2018年北师大版数学七年级下册《实数、平面直角坐标系》测试卷(含答案)
七年级下册数学《平面直角坐标系》测试题及答案
七年级下册数学《平面直角坐标系》测试题及答案平面直角坐标系测试题本测试题共分为选择题和填空题两部分,满分100分,考试时间为90分钟。
一、选择题(共30分)1.如图所示,小旗图案在方格纸上绘制而成。
若以点A (0,0)和点B(0,4)作为参照点,则点C的位置可以表示为()。
A.(0,3)。
B.(2,3)。
C.(3,2)。
D.(3,0)2.点B(3,)位于()。
A。
x轴的正半轴上。
B。
x轴的负半轴上C。
y轴的正半轴上。
D。
y轴的负半轴上3.平行于x轴的直线上的任意两点的坐标之间的关系是()。
A。
横坐标相等。
B。
纵坐标相等C。
横坐标的绝对值相等。
D。
纵坐标的绝对值相等4.下列说法中,正确的是()。
A。
平面直角坐标系是由两条互相垂直的直线组成的B。
平面直角坐标系是由两条相交的数轴组成的C。
平面直角坐标系中的点的坐标是唯一确定的D。
在平面上的一点的坐标在不同的直角坐标系中的坐标相同5.已知点P1(4,3)和点P2(4,3),则点P1和点P2()。
A。
关于原点对称。
B。
关于y轴对称C。
关于x轴对称。
D。
不存在对称关系6.如果点P(5,y)在第四象限,则y的取值范围是()。
A。
y>0.B。
y<0.C。
y≥0.D。
y≤07.在平面直角坐标系中,一个正方形的三个顶点的坐标分别为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()。
A.(2,2);B.(3,2);C.(2,-3)D.(2,3)8.在平面直角坐标系中,将点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标为()。
A.(-3,2);B.(-7,-6);C.(-7,2)D.(-3,-6)9.已知点P(0,a)在y轴的负半轴上,则点Q(a21,a1)在()。
A。
第一象限。
B。
第二象限。
C。
第三象限。
D。
第四象限答案:BCA二、填空题(共21分)11.如果用(7,8)表示七年级八班,则八年级七班可以表示为()。
12.已知坐标平面内一点A(1,-2),若A、B两点关于x轴对称,则点B的坐标为()。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)
北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
(完整版)七年级下册数学实数测试卷(二)
一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .M ND .M N ≥2.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或13.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009) 4.如图,数轴上点P 表示的数可能是( )A .2B .38C .10D .55.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022B .202120222022C .120212021D .1202220216.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .87.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-9.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上C .在线段OC 上D .在线段OB 上10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.新定义一种运算,其法则为32a ca d bcb d =÷,则223x x xx--=__________ 12.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.13.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 14.我们可以用符号f (a )表示代数式.当a 是正整数时,我们规定如果a 为偶数,f (a )=0.5a ;如果a 为奇数,f (a )=5a +1.例如:f (20)=10,f (5)=26.设a 1=6,a 2=f (a 1),a 3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.15.对于实数x ,y ,定义一种运算“×”如下,x ×y =ax -by 2,已知2×3=10,4×(-3)=6,那么(-3272=________;16.将1236按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,425排从左向右第4个数),那么(2021,1011)所表示的数是 ___.17.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.18.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.19.已知M 是满足不等式27a <N 52M N +的平方根为__________.20.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________.三、解答题21.若一个四位数t 的前两位数字相同且各位数字均不为0,则称这个数为“前介数”;若把这个数的个位数字放到前三位数字组成的数的前面组成一个新的四位数,则称这个新的四位数为“中介数”;记一个“前介数”t 与它的“中介数”的差为P (t ).例如,5536前两位数字相同,所以5536为“前介数”;则6553就为它的“中介数”,P (5536)=5536﹣6553=-1017.(1)P (2215)= ,P (6655)= .(2)求证:任意一个“前介数”t ,P (t )一定能被9整除.(3)若一个千位数字为2的“前介数”t 能被6整除,它的“中介数”能被2整除,请求出满足条件的P (t )的最大值.22.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”. (1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q np n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 23.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (I )解方程:log x 4=2; (Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 24.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.25.[阅读材料] ∵23<,∴112<<,∴1的整数部分为1,∴1的小2 [解决问题](1__________;(2)已知a b (1b a -的平方根为______.26.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)27.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”. (1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p≤q ,n≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q np n++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 28.观察下列各式,并用所得出的规律解决问题:(11.414≈14.14141.4,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873 1.225≈≈_____≈______.(31=10=100=,…… 小数点的变化规律是_______________________.(4 2.154≈0.2154≈-,则y =______. 29.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.30.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=, ∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•;∴20192019()M N pq p x pq q x -=+•-+• =2019()x p q •-=201910x x •>; ∴M N >; 故选:B. 【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.C解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦,当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.3.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.4.D解析:D 【分析】先对四个选项中的无理数进行估算,再根据P 点的位置即可得出结果.解:∵12,3<4,23, ∴根据点P 在数轴上的位置可知:点P故选D . 【点睛】本题主要考查了无理数的估算,能够正确估算出无理数的范围是解决本题的关键.5.A解析:A 【分析】根据数字间的规律探索列式计算 【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯∴S 2021=T 1+T 2+T 3+⋯+T 2021=371320212022+1+++...261220212022⨯+⨯ =11111++1++1++...1+261220212022+⨯=11112021++++ (261220212022)=11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫- ⎪⎝⎭=202120212022故选:A . 【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.6.A解析:A根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.故选:A【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.7.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:2x-=,3522∴29x=,∵2±=,)(39x=±,∴3故选:C.【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.8.D解析:D【分析】=-,求解即可.设点C的坐标是x1【详解】解:∵点A是B,C的中点.∴设点C的坐标是x,=-,1则2x=-∴点C表示的数是2-.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.9.D解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.10.B解析:B【分析】借助O、A、B、C的位置以及绝对值的定义解答即可.【详解】解:-5<c<0,b=5,|d﹣5|=|d﹣c|∴BD=CD,∴D点介于O、B之间.故答案为B.【点睛】本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键.二、填空题11.【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解解析:3x【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.【详解】222322333()()x x x x x x x x x--=-⋅÷-⋅= 故答案为:3x【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.12.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!13.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.7【分析】本题可以根据代数式f (a )的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f (a )的运算求出a 1,a 2,a 3,a 4,a 5,a 6 ,a 7的值,根据规律找出部分a n 的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a 1=6,a 2=f (a 1)=3,a 3=f (a 2)=16,a 4=f (a 3)=8,a 5=f (a 4)=4,a 6=f (a 5)=2,a 7=f (a 6)=1,a 8=f (a 7)=6,…,∴数列a 1,a 2,a 3,a 4…(n 为正整数)每7个数一循环,∴a 1-a 2+a 3-a 4+…+a 13-a 14=0,∵2015=2016-1=144×14-1,∴2a 1-a 2+a 3-a 4+a 5-a 6+…+a 2013-a 2014+a 2015=a 1+a 2016+(a 1-a 2+a 3-a 4+a 5-a 6+…+a 2015-a 2016)=a 1+a 7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a 1-a 2+a 3-a 4+…+a 13-a 14=0来解决问题.15.130【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得:解得 ,所以,==130故答案为:130【点睛】本解析:130【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩解得2149a b =-⎧⎪⎨=-⎪⎩, 所以,()()22222a b ⎡⎤-⨯=--⎣⎦ =()22142(2)()9⎡⎤-⨯---⨯⎣⎦ =130故答案为:130 【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b 的值,再次应用规则,求出式子的值.16.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)2020 1234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.17.﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.18.5【分析】由绝对值和算术平方根的非负性,求出a、b所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.19.±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.三、解答题21.(1)-3006,990;(2)见解析;(3)P (t )的最大值是P (2262)=36.【分析】(1)根据“前介数”t 与它的“中介数”的差为P (t )的定义求解即可;(2)设“前介数”为t aabc =且a 、b 、c 均不为0的整数,即1≤a 、b 、c 9≤,根据定义得到P (t )=()9110111aabc caab a b c -=+-,则P (t )一定能被9整除;(3)设“前介数”为22220010t ab a b ==++,根据题意得到4a b ++能被3整除,且b 只能取2,4,6,8中的其中一个数;t 对应的“中介数”是221000220b a b a =++,得到a 只能取2,4,6,8中的其中一个数,计算P (t )19809999a b =+-,推出要求P (t )的最大值,即a 要尽量的大,b 要尽量的小,再分类讨论即可求解.【详解】(1)解:2215是“前介数”,其对应的“中介数”是5221,∴P (2215)=2215-5221=-3006;6655是“前介数”,其对应的“中介数”是5665,∴P (6655)=6655-5665=990;故答案为:-3006,990;(2)证明:设“前介数”为t aabc =且a 、b 、c 均为不为0的整数,即1≤a 、b 、c 9≤, ∴100010010110010t a a b c a b c =+++=++,又t 对应的“中介数”是1000100101000110caab c a a b c a b =+++=++,∴P (t )=()1100101000110aabc caab a b c c a b -=++-++1100101000110a b c c a b =++---9909999a b c =+-()9110111a b c =+-,∵a 、b 、c 均不为0的整数,∴110111a b c +-为整数,∴P (t )一定能被9整除;(3)证明:设“前介数”为22t ab =且即1≤a 、b 9≤,a 、b 均为不为0的整数, ∴200020010220010t a b a b =+++=++,∵t 能被6整除,∴t 能被2整除,也能被3整除,∴b 为偶数,且224a b a b +++=++能被3整除,又19b ≤≤,∴b 只能取2,4,6,8中的其中一个数,又t 对应的“中介数”是221000200201000220b a b a b a =+++=++,且该“中介数”能被2整除,∴a 为偶数,又19a ≤≤,∴a 只能取2,4,6,8中的其中一个数,∴P (t )=()22222200101000220ab b a a b b a -=++-++2200101000220a b b a =++---19809999a b =+-,要求P (t )的最大值,即a 要尽量的大,b 要尽量的小,①a 的最大值为8,b 的最小值为2,但此时414a b ++=,且14不能被3整除,不符合题意,舍去;②a 的最大值为6,b 的最小值仍为2,但此时412a b ++=,能被3整除,且P (t )=2262-2226=36;③a 的最大值仍为8,b 的最小值为4,但此时416a b ++=,且16不能被3整除,不符合题意,舍去;其他情况,a 减少,b 增大,则P (t )减少,∴满足条件的P (t )的最大值是P (2262)=36.【点睛】本题考查用新定义解题,根据新定义,表示出“前介数”,与其对应的“中介数”是求解本题的关键.本题中运用到的分类讨论思想是重要一种数学解题思想方法.22.(1)1022;(2)3066,2226;(3)6736 【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n ++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可. 