在参观北京世园会的过程中,小欣发现可以利用平面直角坐标系表示景点的地理位置,在正方形网格中,她以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示丝路驿站的点坐标为(0,0).如果表示丝路花雨的点坐标为(7,﹣1),那么表示清杨洲的点坐标大约为(2,4);如果表示丝路花雨的点坐标为(14,﹣2),那么这时表示清杨洲的点坐标大约为()A.(4,8)B.(5,9)C.(9,3)D.(1,2)3.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)4.如图,线段AB两端点的坐标分别为A(﹣1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7 B.6 C.5 D.45.如图,在平面直角坐标系中,从点p1(﹣1,0),p2(﹣1,﹣1),p3(1,﹣1),p4(1,1),p5(﹣2,1),p6(﹣2,﹣2),…依次扩展下去,则p2019的坐标为()A.(505,﹣505)B.(﹣505,505)C.(﹣505,504)D.(﹣506,505)6.如图,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2019次相遇地点的坐标是()A.(1,﹣1)B.(2,0)C.(﹣1,1)D.(﹣1,﹣1)7.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(﹣8,0)B.(8,﹣8)C.(﹣8,8)D.(0,16)8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)二.填空题(共4小题)9.直角坐标系中,点P(x,y)在第二象限,且P到x轴,y轴距离分别为3,7,则P点坐标为.10.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.11.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为.12.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为.三.解答题(共8小题)13.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a 为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级美联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,求点A1的坐标.(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上.求点M′的坐标.14.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.15.如图,已知火车站的坐标为(2,2),文化馆的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场,市场,超市的坐标;(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(﹣2,﹣2),(2,﹣2),请在图中标出A,B,C的位置.16.已知点P(﹣3a﹣4,2+a),解答下列各题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.17.已知A(1,0)、B(4,1)、C(2,4),△ABC经过平移得到△A′B′C′,若A′的坐标为(﹣5,﹣2).(1)求B′、C′的坐标;(2)求△A′B′C′的面积.18.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A′对应,得到△A′B′C′;(2)图中可用字母表示,与线段AA′平行且相等的线有:;(3)求△A′B′C′的面积.19.如图,在平面直角坐标系中,点A(0,5),B(﹣2,0),C(3,3),线段AB经过平移得到线段CD,其中点B的对应点为点C,点D在第一象限,直线AC交x轴于点F.(1)点D坐标为;(2)线段CD由线段AB经过怎样平移得到?(3)求△BCF的面积.20.△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:A′;B′;C′(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△ABC的面积.参考答案与试题解析一.选择题(共8小题)1.【解答】解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.2.【解答】解:如图由图知,每个小方格表示单位长度2,则表示清杨洲的点坐标大约为(4,8),故选:A.3.【解答】解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为﹣3;所以点P(﹣2,﹣3)向右平移3个单位长度后的坐标为(1,﹣3).