2018考研数学:概率论重点考点归纳

合集下载

考研数学概率论复习重要知识点

考研数学概率论复习重要知识点

考研数学概率论复习重要知识点一、基本概念概率是指某个事件发生的可能性大小,用于量化不确定性。

而随机事件是指在一次试验中,不能事先确定出现的结果。

概率的数学定义:对于任意事件A,P(A)表示事件A发生的可能性大小,0 ≤P(A)≤ 1。

同时,P(Ω) = 1,其中Ω是样本空间。

二、加法公式概率公式若A1和A2是两个互不相容的事件,则有:$P(A_1 \\cup A_2) = P(A_1) + P(A_2)$容斥原理当两个事件不互不相容时,可以用容斥原理求出其概率:$P(A_1 \\cup A_2) = P(A_1) + P(A_2) - P(A_1 \\cap A_2)$其中,$P(A_1 \\cap A_2)$ 表示事件A1和A2同时发生的概率。

三、条件概率条件概率是指已知事件B发生的情况下,事件A发生的概率。

条件概率的公式:$P(A|B) = \\frac{P(A \\cap B)}{P(B)}$其中,$P(A \\cap B)$ 表示事件A和B同时发生的概率。

四、乘法公式用乘法公式计算两个事件的概率,即:$P(A \\cap B) = P(A|B)P(B)$五、独立事件若事件A和事件B满足以下条件,则称它们是独立的:$P(A \\cap B) = P(A)P(B)$六、全概率公式与贝叶斯公式全概率公式如果在样本空间Ω中,有一个有限或无限个互不相交的事件序列B1,B2,…,B n,且对Ω的任意一个子集A有:$A = (A \\cap B_1) \\cup (A \\cap B_2) \\cup \\cdots \\cup (A \\cap B_n)$则称事件序列B1,B2,…,B n是一组划分,其全概率公式为:$P(A) = P(A \\cap B_1) + P(A \\cap B_2) + \\cdots + P(A \\cap B_n)$贝叶斯公式如果事件B1,B2,…,B n是一组划分,并对每个$i=1,2,\\cdots,n$,有P(B i)>0,则贝叶斯公式为:$P(B_i|A) = \\frac{P(B_i)P(A|B_i)}{P(A)}$其中,P(B i|A)表示在事件A发生的条件下,事件B i发生的概率。

考研数学概率论重要考点总结

考研数学概率论重要考点总结

考研数学概率论重要考点总结考研数学-概率论重要考点总结考研数学-概率论是考研数学中非常重要的一门课程,一部分选手往往会因为概率论考试不好而导致总分降低。

随着考研的竞争日益激烈,对于概率论重要考点的掌握也变得越来越关键。

本文将重点介绍考研数学概率论中的重要知识点和应试技巧,相信会对您的考研有所帮助。

第一部分:概率论基础知识点1.随机事件和概率特定的事件在具有一定条件的过程中发生的可能性称为其概率。

随机事件是某个试验中的可能结果,这些结果之一会被称为随机事件。

随机事件有可达成的(必然事件)和不可达成的(不可能事件)之分,而概率是在数学上给出事件发生可能性的量化值。

2.条件概率条件概率指在另一个事件发生的条件下,某个事件发生的概率。

条件概率的计算需要利用贝叶斯公式,即P(A|B)= P(A∩B)/P(B)。

其中P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

在日常生活中,常见的例子是医学诊断和安全检查。

3.全概率公式和贝叶斯公式全概率公式是指当一个事件是由许多个事件的情况复合而成时,利用每个事件的概率来计算出总体情况的概率。

贝叶斯公式是通过已知的先验概率和新的数据来推断后验概率的。

这两个公式是概率论中非常重要的基础。

4.独立事件独立事件指两个或多个事件之间不受其他事件影响的情况,即事件A和事件B之间满足P(A|B)=P(A)或者P(B|A)=P(B)。

独立事件还有一些性质,如互不影响性和乘法公式。

第二部分:概率论常见且易错的考点1.排列组合排列组合是概率论中的重要知识点,也是很多考生不太熟悉的概率论题型。

在排列组合问题中,考生一般都需要利用排列和组合的公式进行计算,以确保答案的准确性。

此外,需要注意的是,在计算排列和组合时,一定要先确定放置顺序或者不考虑顺序的问题,否则会导致答案错误。

2.抽样分布抽样分布是概率论中比较常用的知识点,也是考研数学中的重要考点之一。

2018年考研数学(高数、线代、概率论)最全公式手册

2018年考研数学(高数、线代、概率论)最全公式手册

dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的

考研数学概率论重要章节知识点总结

考研数学概率论重要章节知识点总结

2018考研数学概率论重要章节知识点总结第一章、随机事件与概率本章需要掌握概率统计的基本概念,公式。

其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。

第二章、随机变量及其分布本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。

第三章、多维随机变量的分布在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。

二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。

掌握用随机变量的独立性的判断的充要条件。

最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。

第四章、随机变量的数字特征本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。

另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。

第五章、大数定律和中心极限定理本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。

第六章、数理统计的基本概念重点在于“三大分布、八个定理”以及计算统计量的数字特征。

第七章、参数估计本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。

对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。

区间估计和假设检验只有数一的同学要求,考题中较少涉及到。

考生要对每章的出题重点做到了如指掌,加以题目训练,相信会有好的成绩!。

2018考研数学概率各章口诀

2018考研数学概率各章口诀

2018考研数学概率各章口诀口诀能帮助我们轻松记忆考研数学概率各章知识点。

今天,店铺整理了2018考研数学概率各章口诀,以供考生复习。

2018考研数学概率各章口诀2018考研数学概率各章口诀(一):第一章随机事件互斥对立加减功,条件独立乘除清;全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。