【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),根据题意得:100y+10(2x ﹣y )+2x+y ﹣3y =88y+22x =21(4y+x )+(4y+x ), ∵21(4y+x )+(4y+x )被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去); ∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++, 由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F (3066)=61263=50252++ 对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F (2226)=6365267=342++ ∵63675236< 故所有“特色数”的F (m )的最大值为:6736. 【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键. 23.(I ) x=2;(Ⅱ) 3; (Ⅲ) -2017.【分析】(I )根据对数的定义,得出x 2=4,求解即可;(Ⅱ)根据对数的定义求解即;;(Ⅲ)根据log a (M •N )=log a M +log a N 求解即可.【详解】(I )解:∵log x 4=2,∴x 2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴log 28=3,故答案为3;(Ⅲ)解:(lg 2)2+lg 2•1g 5+1g 5﹣2018= lg 2•( lg 2+1g 5) +1g 5﹣2018= lg 2 +1g 5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义.24.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =,原式111111324354698100=+++++⨯⨯⨯⨯⨯, 11111111111111(1)()()+()()23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-, 1111111111(1)2324354698100=⨯-+-+-+-++-, 1111(1)2299100=⨯+--, 1465119800=. 【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.25.(12;(2)±3.【分析】(1)由于4<7<9的小数部分;(2【详解】解:(1)∵4<7<9, ∴23<,∴021<,∴2,∴2;(2)∵a b 9<10<16, ∴<34<,∴031<,∴3,3,即有3a =,3b =, ∴()()3112b 339a --==-⎡⎣= 9的平方根为±3. ∴(1b a -的平方根为±3.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算. 26.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132, ∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.27.(1)1022;(2)3066,2226;(3)67 36【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知: n越小,p、q越接近,nq﹣np才越小,才是最小分解,此时F(m)=q np n++,故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m)=q np n++,再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2x﹣y),个位数字是(2x+y),根据题意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去); ∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++, 由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F (3066)=61263=50252++ 对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F (2226)=6365267=342++ ∵63675236< 故所有“特色数”的F (m )的最大值为:6736. 【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键. 28.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(11.41414.14≈141.4≈,……0.1732 1.732≈17.32,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一;(2 3.873 1.225≈12.25≈0.3873;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵2.154≈0.2154≈-, ∴0.2154≈, ∴0.2154≈-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.29.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)xn+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.30.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+= ∴5410x y -= ∵x 、y 为正数,且x≠y ∴x=6,y=5 ∴a=6×10+5=65 故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.。
(完整版)七年级数学下册平面坐标系试卷及答案(一)解析
一、选择题1.在平面直角坐标系中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为()2,4,点2021A 的坐标为( )A .()3,3-B .()2,2-C .()3,1-D .()2,4 2.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2020的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 3.如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(–1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,–2),……,按这样的运动规律,动点P 第2018次运动到点A .(2018,0)B .(2017,0)C .(2018,1)D .(2017,–2) 4.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P 的坐标是( )A .(2017,0)B .(2017,1)C .(2017,2)D .(2018,0) 5.如图所示在平面直角坐标系中,一个动点从原点O 出发,按照向上、向右、向下、向右的方向不断重复移动,依次得到点()10,2A ,()21,2A ,()31,0A ,()42,0A ,()52,2A ,则点2019A 的坐标是( )A .()1009,0B .()1009,2C .()1008,2D .()1008,0 6.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,A 2的伴随点为A 3……这样依次得到点A 1,A 2,A 3……A n ,若点A 1(2,2),则点A 2019的坐标为( )A .(-2,0)B .(-1,3)C .(1,-1)D .(2,2)7.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为( )A .(504,504)B .(﹣504,504)C .(﹣504,﹣504)D .(﹣505,504) 8.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201920202021a a a ++=( )A .1009B .1010C .1011D .10129.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0) 10.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x k k y y --⎧⎛⎫--⎡⎤⎡⎤=+--⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎨--⎡⎤⎡⎤⎪=+-⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩,[]a 表示非负实数a 的整数部分,例如[]2.82=,[]0.30=.按此方案,第2021棵树种植点的坐标为( ).A .()1,405B .()2,403C .()2,405D .()1,403二、填空题11.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.12.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)⋯根据这个规律,第2019个点的坐标为___.13.如图,一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第2019秒时这个点所在位置的坐标是_____.14.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为_________秒.15.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________.16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________.17.如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.18.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.19.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.三、解答题21.如图1,已知,点A (1,a ),AH ⊥x 轴,垂足为H ,将线段AO 平移至线段BC ,点B (b ,0),其中点A 与点B 对应,点O 与点C 对应,a 、b 满足24(3)0a b -+-=.(1)填空:①直接写出A 、B 、C 三点的坐标A (________)、B (________)、C (________); ②直接写出三角形AOH 的面积________.(2)如图1,若点D (m ,n )在线段OA 上,证明:4m =n .(3)如图2,连OC ,动点P 从点B 开始在x 轴上以每秒2个单位的速度向左运动,同时点Q 从点O 开始在y 轴上以每秒1个单位的速度向下运动.若经过t 秒,三角形AOP 与三角形COQ 的面积相等,试求t 的值及点P 的坐标.22.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b +-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABM AOM S S =,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.23.如图,点A (1,n ),B (n ,1),我们定义:将点A 向下平移1个单位,再向右平移1个单位,同时点B 向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A 1,B 1,t 次操作后两点记为A t ,B t .(1)直接写出A 1,B 1,A t ,B t 的坐标(用含n 、t 的式子表示);(2)以下判断正确的是 .A .经过n 次操作,点A ,点B 位置互换B .经过(n ﹣1)次操作,点A ,点B 位置互换C .经过2n 次操作,点A ,点B 位置互换D .不管几次操作,点A ,点B 位置都不可能互换(3)t 为何值时,A t ,B 两点位置距离最近?24.如图,在下面直角坐标系中,已知()0,A a ,(),0B b ,(),C b c 三点,其中a ,b ,c 满足关系式()22340a b c ---=.(1)求a,b,c的值;(2)如果在第二象限内有一点1,2P m⎛⎫⎪⎝⎭,请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.25.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).26.对于平面直角坐标系xOy中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y﹣t)称为将点P进行“t型平移”,点P'称为将点P进行“t 型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如,将点P(x,y)平移到P'(x+1,y﹣1)称为将点P进行“l型平移”,将点P(x,y)平移到P'(x﹣1,y+1)称为将点P进行“﹣l型平移”.已知点A(2,1)和点B(4,1).(1)将点A(2,1)进行“l型平移”后的对应点A'的坐标为.(2)①将线段AB进行“﹣l型平移”后得到线段A'B',点P1(1.5,2),P2(2,3),P3(3,0)中,在线段A′B′上的点是.②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是 .(3)已知点C (6,1),D (8,﹣1),点M 是线段CD 上的一个动点,将点B 进行“t 型平移”后得到的对应点为B ',当t 的取值范围是 时,B 'M 的最小值保持不变.27.在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F 与点B 重合时,m 的值为______;②当点F 与点A 重合时,m 的值为______.(2)请用含m 的式子表示S ,并直接写出m 的取值范围.28.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.29.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t 为多少秒时,三角形PEA 的面积为2,求此时P 的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点2021A 的坐标即可.【详解】解:观察发现:1(2,4)A ,2(3,3)A -,3(2,2)A ,4(3,1)A ,5(2,4)A ,6(3,3)A ∴依此类推,每4个点为一个循环组依次循环,20214505余1,∴点2021A 的坐标与1A 的坐标相同,为(2,4),故选:D .【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.2.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 3.B解析:B【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2018除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解: ∵2018÷4=504余2,∴第2014次运动为第505循环组的第2次运动,横坐标为504×4+2-1=2017,纵坐标为0,∴点的坐标为(2017,0).故选B.【点睛】本题是对点的坐标变化规律的考查,观察出每4次运动为一个循环组循环是解题的关键,也是本题的难点.4.B解析:B【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2017除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2017次运动后点P的横坐标为2017,纵坐标以1、0、2、0每4次为一个循环组循环,∵2017÷4=504…1,∴第2017次运动后动点P的纵坐标是1,∴点P(2017,1),故选B.【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.5.A解析:A【分析】根据图形可找出点A3、A7、A11、A15、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(1+2n,0)(n为自然数)”,依此规律即可得出结论.【详解】解:观察图形可知:A3(1,0),A7(3,0),A11(5,0),A15(9,1),…,∴A4n+3(1+2n,0)(n为自然数).∵2019=504×4+3,∴n=504,∵1+2×504=1009,∴A2018(1009,0).故选:A .【点睛】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A 4n+3(1+2n ,0)(n 为自然数).”是解题的关键.6.A解析:A【分析】根据伴随点的定义找出部分A n 的坐标,根据坐标的变化找出变化规律“A 4n +1(2,2),A 4n +2(﹣1,3),A 4n +3(﹣2,0),A 4n +4(1,﹣1)(n 为自然数)”.依此规律即可得出结论.【详解】解:观察,发现规律:A 1(2,2),A 2(﹣1,3),A 3(﹣2,0),A 4(1,﹣1),A 5(2,2),…,∴A 4n +1(2,2),A 4n +2(﹣1,3),A 4n +3(﹣2,0),A 4n +4(1,﹣1)(n 为自然数).∵2019=504×4+3,∴点A 2016的坐标为(-2,0).故选A .【点睛】本题考查了规律型中点的坐标,解题的关键是根据坐标的变化找出变化规律“A 4n +1(2,2),A 4n +2(﹣1,3),A 4n +3(﹣2,0),A 4n +4(1,﹣1)(n 为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键. 7.D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论. 本题解析:由规律可得, 2017÷4=504…1 ,∴ 点 P2017 的在第二象限的角平分线上,∵ 点 P5(−2,1), 点 P9(−3,2), 点 P13(−4,3) ,∴ 点 P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.8.B解析:B【分析】根据题意可得A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),则11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =;11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,可以得到21210n n a a -++=,由此求解即可.