《不等关系与不等式》第一课时参考教案2
高三数学教案《不等关系与不等式》
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一.基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.
二.问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市O(如图)的东偏南方向
300km的海面P处,并以20km/h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60km,
并以10km/h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一.小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:P80闯关训练。
不等关系与不等式第一课时教学设计
3.1 不等关系与不等式教学设计(第一课时)【教学过程】一.情景导入,创设问题:以章头图为情景,让学生发挥想象,举出生活中类似“不等关系”的实例.如:某天的天气预报报道,最高气温30℃,最低气温15℃.(学生举手发表,教师给以肯定与表扬)〖设计意图〗由章头图让学生自由发挥,举出类似的例子.提问:如何用数学符号表示这些不等关系呢?生:用不等式.回顾不等式的相关知识:举例-7<-5;3+4>1+4;26x ≤;a +2≥0;3≠4;22≥.不等式:用不等号将两个式子连接起来所成的式子.我们学过的有哪些不等号?> 表示大于 < 表示小于≥ 表示大于或等于(不小于、不低于)≤ 表示小于或等于(不大于、不超过)人的身高有高与矮,重量有轻重之分,数有大小之分.即两个实数有:a b >或a b <或a b =三种大小关系如:(给出教材上的两个实例,学生用不等式表示出来)实例1 限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h.实例2 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不 少于2.3%.(对两个不等式同时满足的强调)二.师生互动,建立不等关系:问题1 设点A 与直线l 的距离为d ,B 为直线l 上任意一点,如图,你能得出怎样的不等关系? AdlB[学生活动]由学生讨论、发言,师生共同总结出d AB ≤问题2 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1 元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表 示销售的总收入不低于20万元呢?[师生活动]阅读题目,学生勾画出重要信息(注意单位的统一),按下列要求独立思考. 提问:怎样用自己的语言描述出销售总收入?用数学式子又怎样表示呢?(见预学案)解:设杂志的定价为x 元,则定价提高了( 2.5x -)元,即定价提高了(2.50.1x -)个0.1销售量减少了(2.50.20.1x -⨯)万本. 此时销售量为( 2.580.20.1x --⨯)万本.那么总收入为 2.5(80.2)0.1x x --⨯⋅万元. 故可以建立不等式 2.5(80.2)200.1x x --⨯⋅≥. [学生活动]学生结合学案讨论,最后师生共同总结.问题3 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求, 600mm 钢管的数量不能超过500mm 钢管的3倍.如何用不等式组表示上述所有不等关 系?[学生活动]自己阅读题目,找出其中蕴涵的不等关系.提示:若令截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意,应当有什么样 的不等量关系呢?由学生讨论,举手到黑板上进行板演,最后集体讲评.解:令截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意得:5006004000;3;0;0.x y x y x y +≤ ⎧⎪≥ ⎪⎨≥⎪⎪≥⎩[学有所用] 74p 练习1 (学生举手到黑板上板演)生活实例探究 若b 克糖水中有a 克糖,其中0b a >>;之后再放m 克糖(0m >)为什么会 变得更甜呢?