2018考研数学概率各章口诀(二):第二、三章一维、二维随机变量1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵2)连续必分段,草图仔细看,积分是关键,密度微分算3)离散先列表,连续后求导;分布要分段,积分画图算2018考研数学概率各章口诀(三):第五、六章数理统计、参数估计正态方和卡方出,卡方相除变F,若想得到t分布,一正n卡再相除。

样本总体相互换,矩法估计很方便;似然函数分开算,对数求导得零蛋;区间估计有点难,样本函数选在前;分位维数惹人嫌,导出置信U方甜。

2018考研数学概率各章口诀(四):第七章假设检验检验均值用U-T,分位对称别大意;方差检验有卡方,左窄右宽不稀奇;不论卡方或U-T,维数减一要牢记;代入比较临界值,拒绝必在否定域!考研数学复习方法一、复习节奏与考试要求的掌控考研数学的复习前后大约历时一年时间,所以数学备考一定要掌控好复习节奏。

什么是复习节奏,简单地说就是大家需要明确什么样的阶段做什么样的事情。

建议大家最好都要有一个复习的时间表,也就是要有一个复习计划。

按照自己的复习计划,循序渐进,切忌搞突击,临时抱佛脚。

高等数学这门课在考研数学中占着很大的比重,可以说高等数学的成绩将直接和你考研数学的成绩进行挂钩。

在数一和数三中占56%,在数学二中比例高达78%。

高等数学部分的主体由极限、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成,从历年来的考题中来看,高等数学的考查重点和难点对于数一、数二、数三也是有所不同的,对于数一而言考试的重点是下册,数二是上册,数三更加重视知识的应用,而整个上册却构成了高等数学的基础。

考研数学概率论重要考点总结

考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。

下面是概率论中的一些重要考点总结。

一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。

在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。

2018考研数学概率论与数理统计复习重点归纳

2018考研数学概率论与数理统计复习重点归纳

2018考研数学概率论与数理统计复习重点归纳概率论与数理统计虽然难度要低于高数的复习,但是由于它考察的知识点较为抽象,也较为零碎,一直让很多考研学子学起来比较头疼,尤其是样本及抽样分布和参数估计这两章内容很多同学感到学习起来非常吃力,做题目时更是不知如何下手。

其实这部分的知识没有大家想象的那么难,只要静下心来,专心学习,在考试的时候拿下这部分的分数是非常容易的。

下面为考生们精心整理了2018考研数学概率复习重点,希望对考生们有所帮助,顺利通过考试。

统计里面第一章是关于样本及统计量的分布,这部分要求会求统计量的数字特征,要知道统计量是随机变量;另外统计量的分布及其分布参数是常考题型,常利用卡方分布,t分布及F分布的典型构成模式及其性质以及正态总体样本均值与样本方差的分布进行分析。

所以复习这一章时清晰的记住上述三大分布的典型模式是我们解题的关键。

关于三大分布的典型构成模式,给大家总结了四句话,有方便大家记忆:“考正态方和卡方出,卡方相除变F; k若想得到t分布,一正一卡再相除”。

第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到t分布。

只要大家记住并理解上述四句话,在遇到这方面的问题是就可以迎刃而解了;还有就是参数估计这章的内容,参数估计占数理统计的一多半内容,所以参数估计是重点。

参数的矩估计量(值)、最大似然估计量(值)也是经常考的。

很多同学遇到这样的题目,总是感觉到束手无策。

题目中给出的样本值完全用不上。

其实这样的题目非常简单。

只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。

矩法的基本思想就是用样本的k阶原点矩作为总体的k阶原点矩。

估计矩估计法的解题思路是:1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。

2018考研数学概率论第三章节重点及常考题型

2018考研数学概率论第三章节重点及常考题型

凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页 2018考研数学概率论第三章节重点及常
考题型
考研数学概率得分率不高,但其实这部分只是并不难,只要大家掌握好规律重点,多练习就能提高分数,下面凯程考研为考生总结概率各章节的重要知识点及常见的典型题型,希望对大家有所帮助。

2018考研数学概率论第三章节重点及常考题型
【二维随机变量及其分布】
一、本章的重点内容:
·二维随机变量及其分布的概念和性质,
·边缘分布,边缘密度,条件分布和条件密度,
·随机变量的独立性及不相关性,
·一些常见分布:二维均匀分布,二维正态分布,
·几个随机变量的简单函数的分布.
本章是概率论重点部分之一!应着重对待。

二、常见典型题型:
1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度;
2.已知部分边缘分布,求联合分布律;
3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度;
4.两个或多个随机变量的独立性或相关性的判定或证明;
5.与二维随机变量独立性相关的命题;
6.求两个随机变量的相关系数;
7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率..。