【详解】解:由题意可知A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),∴11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,由此可知当n 为偶数时2n n a =, ∴2020202010102a == ∵11a =,31a =-,52a =,72a =-,可得 130a a +=,570a a +=,∴可以得到21210n n a a -++=,∴201920210a a +=,∴2019202020211010a a a ++=,故选B .【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解. 9.C解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P运动到2021秒时的坐标是(2021,1),故选:C.【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.10.A解析:A【分析】根据所给的x k、y k的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,11x=,2110 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,3221 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,4332 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,……112 1555k k k kx x---⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:155kkx k-⎡⎤=-⎢⎥⎣⎦,当k=2021时,20212020 202152021540415x⎡⎤=-=-⨯=⎢⎥⎣⎦;11y=,2110 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,3221 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,4332 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,……112 55k k k ky y---⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:11+5kky-⎡⎤=⎢⎥⎣⎦,当k=2021时,202120201+4055y⎡⎤==⎢⎥⎣⎦,∴第2021棵树种植点的坐标为()1,405,故选:A.【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键.二、填空题11.【分析】横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0解析:()64,3【分析】横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2020个数一定在第64列,由下到上是第4个数.因而第2020个点的坐标是(64,3).故答案为:(64,3).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.12.(45,6)【分析】根据图形推导出:当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n 个正方形每条边上有(n+1)解析:(45,6)【分析】根据图形推导出:当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0). 然后根据2019=452-6,可推导出452是第几个正方形连同前边所有正方形共有的点,最后再倒推6个点的坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(1,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(3,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(1,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(5,0);故当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0).而2019=452-6n+1=45解得:n=44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(45,0),由图可知,再倒着推6个点的坐标为:(45,6).故答案为: (45,6).【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键. 13.(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点解析:(5,44)【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】由题意可知点移动的速度是1个单位长度/每秒,则:运动到(1,1)是2秒,2=1×2运动到(2,2)是6秒,6=2×3运动到(3,3)是12秒,12=3×4运动到(4,4)是20秒,20=4×5⋯⋯44×45=1980,即1980秒运动到点(44,44)2019- 1980=39∵坐标为偶数的点的运动方向是:向上、向左,故第2019秒时这个点所在位置是点(44,44)向左运动39个单位,44-39=5,即第2019秒时这个点所在位置的坐标是(5,44)故答案为:(5,44)【点睛】此题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第2019秒时点所在位置的坐标是解决问题的关键.14.n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.15.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.17.(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.18.60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.19.【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P(2,0)处相遇,此时物体甲乙回到原来出发点,∴物体甲乙每相遇三次,则回到原出发点P处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.20.(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n=()12n n+,当n=9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.三、解答题。
【名师同步】2018年 七年级数学下册 平面直角坐标系 例题+课堂+课后练习(含答案)
平面直角坐标系知识点:象限符号:;点的特征:;x轴上点的坐标表示:;y轴上点的坐标表示:;一三象限角平分线上点的坐标表示:;二四象限角平分线上点的坐标表示:;点的平移:左右平移与有关:;上下平移与有关:;点的对称:已知点A(x,y),关于x轴对称后的点坐标:;关于y轴对称后的点坐标:;关于原点轴对称后的点坐标:;【例1】选择题:1.若点P关于x轴的对称点为P1(2a+b,3),关于y轴的对称点为P2(9,b+2),则点P的坐标为( )A.(9,3)B.(﹣9,3)C.(9,﹣3)D.(﹣9,﹣3)2.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(2-a,-1-b)在( )A.第一象限;B.第二象限;C.第三象限;D.第四象限;3.已知点PP的坐标为(2-a,3a+6),且点到两坐标轴的距离相等,则点P的坐标是( )A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)4.已知点M(3,-4),在x轴上有一点B,B点与M点的距离为5,则点B的坐标为( )A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)【例2】如图,在直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(4,8),D(16,0),求这个四边形的面积.【例3】如图,A,B两点的坐标分别为(0,3),(2,1),点C是x轴上一点,且三角形ABC的面积为3,则点C的坐标为 .【例5】如图在平面直角坐标系中,A(a,0),B(b,0),(-1,2).且04212=-++++b a b a .(1)求a 、b 的值;(2)①在y 轴的正半轴上存在一点M,使S △COM =S △ABC ,求点M 的坐标.②在坐标轴的其他位置是否存在点M ,使S △COM =S △ABC 仍成立?若存在,请直接写出符合条件的点M 的坐标.【例6】如图,在下面的直角坐标系中,已知A(0,a),B(b ,0),C(b ,4)三点,其中a ,b 满足关系式239922++-+-=b b b a . (1)求a ,b 的值;(2)如果在第二象限内有一点P(m ,31),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.课堂练习一、选择题:1、点A1(5,–7)关于x轴对称的点A2的坐标为( ).A.(–5, –7)B.(–7 , –5)C.(5, 7)D.(7, –5)2、若y轴上的点P到x轴的距离为3,则点P的坐标是 ( )A、(3,0)B、(0,3)C、(3,0)或(-3,0)D、(0,3)或(0,-3)3、若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)4、已知点P(x+3,x﹣4)在x轴上,则x的值为( )A.3B.4C.﹣3D.﹣45、若点A(m,n)在第二象限,那么点B(-m,│n│)在( )A.第一象限B.第二象限;C.第三象限D.第四象限6、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)7、已知点P(x,y),且,则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限8、点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )A.()B.()C.()D.()9、在平面直角坐标系xoy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A/B/,,已知A/的坐标为(3,-1),则点B/的坐标为( )A.(4,2)B.(5,2)C.(6,2)D.(5,3)10、将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )A.(11,3)B.(3,11)C.(11,9)D.(9,11)11、定义:,,例如,,则等于( )A. B. C. D.12、在平面直角坐标系中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为 ( )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题:13、点M(-1,5)向下平移4个单位长度得N点坐标是 .14、已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是 .15、点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = .16、若A(a,b)在第二、四象限的角平分线上,a与b的关系是_________.17、已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标.18、如果点P(3a﹣9,1﹣a)是第三象限的整数点(横,纵坐标均为整数),那么点P坐标是 .19、对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b)如:f(1,2)=(1,﹣2);g(a,b)=(b,a).如:g(1,2)=(2,1).据此得g(f(5,﹣9))= .20、如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为 .三、解答题:21、如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,(1)请画出平移后的图形△A′B′C′(2)并写出△A′B′C′各顶点的坐标.(3)求出△A′B′C′的面积.22、如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.23、如图,已知在平面直角坐标系中,S△ABC=24,OA=OB,BC =12,求△ABC三个顶点的坐标.24、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是 .25、如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.课后练习一、选择题:1、在平面直角坐标系中,点P(2,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限2、在平面直角坐标系中,点P(2,-1)关于y轴对称的点Q的坐标为A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)3、点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是( )A.(﹣4,3)B.( 4,﹣3)C.(3,﹣4)D.(﹣3,4).4、在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是( )A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)5、已知点A(m+2,3m﹣6)在第一象限角平分线上,则m的值为( )A.2B.﹣1C.4D.﹣26、若a>0,b<-2,则点(a,b+2)在( )A.第一象限B.第二象限C.第三象限D.第四象限7、在直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限8、如图,已知点A,B的坐标分别为(4,0)、(0,3),将线段AB平移到CD,若点C的坐标为(6,3),则点D的坐标为( )A.(2,6)B.(2,5)C.(6,2)D.(3,6)9、若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)10、如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为( )A.(1,4)B.(5,0)C.(6,4)D.(8,3)二、填空题:11、若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为__________.12、在平面直角坐标系中,若将点P (-1,4) 向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为 .13、若点M到x轴的距离是3,到y轴的距离是2,且M点在第二象限,则M点的坐标为.14、点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.15、如图,长方形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标为 .16、在平面直角坐标系中,点P(a,5)关于y轴对称点为Q(3,b),则a+b=__________.17、已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N 的坐标为 .18、将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.三、解答题:19、已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,﹣4)点,且与x轴平行的直线上.20、如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积.课堂练习参考答案1、C2、D3、A4、B;5、A6、B7、D8、D9、B10、A.11、A12、D13、答案为:(﹣1,1)14答案为:(﹣3,2).15、答案为:916、答案为:a+b=0,a、b互为相反数;17、答案为:(4,0)或(﹣4,0)18、答案为:(-3,-1);19、答案为:(9,5);20、答案为:(1008,0).21、(1)画图;(2)A′(4,0)B′(1,3)C′(2,-2);(3)S△A′B′C′=5×3-×1×5-×2×2-×3×3=6;22、解:分别过B、C作x轴的垂线BE、CG,垂足为E,G.所以S ABCD=S△ABE+S梯形BEGC+S△CGD=×3×6+×(6+8)×11+×2×8=94.23、设A为(0,y)×BC×OA=24 即×12×y=24 解得y=4 所以A为(0,4)B为(-4,0)C为(8,0)24、解:(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,那么A4(16,3);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,那么B4的坐标为(32,0);(2)由上题规律可知A n的纵坐标总为3,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1.25、解:(1)C(0,2),D(4,2),四边形ABCD的面积=(3+1)×2=8;(2)假设y轴上存在P(0,b)点,则S△PAB=S四边形ABDC∴|AB|•|b|=8,∴b=±4,∴P(0,4)或P(0,﹣4).课后练习参考答案1、D.2、A3、A.4、B5、C.6、D7、D,8、A.9、B.10、B11、答案为:(﹣2,3).12、答案为:(1,1)13、答案为:(﹣2,3).14、答案为:2,-515、答案为:(-4,3)16、答案为:217、答案为:(﹣5,2)或(5,2).18、答案为:(45,12).19、解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1﹣(2m+4)=3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(3)令m﹣1=﹣4,解得m=﹣3.所以P点的坐标为(﹣2,﹣4).20、解;(1)如图所示:A(﹣1,8),B(﹣5,3),C(0,6);(2)如图所示:(3)△ABC的面积为:×(5+1)×5﹣×1×2﹣×3×5=6.5.。