故选:B.4.【解答】解:点A的横坐标为﹣1,点C的横坐标为1,则线段AB先向右平移2个单位,∵点B的横坐标为1,∴点D的横坐标为3,即b=3,同理,a=3,∴a+b=3+3=6,故选:B.5.【解答】解:根据给出的点发现:下标是4的倍数的点在第一象限,下标是4的倍数余1的点在第二象限,下标是4的倍数余2的点在第三象限,下标是4的倍数余3的点在第四象限,∴2019在第四象限,故选:A.6.【解答】解:由已知,矩形周长为12,∵甲、乙速度分别为1单位/秒,2单位/秒则两个物体每次相遇时间间隔为秒则两个物体相遇点依次为(﹣1,1)、(﹣1,﹣1)、(2,0)∵2019=3×673∴第2019次两个物体相遇位置为(2,0)故选:B.7.【解答】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,﹣4),A5(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8);故选:C.8.【解答】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n结束的有n2个点,第2025个点是(45,0),∴2019个点的坐标是(45,6);二.填空题(共4小题)9.【解答】解:∵点P(x,y)在第二象限,∴x<0,y>0,∵P到x轴,y轴距离分别为3,7,∴x=﹣7,y=3,∴P(﹣7,3),故答案为(﹣7,3).10.【解答】解:∵“7排4号”记作(7,4),∴3排5号记作(3,5).故答案为:(3,5).11.【解答】解:∵点A的坐标为(3,),D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OB=4,∴OE=OB+BE=7,故答案为:7.12.【解答】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=1+1=2,点B1的坐标为(1,2),故答案为:(1,2),三.解答题(共8小题)13.【解答】解(1)因为点A(﹣2,6)的“级关联点”是点A1,所以A1为A1(5,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).14.【解答】解:(1)观察图形,可知:A(1,0)、B(1,2)、C(﹣2,2)、D(﹣2,﹣2)、E(3,﹣2);(2)∵E(3,﹣2),DE=5,∴EF=6,∴F(3,4).15.【解答】解:(1)如图:(2)体育场(﹣2,5)、市场(6,5)、超市(4,﹣1);(3)如上图所示.16.【解答】解:(1)∵点P在x轴上,∴2+a=0,∴a=﹣2,∴﹣3a﹣4=2,∴P(2,0)(2)∵Q(5,8),且PQ∥y轴,∴﹣3a﹣4=5,a=﹣3,∴2+a=﹣1,P(5,﹣1)17.【解答】解:∵A(1,0)、A′(﹣5,﹣2).∴平移规律为向左6个单位,向下2个单位,∵B(4,1)、C(2,4),∴B′(﹣2,﹣1),C'(﹣4,2);(2)△A′B′C′的面积=△ABC的面积=.18.【解答】解:(1)如图所示:△A′B′C′即为所求;(2图中可用字母表示,与线段AA′平行且相等的线段有:BB′,CC′;故答案为:BB′,CC′;(3)△A′B′C′的面积=3×3﹣×2×3﹣×1×3﹣×1×2,=9﹣3﹣1.5﹣1,=9﹣5.5,=3.5.19.【解答】解:(1)∵点B向右平移2个单位,再向上平移5个单位得到点A,∴点C(3,3)向右平移2个单位,再向上平移5个单位得到点D(5,8).故答案为(5,8).(2)向右平移5个单位,再向上平移3个单位(3)设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣x+5,∴点F的坐标为(,0),∴OF=,∵OB=2,∴BF=,∴S△BCF=×BF×∁y=××3=.20.【解答】解:(1)如图所示:A′(﹣3,﹣4),B′(0,﹣1)、C′(2,﹣3);(2)A(1,0)变换到点A′的坐标是(﹣3,﹣4),横坐标减4,纵坐标减4,∴点P的对应点P′的坐标是(m﹣4,n﹣4);(3)△ABC的面积为:3×5﹣×1×5﹣×2×2﹣×3×3=6.故答案为:(﹣3,﹣4),(0,﹣1)、(2,﹣3);(m﹣4,n﹣4).。

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元综合练习卷(含答案)

【3套精选】人教版七年级下册数学第七章平面直角坐标系单元综合练习卷(含答案)