2018考研数学:复习概率的5大要点

2018考研数学:复习概率的5大要点

2018考研数学:复习概率的5大要点一、钻研透彻一本考研数学辅导书胜于你多看三本同类的书、不要盲目地做题。

考研数学中,相比于高等数学丰富多变的题型与方法,概率论与数理统计这门学科考查的题型固定、单一,解题技巧较少。

因此,一不要同时看太多本的辅导书。

因为每本辅导书里概率的体系和解题方法、技巧都是差不多的,假如你的手上一共有二本辅导书,那么就深入钻研这两本,掌握"三基",掌握题型,做完每一道练习题。

二不要搞题海战术。

例如,同学们在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。

概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。

一般同学都会处于后一种状态。

我们应该挑准一本练习册,多做几遍上面的题目,每做一遍,都回头总结一下,此题的考点是什么,应用了哪些基本方法,把题目做精做透。

二、对概率论与数理统计的考点整体把握。

考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。

所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算就可,把大量精力放在随机变量的分布上,尤其是第四章二维随机变量及其分布,是重中之重。

数理统计的考查重点在于一是与抽样分布相关的统计量的分布及其数字特征,二是参数估计的两种方法。

这就是对一门课程整体把握的优势。

三、重视"三基",重视基本功的熟练度。

想要数学高分,就是要对常规题型有无可争议的熟练度。

近年来考研数学的一大特点就是计算量逐年加大、答题时间紧。

如果只是满足于会做,是远远不够的,要达到不但会做,而且最短时间内正确的做出来的层次,这才叫做基本功。

四、复习的中后期,在有一定基本功的情况下,应重视真题,多做真题。

有一些考生并不相信真题的宝贵性,但是又不敢不做真题,只想应付了事。

对照近5年的数学真题,你会发现近5年的题目有70%以上可以在以往的试卷里找得到相似的题型甚至是原题的"影子"。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念定义:随机试验E的每个结果样本点组成样本空间S,S的子集为E的随机事件,单个样本点为基本事件.事件关系:1.A⊂B,A发生必导致B发生.2.A Y B和事件,A,B至少一个发生,A Y B发生.3.A I B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,A发生,B不发生,A-B发生.5.A I B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A Y B=S且A I B=Ø,A与B互为逆事件或对立事件,A与B中必有且仅有一个发生,记B=ASA-=.事件运算:交换律、结合律、分配率略.德摩根律:BABA IY=,BABA YI=.概率:概率就是n趋向无穷时的频率,记P(A).概率性质: 1.P(Ø)=0.2.(有限可加性)P(A1Y A2Y…Y A n)=P(A1)+P(A2)+…+P(A n),A i互不相容.3.若A⊂B,则P(B-A)=P(B)-P(A).4.对任意事件A,有)A(1)A(PP-=.5.P(A Y B)=P(A)+P(B)-P(AB).泊松分布:记X~π(λ),!}{kekXPkλλ-==,Λ,2,1,0=k.泊松定理:!)1(limkeppCkknkknnλλ--∞→=-,其中λ=np.当20≥n,05.0≤p应用泊松定理近似效果颇佳.随机变量分布函数:}{)(xXPxF≤=,+∞<<∞-x.)()(}{1221xFxFxXxP-=≤<.连续型随机变量:⎰∞-=x ttfxF d)()(,X为连续型随机变量,)(x f为X的概率密度函数,简称概率密度.概率密度性质:1.0)(≥xf;2.1d)(=⎰+∞∞-xxf;3.⎰=-=≤<21d)()()(}{1221xxxxfxFxFxXxP;4.)()(xfxF=',f(x)在x点连续;5.P{X=a}=0.均匀分布:记X~U(a,b);⎪⎩⎪⎨⎧<<-=其它,,1)(bxaabxf;⎪⎩⎪⎨⎧≥<≤--<=bxbxaabaxaxxF,,,1)(.性质:对a≤c<c+l≤b,有abllcXcP-=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,1)(xexfxθθ;⎩⎨⎧>-=-其它,,1)(xexFxθ.无记忆性:}{}{tXPsXtsXP>=>+>.正态分布:记),(~2σμNX;]2)(ex p[21)(22σμσπ--=xxf;ttxF x d]2)(ex p[21)(22⎰∞---=σμσπ.性质:1.f(x)关于x=μ对称,且P{μ-h<X≤μ}=P{μ<X≤μ+h};2.有最大值f(μ)=(σπ2)-1.标准正态分布:]2exp[21)(2xx-=πϕ;⎰∞--=Φx ttx d]2ex p[21)(2π.即μ=0,σ=1时的正态分布X~N(0,1)性质:)(1)(xxΦ-=-Φ.正态分布的线性转化:对),(~2σμNX有)1,0(~NXZσμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=xxXPxXPxF.正态分布概率转化:)()(}{1221σμσμ-Φ--Φ=≤<xxxXxP;1)(2)()(}{-Φ=-Φ-Φ=+<<-ttttXtPσμσμ.3σ法则:P=Φ(1)-Φ(-1)=68.26%;P=Φ(2)-Φ(-2)=95.44%;P=Φ(3)-Φ(-3)=99.74%,P多落在(μ-3σ,μ+3σ)内.上ɑ分位点:对X~N(0,1),若zα满足条件P{X>zα}=α,0<α<1,则称点zα为标准正态分布的上α分位点.常用0.001 0.005 0.01 0.025 0.05 0.10上ɑ分位点:3.090 2.576 2.326 1.960 1.645 1.282Y服从自由度为1的χ2分布:设X密度函数f X(x),+∞<<∞-x,若Y=X2,则⎪⎩⎪⎨⎧≤>-+=)]()([21)(yyyfyfyyf XXY,,若设X~N(0,1),则有⎪⎩⎪⎨⎧≤>=--21)(221yyeyyfyY,,π定理:设X密度函数f X(x),设g(x)处处可导且恒有g′(x)>0(或g′(x)<0),则Y=g(X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,)()]([)(βαyyhyhfyf XYh(y)是g(x)的反函数;①若+∞<<∞-x,则α=min{g(−∞),g(+∞)},β=max{g(−∞),g(+∞)};②若f X(x)在[a,b]外等于零,g(x)在[a,b]上单调,则α=min{g(a),g(b)},β=max{g(a),g(b)}.应用:Y=aX+b~N(aμ+b,(|a|σ)2).第二章多维随机变量及其分布二维随机变量的分布函数:分布函数(联合分布函数):)}(){(),(yYxXPyxF≤≤=I,记作:},{yYxXP≤≤.),(),(),(),(},{112112222121yxFyxFyxFyxFyYyxXxP+--=≤<≤<.F(x,y)性质:1.F(x,y)是x和y的不减函数,即x2>x1时,F(x2,y)≥F(x1,y);y2>y1时,F(x,y2)≥F(x,y1).2.0≤F(x,y)≤1且F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1.3.F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即F(x,y)关于x右连续,关于y也右连续.4.对于任意的(x1,y1),(x2,y2),x2>x1,y2>y1,有P{x1<X≤x2,y1<Y≤y2}≥0.离散型(X,Y):≥ijp,111=∑∑∞=∞=ijjip,ijyyxxpyxFii∑∑=≤≤),(.连续型(X,Y):vuvufyxF y x dd),(),(⎰⎰∞-∞-=.f(x,y)性质:1.f(x,y)≥0.2.1),(dd),(=∞∞=⎰⎰∞∞-∞∞-Fyxyxf.3.yxyxfGYXPG⎰⎰=∈dd),(}),{(.4.若f(x,y)在点(x,y)连续,则有),(),(2yxfyxyxF=∂∂∂.n维:n维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.边缘分布:F x(x),F y(y)依次称为二维随机变量(X,Y)关于X和Y的边缘分布函数,F X(x)=F(x,∞),F Y(y)=F(∞,y).离散型:*ip和j p*分别为(X,Y)关于X和Y的边缘分布律,记}{1iijjixXPpp==∑=∞=*,}{1jijijyYPpp==∑=∞=*.连续)(xfX ,)(yfY为(X,Y)关于X和Y的边缘密度函数,记型:⎰∞∞-=yy x f x f X d ),()(,⎰∞∞-=xy x f y fYd ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y .离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.