2018年北师大版数学七下期末检测卷(含答案)
2018年北师大版数学七下期末检测卷(含答案)一、选择题(每题3分,共36分)1.下列各式的变形中,正确的是( )A. a 3+a 3=a 6B. a 3÷a=3C. x 2-1=(x-1)(x+1)D. 2.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数A. 40°B. 50°C. 60°D. 90°3.圆的面积公式为s =πr 2,其中变量是( )A. s B. π C. r D. s 和r4.如图,△ABC ≌△DEF ,则此图中相等的线段有( )A. 2对 B. 3对 C. 4对 D. 5对5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.6.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( )A. B. C. D.7.下列事件发生的概率为0的是( )A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上 B. 今年冬天黑龙江会下雪 C. 随意掷两个均匀的骰子,朝上面的点数之和为 1 D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域8.若 ,则m ,k 的值分别是( )A. m=—2,k=6,B. m=2,k=12,C. m=—4,k=—12D. m=4,k=-12、9.正常人的体温一般在37℃左右,在不同时刻体温也在变化.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是( ).A. 清晨5时体温最低B. 下午5时体温最高C. 这一天中小明体温T (单位:℃)的范围是36.537.5T ≤≤D. 从5时至24时,小明体温一直在升高10.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A. 105° B. 110° C. 115° D. 120°11.如图,大树AB 与大数CD 相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A. 13sB. 8sC. 6sD. 5s12.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )A. 70°B. 110°C. 130°D. 140°二、填空题(共12分)13.若x2+(m-1)x+9是完全平方式,则m的值为___________.14.如图,a//b,则∠A=____________.15.某商店进了一批货,每件进价为4元,售价为每件6元,如果售出x件,售出x件的总利润为y元,则y与x的函数关系式为__.16.如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD 与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________①AD=EC;②BM=BN;③MN∥AC;④EM=MB.三、解答题(共7小题;共52分)17.计算:(1)(2a)3•b4÷12a3b2(2)(x+3y)2+(2x+y)(x﹣y)18.先化简,再求值:(-x+3)2-(x+1)(x-1),其19.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠1,∠2+∠3=180°.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由.20.如图,在平行四边形ABCD中,AM、CN都是BD的垂线,M、N是垂足.求证:(1)AM=CN;(2)∠MAN=∠NCM.21.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.22.小明某天上午9时骑自行车离开家,15时回到家,他有意描绘了离家的距离与时间的变化情况(如图所示).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?23.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:1902 MCP A ∠=︒-∠;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.2018年北师大版数学七下期末检测卷(答案)1.C.2.B.3.D.4.C.5.A.6.B.7.C.8.D.9.D.10.C.11.B.12.D.13.或7.14.22°.15.y=2x.16.①②③17.(1)(2)3x2+5xy+8y218.原式=-6x+10=1319.(1)证明:∵∠2+∠3=180°,∠1+∠3=180°∴∠1=∠2,∴CE∥GF;(2)解:∠AED+∠D=180°,理由如下:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠1,∴∠FGD=∠1,∴AB∥CD,∴∠AED+∠D=180°20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD.∵AM、CN都是BD的垂线,∴∠AMD=∠BNC=90º.在△ADM和△BCN中,∵∠ADB=∠CBD,∠AMD=∠BNC,AD=BC,∴△ADM≌△BCN,∴AM=CN;(2)∵AM、CN都是BD的垂线,∴AM∥CN;由(1)得,AM=CN;∴四边形AMCN是平行四边形∴∠MAN=∠NCM.21.解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为13;(2)游戏公平,甲获胜的概率=12,乙获胜的概率=12,所以游戏是公平的.22.解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离. (2)由图象看出10时他距家15千米,13时他距家30千米. (3)由图象看出12:00时他到达离家最远的地方,离家30千米. (4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 19=11(千米). (5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐. (6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).23.(1)解:∵:3:4A B ∠∠=,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠ 140=°,∴34140k k +=°, 解得 20k =°.∴360A k ∠==°.(2)证明:(3)猜想∠BQC=90°+14∠A . 证明如下: ∵BQ 平分∠CBN ,CQ 平分∠BCN ,∴1122QBC CBN QCB BCN ∠=∠∠=∠,, ∴11802Q CBN BCN ∠=︒-∠+∠() 1180(1802N =︒-︒-∠) 1902N =︒+∠. 由(2)知: 12M A ∠=∠,又由轴对称性质知:∠M =∠N , ∴1904BQC A ∠=︒+∠.。
北京市北大附中七年级数学下册第七单元《平面直角坐标系》经典测试(含答案解析)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 4.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- 5.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 6.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 7.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置8.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( )A .-1B .79-C .1D .2 9.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 10.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限11.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 12.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 13.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 14.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 15.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题16.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.17.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.18.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.19.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 20.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 21.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.22.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.23.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)24.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 25.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限26.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题27.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?28.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.29.若点(1m -,32m -)在第二象限内,求m 的取值范围30.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1; (2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.。
北京回民学校七年级数学下册第七单元《平面直角坐标系》经典测试(含答案)
一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 3.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°4.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4) 7.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 8.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 11.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限B .第二象限C .第三象限D .第四象限 12.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)13.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒14.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 15.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.18.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.19.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.20.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.21.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 22.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.23.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.24.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .25.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.26.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题27.已知点P(a ﹣2,2a+8),分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;(3)点P 到x 轴、y 轴的距离相等.28.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.4,1,29.(1)请在网格中建立平面直角坐标系,使得A,B两点的坐标分别为()()1,2-;(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上取一点C,使MC BM=.①写出点C的坐标;②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D的坐标.30.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B、C、D等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A到B记为:A→B( +1,+3 ),从B到A记为:B→A (-1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向.填空:(1)图中A→C(,)C→(,)(2)若这只蚂蚁从A处去M处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M的坐标为(,)(3)若图中另有两个格点P、Q,且P→A ( m+3,n+2),P→Q(m+1, n-2),则从Q到A记为(,)。
北京市师大实验七年级数学下册第七单元《平面直角坐标系》经典习题(含答案解析)
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 3.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置4.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限 6.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .19.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 10.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)11.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 12.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 14.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题16.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 17.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.18.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.19.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 20.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.21.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.22.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.23.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A400的坐标为_______.24.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.25.若点M(a-2,a+3)在y轴上,则点N(a+2,a-3)在第________象限.⊥于D.若A(4,0),B 26.如图,直线BC经过原点O,点A在x轴上,AD BC(m,3),C(n,-5),则AD BC=______.三、解答题27.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点Q的坐标为(1,5),直线PQ∥y轴;(3)点P到x轴、y轴的距离相等.28.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 29.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,2).(1)将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到△A 'B ′C ′.请画出平移后的△A ′B ′C ′,并写出点的坐标A ′( , )、B ′( , )、C ′( , );(2)求出△A ′B ′C ′的面积;(3)若连接AA ′、CC ′,则这两条线段之间的关系是 .30.已知在平面直角坐标系(如图)中有三个点0,23,1),()4,,3(()A B C --.请解答以下问题:,,;(1)在坐标系内描出点A B C,,三点为顶点的三角形,并列式求出该三角形的面积;(2)画出以A B C、、三点为顶点的三角形的面积为6,请直接写(3)若要在y轴找一个点P,使以A C P出满足要求的点P的坐标.。