思考:之后再放m 克糖使得糖水的什么变了?试猜想此过程中是否蕴涵了一个 不等关系?三. 类比实数的大小,比较代数式的大小:事实上,对于两个实数a b 、:若a b -是正数,那么a b >;若a b -等于零,那么a b =;若0a b -<, 那么a b <.反过来也成立吗?故有:0;0;0.a b a b a b ->⇔⎽⎽⎽⎽⎽⎽⎽⎽-=⇔⎽⎽⎽⎽⎽⎽⎽⎽-<⇔⎽⎽⎽⎽⎽⎽⎽⎽思考:实数可以比较大小,那么,对于任意的两个代数式,又如何比较大小呢?四.实例剖析比较代数式2225856x x x x ++++与的大小.活动:让学生验证糖水实例探究中的猜想.归纳作差比较法的步骤:1.作差;2.变形:配方、因式分解、通分(分母)分子有理化3.定号.练习:比较下列代数式的大小(1)233x x +与;(2)6421x x x ++与 (其中1x ≠±).五.课堂小结1.通过具体情景,建立不等式(组)2.比较两个代数式的大小——作差法【本节作业】7551P A B【板书设计】 3.1不等关系与不等式(一)实例 方法引导 方法归纳 如何用不等式或不等式组表示 实例剖析(知识方法应用) 小结 实际问题中不等量关系? 示范解题。
不等关系与不等式教案
不等关系与不等式教案教案标题:不等关系与不等式教案教案目标:1. 理解不等关系的概念,并能够正确运用不等关系符号(大于、小于、大于等于、小于等于)。
2. 掌握解不等式的方法,包括图像法和代数法。
3. 能够在实际问题中运用不等关系和不等式解决数学问题。
教学资源:1. 教材:包含不等关系和不等式的相关知识点。
2. 白板、黑板或投影仪:用于展示教学内容和解题步骤。
3. 练习题:用于巩固学生对不等关系和不等式的理解和运用能力。
教学步骤:引入(5分钟):1. 引导学生回顾等关系的概念,例如“大于”和“小于”。
2. 提出问题:“在数学中,我们还可以比较两个数的大小,但不一定是相等的关系,你知道这个叫什么吗?”引导学生理解不等关系的概念。
概念讲解(10分钟):1. 解释不等关系的符号表示,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。
2. 通过示例和图示,帮助学生理解不等关系符号的含义和使用方法。
解不等式的方法(15分钟):1. 图像法:通过绘制数轴和标记关键点的方式,帮助学生直观地理解不等式的解集。
演示解不等式的图像法步骤,并让学生跟随进行练习。
2. 代数法:通过运用数学运算规则和性质,将不等式转化为等价的形式,从而求解不等式。
演示解不等式的代数法步骤,并让学生进行练习。
练习与巩固(20分钟):1. 给学生分发练习题,包括不等关系的填空题和不等式的求解题。
确保题目涵盖不同难度和类型,以满足不同学生的需求。
2. 引导学生独立或合作完成练习题,并及时给予指导和反馈。
3. 随堂检查学生的练习情况,并解答他们可能遇到的问题。
拓展应用(10分钟):1. 提出一些实际问题,要求学生利用不等关系和不等式进行求解。
例如:“某超市举行促销活动,商品原价的80%作为折扣,你能计算出打折后的价格吗?”2. 鼓励学生思考如何将实际问题转化为数学不等式,并运用所学知识解决问题。
总结与反思(5分钟):1. 总结不等关系和不等式的概念和解题方法。
不等关系与不等式(第一课时 )
不等关系与不等式(第一课时)课题:3.1.1 不等关系与不等式(第一课时)教学目标:1.了解不等式(组)的实际背景,掌握比较实数大小的方法;2.经历从实际情境中抽象出不等式模型的过程,体会不等式、方程以及函数之间的联系;3.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,培养学生对客观世界的认识能力;体会不等式组对于刻画不等关系的意义和价值.教学重点:用不等式(组)表示实际问题中的不等关系;教学难点:用不等式(组)表示实际问题中的不等关系;教学方法:启发式教学,讲解法教学用具:多媒体授课类型:新授课课时安排:1课时教学过程:1、创设情境引入课题:问题1 请同学们看这几幅图片,能感觉到美吗?请同学们欣赏美,感受美.【设计意图】选用几幅重叠起伏的壮丽画图(章头图)让学生自由的展开联想,把学生引入到“横看成岭侧成峰,远近高低各不同”的大自然中,让学生感受在现实世界和日常生活中存在着大量的数量关系,了解不等式的实际背景,唤起学生的学习热情.