*=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布: 条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布:若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布.独立定若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的.义:独立条件或可等价为:连续型:f(x,y)=f x(x)f y(y);离散型:P{X=x i,Y=y j}=P{X=x i}P{Y=y j}.正态独立:对于二维正态随机变量(X,Y),X和Y相互对立的充要条件是:参数ρ=0.n维延伸:上述概念可推广至n维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n-1元)的.定理:设(X1,X2,…,X m)和(Y1,Y2,…,Y n)相互独立,则X i和Y j相互独立.又若h,g是连续函数,则h(X1,X2,…,X m)和g(Y1,Y2,…,Y n)相互独立.Z=X +Y分布:若连续型(X,Y)概率密度为f(x,y),则Z=X+Y为连续型且其概率密度为⎰∞∞-+-=yyyzfzfYXd),()(或⎰∞∞-+-=xxzxfzfYXd),()(.f X和f Y的卷积公式:记⎰∞∞-+-==yyfyzfzfffYXYXYXd)()()(*⎰∞∞--=xxzfxfYXd)()(,其中除继上述条件,且X和Y相互独立,边缘密度分别为f X(x)和f Y(y).正态卷积:若X和Y相互独立且X~N(μ1,σ12),记Y~N(μ2,σ22),则对Z=X+Y有Z~N(μ1+μ2,σ12+σ22).1.上述结论可推广至n个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布.伽马分布: 记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(te t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=xxz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X XY d )()(1)(.大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望:简称期望或均值,记为E (X );离散型:kkk p x X E ∑=∞=1)(.连续型:⎰∞∞-=xx xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数). 1.若X 是离散型,且分布律为kk k p x g Y E )()(1∑=∞=. 2.若X 是连续型,概率密度为⎰∞∞-=xx f x g Y E d )()()(.P{X=x k}=p k,则:f(x),则:定理推广:设Z是随机变量X,Y的函数:Z=g(X,Y)(g是连续函数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型:⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(期望性质:设C是常数,X和Y是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.E(X+Y)=E(X)+E(Y).4.又若X和Y相互独立的,则E(XY)=E(X)E(Y).方差:记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)= .通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xxfxExXD d)()]([)(2.标准化变量:记σμ-=xX*,其中μ=)(XE,2)(σ=XD,*X称为X的标准化变量.)(*=XE,1)(*=XD.方差性质:设C是常数,X和Y1.D(C)=0.2.D(CX)=C2D(X),D(X+C)=D(X).3.D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-)(xD是随机变量,则:E(Y))},若X,Y相互独立D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是P{X=E(X)}=1.正态线性变换:若),(~2iiiNXσμ,i C是不全为0的常数,则),(~22112211iiniiininnCCNXCXCXCσμ∑∑+++==Λ.切比雪夫不等式:22}{εσεμ≤≥-XP或221}{εσεμ-≥<-XP,其中)(X E=μ,)(2XD=σ,ε为任意正数.协方差:记)]}()][({[),Cov(YEYXEXEYX--=.X与Y的相关系数:)()(),Cov(YDXDYXXY=ρ.D(X+Y)=D(X)+D(Y)+2Cov(X,Y),Cov(X,Y)=E(XY)-E(X)E(Y).性质:1.Cov(aX,bY)=ab Cov(X,Y),a,b是常数.2.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y).系数性质:令e=E[(Y-(a+bX))2],则e取最小值时有)()1(]))([(22minYDXbaYEeXYρ-=+-=,其中)()(XEbYEa-=,)(),Cov(0XDYXb=.1.|ρXY|≤1.2.|ρXY|=1的充要条件是:存在常数a,b使P{Y=a+bX}=1.|ρXY|越大e越小X和Y线性关系越明显,当|ρXY|=1时,Y=a+bX;反之亦然,当ρXY=0时,X和Y不相关.X和Y相互对立,则X和Y不相关;但X和Y不相关,X和Y不一定相互独立.定义:k阶矩(k阶原点矩):E(X k ).n维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nnnnnncccccccccΛMMMΛΛ212222111211C,),Cov(jiijXXc==E{[X i-E(X i)][X j-E(X j)]}.k+l阶混合矩:E(X k Y l ).k阶中心矩:E{[X-E(X)] k }.k+l阶混合中心矩:E{[X-E(X)]k[Y-E(Y)]l}.n维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπΛ,T21T21),,,(),,,(nnxxxμμμΛΛ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(Xk)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Y n ,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心定理设X1,X2,…,Xn,…相互独立σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).~近似的极限定理一:并服从同一分布,且E(Xk)=μ,D(Xk)=σ2 >0,则n→∞时有定理二:设X1,X2,…,Xn,…相互独立且E(X k)=μ k,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~p n bnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组图形特点:外轮廓接近宽,纵坐标为高的跨越横轴的几个小矩形.距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR 或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准2SS=样本k阶kinikXnA11=∑=,k≥1样本k阶kinikXXnB)(11-∑==,k≥2min Q1 M Q3 max差: (原点)矩:中心矩:经验分布函数: )(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布: 记χ2~χ2(n ),222212nX X X +++=Λχ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n . χ12+χ22~χ2(n 1+n 2). ⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点: 对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.自由度为n 的t 分布:记t ~t (n ),n Y Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n充分大时,t 分布近似于N (0,1)分布.t 分布对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n tα为)(n t 的上α的分位点:分位点.由h(t)对称性可知t1-α(n)=-tα(n).当n>45时,tα(n)≈zα,zα是标准正态分布的上α分位点.