北京师范大学第三附属中学七年级数学下册第三单元《平面直角坐标系》检测(包含答案解析)
一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,1 4.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 5.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 7.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 9.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16 12.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.15.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.18.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.19.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________. 三、解答题21.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.22.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.25.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D (6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.26.如图,已知五边形 ABCDE 各顶点坐标分别为A(-1,-1),B(3,-1),C(3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.2.B解析:B【分析】根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度以及第二象限内点的坐标特征解答.【详解】∵点A 位于第二象限∴横坐标为负,纵坐标为正∵点A 到x 轴的距离为3,到y 轴的距离为6∴点A 的坐标为(-6,3)故答案为:B .【点睛】本题考查点的坐标和象限的特征,解题的关键是掌握点的坐标和象限的特征.3.C解析:C【分析】根据点A 、B 的坐标建立平面直角坐标系,由此即可得.【详解】由()2,1A -和()2,3B --,建立平面直角坐标系如下:则第一架炸机C 的平面坐标是()2,1-,故选:C .【点睛】本题考查了点坐标,正确建立平面直角坐标系是解题关键.4.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.6.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.7.A解析:A【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m >0,│n│>0,再判断点Q 所在的象限即可.【详解】∵点P (m ,n )在第三象限,∴m <0,n <0,∴-m >0,│n│>0,∴点Q (-m ,│n│)在第一象限,故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.B解析:B【分析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.【详解】解:将点A (﹣2,﹣2)先向右平移6个单位长度,再向上平移5个单位长度,得到点A ',其坐标为(﹣2+6,﹣2+5),即(4,3),故选:B .【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)9.B解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).10.D解析:D【分析】让点A 的纵坐标加3后等于0,即可求得m 的值,进而求得点A 的横纵坐标,即可判断点A 所在象限.【详解】∵把点A (﹣5m ,2m ﹣1)向上平移3个单位后得到的点在x 轴上,∴2m ﹣1+3=0,解得:m =﹣1,∴点A 坐标为(5,﹣3),点A 在第四象限.故选D .【点睛】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.11.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.12.D解析:D【分析】由点M、N的坐标得出点M、N的纵坐标相等,据此知直线MN∥x轴,继而得出直线MN⊥y轴,从而得出答案.【详解】解:∵点M(12,-5)、N(-7,-5),∴点M、N的纵坐标相等,∴直线MN∥x轴,则直线MN⊥y轴,故选:D.【点睛】本题主要考查坐标与图形性质,熟记纵坐标相同的点在平行于y轴的直线上是解题的关键.二、填空题13.(8-4)【分析】直接利用平移中点的变化规律求解即可【详解】解:原来点的横坐标是5纵坐标是-2向右平移3个单位再向下平移2个单位得到新点的横坐标是5+3=8纵坐标为-2-2=-4则点B的坐标为(8-解析:(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.14.3【分析】根据点到y轴的距离等于横坐标的绝对值解答【详解】到y轴的距离是横坐标的绝对值即故答案为:3【点睛】本题考查了点的坐标熟记点到y 轴的距离等于横坐标的绝对值是解题的关键解析:3【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】()-=.P-到y轴的距离是横坐标的绝对值,即333,2故答案为:3.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.15.(﹣3﹣8)【分析】先根据向左平移纵坐标不变得出x﹣2=﹣8求出x再代入x+3求出点B的横坐标即可【详解】解:∵将点A(5﹣8)向左平移得到点B(x+3x﹣2)∴x﹣2=﹣8解得x=﹣6∴x+3=﹣解析:(﹣3,﹣8)【分析】先根据向左平移纵坐标不变得出x﹣2=﹣8,求出x,再代入x+3求出点B的横坐标即可.【详解】解:∵将点A(5,﹣8)向左平移得到点B(x+3,x﹣2),∴x﹣2=﹣8,解得x=﹣6,∴x+3=﹣6+3=﹣3,∴则点B的坐标为(﹣3,﹣8).故答案为(﹣3,﹣8).【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.【分析】根据平移的性质得到对应点的变化即可得到答案【详解】解:的坐标为向右平移了2个单位长度点的坐标为点的坐标为:故答案是:【点睛】此题主要考查了坐标与图形变化正确得出平移距离是解题关键3,2解析:()【分析】根据平移的性质,得到对应点的变化,即可得到答案【详解】解:B的坐标为(3,0),∴=,3OBDB=,1∴=-=,OD312∴∆向右平移了2个单位长度,CDE点A的坐标为(1,2),∴点C的坐标为:(3,2).故答案是:(3,2).【点睛】此题主要考查了坐标与图形变化,正确得出平移距离是解题关键.17.(02)(﹣4﹣2)【分析】由点A(a-2a)及AB⊥x轴且AB=2可得点A的纵坐标的绝对值从而可得a的值再求得a-2的值即可得出答案【详解】解:∵点A(a﹣2a)AB⊥x轴AB=2∴|a|=2∴a解析:(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),AB⊥x轴,AB=2,∴|a|=2,∴a=±2,∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.∴点A的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.18.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.19.【分析】根据点AC的坐标建立平面直角坐标系由此即可得【详解】根据点AC的坐标建立平面直角坐标系如图所示:则点B的坐标为故答案为:【点睛】本题考查了点的坐标依据题意正确建立平面直角坐标系是解题关键--解析:(1,2)【分析】根据点A、C的坐标建立平面直角坐标系,由此即可得.【详解】根据点A、C的坐标建立平面直角坐标系,如图所示:--,则点B的坐标为(1,2)故答案为:(1,2)--.【点睛】本题考查了点的坐标,依据题意,正确建立平面直角坐标系是解题关键.20.【分析】根据三种变换规律的特点解答即可【详解】解:故答案为:【点睛】本题考查了点的坐标变换读懂题目信息正确理解三种变换的特点是解题的关键解析:()2,5-【分析】根据三种变换规律的特点解答即可.【详解】解:()()()()2,52,52,5O Ω=O -=-.故答案为:()2,5-.【点睛】本题考查了点的坐标变换,读懂题目信息、正确理解三种变换的特点是解题的关键. 三、解答题21.(1)3922x <<;(2)(-4,-2);(3)(0,0)或(0,10). 【分析】(1)根据第三象限点横纵坐标都小于0,列不等式求解即可;(2)根据点到坐标轴的距离等于其横纵坐标的绝对值列等式,再利用第三象限点的特征去绝对值符号即可求解;(3)设P 点为(0,y ),以AP 距离为底,M 到y 轴的距离为高,列方程即可求解.【详解】解:(1)∵点()29,32M x x --在第三象限,∴290320x x -<-<,, 解得3922x << ; (2)∵点M 到y 轴的距离是到x 轴的2倍, 即29232x x -=⨯-,∵点()29,32M x x --在第三象限,∴()92223x x -=⨯-, 解得52x =, ∴M 点坐标(-4,-2);(3)∵P 在y 轴上,点()0,5A点,M (-4,-2),设P 点坐标为(0,y ),∴154=102AMP S y =⨯-⨯-△ 解得0y =或10y =, ∴P 点坐标为(0,0)或(0,10).【点睛】本题主要考查直角坐标系、已知点所在象限求参数、点到坐标轴的距离等.已知点的坐标可以求出点到x 轴、y 轴的距离,应注意取相应坐标的绝对值.各象限内点的坐标符号:第一象限内点的横、纵坐标皆为正数,即(+,+);第二象限内点的横坐标为负数,纵坐标为正数,即(-,+);第三象限内点的横、纵坐标皆为负数,即(-,-);第四象限内点的横坐标为正数,纵坐标为负数,即(+,-).22.图见解析,72【分析】在平面直角坐标系中,依次画出点A 、B 、C 、D ,连接BC 、CD 、BD ,作CE 垂直于x 轴于点E ,由于BCD BCE ABD AECD S S S S ∆∆∆=+-梯形,分别求出AECD S 梯形、BCE S ∆、ABD S ∆即可得出BCD 的面积.【详解】作CE 垂直于x 轴于点E ,BCD BCE ABD AECD S S S S ∆∆∆=+-梯形()1113533145222=+⨯⨯+⨯⨯-⨯⨯ 312102=+- 72=. 【点睛】本题主要考查平面直角坐标系以及割补法求不规则图形的面积,利用割补法求不规则图形的面积是解题关键.23.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】2,5,得出原点位置进而得出答案.直接利用学校的坐标是()【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.24.(1)画图见解析,C(1,1);(2)画图见解析,(a+2,b-1);(3)D(1,0)或(5,0)【分析】(1)根据点A、B的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A、B、C向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点P的对应点P1的坐标;(3)根据三角形的面积求出C1D的长度,再分两种情况求出OD的长度,然后写出点D的坐标即可.【详解】解:(1)直角坐标系如图所示,C点坐标(1,1);(2)△A1B1C1如图所示,点P1坐标(a+2,b-1);故答案为:(a+2,b-1);(3)设点D的坐标为(a,0),则:△DB1C1的面积=12C1D×OB1=3,即12|a-3|×3=3,解得:a=1或a=5,综上所述,点D的坐标为(1,0)或(5,0).【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.【点睛】此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.26.(1)14;(2)F是CD中点,F(2,2)【分析】(1)延长ED和BC,交于点G,根据各点坐标,利用四边形ABGE的面积减去△DCG的面积即可;(2)柑橘题意可得四边形ABGE是正方形,再由ED=BC,得到F是CD中点,再由点C和点D的坐标得到点F的坐标.【详解】解:(1)延长ED和BC,交于点G,∵A(-1,-1),B(3,-1),C(3,1),D(1,3),E(-1,3),可得:EG∥AB,AE∥BG,∴点G的坐标为(3,3),∴五边形ABCDE的面积=4×4-2×2÷2=14;(2)由题意可得:四边形ABGE是正方形,ED=BC=2,∴当点F是CD中点时,根据轴对称性可得AF平分五边形 ABCDE 的面积,此时点F(2,2).【点睛】本题考查了点的坐标,线段中点,正方形和三角形的面积,解题的关键是根据坐标得到相应线段的长度.。
2018-2019北师大版七年级数学下册期末考试试卷及答案
.2018-2019学年度七年级下学期期末试卷数学一、选择题(每题3分,共18分) 1、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =-2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一。
则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个二、填空题(每空3分,共27分)7、单项式313xy -的次数是 .ODCBA.8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形.9、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 10、如图∠AOB=1250,AO ⊥OC ,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 .12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
北京市师大实验七年级数学下册第三单元《平面直角坐标系》检测题(有答案解析)
一、选择题1.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 2.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b4.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1--5.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3) B .(2,-3) C .(3,2) D .不能确定 6.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行D .平行、垂直相交8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)9.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .110.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 11.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2)12.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( ) A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题13.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.14.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.15.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.16.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.17.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________18.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=- 按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.三、解答题21.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A 地,黄军的指挥所地B 地,A 地在B 地的正西边(如图).部队司令部在C 地.C 在A 的北偏东60︒方向上、在B 的北偏东30方向上. (1)BAC ∠=______°;(2)请在图中确定(画出)C 的位置,标出字母C ;(3)演习前,司令部要蓝军、黄军派人到C 地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地.已知吉普车行驶了18分钟.A 到C 的距离是B 到C 的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B 地到C 地的距离(速度单位用:千米/时).22.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .23.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置.24.若点(1m -,32m -)在第二象限内,求m 的取值范围25.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长; (3)求111O A B ∆的面积.26.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A 点,公共自行车停车处;B 点,公园大门;C 点,便利店;D 点,社会主义核心价值观标牌;E 点,健身器械;F 点,文化小屋,如果B 点和D 点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系; (2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案. 