(教师:该山具有雄山的刚毅,秀山的温柔,灵山的潇洒,此山是以自然景观为载体,人文景观为内涵的庐山.正因为庐山之美,古往今来,多少文人墨客到此为庐山题诗作画,同学们记得大诗人苏轼为庐山题写的《题西林壁》吗(学生回答)?正如诗中所提到的“高”与“低”,“远”与“近”描述的是庐山在数量上的一些不等关系,谈到不等关系,同学们会想到我们非常熟悉的不等关系,相等关系体现的是整齐划一之美,不等关系体现的是错落有致之美)问题2 庐山为什么美?请同学们思考.【设计意图】通过《题西林壁》中所提到的“高”与“低”,“远”与“近”让学生感受庐山的美丽,进而把这种“美”上升到一个高度---不等关系,引出课题.在引出不等关系的定义之后,教师指出:在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.2、具体情境感受不等关系:问题:请同学们从下列情境中感受不等关系,并说出每幅图片中都有哪些不等关系?1)古代文明代表作之一----金字塔2)现代化大都市3)股票K线图4)宇宙空间5)科幻中的星球人归纳总结(师生探讨):人们经常用长与短、高与矮、轻与重、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.【设计意图】课程标准明确提出:通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.该问题的设计,通过大量的学生感兴趣的和富有时代感的素材,让学生感受不等关系,使学生认识到不等关系是客观存在的广泛的数量关系.3、不等关系的数学表示:通过大量事实,在学生感受完不等关系之后,教师指出不等关系与我们生活息息相关,同时提出如下问题:问题1 数学来源于生活,并应用于生活,生活中的不等关系该如何研究?在数学上,我们常运用不等式来研究不等关系的问题.问题2 什么是不等式?不等式的定义:我们用数学符号,连接两个数或不等式,以表示他们之间的不等关系,含有这些符号的式子叫做不等式问题3 不等式是刻画现实世界和日常生活中数量之间差异的一种工具,用不等式如何刻画生活中的不等式关系呢?实例1如下两个图标,请同学说出不等关系和不等式.限速标志限高标志实例2 该酸奶中脂肪的含量f 不少于2.5%,蛋白质的含量p不少于2.3%,写成不等式组为:实例3 如图所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取一张纸片,若抽到的是一个半圆则甲方赢;若抽到的是个一个正方形则乙方赢。
不等式与不等关系(第一课时)教案
§3.1不等式与不等关系【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
经典教案3.1不等关系与不等式(1).doc
(2)当销售量小于 吨时,即 ,公司亏损,即 .
【方法总结】正确理解图象所表达的意思是解决该问题的关键.
例2 比较 与 的大小,其中 R.
【审题要津】比较 与 的大小,只要作差后判出差的符号即可.
解:
, .
【方法总结】两个实数比较大小,通常用作差法来进行,其一般步骤是:
解: .
7.咖啡馆配制两种饮料,甲种饮料用奶粉、咖啡、糖分别为9 、4 、3 ,乙种饮料用用奶粉、咖啡、糖分别为4 、5 、5 ,已知每天使用原料为奶粉3600 、咖啡2000 、糖3000 .写出满足上述所有不等关系的不等式.
解:设配制甲种饮料 ,配制乙种饮料 .
则
8.比较 与 .
解: - = .
第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将差化积;第三步:定号.最后得出结论.
例3 建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.
4.不等式 的含义.
不等式 应读作“ 大于或者等于 ”,其含义是指“或者 > ,或者 = ”,等价于“ 不小于 ,即若 > 或 = 之中有一个正确,则 正确.
5.能否正确对“问题2”和“问题3”列式.(见课本)
6.实数比较大小的依据与方法.
(1)如果 是正数,那么 ;如果 等于零,那么 ;如果 是负数,那么 .反之也成立,就是.( >0 > ; =0 = ; <0 < ).
解:由已知图形知: ,由此得: .