人教版七年级数学下册第七章平面直角坐标系培优稳固检测一.选择题(共10 小题)1.平面直角坐标系内有一点P(-2019,-2019),则点 P 在()A.第一象限B.第二象限C.第三象限D.第四象限2.若点 A(a,b)在第四象限,则点 B(0,a)在()A. x 轴的正平轴上B. x 轴的负半轴上C. y 轴的正半轴上D. y 轴的负半轴上3.已知点 P 的坐标为 (1,-2),则点 P 到 x轴的距离是()A.1B. 2C. -1D.-24.如图,在一次“寻宝”游戏中,寻宝人找到了如下图的两个标记点A(3,1),B(2,2),则“宝藏”点 C 的地点是()A. (1,0)B. (1,2)C. (2,1)D. (1,1)5.已知点 P 位于第二象限,则点P 的坐标可能是()A. (-3,0)B. (0,3)C. (-3,2)D. (-3,-3)6.在直角坐标系中,点 M(-3,-4) 先右移 3 个单位,再下移 2 个单位,则点 M 的坐标变成()A. (-6,-6)B. (0,-6)C. (0,-2,)D.(-6,-2)7.垂钓岛向来就是中国不行切割的国土,中国对垂钓岛及其邻近海疆拥有无可争论的主权,能够正确表示垂钓岛地点的是()A.北纬 25° 40′~26°B.东经 123° ~124° 34′C.福建的正东方向D123 ~124 34 ,25 40~268.如图,已知在△AOB 中 A(0,4),B(-2,0),点 M 从点(4,1)出发向左平移,当点M 平移到AB 边上时,平移距离为()A.4.5B. 5C.5.5D. 5.759.已知点M(a,1),N(3,1), 且 MN=2 ,则 a 的值为()A.1B. 5C. 1 或 5D.不可以确立10.在平面直角坐标系中,给出三点A,B,C,记此中随意两点的横坐标的差的最大值为a,任意两点的纵坐标差的最大值为h,定义“矩面积”S=ah,比如:给出A(1,2),B(-3,1),C(2,-2),则a=5, h=4, S=ah=20.若 D(1,2),E(-2,1). F(0,t)三点的“矩面积”为18,则 t=()A.-3 或 7B.-4 或 6C.-4 或 7D.-3 或 6二.填空题(共 6 小题)11.若电影票上座位是“ 4排5 号”记作 (4,5),则 (8,13)对应的座位是12.若 P(a-2,a+1)在 x 轴上,则 a 的值是.13.若 4 排 3 列用有序数对(4,3)表示,那么表示 2 排 5列的有序数对为.14.在平面直角坐标系中,将点A(-1,3)向左平移 a 个单位后,获得点A′ (-3,3),则 a 的值是15.在平面直角坐标系中,点M 在 x 轴的上方, y 轴的左面,且点 M 到 x 轴的距离为 4,到y 轴的距离为 7,则点 M 的坐标是.16.如图,在平面直角坐标系中,每个最小方格的边长均为 1 个单位长度, P1, P2,P3,均在格点上,其次序按图中“→”方向摆列,如:P1(0, 0), P2 (0, 1), P3(1, 1), P4(1,- 1),P5(- 1,- 1), P6(- 1,2),,依据这个规律,点P2019的坐标为三.解答题(共 5 小题)17.已知平面直角坐标系中有一点M(2m-3,m+1) .(1)点 M 到 y 轴的距离为 l 时, M 的坐标?(2)点 N(5,-1)且 MN ∥x 轴时, M 的坐标?18.六边形六个极点的坐标为A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所给坐标系中画出这个六边形;(2)写出各边拥有的平行或垂直关系.(不说原因.)19.如图,三架飞机 P、 Q、 R 保持编队飞翔, 30 秒后飞机 P 飞到P1的地点,飞机Q、R飞到了新地点 Q1、 R1.在直角坐标系中标出 Q1、 R1,并写出坐标.20.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如下图.但是她忘掉了在图中标出原点和x 轴、y 轴.知道马场的坐标为(-3,-3)、南门的坐标为 (0,0), 你能帮她成立平面直角坐标系并求出其余各景点的坐标?21.如图是由边长为 1 个单位长度的小正方形构成的网格,线段AB 的端点在格点上.(1)请成立适合的平面直角坐标系xOy,使得 A 点的坐标为(-3,-1),在此坐标系下,写出 B 点的坐标;(2)在( 1)的坐标系下将线段BA 向右平移 3 个单位,再向上平移 2 个单位得线段CD,使得 C点与点 B 对应,点 D 与点 A 对应.写出点C, D 的坐标,并直接判断线段AB 与CD 之间关系?答案:1-5CCBDC6-10BDCCC11.8排13号12.-113.(2,5)14.215.( -7, 4)16.(505, 505)17.解:( 1)∵点 M ( 2m-3, m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M ( 2m-3, m+1 ),点 N ( 5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点 M 的坐标为( -7, -1).18.解:( 1)如下图:(2)由图可得, AB ∥DE, CD ⊥ DE , BC∥EF, CD⊥ AB .19.解:由题意可知:P 的坐标( -1, 1), Q( -3, 1), R(-1, -1)经过 30 秒后 P1的坐标为( 4, 3),∴Q1的坐标( 2,3), R1的坐标为( 4, 1)20.人教版七年级数学下册第7 章平面直角坐标系能力提高测试卷一.选择题(共10 小题)1.在平面直角坐标系中,点P(-1,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P(x, y)在第二象限,且|x-1|=2, |y+3|=5,则点P 的坐标为().A.