【详解】∵点A (a ,b )在第二象限, ∴a <0,b >0; 故选:C . 【点睛】此题考查直角坐标系中点的坐标,熟记各象限内点的坐标特征是解题的关键.2.D解析:D 【分析】根据题意可得0a =或0b =,利用点的坐标特征即可求解. 【详解】 解:∵0ab =, ∴0a =或0b =, ∴点P 在坐标轴上, 故选:D . 【点睛】本题考查坐标轴上点的坐标特征,掌握点的坐标特征是解题的关键.3.C解析:C直接利用各象限内点的坐标符号得出答案. 【详解】解:∵点A (a ,-b )在第三象限, ∴a <0,-b <0, ∴-a >0,b >0,∴(),a b -在第三象限,(),a b -在第一象限,(),a b --在第四象限,(),a b 在第二象限. 故选:C . 【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.D解析:D 【分析】根据A(3,2) B(−3,3)坐标确定原点并建立直角坐标系即可. 【详解】如图建立直角坐标系:∴C 点坐标是()5,1-- 故选D 【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.5.B解析:B 【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案. 【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3), 故选:B .本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.D解析:D【分析】根据各象限内点的坐标特征解答.【详解】∵210a+>,a+,3-)在第四象限.点A(21故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.D解析:D【分析】根据点M、N的坐标可得直线MN的解析式,由此即可得.【详解】---,M N(9,5),(3,5)y=-,∴直线MN的解析式为5则直线MN与x轴平行,与y轴垂直相交,故选:D.【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.8.B解析:B【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,即可得出答案.【详解】解:由题意可知,质点每秒移动一个单位质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推,质点到达(4,0)时,共用16秒;质点到达(0,4)时,共用16+8=24秒;质点到达(0,5)时,共用25秒;质点到达(5,0)时,共用25+10=35秒故答案为:B.【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.9.C解析:C【分析】根有序数对的意义,算出净上车人数,再用原有车上人数加上净上车人数即可.【详解】解:∵数据(),a b表示该车经过某站点时先下后上的人数.∴()3,2表示先下车3人,再上车2人,即经过第一个站点净上车人数为-1人,此时公交车上有:10-1=9(人).∴()8,5表示先下车8人,再上车5人,即经过第二个站点时净上车人数为-3人,此时公交车上共有:9-3=6(人).故选C.【点睛】本题考查了有序数对的意义,理解有序数对表示的意义是解题的关键.10.A解析:A【分析】根据轴对称的性质分别求出P1, P2,P3,P4,P5,P6的坐标,找出规律即可得出结论.【详解】解:∵P(-3,1),∴点P关于直线y=x的对称点P1(1,-3),P1关于x轴的对称点P2(1,3),P2关于y轴的对称点P3(-1,3),P3关于直线y=x的对称点P4(3,-1),P4关于x轴的对称点P5(3,1),P5关于y轴的对称点P6(-3,1),∴6个点后循环一次,∵当n=2019时,2019÷6=336…3,P的坐标与P3(-1,3)的坐标相同,∴2019故选:A.【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.11.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.12.B解析:B【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【详解】解:∵点A(0,a),点B(0,4﹣a),且A在B的下方,∴a<4﹣a,解得:a<2,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A,B,C的坐标分别是(0,a),(0,4﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的3个都在线段AB上,∴3≤4﹣a<4.解得:0<a≤1,故选:B.【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB上为解决本题的关键.二、填空题13.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.14.【分析】先找到所在的象限然后由该象限内点的规律特点求解即可【详解】解:根据题意得由可知在第二象限通过题中点的变化观察可知第二象限内点横纵坐标互为相反数且都为6的倍数由可知故答案为:【点睛】本题考查规 解析:()150,150-【分析】先找到99A 所在的象限,然后由该象限内点的规律特点求解即可.【详解】解:根据题意得,()46,6A --,()59,6A -,()69,12A ,()712,12A -,由994243=⨯+,可知99A 在第二象限,通过题中点的变化,观察可知第二象限内点()36,6A -、()712,12A -横纵坐标互为相反数且都为6的倍数, 由99161504+⨯=,可知()99150,150A - 故答案为:()150,150-.【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题.15.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.16.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第2021,1解析:()【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.17.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A(20)B(04)∴OB=4OA=2∵△BOC与△AOB全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.18.7或﹣4【分析】根据题意可以求得a的值然后再对t进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t>2时h=t﹣1则3(t﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值.【详解】由题意可得,“水平底”a=1﹣(﹣2)=3,当t >2时,h =t ﹣1,则3(t ﹣1)=18,解得,t =7;当1≤t ≤2时,h =2﹣1=1≠6,故此种情况不符合题意;当t <1时,h =2﹣t ,则3(2﹣t )=18,解得t =﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.19.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.20.【分析】根据三种变换规律的特点解答即可【详解】解:故答案为:【点睛】本题考查了点的坐标变换读懂题目信息正确理解三种变换的特点是解题的关键解析:()2,5-【分析】根据三种变换规律的特点解答即可.【详解】解:()()()()2,52,52,5O Ω=O -=-.故答案为:()2,5-.【点睛】本题考查了点的坐标变换,读懂题目信息、正确理解三种变换的特点是解题的关键.三、解答题21.(1)30;(2)画图见解析;(3)越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【分析】(1)由方位角的知识即可求解;(2)根据题意画出方位角,交点即为C 点位置;(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米,根据“越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地”找到等量关系列出方程即可求解. 【详解】(1)由题意可知:906030BAC ∠=︒-︒=︒,故答案为:30;(2)如图所示,点C 即为所求.(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米, 由题意,得181.760x ⨯=(2x+4)18360-⨯, 解得x=100,2x+4=204,1860x =30, 答:越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【点睛】此题考查了方位角和一元一次方程的实际应用.设出合适的未知数,找到等量关系列出方程是解答此题的关键.22.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C与点D的纵坐标相等,所以线段CD与x轴平行.【详解】(1)点A到原点O的距离是3,点B到x轴的距离是4,点B到y轴的距离是2;(2)因为点C与点D的纵坐标相等,所以线段CD与x轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.23.(1)+4,+1,-2,+1;(2)8秒;(3)图见解析.【分析】(1)根据题意,向上向右为正,向下向左为负,进而得出答案;(2)根据甲虫的行走路线,借助网格求出总路程,再根据时间等于路程除以速度即可;(3)结合各点变化得出其位置,进而得出答案.【详解】解:(1)结合网格可知→(-2,+1);A D→(+4,+1);C B故答案为:+4,+1,-2,+1;(2)∵甲虫的行走路线为:A→B→C→D→A,∴甲虫走过的路程为:1+4+2+1+1+2+4+1=16甲虫行走的时间为:16÷2=8秒;(3)如图2所示:【点睛】本题考查了正数和负数,坐标位置的确定,读懂题目信息,明确正数和负数的意义是解题的关键.24.m <1【分析】根据点在第二象限的条件是:横坐标是负数,纵坐标是正数,得出不等式组,即可解答.【详解】∵点(1m -,32m -)在第二象限,∴10320m m -<⎧⎨->⎩, ∴132m m <⎧⎪⎨<⎪⎩, 解得:1m <,∴m 的取值范围是:1m <.【点睛】本题考查了点所在的象限,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限()++,,第二象限()-+,,第三象限()--,,第四象限()+-,. 25.(1)见解析;(2)6;(3)9.【分析】(1)首先根据()1,1M 和()13,5M -可判定三角形的平移变化,然后根据图像信息可得知(0,0),(2,4),(4,1)O A B -,进而得出111(2,6),(0,2),(6,5)O A B ---,即可画出三角形; (2)点1B 到y 轴的距离即为点1B 的横坐标,由(1)中可得知;(3)利用矩形的面积减去111O A B ∆周围三角形的面积,即可得解.【详解】解:(1)由已知条件,可得111O A B ∆是OAB ∆先向右平移2个单位,再向下平移6个单位得到的,根据图像信息,可知(0,0),(2,4),(4,1)O A B -∴111(2,6),(0,2),(6,5)O A B ---连接三点,即可得到111O A B ∆,如图所示:(2)由(1)中知,1(6,5)B -,所以点1B 到y 轴的距离即为6个单位长; (3)111111642436149222O A B S =⨯-⨯⨯-⨯⨯-⨯⨯=△. 【点睛】此题主要考查图形的平移,熟练掌握,即可解题.26.(1)见解析;(2)点A ,C ,E ,F 的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B ,D 两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A ,C ,E ,F 的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
西北师大附中七年级数学下册第七章【平面直角坐标系】测试题(含答案解析)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-3.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 4.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 6.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)8.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 9.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88611.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.14.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)15.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.16.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.17.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.18.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.20.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.21.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.三、解答题22.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()0,12A ,()10,8B -,()14,0C -,求四边形OABC 的面积.23.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A 地,黄军的指挥所地B 地,A 地在B 地的正西边(如图).部队司令部在C 地.C 在A 的北偏东60︒方向上、在B 的北偏东30方向上.(1)BAC ∠=______°;(2)请在图中确定(画出)C 的位置,标出字母C ;(3)演习前,司令部要蓝军、黄军派人到C 地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地.已知吉普车行驶了18分钟.A 到C 的距离是B 到C 的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B 地到C 地的距离(速度单位用:千米/时).24.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限,(1)求x 的取值范围; (2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标. 25.如图1,已知直角梯形ABCO 中,∠AOC =90°,AB ∥x 轴,AB =6,若以O 为原点,OA ,OC 所在直线为y 轴和x 轴建立如图所示直角坐标系,A(0,a),C(c ,0)中a ,c 满足|a+c ﹣7c -=0(1)求出点A 、B 、C 的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N 从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求HCJABN∠∠的值(结果用含k的式子表示).一、选择题1.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-2.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)3.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-4.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 5.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .26.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上9.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3)10.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-11.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1)二、填空题12.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.15.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.17.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.18.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .19.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.23.在平面直角坐标系中,描出下列各点:()3,3A -,()3,1B --,()2,1C -,()2,3D ,并用线段顺次连接各点形成封闭图形.试判断所得到的图形是什么特殊图形,并求出它的面积.24.如图,已知五边形 ABCDE 各顶点坐标分别为A (-1,-1),B (3,-1),C (3,1),D (1,3),E (-1,3)(1)求五边形 ABCDE 的面积;(2)在线段 DC 上确定一点 F ,使线段 AF 平分五边形 ABCDE 的面积,求 F 点的坐标. 25.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .34.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3-5.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2)6.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( )A.-1 B.79-C.1 D.27.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4…,这样依次得到点A1,A2,A3,…,A n,若点A1的坐标为(3,1),则点A2019的坐标为()A.(0,﹣2)B.(0,4)C.(3,1)D.(﹣3,1)8.在下列点中,与点A(-2,-4)的连线平行于y轴的是( )A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)9.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)10.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上11.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A.4 B.8 C.2D.16二、填空题12.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B.C.D处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A到B记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.13.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.14.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 16.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 19.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向下平移,再向右平移得到四边形A 1B 1C 1D 1,已知A (﹣3,5),B (﹣4,3),A 1(3,3),则B 1的坐标为_____.20.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.21.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积.(3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.24.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.25.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值.。