自由度为(n1,n2)的F分布:记F~F(n1,n2),21nVnUF=,其中U~χ2(n1),V~χ2(n2),X,Y相互独立.1/F~F(n2,n1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,]1)[2()2()](2)([)(2)(21211)2(221212111xnynnnynnnny nnnnψF分布的分位点:对于0<α<1,满足αψαα==>⎰∞yynnFFPnnF),(2121d)()},({,则称),(21n nFα为),(21nnF的上α分位点.重要性质:F1-α(n1,n2)=1/Fα(n1,n2).定理一:设X1,X2,…,X n 是来自N(μ,σ2)的样本,则有),(~2nNXσμ,其中X是样本均值.定理二:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有1.)1(~)1(222--nSnχσ;2.X与2S相互独立.定理三:设X1,X2,…,X n 是来自N(μ,σ2)的样本,样本均值和样本方差分别记为X,2S,则有)1(~--ntnSXμ.定理设X1,X2,…,X n1与X,Y,21S,22S,则有四: Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 1.)1,1(~2122212221--n n F S Sσσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t nn S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2wwS S=.第七章 参数估计定义:估计量:),,,(ˆ21nX X X Λθ,估计值:),,,(ˆ21nx x x Λθ,统称为估计.矩估计法: 令)(llX E =μ=li n i l X n A 11=∑=(kl ,,2,1Λ=)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X均值μ及方差σ2都存在,则有X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ.最大似然估计法:似然函数:离散:);()(1θθini x p L =∏=或连续:);()(1θθini x f L =∏=,)(θL 化简可去掉与θ无关的因式项. θˆ即为)(θL 最大值,可由方程0)(d d=θθL 或0)(ln d d=θθL 求得.当多个未知参数θ1,θ1,…,θk时:可由方程组0d d=L iθ或0ln d d=L iθ(k i ,,2,1Λ=)求得.最大似然估计的不变性:若u=u(θ)有单值反函数θ=θ(u),则有)ˆ(ˆθuu=,其中θˆ为最大似然估计.截尾样本取样:定时截尾样本:抽样n件产品,固定时间段t0内记录产品个体失效时间(0≤t1≤t2≤…≤t m≤t0)和失效产品数量.定数截尾样本:抽样n件产品,固定失效产品数量数量m记录产品个体失效时间(0≤t1≤t2≤…≤t m).结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e(θ),θ即产品平均寿命.产品t i时失效概率P{t=t i}≈f(t i)d t i,寿命超过t m的概率θm tmettF-=>}{,则)(}){()(1imimnmmntPttFCL=-∏>=θ,化简得)(1)(m t sm eL---=θθθ,由0)(lndd=θθL得:m t s m)(ˆ=θ,其中s(t m)=t1+t2+…+t m+(n-m)t m,称为实验总时间.定时截尾样本:与定数结尾样本讨论类似有s(t0)=t1+t2+…+t m+(n-m)t0,)(01)(t sm eL---=θθθ,m t s)(ˆ0=θ,.无偏性:估计量),,,(ˆ21nXXXΛθ的)ˆ(θE存在且θθ=)ˆ(E,则称θˆ是θ的无偏估计量.有效性:),,,(ˆ211nXXXΛθ与),,,(ˆ212nXXXΛθ都是θ的无偏估计量,若)ˆ()ˆ(21θθDD≤,则1ˆθ较2ˆθ有效.相合性:设),,,(ˆ21nXXXΛθθ的估计量,若对于任意0>ε有1}|ˆ{|lim=<-∞→εθθPn,则称θˆ是θ的相合估计量.置信区间:αθθθ-≥<<1)},,,(),,,({2121nnXXXXXXPΛΛ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态设X1,枢轴量W W分布a,b不等其中样本置信区间:X2,…,X n是来自总体X~N(μ,σ2)的样本,则有μ的置信区间:式置信水平置信区间)1,0(~NnXσμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12znXP⇒)(2ασznX±zα/2为上α分位点θ置信区间的求解:1.先求枢轴量:即函数W=W(X1,X2,…,X n;θ),且函数W的分布不依赖未知参数.如上讨论标注2.对于给定置信水平α-1,定出两常数a,b使P{a<W<b}=α-1,从而得到置信区间.(0-1)分布p 的区间估计:样本容量n>50时,⇒--∞→)1,0(~)1()(lim NpnpnpXnn{}⇒-≈<--αα1)1()(2zpnpnpXnP)2()(222222<++-+XnpzXnpznαα⇒若令22αzna+=,)2(22αzXnb+-=,2X nc=,则有置信区间(aacbb2)4(2---,aacbb2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P或αθθ-≥<1}{P,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估其他枢轴量W的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~NnXZσμ-=)(2ασznX±ασμznX+=,ασμznX-=μσ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,αμtnSX-=σ2μ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,222)1(αχσSn-=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2221212122212121nnzYXnnzYXσσμμσσμμαα+--=-++-=-μ1-μ2σ12=σ22=σ2未知)2(~)()(21121121-++---=--nntnnSYXtwμμ2)1()1(212222112-+-+-=nnSnSnSw()12112--+±-nnStYXwα2wwSS=121121121121----+--=-++-=-nnStYXnnStYXwwααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0. 正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域 1 σ2已知 μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z α μ=μ0μ≠μ0 |z |≥z α/2 2 σ2未知 μ≤μ0 μ>μ0 nS X t 0μ-=t ≥t α(n -1)μ≥μ0μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1) 3σ1,σ2 已μ1-μ1-222121n n Y X Z σσδ+--=z ≥z α μ1-μ1-z ≤-z α μ1-μ1-|z |≥z α/2 4 σ12μ1-μ1-1211--+--=nn S Y X t w δt ≥t α(n 1+n 2-2)=σ22μ1-μ1-2)1()1(212222112-+-+-=n n S n S n S wt ≤-t α(n 1+n 2-2) μ1-μ1-|t |≥t α/2(n 1+n 2-2) 5 μ未知 σ2≤σ02 σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1) σ2≥σ02 σ2<σ02χ2≤χ21-α(n -1) σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1) 6 μ1,μ2 未知 σ12≤σ22σ12>σ22 2221S S F =F ≥F α(n 1-1,n 2-1) σ12≥σ22σ12<σ22F ≤F 1-α(n 1-1,n 2-1)σ12=σ22σ12≠σ22F ≥F α/2(n 1-1,n 2-1)或F ≤F 1-α/2(n 1-1,n 2-1) 7 成对 数据μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -1)μD ≥0μD <0 t ≤-t α(n -1) μD =0μD ≠0|t |≥t α-2(n -1)检验方法选择: 主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X 和Y 之间存在一一对应关系,而3和4一般指X 和Y 相互对立,但针对同一实体.关系: 置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