3.1.1不等关系与不等式教案
3、1、1不等关系与不等式(第一课时)教学目标:1、知识与技能目标:(1)、理解不等关系及其在数轴上的几何表示。
(2)、会用两个实数之间的差运算确定两实数之间的大小关系,能比较两个代数式的大小。
2、过程与方法目标:(1)教师提出问题,素材,并及时点拨,与学生进行交流,分析,抽象出数学模型。
(2)设计较典型的问题,通过学生自主探究,激发学习兴趣和积极性。
3、态度情感与价值观目标:(1)通过具体情景,让学生体会到学好数学对日常生活的重要作用。
(2)培养学生发现问题、分析问题和解决问题的能力,进而培养学生的实践能力。
进一步体会数形结合的重要方法,增强对事物间普遍联系规律的认识,树立辩证唯物主义思想。
教学重点:实数(代数式)大小比较的基本方法:作差法。
教学难点:判断差的符号难点突破方法:1、结合实例强化2、小组合作探究教法:“自主学习、合作探究、精讲点拨、有效训练”四环节教学法学法:尝试、探究、讨论、总结、运用教具:投影仪板书设计:黑板中央板书课题,左侧依次书写定义、实数(代数式)大小的比较法,其余位置留作演算使用,屏幕保留小结和作业。
教学过程:1、新课引入:现实世界中存在着等量关系,也存在着大量的不等关系,同学们能举出一些例子吗?如:(1)天气预报说:今天早晨最低温度为22℃,今天白天的最高温度为30℃,若用t表示气温,那么用数学表达式可写成22℃≤t≤30℃(2)上一章学习的等比数列中规定q≠0(3)根号a中,a的取值范围是什么?a非负实数,即a≥0(4)提问两同学的身高问题,让全体同学比较其大小关系。
如A>B2、合作探究:(学生思考并回答以下问题)问题一:不等式的定义用不等号连接两个解析式(以表示它们之间的不等关系)所得的式子,叫做不等式.不等号的种类:>、<、≥、≤、≠.(强调“≥、≤”的读法中的“或”引出问题二)问题二:2≥2,这样写正确吗?(“≥“的含义是什么?)这样写是对的,因为“>”和“=”只要一个满足就可以了,即a≥b表示a>b或a=b ,同样a≤b即为a<b或a=b。
《不等关系与不等式》第一课时参考教案
课题: §3.1不等式与不等关系第1课时授课类型:新授课【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h,写成不等式就是:v40引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
教学设计3:2.1 第1课时 不等关系与不等式
2.1第1课时不等关系与不等式教学目标核心素养1.能用不等式(组)表示实际问题中的不等关系.(难点)2.作差法比较两实数的大小(重点)1. 借助实际问题表示不等式,提升数学建模素养.2. 通过大小比较,培养逻辑推理素养.教学知识导读1.不等符号与不等关系的表示(1)不等符号有<,≤,>,≥,≠;(2)不等关系用不等式来表示.2.不等式中的文字语言与符号语言之间的转换大于大于等于小于小于等于至多至少不少于不多于>≥<≤≤≥≥≤思考:不等式a≥b和a≤b有怎样的含义?[提示]①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.3.比较两实数a,b大小的依据思考:x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?[提示]作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.初试身手1.大桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车货总重量T不超过40吨,用不等式表示为()A.T<40B.T>40C.T≤40D.T≥40【答案】C【解析】限重就是不超过,可以直接建立不等式T≤40.2.设m=2a2+2a+1,n=(a+1)2,则m,n的大小关系是________.【答案】m≥n【解析】m -n =2a 2+2a +1-(a +1)2=a 2≥0.3.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b 中,正确的不等式有________个.【答案】1【解析】由1a <1b <0,得a <0,b <0,故a +b <0且ab >0,所以a +b <ab ,即①正确;由1a <1b <0,得⎪⎪⎪⎪1a >⎪⎪⎪⎪1b ,两边同乘|ab |,得|b |>|a |,故②错误;由①②知|b |>|a |,a <0,b <0,那么a >b ,故③错误. 合作探究面积不小于110 m 2,靠墙的一边长为x m .试用不等式表示其中的不等关系.[解] 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18, 这时菜园的另一条边长为30-x 2=⎝⎛⎭⎫15-x2(m). 因此菜园面积S =x ·⎝⎛⎭⎫15-x2,依题意有S ≥110, 即x ⎝⎛⎭⎫15-x2≥110, 故该题中的不等关系可用不等式表示为⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎫15-x 2≥110. 规律方法1.此类问题的难点是如何正确地找出题中的显性不等关系和隐性不等关系. 2.