(人教版)北京市七年级数学下册第三单元《平面直角坐标系》测试题(答案解析)
一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2-B .()2,2C .()4,8--D .()2,8- 3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 4.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .25.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,5 8.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)12.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题13.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.14.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.15.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.16.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.17.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)18.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.19.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.20.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题21.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.22.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 满足2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.23.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD和BC边上的高线AE;''的面积是多少?(3)求A B C24.如图,已知平面直角坐标系中,点A在y轴上,点B、C在x轴上,S△ABO=8,OA=OB,BC=10,点P的坐标是(-6,a)(1)求△ABC三个顶点A、B、C的坐标;(2)连接PA、PB,并用含字母a的式子表示△PAB的面积(a≠2);(3)在(2)问的条件下,是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知点P(m+2,3),Q(−5,n−1),根据以下条件确定m、n的值(1)P、Q两点在第一、三象限的角平分线上;(2)PQ∥x轴,且P点与Q点的距离为3.26.某市在创建文明城市过程中,在城市中心建了若干街心公园.如图是所建“丹枫公园”的平面示意图,在8×8的正方形网格中,各点分别为:A点,公共自行车停车处;B点,公园大门;C点,便利店;D点,社会主义核心价值观标牌;E点,健身器械;F点,文化小屋,如果B点和D点的坐标分别为(2,﹣2).(3,﹣1).(1)请你根据题目条件,画出符合题意的平面直角坐标系;(2)在(1)的平面直角坐标系中,写出点A ,C ,E ,F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可.【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+∴a=4或a=-1.故选C .【点睛】 本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.2.B解析:B【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P 对应点的坐标即可得解.【详解】解:点P (-1,-3)向右平移3个单位,再向上平移5个单位,所得到的点的坐标为(-1+3,-3+5),即(2,2),故选:B .【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.3.A解析:A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标.【详解】解:∵点P 位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:A.【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.C解析:C【分析】判断出点P的横坐标与纵坐标互为相反数,然后根据互为相反数的两个数的和等于0列式求解即可.【详解】解:∵点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,∴3a+5+(-6a-2)=0,解得a=1,此时,3a+5=8,-6a-2=-8,符合.故选:C.【点睛】本题考查了点的坐标,熟记第四象限内到两坐标轴的距离相等的点的横坐标与纵坐标互为相反数是解题的关键.5.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则a=0或b=0,所以点P(a,b)表示在坐标轴上的点,故此选项不符合题意;B、当a>0时,点(1,a)在第一象限,故此选项不符合题意;C、已知点A(3,-3)与点B(3,3),A,B两点的横坐标相同,则直线AB∥y轴,故此选项不符合题意;D、若ab>0,则a、b同号,故点P(a,b)在第一或三象限,故此选项符合题意.故选:D.【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.7.D解析:D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D点可能的坐标,利用排除法即可求得答案.【详解】解:数形结合可得点D的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是(2,5)故选:D.【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.8.B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,故选B.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.9.C解析:C【分析】平行于y轴的直线上所有点的横坐标相等,根据这一性质进行选择.【详解】∵平行于y轴的直线上所有点的横坐标相等,已知点A(-2,-4)横坐标为-2,所以结合各选项所求点为(-2,4),故答案选C.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点,解本题的关键在于熟知平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.10.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11.D解析:D【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P 在x 轴上方,∴点P 在第一或第二象限,∵点P 到x 轴的距离为2,到y 轴的距离为3,∴点P 的横坐标为3或-3,纵坐标为2,∴点P 的坐标为(-3,2)或(3,2).故选D .【点睛】本题考查点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.12.B解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题13.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.14.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】 ∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 15.(0﹣1)【分析】设M (xy )根据题意列出方程组然后求解即可解答【详解】解:设M (xy )∵M 到ABC 的实际距离相等∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣解得:x=解析:(0,﹣1)【分析】设M (x ,y ),根据题意列出方程组,然后求解即可解答.【详解】解:设M (x ,y ),∵M 到A ,B ,C 的“实际距离”相等,∴∣2﹣x ∣+∣2﹣y ∣=∣4﹣x ∣+∣﹣2﹣y ∣=∣x+2∣+∣y+4∣,解得:x=0,y=﹣1,∴M (0,﹣1),故答案为:(0,﹣1).【点睛】本题考查坐标与图形,根据题意,利用数形结合思想列出方程组是解答的关键. 16.(x-3)()【分析】关于x 轴对称点的坐标特点是横坐标相同纵坐标互为相反数即可求解【详解】解:∵线段AB 的端点为线段CD 与线段AB 关于x 轴轴对称∴线段CD 的端点为∴线段CD 上任意一点的坐标可表示为(解析:(x ,-3)(1x 1-≤≤).【分析】关于x 轴对称点的坐标特点是横坐标相同,纵坐标互为相反数,即可求解.【详解】解:∵线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称, ∴线段CD 的端点为()1,3--,()1,3-,∴线段CD 上任意一点的坐标可表示为(x ,-3)(1x 1-≤≤).故答案为:(x ,-3)(1x 1-≤≤).【点睛】此题主要考查利用关于x 轴对称点的坐标特点来解题,正确理解轴对称的性质是解题关键.17.(04)(12)(20)(44)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2同时矩形AEDC 面积也为2且E 为AP1的中点由中线平分所在三角形面积即为所求【详解】解:∵又∴解析:(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD 的面积等于△ABC 面积与△ACD 面积之和即为2,同时矩形AEDC 面积也为2,且E 为AP 1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵11+2112222ABC ACD ABCDS S S 四边形, 又122ACDES 长方形, ∴=2ADP ACDE S S 长方形,又E 为AP 1的中点,∴DE 平分△ADP 1的面积,且△AED 面积为1, ∴△ADP 1面积为2,故P 1点即为所求,且P 1(4,4),同理C 为DP 3的中点,AC 平分△ADP 3面积,且△ACD 面积为1,故△ADP 3面积为2,故P 3点即为所求,且P 3(1,2),由两平行线之间同底的三角形面积相等可知,过P 3作AD 的平行线与网格的交点P 2和P 4也为所求,故P 2(0,4),P 4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.18.A2020【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外)逐步探索出下标和个点坐标之间的关系总结出规律根据规律推理点A2020的坐标从而确定点【详解】解:通过观察可得数解析:A 2020【分析】根据题意可得各个点分别位于象限的角平分线上(A 1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2020的坐标,从而确定点.【详解】解:通过观察可得数字是4的倍数的点在第三象限,∵2020÷4=505,∴点A2020在第三象限,∴A2020是第三象限的第505个点,∴点A2020的坐标为:(﹣505,﹣505).故答案为:A2020.【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标规律,然后由此规律求解即可.19.()【分析】依据对应点的坐标变化即可得到三角形ABC向左平移2个单位向上平移3个单位后得到三角形A′B′C′进而得出点P′的坐标【详解】解:由图可得C(20)C(03)∴三角形ABC向左平移2个单位解析:(32,145)【分析】依据对应点的坐标变化,即可得到三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,进而得出点P′的坐标.【详解】解:由图可得,C(2,0),C'(0,3),∴三角形ABC向左平移2个单位,向上平移3个单位后得到三角形A′B′C′,又∵点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,∴对应点P′的坐标为(12﹣2,﹣15+3),即P'(32-,145),故答案为:(32-,145).【点睛】此题主要考查了坐标与图形变化,关键是注意观察组成图形的关键点平移后的位置.解题时注意:横坐标,右移加,左移减;纵坐标,上移加,下移减.20.二【分析】根据第二象限的横坐标小于零纵坐标大于零可得答案【详解】解:点A(-31)在第二象限故答案为:二【点睛】本题考查了点的坐标记住各象限内点的坐标的符号是解决的关键四个象限的符号特点分别是:第一解析:二【分析】根据第二象限的横坐标小于零,纵坐标大于零,可得答案.【详解】解:点A (-3,1)在第二象限,故答案为:二.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题21.(1)3922x <<;(2)(-4,-2);(3)(0,0)或(0,10). 【分析】(1)根据第三象限点横纵坐标都小于0,列不等式求解即可;(2)根据点到坐标轴的距离等于其横纵坐标的绝对值列等式,再利用第三象限点的特征去绝对值符号即可求解;(3)设P 点为(0,y ),以AP 距离为底,M 到y 轴的距离为高,列方程即可求解.【详解】解:(1)∵点()29,32M x x --在第三象限,∴290320x x -<-<,, 解得3922x << ; (2)∵点M 到y 轴的距离是到x 轴的2倍, 即29232x x -=⨯-,∵点()29,32M x x --在第三象限,∴()92223x x -=⨯-, 解得52x =, ∴M 点坐标(-4,-2);(3)∵P 在y 轴上,点()0,5A点,M (-4,-2),设P 点坐标为(0,y ), ∴154=102AMP S y =⨯-⨯-△ 解得0y =或10y =, ∴P 点坐标为(0,0)或(0,10).【点睛】本题主要考查直角坐标系、已知点所在象限求参数、点到坐标轴的距离等.已知点的坐标可以求出点到x 轴、y 轴的距离,应注意取相应坐标的绝对值.各象限内点的坐标符号:第一象限内点的横、纵坐标皆为正数,即(+,+);第二象限内点的横坐标为负数,纵坐标为正数,即(-,+);第三象限内点的横、纵坐标皆为负数,即(-,-);第四象限内点的横坐标为正数,纵坐标为负数,即(+,-).22.(1)(2,0)A - ,(0,6)B ;(2)62(3)S t t =-<或26(3)S t t =->;(3):S S '的值为1或425. 【分析】 (1)根据算术平方根及绝对值的非负性求出a 、b 的值,进而可得A 、B 的坐标;(2)由题意可得2BP t =,则根据(1)可得OB=6,OA=2,进而可分当点P 在OB 上,则有62OP t =-,当点P 在OB 外,则有26OP t =-,然后根据三角形面积计算公式可求解;(3)由(2)可得当点P 在OB 上时和点P 在OB 外时,然后根据S 求出时间t ,进而根据割补法求出S ',最后问题可求解.