2018考研数学:概率重难点及题型

2018考研数学:概率重难点及题型

2018考研数学:概率重难点及题型一、随机事件与概率重点难点:重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算常考题型:(1)事件关系与概率的性质(2)古典概型与几何概型(3)乘法公式和条件概率公式(4)全概率公式和Bayes公式(5)事件的独立性(6)贝努利概型二、随机变量及其分布重点难点重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型(1)分布函数的概念及其性质(2)求随机变量的分布律、分布函数(3)利用常见分布计算概率(4)常见分布的逆问题(5)随机变量函数的分布三、多维随机变量及其分布重点难点重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布难点:多维随机变量的描述方法、两个随机变量函数的分布的求解常考题型(1)二维离散型随机变量的联合分布、边缘分布和条件分布(2)二维离散型随机变量的联合分布、边缘分布和条件分布(3)二维随机变量函数的分布(4)二维随机变量取值的概率计算(5)随机变量的独立性四、随机变量的数字特征重点难点重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数难点:各种数字特征的概念及算法常考题型(1)数学期望与方差的计算(2)一维随机变量函数的期望与方差(3)二维随机变量函数的期望与方差(4)协方差与相关系数的计算(5)随机变量的独立性与不相关性五、大数定律和中心极限定理重点难点重点:中心极限定理难点:切比雪夫不等式、依概率收敛的概念。