当问题中同时满足几个不等关系,则应用不等式组来表示它们之间的不等关系,另外若问题有几个变量,选用几个字母分别表示这些变量即可.3.用不等式(组)表示不等关系的步骤:(1)审清题意,明确表示不等关系的关键词语:至多、至少、不多于、不少于等. (2)适当的设未知数表示变量.(3)用不等号表示关键词语,并连接变量得不等式. 跟踪训练1.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解] 设每天派出甲型卡车x 辆,乙型卡车y 辆,则⎩⎪⎨⎪⎧x +y ≤9,10×6x +6×8y ≥360,0≤x ≤4,x ∈N ,0≤y ≤7,y ∈N ,即⎩⎪⎨⎪⎧x +y ≤9,5x +4y ≥30,0≤x ≤4,x ∈N ,0≤y ≤7,y ∈N .【例2】 已知a ,b 为正实数,试比较a b +ba与a +b 的大小. 思路探究:注意结构特征,尝试用作差法或者作商法比较大小. [解] 法一:(作差法)⎝⎛⎭⎫a b +b a -(a +b )=⎝⎛⎭⎫a b -b +⎝⎛⎭⎫b a -a =a -b b +b -aa=(a -b )(a -b )ab =(a -b )2(a +b )ab.∵a ,b 为正实数,∴a +b >0,ab >0,(a -b )2≥0, ∴(a -b )2(a +b )ab ≥0,当且仅当a =b 时等号成立. ∴a b +ba≥a +b (当且仅当a =b 时取等号). 法二:(作商法)b a +ab a +b =(b )3+(a )3ab (a +b )=(a +b )(a +b -ab )ab (a +b )=a +b -abab=(a -b )2+ab ab =1+(a -b )2ab ≥1,当且仅当a =b 时取等号.∵b a +ab>0,a +b >0, ∴b a +ab≥a +b (当且仅当a =b 时取等号). 法三:(平方后作差)∵⎝⎛⎭⎫a b +b a 2=a 2b +b 2a +2ab ,(a +b )2=a +b +2ab ,∴⎝⎛⎭⎫a b +b a 2-(a +b )2=(a +b )(a -b )2ab .∵a >0,b >0,∴(a +b )(a -b )2ab≥0,又a b +b a >0,a +b >0,故a b +ba≥a +b (当且仅当a =b 时取等号). 规律方法1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.如果两实数同号,亦可采用作商法来比较大小,即作商后看商是大于1,等于1,还是小于1. 跟踪训练2.已知x <1,比较x 3-1与2x 2-2x 的大小.[解] (x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1) =(x -1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫x -122+34.因为x <1,所以x -1<0.又⎝⎛⎭⎫x -122+34>0, 所以(x -1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫x -122+34<0. 所以x 3-1<2x 2-2x .课堂小结1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.当堂检测1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式组表示为________.【答案】⎩⎪⎨⎪⎧x ≥95y >380z >45【解析】“不低于”即“≥”,“高于”即“>”,“超过”即“>”,所以⎩⎪⎨⎪⎧x ≥95,y >380,z >45.2.若8<x <10,2<y <4,则xy 的取值范围是________.【答案】(2,5)【解析】∵2<y <4,∴14<1y <12.∵8<x <10,∴2<xy<5.3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________. 【答案】4.5t <28 000【解析】由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 4.设M =a 2,N =-a -1,则M ,N 的大小关系为________. 【答案】M >N【解析】M -N =a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N .。
3.1不等关系和不等式教案
3.1不等关系和不等式(第一课时)学习过程:一、课题引入现实世界和日常生活中,也普遍存在着大量的不等关系,例如:1、三角形三边之间的关系2、同班同学身高之间的关系。
3、公路上各种车辆的速度之间的关系你能不能再举出一些存在着不等关系的例子呢?二、不等关系是普遍存在的请同学们指出下列问题中哪两者之间存在着不等关系?1、今天的天气预报说:明天白天的最高温度为13℃;40 白天的气温t与13℃之间存在不等关系,t≤13℃2、a是一个非负实数。
a的取值与零之间存在着不等关系,a≥03、右图是限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.汽车的速度v 与40km/h之间存在不等关系,v≤40你能不能用不等符号把上述关系表示出来呢?三、不等式1、像这样,用不等号(<,>,≤,≥,≠)表示不等关系的式子就叫不等式。