【详解】解:(1)∵260a b ++-=,∴20,60a b +=-=,解得:2,6a b =-=,∴()2,0A - ,()0,6B ;(2)由(1)及题意可得:OB=6,OA=2,2BP t =,∴当点P 在OB 上,即3t <,则62OP t =-,∴AOP 的面积为:()112626222S OA OP t t =⋅=⨯⨯-=-; 当点P 在OB 外,即3t >,则有26OP t =-, ∴AOP 的面积为:()112262622S OA OP t t =⋅=⨯⨯-=-, ∴综上所述:S 关于t 的函数关系式为:()623S t t =-<或()263S t t =->; (3)由(2)及题意可得:()623S t t =-<或()263S t t =->,AQ=t ,则有: 当()623S t t =-<时,如图所示:∵4S =,∴462t =-,解得:t=1,∴AQ=1,∴OQ=2-1=1,OP=4,∴1111261442222AOB OPQ S S S OA OB OQ OP '=-=⋅-⋅=⨯⨯-⨯⨯=,∴:4:41S S '==;当()263S t t =->时,如图所示:∵4S =,∴426t =-,解得:t=5,∴AQ=5,∴OP=4, ∴11115654252222AQB APQ S S S AQ OB AQ OP '=-=⋅+⋅=⨯⨯+⨯⨯=, ∴4:4:2525S S '==, ∴综上所述::S S '的值为1或425. 【点睛】本题主要考查图形与坐标,关键是根据题意得到点的坐标,然后根据几何知识进行求解问题.23.(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB 的中点D ,连接CD ,过点A 作AE ⊥BC 的延长线与点E 即可; (3)根据S △A′B′C =S △ABC 代入三角形公式计算即可.【详解】(1)如图,A B C '''即为所求;(2)如图,线段CD 和线段AE 即为所求;(3)1144822A B C ABC S S BC AE '''==⋅⋅=⨯⨯=【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键.24.(1)A(0,4-),B(4-,0),C(6,0);(2)a>0时,△PAB的面积为2a-4,a<0时,△PAB的面积为4-2a;(3)P(6-,12)或(6-,8-)【分析】(1)根据三角形面积公式得到12•OA2=8,解得OA=4,则OB=OA=4,OC=BC-OB=6,然后根据坐标轴上点的坐标特征写出△ABC三个顶点的坐标;(2)分类讨论:当点P在在直线AB上方即a>2;当点P在直线AB下方,即a<2;利用面积的和与差求解;(3)先计算出S△ABC=20,利用(2)中的结果得到方程,然后分别求出a的值,从而确定P点坐标.【详解】解:(1)∵S△ABO=12 OA•OB,∵OA=OB,∴12OA2=8,解得OA=4,∴OB=OA=4,∴OC=BC-OB=10-4=6,∴A(0,-4),B(-4,0),C(6,0);(2)当点P在第二象限,直线AB的上方,即a>2,作PH⊥y轴于H,如图,S△PAB=S△AOB+S梯形BOHP-S△PBH=8+12(4+6)•a-12×6×(a+4)=2a-4;当点P在直线AB下方,即a<2,作PH⊥x轴于H,如图,S △PAB =S 梯形OHPA -S △PBH -S △OAB =12(-a+4)×6-12×(6-4)×(-a )-8=4-2a ; (3)S △ABC =12×10×4=20, 当2a-4=20,解得a=12.此时P 点坐标为(-6,12);当4-2a=20,解得a=-8.此时P 点坐标为(-6,-8).综上所述,点P 的坐标为(-6,12)或(-6,-8).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;掌握三角形面积公式.25.(1)14m n ==-,;(2)4m =-或104n -=,【分析】(1)根据平面直角坐标系中角平分线上点的特征,x 和y 的值相等,可列等式即可求出答案;(2)由PQ ∥x 轴,即点P 和Q 纵坐标有相等,列出等式即可求解即可计算出n 的值,又P 与Q 的距离为3.直线上到一点距离等于定长的点又2个,根据绝对值的意义可列等式,化简即可计算出m 的值.【详解】解:(1)∵P 、Q 两点在第一、三象限角平分线上,∴m+2=3,n -1=-5,解得m=1,n=-4;(2)∵PQ ∥x 轴,∴n -1=3,∴n=4,又∵PQ=3,∴|m+2-(-5)|=3,解得m=-4或m=-10.∴m=-4或-10,n=4.【点睛】本题主要考查平面直角坐标系中点的特征,利用点的特征列出相应的等量关系是解决本题的关键.26.(1)见解析;(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2)【分析】(1)根据B,D两点坐标建立平面直角坐标系即可.(2)根据点的位置写出坐标即可.【详解】解:(1)平面直角坐标系如图所示.(2)点A,C,E,F的坐标分别为(﹣1,﹣3),(﹣2,3),(0,1),(4,2).【点睛】本题考查点的坐标等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
七年级下册数学(有答案)第七章平面直角坐标系练习题及答案
2017七年级下册数学(有答案)第七章平面直角坐标系练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第七章平面直角坐标系基础过关作业1.点P(3,2)在第_______象限.2.如图,矩形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标为_____.3.以点M(-3,0)为圆心,以5为半径画圆,分别交x轴的正半轴,负半轴于P、Q两点,则点P的坐标为_______,点Q的坐标为_______.4.点M(-3,5)关于x轴的对称点M1的坐标是_______;关于y轴的对称点M2•的坐标是______.5.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)6.在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在直角坐标系中,点P(2x-6,x-5)在第四象限中,则x的取值范围是()A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-38.如图,在所给的坐标系中描出下列各点的位置:A(-4,4) B(-2,2) C(3,-3)D(5,-5) E(-3,3) F(0,0)你发现这些点有什么关系你能再找出一些类似的点吗综合创新作业9.(综合题)在如图所示的平面直角坐标系中描出A(2,3),B(-3,-2),•C(4,1)三点,并用线段将A、B、C三点依次连接起来,你能求出它的面积吗?10.如图,是儿童乐园平面图.请建立适当的平面直角坐标系,•写出儿童乐园中各娱乐设施的坐标.11.(创新题)在平面直角坐标系中,画出点A(0,2),B(-1,0),过点A作直线L1∥x轴,过点B 作L2∥y轴,分析L1,L2上点的坐标特点,由此,你能总结出什么规律?12.(1)(2005年,福建三明)已知点P1(a,3)与P2(-2,-3)关于原点对称,则a=____.(2)(2005年,河南)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是()A.(-3,300) B.(7,-500)C.(9,600) D.(-2,-800)培优作业13.(探究题)在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的面积为12,试确定点C的坐标特点.14.(开放题)已知平面直角坐标系中有6个点:A(3,3),B(1,1),C(9,1),D(5,3),E(-1,-9),F(-2,-12).请将上述的6个点分成两类,并写出同类点具有而另一类点不具有的一个特征(•特征不能用否定形式表达).答案:1.一 2.(-4,3) 3.(2,0);(-8,0)4.(-3,-5);(3,5)点拨:点(a,b)关于x轴的对称点的坐标是(a,-b),关于y轴的对称点的坐标是(-a,b).5.D 点拨:注意坐标与距离的关系.6.B 点拨:因为m2+1>0,所以点(-1,m2+1)一定在第二象限,故选B.7.A 点拨:∵点P(2x-6,x-5)在第四象限,∴26050xx->⎧⎨-<⎩解得3,5.xx>⎧⎨<⎩∴3<x<5,故选A.8.图略.这些点都在第二、第四象限的角平分线上,再如:(-1,1),(1,-1),(3.5,-3.5)等.9.解:如答图,AB交y轴于点D(0,1),则得S△ABC=S△ACD+S△BDC=12×4×(3-1)+12×4×│-2-1│=4+6=10.10.解:以碰碰车为原点,分别以水平向右方向、竖直向上方向为x轴、y•轴的正方向,建立平面直角坐标系,则各娱乐设施的坐标为:碰碰车(0,0),海盗船(5,1),太空飞人(3,4),跳伞塔(1,5),魔鬼城(4,8),过山车(-2,7),碰碰船(-2,2).11.解:如答图,过点A(0,2)且平行于x轴的直线L上所有点的纵坐标都是2;过点B(-1,0)且平行于y轴的直线L上所有点的横坐标都是-1.由此得到的规律是:•平行于x轴的直线上所有点的纵坐标都相同,平行于y•轴的直线上所有点的横坐标都相同.12.(1)2 点拨:点(a,b)关于原点的对称点的坐标是(-a,-b).(2)B13.解:如答图,设点C的纵坐标为b,则根据题意,得12×AB×│b│=12.∵AB=3+5=8,∴12×8×│b│=12.∴b=±3.∴点C的纵坐标为3或-3,即点C在平行于x轴且到x轴的距离为3的直线上.点拨:数形结合是解答此类题的较好方法.14.解:点A、B、C、D为一类,它们都在第一象限.点E、F为另一类,它们都在第三象限.点拨:本题还有其他分类方法,同学们可作进一步探索.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数、平面直角坐标系测试题一、选择题(每题2分,共30分) 1、 9的平方根是( )。
A. 3B. -3C. ±3D. 812、 下列各数中,不是无理数的是( )。
A.7B. 0.5C. 2πD. ⋅⋅⋅⋅⋅⋅151151115.03、 已知点P (a ,b ),ab >0,a +b <0,则点P 在( )。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、 点P (m +3,m +1)在直角坐标系的x 轴上,则点P 坐标为( )。
A. (0,-2)B. (2,0)C. (4,0)D. (0,-4) 5、 下列说法错误的是( )。
A. 1的平方根是±1B. -1的立方根是-1C.2是2的平方根D. -3是()23-的平方根6、 如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( )。
A. 相等 B. 互为相反数 C. 互为倒数 D. 相等或互为相反数7、 将某图形的横坐标都减去2,纵坐标不变,则该图形( )。
A. 向右平移2个单位B. 向左平移2个单位C. 向上平移2个单位D. 向下平移2个单位8、 如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )。
A. 点A B. 点B C. 点C D. 点D 9、 和数轴上的点一一对应的是( )。
A. 整数B. 有理数C. 无理数D. 实数10、点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P的坐标是( )。
A. (4,2) B. (-2,-4) C. (-4,-2) D. (2,4) 11、已知点P (x ,x ),则点P 一定( )。
A. 在第一象限B. 在第一或第四象限C. 在x 轴上方D. 不在x 轴下方12、若x ,y 为实数,且022=-++y x ,则2017⎪⎪⎭⎫⎝⎛y x 的值为( )。
A. 1B. -1C. 2D. -213、已知点A (2,-3),线段AB 与坐标轴没有交点,则点B 的坐标可能是( )。
A. (-1,-2)B. (3,-2)C. (1,2)D. (-2,3) 14、下列说法正确的是( )。
A. 实数-2a 是负数 B.a a =2C. a -一定是正数D. 实数-a 的绝对值是a15、如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,得到点1A (0,1),2A (1,1),3A (1,0),4A (2,0),...,那么点2016A 的坐标为( )。
A. (1007,0)B. (1008,0)C. (1007,1)D. (1008,1)二、填空题(每题3分,共18分)16、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示___________。
17、37-的相反数是___________;32-=______。
18、已知x 轴上点P 到y 轴的距离是3,则点P 坐标是______。
19、一个正数x 的平方根是2a -3与5-a ,则x 是____。
20、如图,点A ,B 的坐标分别为(1,2)、(4,0),将△AOB沿x 轴向右平移,得到△CDE ,已知DB =1,则点C 的坐标为____。
21、已知77+的小数部分是a ,77-的小数部分是b ,则a +b =____。
三、解答题:(共52分)22、计算题(每题4分,共16分)(1)()23222+--- (2)⎪⎭⎫⎝⎛-7717(3)33809.04181--++- (4)()1223232--+---23、(8分)解下列方程: (1)()233322=+x (2)()123-=-x24、如图,这是某市部分简图,请以火车站为原点建立适当的平面直角坐标系,并分别写出各地的坐标。
(6分)25、(6分)已知x ,y 满足xx x y 289161622---+-=,求xy 的平方根。
26、(8分)小明的爸爸买来一块边长为80cm 的正方形大理石板材,准备在大理石板材的四周镶上等宽的木板做成一个正方形桌面,使桌面的面积为144002cm ,问四周镶上的木板的宽度是多少?27、(8分)如图,在平面直角坐标系中,A (-4,0),B (6,0),C (2,4),D (-3,2)。
(1)求四边形ABCD 的面积;(2)若点P 是y 轴上一点,且三角形ABP 的面积等于四边形ABCD 面积的一半,求P 点坐标。
答案一、选择题(每题2分,共30分) 19的平方根是( C )。
A. 3B. -3C. ±3D. 812 下列各数中,不是无理数的是( B )。
A.7B. 0.5C. 2πD. ⋅⋅⋅⋅⋅⋅151151115.03 已知点P (a ,b ),ab >0,a +b <0,则点P 在( C )。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4 点P (m +3,m +1)在直角坐标系的x 轴上,则点P 坐标为( B )。
A. (0,-2)B. (2,0)C. (4,0)D. (0,-4) 5 下列说法错误的是( D )。
A. 1的平方根是±1B. -1的立方根是-1C.2是2的平方根D. -3是()23-的平方根6 如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( D )。
A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数 7 将某图形的横坐标都减去2,纵坐标不变,则该图形( B )。
A. 向右平移2个单位B. 向左平移2个单位C. 向上平移2个单位D. 向下平移2个单位8 如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( B )。
A. 点A B. 点B C. 点C D. 点D 9 和数轴上的点一一对应的是( D )。
A. 整数B. 有理数C. 无理数D. 实数10 点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P的坐标是( B )。
A. (4,2) B. (-2,-4) C. (-4,-2) D. (2,4) 11 已知点P (x ,x ),则点P 一定( D )。
A. 在第一象限B. 在第一或第四象限C. 在x 轴上方D. 不在x 轴下方12 若x ,y 为实数,且022=-++y x ,则2017⎪⎪⎭⎫⎝⎛y x 的值为( B )。
A. 1B. -1C. 2D. -213 已知点A (2,-3),线段AB 与坐标轴没有交点,则点B 的坐标可能是( B )。
A. (-1,-2)B. (3,-2)C. (1,2)D. (-2,3) 14 下列说法正确的是( B )。
A. 实数-2a 是负数 B.a a =2C. a -一定是正数D. 实数-a 的绝对值是a15 如图所示,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,得到点1A (0,1),2A (1,1),3A (1,0),4A (2,0),...,那么点2016A的坐标为( B )。
A. (1007,0)B. (1008,0)C. (1007,1)D. (1008,1)二、填空题(每题3分,共18分)16 在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示__10排15号__。
1737-的相反数是37;32-=23-。
18 已知x 轴上点P 到y 轴的距离是3,则点P 坐标是(﹣3,0)或(3,0)。
19 一个正数x 的平方根是2a -3与5-a ,则x 是___49___。
20 如图,点A ,B 的坐标分别为(1,2)、(4,0),将△AOB沿x 轴向右平移,得到△CDE ,已知DB =1,则点C 的坐标为___(4,2)___。
21 已知77+的小数部分是a ,77-的小数部分是b ,则a +b =___1___。
三、解答题:(共52分)22 计算题(每题4分,共16分)(1)()23222+---(2)⎪⎭⎫⎝⎛-7717 (1)解:原式=24(2)解:原式=﹣6(3)33809.04181--++-(4)()1223232--+---(3)解:原式=2.3(4)解:原式=1232--23 (8分)解下列方程:(1)()233322=+x (2)()123-=-x (1)解:23-=x 或29- (2)解:x =124 如图,这是某市部分简图,请以火车站为原点建立适当的平面直角坐标系,并分别写出各地的坐标。
(6分) 解:火车站:(0,0) 体育场:(﹣4,3) 市场:(4,3) 宾馆:(2,2) 文化宫:(﹣3,1) 医院:(﹣2,﹣2) 超市:(2,﹣3)25 (6分)已知x ,y 满足xx x y 289161622---+-=,求xy 的平方根。
解:∵0162≥-x ,0162≥-x , ∴0162=-x , ∴x =±4, ∵8-2x ≠0, ∴x =﹣4,∴y =169-∴xy =49xy 的平方根为:49±=23±。
26 (8分)小明的爸爸买来一块边长为80cm 的正方形大理石板材,准备在大理石板材的四周镶上等宽的木板做成一个正方形桌面,使桌面的面积为144002cm ,问四周镶上的木板的宽度是多少?解:桌面边长为14400=120,则木板的宽度为(120-80)÷2=20(c m )27 (8分)如图,在平面直角坐标系中,A (-4,0),B (6,0),C (2,4),D (-3,2)。
(1)求四边形ABCD 的面积;(2)若点P 是y 轴上一点,且三角形ABP 的面积等于四边形ABCD 面积的一半,求P 点坐标。
解:(1)分别过C 、D 两点作x 轴的垂线,垂足分别为E 、F ,则BCE CD FE A D F A BCD S S S S ∆∆++=梯形四边形=24,。