(-1,2)B.(3,- 8)C.(2,-1)D.(- 8,3)3.已知点P 的坐标为(1,-2),则点P 到x 轴的距离是()A.1B. 2C. -1D.-24.已知点 A(- 1, 0), B(1, 1),C(0,- 3), D(-1, 2),E(0,1), F(6, 0),此中在座标轴上的点有()A.1 个5.已知点B.2 个A(2x-4,x+2)在座标轴上,则C.3 个x 的值等于(D.4 个)A.2 或 -2B. -2C. 2D.非上述答案6.已知点 A 的坐标为(a+1,3-a),以下说法正确的选项是()A.若点 A 在 y 轴上,则a=3B.若点 A 在 X 轴上,则a=3C.若点 A 到 x 轴的距离是3,则 a=± 6D.若点 A 在第四象限,则 a 的值能够为-27.在平面直角坐标系中,将点P 向左平移 2 个单位长度后获得点(-1,5),则点P 的坐标是()A. (-1,3)B. (-3,5)C.(-1,7)D. (1,5)8A(-1,2)B(3,m-1),AB x mA.1B. -4C. -1D.39.如下图是一个围棋棋盘(局部),把这个围棋棋盘搁置在一个平面直角坐标系中,白棋①的坐标是 (-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是()A. (0,-2)B. (1,-2)C. (2,-1)D. (1,2)10.如图,一只跳蚤在象限及x 轴、 y 轴上跳动,第一秒钟,它从原点跳动到(0, 1),而后按图中箭头所示方向跳动[即 (0, 0) →(0, 1) →(1,1) →(1, 0) → ],且每秒跳动一个单位,那么第 24 s 时跳蚤所在地点的坐标是( )A. (0, 3)二.填空题(共11.如图,若点B. (4, 0)6 小题)E 的坐标为 (-2,0),点F 的坐标为C. (0,4)(1,-2),则点G 的坐标为D. (4, 4).12.在平面直角坐标系中,点M 在x 轴的上方, y 轴的左面,且点 M 到 x 轴的距离为4,到y 轴的距离为7,则点 M 的坐标是.13.已知点A(3+2a,3a-5),点 A 到两坐标轴的距离相等,点 A 的坐标为.14.若 4排 3 列用有序数对 (4,3)表示,那么表示2排 5列的有序数对为.15.在平面直角坐标系中,将点A(-1,3)向左平移 a 个单位后,获得点A′ (-3,3),则 a 的值是..16.定义:在平面直角坐标系xOy 中,把从点 P 出发沿纵或横方向抵达点Q(至多拐一次弯)的路径长称为 P,Q 的“实质距离”.如图,若P(-1,1),Q(2,3),则 P,Q 的“实质距离”为5,即 PS+SQ=5或 PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜爱的交通工具.设A,B 两个小区的坐标分别为A(3,1),B(5,-3),若点 M(6,m) 表示单车停放点,且知足 M 到 A,B 的“实际距离”相等,则m=三.解答题(共7 小题)17.已知点P 的坐标为 (2-a,a),且点P 到两坐标轴的距离相等,求 a 的值.18.已知:如图,在直角坐标系中, A1(1,0),A2(1,1), A3(1,1), A4( 1,1)(1)持续填写A5; A6; A7:(2)依照上述规律,写出点A2017, A2018的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3) .(1)当点 M 到 x 轴的距离为 1 时,求点 M 的坐标;(2)当点 M 到 y 轴的距离为 2 时,求点 M 的坐标.20.已知点A(m+2,3) 和点 B(m-1,2m-4), 且 AB∥ x 轴.(1)求 m 的值;(2)求 AB 的长.21.关于 a、 b 定义两种新运算“* ”和“⊕”: a*b=a+kb,a ⊕ b=ka+b(此中 k 为常数,且k≠0).若平面直角坐标系xOy 中的点 P(a,b),有点 P 的坐标为 (a*b,a ⊕ b)与之相对应,则称点P 为点 P 的“ k 衍生点”比如: P(1,4)的“ 2 衍生点”为P′(l+2 ×4,2× 1+4),即 P′ (9,6) .求点 P(-1,6)的“ 2 衍生点” P′的坐标.22.如图是学校的平面表示图,已知旗杆的地点是(-2,3),实验室的地点是(1,4).(1)依据所给条件成立适合的平面直角坐标系,并用坐标表示食堂、图书室的地点;(2)已知办公楼的地点是 (-2,1),教课楼的地点是 (2,2), 在图中标出办公楼和教课楼的地点;(3)假如一个单位长度表示 30 米,恳求出宿舍楼到教课楼的实质距离.23.已知点 P(2a-12,1-a)位于第三象限,点 Q(x,y)位于第二象限且是由点P 向上平移必定单位长度获得的.(1)若点P 的纵坐标为-3,试求出 a 的值;(2)在(1)题的条件下,试求出切合条件的一个点Q 的坐标;(3)试猜想当a=时,点P 的横、纵坐标都是整数(写一个答案即可),答案:1-5BABDA6-10 BDDAC11.(1,1)12.( -7, 4)13.( 19, 19)或(, - )14.