常考题型(1)大数定理(2)中心极限定理(3)切比雪夫(Chebyshev)不等式六、数理统计的基本概念重点难点重点:样本函数与统计量,样本分布函数和样本矩难点:抽样分布常考题型(1)正态总体的抽样分布(2)求统计量的数字特征(3)求统计量的分布或取值的概率七、参数估计重点难点重点:矩估计法、最大似然估计法、置信区间及单侧置信区间难点:估计量的评价标准常考题型(1)求参数的矩估计和最大似然估计(2)估计量的评价标准(数学一)(3)正态总体参数的区间估计(数学一)八、假设检验(数学一)重点难点重点:单个正态总体的均值和方差的假设检验难点:假设检验的原理及方法常考题型(1) 单正态总体均值的假设检验其实看看凯程考研怎么样,最简单的一个办法,看看他们有没有成功的学生,最直观的办法是到凯程网站,上面有大量学员经验谈视频,这些都是凯程扎扎实实的辅导案例,其他机构网站几乎没有考上学生的视频,这就是凯程和其他机构的优势,凯程是扎实辅导、严格管理、规范教学取得如此优秀的成绩。

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:1.随机事件的关系运算﹔2.求随机事件的概率﹔3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数﹔2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3.反求或判定分布中的参数﹔4.求一维随机变量在某一区间的概率﹔5.求一维随机变量函的分布。

第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度﹔2.已知部分边缘分布,求联合分布律﹔3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度﹔4.两个或多个随机变量的独立性或相关性的判定或证明﹔5.与二维随机变量独立性相关的命题﹔6.求两个随机变量的相关系数﹔7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

2018考研数学概率论的特点及考点分析

2018考研数学概率论的特点及考点分析

2018考研数学概率论的特点及考点分析高等学校概率统计课的教材,内容包括概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析以及用Excel 进行概率统计计算。

下面就是店铺给大家整理的概率论的特点及考点分析,希望对你有用!概率论的特点及考点分析一、首先来谈谈概率论与数理统计这门课的特点:(1)研究对象是随机现象。

高数是研究确定的现象,而概率研究的是不确定的,是随机现象。

对于不确定的,大家感觉比较头疼。

(2)题型比较固定,解法比较单一,计算技巧要求低一些。

比如概率的解答题基本上就围绕在随机变量函数的分布,随机变量的数字特征,参数的矩估计和最大似然估计这几块。

(3)高数和概率相结合。

求随机变量的分布和数字特征运用到高数的理论与方法,这也是考研所要求考生所具备的解决问题的综合能力。

很多考生因为积分计算不过关,导致概率失分。

所以考生应该加强自己的积分计算能力。

二、要针对性的复习概率论与数理统计在掌握考研数学的概率与数理统计的特点后,结合历年考试试题出题规律,概率拿满分不是梦。

下面,跨考教育小编通过概率论与数理统计的各章节来具体分析。

1、随机事件和概率“随机事件”与“概率”是概率论中两个最基本的概念。

“独立性”与“条件概率”是概率论中特有的概念。

条件概率在不具有独立性的场合扮演了一个重要角色,它是一种概率。

正确地理解并会应用这4个概念是学好概率论的基础。

对于公式,大家要熟练掌握并能准确运算。

而大家比较头疼的古典概型与几何概型的计算问题,考纲只要求掌握一些简单的概率计算。

所以在复习的过程中,建议考生们不要陷入古典概型的计算中。

事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。

事件关系及其运算是本章的重点和难点,概率计算是本章的重点。

注意事件与概率之间的关系。

本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。

2018年考研数学概率论的考点和复习方法-范文模板 (4页)

2018年考研数学概率论的考点和复习方法-范文模板 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==考研数学概率论的考点和复习方法考试在进行考研数学的复习时,要重点抓住概率论的考点,和掌握好复习的方法。

小编为大家精心准备了考研数学概率论基础复习技巧,欢迎大家前来阅读。

考研数学概率论基础复习方法指导首先,你所学过的东西不一定全都考,没学过的东西也不一定完全不考。

其实,研究生入学考试考的很多东西,也许你都没有学过。

考研考的是方法,基本概念,基本公式,基本方法是一定要掌握的,但没有学过的方法也应该举一反三。

考研概率统计不要只是复习过去学过的课本,这样做对考研没有多大的实际帮助。

我们总结在做概率论与数理统计这部分试题时常犯以下的错误:概念不清,弄不清事件之间的关系和事件的结构;分析有误,概率模型搞错;不能正确地选择概率公式去证明和计算;不能熟练地应用有关的定义、公式和性质进行综合分析、运算和证明。

我们应该有针对性地去了解问题症结,各个击破。

在考试的时候很多同学都有看不懂题目的困惑,比较着急。

其实,看不懂题目一方面是因为做的题目比较少,另一个很重要的方面是对基本概念、基本性质理解的不够深刻,没有理解到这些概念的精髓和用途。

针对前者,老师建议考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力;另一方面花点时间准确理解概率论与数理统计中的基本概念,结合一些实际问题理解概念和公式,也可以通过做一些文字叙述题巩固概念和公式。