其中“<”或“>”连结的不等式叫严格不等式。
用“≤”或“≥”连结的不等式叫非严格不等式。
2、不等式a b ≤的含义:不等式a ≤b 的含义是“a b <”或“a b =”。
等价于“a 不大于b ”,即a b <和a b =之中有一个成立,则a ≤b 成立。
3、小常识:“不等号”是英国数学家哈里奥特(T.Harriot )于1631年开始使用的,但当时并没有被数学界所接受,直到100多年后,才逐渐成为标准的应用符号。
感悟体验1、2008年9月25日9时,我国“神舟七号”载人飞船在酒泉卫星发射中心发射成功,实现了中华民族千年的又一飞天梦想,这是自1970年4月4日成功发射“东方红一号”人造卫星以来,我国航天史上又一新的里程碑,我国已成为继俄、美之后,世界上第三个掌握载人航天技术、成功发射载人飞船的国家。
“东方红一号”与“神舟七号”部分参数的对比见下表,请把表格补充完整。
“东方红一号”与“神舟七号”部分参数对比表分析:观察参数对比可以发现ab s s ''>,a b s s >,a b t t >,a b m m <这些不等式关系,从而说明“神舟七号”飞船比“东方红一号”卫星在很多方面都有了较大的发展。
必修五-3.1不等式与不等关系(第一课时)教案
§3.1不等式与不等关系【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式 2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
必修五 3.1不等式与不等关系(第一课时)教案教学文案
§3.1不等式与不等关系【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式 2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
不等式及不等关系精品教案
不等关系与不等式(第一课时)【学习目标】:1、了解不等式的概念;2、掌握实数的运算性质与大小顺序之间的关系;3、学会比较两个代数式的大小.4、掌握不等式的基本性质【学习重点】:实数的大小比较的基本方法:作差法.不等式性质的应用【学习难点】:作差后代数式的变形.不等式性质的灵活使用这个图标是在我国人民法院的标志,其中这里有一个像天平的标志,说明法律面前人人平等,人在天平的两侧多添加了一些东西,基础题1、设R b a ∈,,若0>-b a ,则下列不等式中正确的是( )A.0>-a bB.033<+b aC.0>+a bD.022<-b a2、已知y x y x M 2422+-+=,5-=N ,若2≠x 或1≠y ,则( )A.M>NB.M<NC.M=ND.不能确定3、若0<<b a ,则下列不等关系中不能成立的是( )A .b a 11> B.ab a 11>- C.b a > D.22b a > 4、已知三个不等式:0,0,0>->->bda c ad bc ab (其中a,b,c,d,均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是 ( ) A.0 B.1 C.2 D.35、已知c b a >>,且0=++c b a ,则下列不等式恒成立的是( )A.222c b a >> B.b c b a > C.bc ac > D.ac ab >6、若0,0,0<<<>>e d c b a ,求证:22)()(d b ec a e ->-能力提升: 1、若⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛∈2,0,2,0πβπα,则32βα-的取值范围是( )A.⎪⎭⎫ ⎝⎛π65,0 B. ⎪⎭⎫ ⎝⎛-ππ65,6 C. ()π,0 D. ⎪⎭⎫⎝⎛-ππ,62、下列不等式中,正确的有( )①若cc b a 22⋅>⋅,则b a > ②若0,>>c b a ,则c b c a lg lg > ③c b c a >,则b a >A.0个B.1个C.2个D.3个 3、已知c b a >>,则ac c b b a -+-+-111的值( ) A.为正数 B.为非正数 C.为非负数 D.不确定4、若规定bc ad d c b a -=,则a b b a -与bb aa -的大小 5、已知a ,b 为正实数,试比较ab ba +与b a +的大小6、已知,221<+<-b a 43<-<b a ,求b a +5的取值范围。
《不等式与不等关系》教案
《不等关系与不等式》教学设计一教学目标1.掌握比较两个实数大小的方法.2.掌握不等式的八条性质,并能进行简单应用.二教学重难点重点:1.作差法比较两个实数(式)的大小.2.不等式的八条性质的理解和应用.难点:不等式性质的理解和应用.三教学过程(1)复习引入师:在上节课的学习中,我们知道生活中存在着大量的不等关系,怎样用数学语言表示这些不等关系呢?生:用不等式表示.师:本节课我们就具体来学习不等关系与不等式。