(2,5)15.216.017.解:由 |2-a|=|a| 得 2-a=a,或 a-2=a,解得: a=1.18.解:( 1) A5( 2,-1), A6( 2, 2),A7( -2, 2), A8( -2, -2),A9( 3, -2 ),A10( 3, 3), A11(-3, 3);(2)经过察看可得数字是 4 的倍数的点在第三象限, 4 的倍数余 1 的点在第四象限, 4 的倍数余 2 的点在第一象限, 4 的倍数余 3 的点在第二象限,∵2017 ÷ 4=504 1,2018÷ 4=506 2 ,∴点 A2017在第四象限,且转动了504 圈此后,在第505 圈上,∴A2017的坐标为( 505, -504 ),A2018的坐标( 505,505).19.解:( 1)∵ |2m+3|=1 ,∴2m+3=1或 2m+3=-1,解得: m=-1 或 m=-2,∴点 M的坐标是( -2 , 1)或( -3 , -1 );(2)∵ |m-1|=2 ,∴m-1=2 或 m-1=-2 ,解得: m=3或 m=-1,∴点 M的坐标是:( 2, 9)或( -2 , 1).20.解:( 1)∵ A( m+2, 3)和点 B( m-1, 2m-4),且 AB∥ x 轴,∴2m-4=3,∴m= .(2)由( 1)得: m= ,∴m+2= , m-1= , 2m-4=3,∴A(, 3), B(, 3),∵- =3,∴AB 的长为 3.21.由题意可得,点 P( -1, 6)的“ 2 衍生点” P′的坐标为: [-1+2人教版七年级下册数学单元同步练习卷:第七章平面直角坐标系一、填空题1.如图,在平面直角坐标系中: A(1 , 1) ,B( - 1, 1) , C( - 1,- 2) , D(1,- 2) ,现把一条长为 2 018 个单位长度且没有弹性的细线 ( 线的粗细忽视不计 ) 的一端固定在点 A 处,并按A→B→C→D→A→ 的规律紧绕在四边形ABCD的边上,则细线另一端所在地点的点的坐标是(1,- 1).2.平面直角坐标系内有一点P(x , y) ,若点P 在横轴上,则y= 0;若点P 在纵轴上,则x =0;若点 P 为坐标原点,则x= 0 且 y= 0.3.如图是某学校的表示图,若综合楼在点( -2,- 1) ,食堂在点 (1 ,2) ,则教课楼在点( -4,1) .4.如图,小刚在小明的北偏东 60°方向的 500 m处,则小明在小刚的南偏西 60°方向的 500m处. ( 请用方向和距离描绘小明相关于小刚的地点)5. 将点 A(1 ,1) 先向左平移2 个单位长度,再向下平移3 个单位长度获得点B,则点B的坐标是 ( -1,- 2) .6.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第 1 次从原点运动到点(1 ,1) ,第 2 次接着运动到点(2 ,0) ,第 3 次接着运动到点(3 ,2) ,,按这样的运动规律,经过 2 019次运动后,动点P 的坐标为(2__019 , 2) .二、选择题7.用 7 和 8 构成一个有序数对,能够写成 ( D )A.(7 ,8)B. (8,7)C.7,8 或 8,7D. (7 ,8) 或 (8 ,7)8.如图,一个方队正沿着箭头所指的方向行进, A 的地点为三列四行,表示为(3 ,4),那么C的地点是(D)A.(4 ,5)B. (5,4)C.(4 ,2)D.(4 ,3) 9.平面直角坐标系中,点(1 ,- 2) 在 ( D )A.第一象限B.第二象限C.第三象限D.第四象限10.如图是某游玩城的平面表示图,用(8 ,2) 表示进口处的地点,用(6 ,- 1) 表示球幕电影的地点,那么坐标原点表示的地点是( D )A.太空秋千B.梦幻艺馆C.海底世界D.激光战车11.在平面直角坐标系中,将点 P(3,- 2) 向下平移4 个单位长度,获得点 P 的坐标为 ( B ) A.( -1,- 2)B. (3,- 6)C.(7 ,- 2)D.(3 ,- 2)12.点 N(- 1, 3) 能够看作由点M(- 1,- 1)( A )A.向上平移 4 个单位长度所获得的B.向左平移 4 个单位长度所获得的C.向下平移 4 个单位长度所获得的D.向右平移 4 个单位长度所获得的13. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,0) , (2 ,1) ,(1 ,1) ,(1 ,2) ,(2 ,2) ,,依据这个规律,第 2 018其次序为 (1 ,0) ,(2 ,个点的坐标为( C )A. (45 , 9)B. (45 , 11)C. (45 , 7)D. (46 , 0)14.王宁在班里的座位号为(2 ,3) ,那么该同学所坐的地点是( D )A.第 2 排第3 列B.第 3 排第2 列C.第 5 排第5 列D.不好确立15.在平面直角坐标系中,点(0 ,- 10) 在 ( D )A. x轴的正半轴上B. x 轴的负半轴上C. y轴的正半轴上D. y轴的负半轴上三、解答题16.五子连珠棋和象棋、围棋同样,深受广大棋友的喜爱,其规则是:在15×15的正方形棋盘中,由黑方先行,轮番弈子,在任一方向上连成五子者为胜.如图是两个五子棋喜好者甲和乙的棋战图 ( 甲执黑子先行,乙执白子后走 ) ,察看棋盘思虑:若 A 点的地点记作 (8 ,4) ,甲一定在哪个地点上落子,才不会让乙在短时间内获胜?为何?解:甲一定在 (1 ,7) 或 (5 ,3) 处落子.由于若甲不第一截断以上两处之一,而让乙在(1 ,7)或(5 , 3) 处落子,则无论截断哪处,乙总有一处落子可连成五子,乙必胜无疑.17.在如下图的平面直角坐标系中,描出以下各点,并将各点用线段挨次连结起来.(0,- 4) ,(3 ,- 5),(6 ,0) ,(0 ,- 1),( -6,0) ,( -3,- 5) ,(0 ,- 4).解:如图.18.如图, A(- 1, 0) ,C(1 , 4) ,点 B 在 x 轴上,且AB= 3.(1)求点 B的坐标;(2)求三角形 ABC的面积;(3) 在 y 轴上能否存在点P,使以 A, B, P 三点为极点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明原因.解: (1) 当点 B 在点 A 的右侧时,点 B 的坐标为 (2 , 0) ;当点 B 在点 A 的左侧时,点 B 的坐标为 ( - 4, 0) .因此点 B 的坐标为 (2,0) 或( -4, 0) .1(2)三角形 ABC的面积为×3×4= 6. 2(3)设点 P到 x 轴的距离为 h,则1202×3h= 10,解得 h=3 .20①当点 P 在 y 轴正半轴时,点 P 的坐标为 (0, 3);②当点 P 在 y 轴负半轴时,点20P 的坐标为 (0 ,- ) .3综上所述,点 P 的坐标为 (0 ,20) 或(0 ,-20) .3 319.如图是某动物园平面表示图的一部分 ( 图中小正方形的边长代表 100 米 ) ,请问:(1) 在大门东南方向有哪些景点?(2) 从大门向东走 300 米,再向北走 200 米,抵达哪个景点?(3) 以大门为坐标原点,向东方向为x 轴正方向,向北方向为y 轴正方向成立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.解: (1) 猴山,大象馆.(2) 蛇山.(3)如图,蛇山的坐标为 (300,200),水族馆的坐标为 (500,0),大象馆的坐标为 (300,-300) . 20. 如图,点 A , B 的坐标分别为 (1 , 0) , (0 , 2) ,若将线段 AB 平移到 A 1B 1,点 A 1, B 1的坐 标分别为 (2 , a) , (b , 3) ,试求 a 2- 2b 的值.解:∵ A(1, 0) , A 1(2 ,a) , B(0 , 2) , B 1(b , 3) ,∴平移方法为向右平移1 个单位长度,向上平移 1 个单位长度.∴ a = 0+ 1= 1, b = 0+ 1= 1.2 2∴a- 2b = 1 -2×1= 1-2=- 1.21.如图,三角形ABC的三个极点的坐标分别是A(4, 0) , B( -2, 0) , C(2,4) ,求三角形ABC的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册第七章平面直角坐标系培优训练卷一.选择题(共10小题,每小题3分,共30分)1.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°2.在平面直角坐标系中,点A(20,-20)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度4.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)8.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1 B.-4 C.2 D.39.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2)黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,-1) D.(2,1)10.在平面直角坐标系中,电子跳蚤从原点出发,按向右、向上、向左再向上的方向依A的坐标是()次跳动,每次跳动1个单位长度,其行走路线如图,则点2018A.(0,1008) B.(1,1008) C.(1,1009) D.(0,1010)二.填空题(共7小题,每小题4分,共28分)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,点(2,3)到x轴的距离是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.16.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为4时,m的值是.当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示)三.解答题(共6小题,共42分)17.