(板书课题)(2)课堂探究探究一实数(式)比较大小在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:如果a-b>0,那么;如果a-b<0,那么;如果a-b=0,那么 .该结论反过来也成立,即a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b. 师:从这种等价关系来看,要比较两个实数a,b的大小,可以由它们的差与0的大小关系来决定,即作差法。
例1 试比较 (x+1)(x+5) 与23(+的大小.x)解由于 (x+1)(x+5)−2)3x(+=)9+xx+x-x6(6+)5(2+=-4<0所以 (x+1)(x+5)<23(+.x)师:请你总结作差法比较实数大小的方法。
生:作差变形判断符号得出结论。
师:在变形时,常用的方法有:配方法,因式分解、分子有理化等,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.练习设a=2x−x,b=x−2,则a与b的大小关系为( ).A.a>bB.a=bC.a<bD.与x有关生:自主思考,由一名学生黑板展示并讲解。
探究二不等式的基本性质师:初中我们学过哪些不等式的性质?生:性质1(对称性) 如果a>b,那么b<a;如果b<a,那么a>b.性质2(传递性) 如果a>b,b>c,那么a>c.性质3(可加性) 如果a>b,则a+c>b+c.性质4(可乘性) 如果a>b,c>0,则a c>bc;如果a>b,c<0,则a c<bc.师:思考:用“>”或“<”填空(1)如果a>b,c>d,则a+c b+d(2)如果a>b>0,c>d>0,则a c bd(3) 如果a>b>0,则2a2b(4) 如果a>b>0,.生:独立思考后小组交流,由一个小组回答并证明.师:这样我们就讲不等式的性质又拓展出以下四条:1. (同向可加性)如果a >b ,c>d ,则a +c>b+d ;2. (同向同正可乘性)如果a >b>0,c>d>0,则a c>bd ;3. (可乘方性)如果a >b>0,则n n b a >,(n ∈+N );4. (可开方性)如果a>b>0,则n n b a >,(n ∈+N , n ≥2).例2 若0>>b a ,0<<d c ,则下列结论正确的是( )A. 0>-b d c aB.0<-b d c aC.c b d a >D.c b d a <生:思考后,由一名学生回答。
高三数学必修五《不等关系与不等式》教案
高三数学必修五《不等关系与不等式》教案教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗3数轴上的任意两点与对应的两实数具有怎样的关系4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC| 实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,--b 应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2 ;a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)] =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2] ∴a4-b4 点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y 当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()2.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y ∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的证明二【基础训练】1.若,,则下列不等始终正确的是()2.设a,b为实数,且,则的最小值是()4.求证:对任何式数x,y,z,下述三个不等式不可能同时成立。
不等式与不等关系(一)教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校【课题】§3.1不等式与不等关系(第1课时)【学习目标】:1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯【学习重点】:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【学习难点】:用不等式(组)正确表示出不等关系【教学用具】:直尺、三角板【学法指导】:自主学习;合作探究;能力提升(启发、引导、讨论)【课时】:【教学过程】:一【知识导学】叫做不等式. 二,典例分析例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:.例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是 .例3. 设点A与平面α的距离为d,B为平面α上的任意一点,则d AB。
例4. 某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?例5. 某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。
按照生产的要求,600mm的数量不能超过500mm钢管的3倍。