(6分)(1)点P的坐标为(x,y)且不在原点上,若x=y,则点P在坐标平面内的位置可能在第象限,若x+y=0,则点P在坐标平面内的位置可能在第象限;(2)已知点Q的坐标为(2-2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.18.(8分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.19.(8分)如图,已知△ABC经过平移后得到111,A B C点A与1,A点B与1,B点C与1C分别是对应点,观察各对应点坐标之间的关系,解答下列问题:(1)分别写出点A与1,A点B与1,B点C与1C的坐标;(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求p点坐标.20.(10分)在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.求:(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-5)点,且与x轴平行的直线上.21.(10分)已知:如图,在直角坐标系中1234,(1,0),(1,1),(1,1),(1,1)A A A A --- (1)继续填写()()()567;;A A A :(2)依据上述规律,写出点20172018,A A 的坐标.答案:1-5 DDCAA6-10 DDADC11.-112.313. (2,5)14.四15.216.3, 6n-317.(1)一或三,二或四(2))∵点Q到两坐标轴的距离相等,∴|2-2a|=|8+a|,∴2-2a=8+a或2-2a=-8-a,解得a=-2或a=10,当a=-2时,2-2a=2-2×(-2)=6,8+a=8-2=6,当a=10时,2-2a=2-20=-18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(-18,18).18.解:(1)如图所示:食堂(-5,5)、图书馆的位置(2,5);(2)如图所示:办公楼和教学楼的位置即为所求;(3)宿舍楼到教学楼的实际距离为:8×30=240(m).19.解:(1)由图知A(1,2)、A1(-2,-1);B(2,1)、B1(-1,-2);C(3,3)、C1(0,0);(2)由(1)知,平移的方向和距离为:向左平移3个单位、向下平移3个单位,由x−3=3 解得x=6;由y−3=5解得y=8 ;则点P的坐标为(6,8).20.解:(1)由题意得:2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)由题意得:m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,- 人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1) 5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

20.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上。

且A(1,-4),B(5,-3),C(4,-1).(1)画出△ABC;(2)将△ABC先向左平移3个单位,再向上平移2个单位,画出平移后的三角形;(3)求出△ABC的面积.21.在平面直角坐标系中,已知点A(a,0)B(b,0),且(a+4)²+=0.(1)求a,b的值.(2)在y轴上是否存在点C,使三角形ABC的面积是6?若存在,求出点C的坐标;若不存在,请说明理由.22.在直角坐标系中描出点 A (2,-3)和点 B (-1,-3).试探究下列问题:(1)直线 AB 与坐标轴有怎样的位置关系?(2)若点 P 是直线 AB 上一点,点 P 的纵坐标是多少?你发现了什么?23.已知平面直角坐标中有一点M(2-a,3a+6),点M到两坐标轴的距离相等,求M的坐标.24.如图,在平面直角坐标系中,点,的坐标分别为,,将线段先向上平移个单位长度,再向右平移个单位长度,得到线段,连接,,构成平行四边形.________;(1)请写出点的坐标为________,点的坐标为________,四边形(2)点在轴上,且,求出点的坐标;四边形(3)如图,点是线段上任意一个点(不与、重合),连接、,试探索、、之间的关系,并证明你的结论.参考答案1.B2.C3.C4.C5.D6.C7.C8.D9.B10.C11.B12.B13.(21,-3)14.四15.(3,﹣5)或(﹣3,﹣5)16. 6 517.(45,6)18.(1)猴园在水族馆东偏北方向,鹿场在水族馆北偏西方向;(2)孔雀园和鹿场;(3)猛兽区用(9,7)表示,(7,5)表示鸟类区19.①(2,4)→(4,4)→(4,2);②(2,4)→(3,4)→(3,2)→(4,2);③(2,4)→(4,3)→(3,3)→(4,3)→(4,2);④(2,4)→(2,3)→(4,3)→(4,2);⑤(2,4)→(2,2)→(4,2)20解:(1)如图,三角形ABC人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。

相关文档
最新文档