怎样写出满足所有上述不等关系的不等式呢?三、课堂练习1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,则以后几天平均每天至少要完成的土方数x应满足的不等式为。
人教A版数学《不等关系与不等式》(一)教案
福建省长乐第一中学高中数学必修五《3.1 不等关系与不等式(一)》教案第一课时 3.1 不等关系与不等式(一)教学要求:了解现实世界和日常生活中存在着的不等关系;会从实际问题中找出不等关系,并能列出不等式与不等式组.教学重点:从实际问题中找出不等关系.教学难点:正确理解现实生活中存在的不等关系.教学过程:一、复习准备:1、提问:你能回顾一下以前所学的不等关系吗?2、讨论:除了书上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗?3、用不等式表示,某地规定本地最底生活保障金不底于300元;二、讲授新课:1、教学用不等式表示不等关系① 在现实生活中,存在着许许多多的不等关系,在数学中,我们用不等式来表示这样的不等关系.② 举例:例如:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是v ≤40. ③ 文字语言与数学符号之间的转换.文字语言 数学符号 文字语言 数学符号大于 > 至多 ≤小于 < 至少 ≥大于等于 ≥ 不少于 ≥小于等于 ≤ 不多于 ≤④ 实数的运算性质与大小顺序之间的关系对于任意两个实数a,b,如果a>b,那么a-b 是正数;如a<b,那么a-b 是负数;如果a-b 等于0.它们的逆命题也正确.即(1)0;(2)0;(3)0a b a b a b a b a b a b >⇔->=⇔-=<⇔-<2、教学例题:①出示例1:日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了,请根据这一事实提炼出一道不等式。
(浓度=溶质溶液) ②出示例2:某种杂志以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销量就相应地减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入还不底于20万元呢?(教师示范 → 学生板演 → 小结)3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.三、巩固练习:1.某电脑拥护计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要至少要买3片和2盒,请将购买软件和磁盘所满足的不等关系用不等式表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §3.1不等式与不等关系
第1课时
授课类型:新授课
【教学目标】
1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;
2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;
3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】
用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】
用不等式(组)正确表示出不等关系。
【教学过程】
1.课题导入
在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课
1)用不等式表示不等关系
引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h,写成不等式就是:
v
40
引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是——用不等式组来表示
2.5%2.3%
f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1
x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式
2.5(80.2)200.1
x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍。
怎样写出满足所有上述不等关系的不等式呢?
解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根。
根据题意,应有如下的不等关系:
(1)截得两种钢管的总长度不超过4000mm ;
(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;
(3)截得两种钢管的数量都不能为负。
要同时满足上述的三个不等关系,可以用下面的不等式组来表示:
5006004000;3;0;0.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩
3.随堂练习
1、试举几个现实生活中与不等式有关的例子。
2、课本练习1、2
4.课时小结
用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
5.评价设计
【板书设计】【授后记】。