只要只要公式理解的准确到位,并且多做些相关题目,考卷中碰到类似题目时就一定能够轻易读懂和正确解答了。

针对后者,我们在这里所要重点推荐的是结合实际例子和模型记忆的方式。

举这样一个例子,比如二向概率公式,你可以用这样一个模型记忆,把一枚硬币重复抛N次,正面朝上的概率是多少呢?通过实例型来以点代面的记忆,在理解基础上的记忆,内容才不会不轻易忘记,同时,又能够作为模式正确运用到题目的解决中。

2018考研数学大纲之概率复习要点分析

2018考研数学大纲之概率复习要点分析

2018考研数学大纲之概率复习要点分析田宏——数学教研室考研数学分为高等数学、线性代数、概率论与数理统计三个模块(数二不考概率论与数理统计)。

《2018年全国硕士研究生招生考试数学考试大纲》已经出来了,结合2017年考研数学大纲分析出,考研数学基本没有什么变化,现在就由跨考考研数学老师结合新大纲把握概率复习要点分析。

概率论与数理统计是数一、数三考生的公共内容,数二考生不要求,占22%,包含概率论和统计两大模块。

概率统计中的第一章是随机事件和概率,这是这门课的基础,主要讲概率论的一些基本概念和计算公式。

从过去十多年的考试命题规律来看,这章的主要考点包含三个方面:一是两大概念,包括随机事件的不相容(互斥)和独立性;二是三种概型,包括古典概型、伯努利概型和几何概型;第三方面是五大公式,包括:加法公式、减法公式、乘法公式(条件概率公式)、全概率公式、贝叶斯公式(Bayes),其中乘法公式与条件概念公式在本质上是相同的,而贝叶斯公式则是综合条件概率公式和全概率公式所得。

随机变量及其分布是关于一维随机变量的内容,它是多维随机变量及以后各章的基础,它将高等数学中的分析和计算工具引进到概率统计中来。

这章的主要考点是分布函数和概率密度的性质,以及正态分布的性质,其它考点包括常用的几个离散型和连续型分布,主要是:二项分布、泊松分布、均匀分布和指数分布。

多维随机变量及其分布是概率统计的考查重点,几乎每年必考,因此大家一定要重点复习。

这章的主要考点包括:求二维随机变量的联合分布和概率密度、边缘分布和边缘密度、条件分布和条件密度、两个随机变量的简单函数的分布和密度、不相关性和独立性的判断。

另外,对二维均匀分布和正态分布的有关性质和概率计算也需要掌握。

随机变量的数字特征是概率统计的第二个考查重点,也要重点复习。

这章的主要考点是数学期望、方差和相关系数的计算,对不相关和独立性的相互关系要理解。

对常见的几个分布的期望和方差要记住,包括:正态分布、二项分布、泊松分布、均匀分布和指数分布。

2018考研数学概率论考点:随机变量及其分布

2018考研数学概率论考点:随机变量及其分布

2018考研数学概率论考点:随机变量及其分布如今各位备战2018的考研学子们正面临着基础阶段的复习,考研历年数学大纲几乎都不会发生变化,考生们可以提前复习。

下面是根据考试大纲总结的概率论与数理统计大纲考点(数三),希望能帮到大家。

二、随机变量及其分布随机变量,随机变量分布函数的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率密度,常见随机变量的分布,随机变量函数的分布1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0—1分布、二项分布B(n,p)、几何分布、超几何分布、泊松(Poisson)分布及其应用。

3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b)、正态分布、指数分布及其应用,其中参数为( )的指数分布的概率密度为5.会求随机变量函数的分布。

三、多维随机变量的分布多维随机变量及其分布函数,二维离散型随机变量的概率分布、边缘分布和条件分布,二维连续型随机变量的概率密度、边缘概率密度和条件密度,随机变量的独立性和不相关性,常见二维随机变量的分布,两个及两个以上随机变量的函数的分布1.理解多维随机变量的分布函数的概念和基本性质。

2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。

3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。

4.掌握二维均匀分布和二维正态分布,理解其中参数的意义。

5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。

2018考研数学概率各章高频知识点解析_毙考题

2018考研数学概率各章高频知识点解析_毙考题

2018考研数学概率各章高频知识点解析考研数学复习先了解考察特点,命题趋势,再对症下药的复习,这样才能提升效率。

本文为广大考生整理2018考研数学概率各章高频知识点解析。

第一章行列式本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。

数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。

第一部分:随机事件和概率(1)样本空间与随机事件(2)概率的定义与性质(含古典概型、几何概型、加法公式)(3)条件概率与概率的乘法公式(4)事件之间的关系与运算(含事件的独立性)(5)全概公式与贝叶斯公式(6)伯努利概型其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,大家一定要引起重视第二部分:随机变量及其概率分布(1)随机变量的概念及分类(2)离散型随机变量概率分布及其性质(3)连续型随机变量概率密度及其性质(4)随机变量分布函数及其性质(5)常见分布(6)随机变量函数的分布其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。

第三部分:二维随机变量及其概率分布(1)多维随机变量的概念及分类(2)二维离散型随机变量联合概率分布及其性质(3)二维连续型随机变量联合概率密度及其性质(4)二维随机变量联合分布函数及其性质(5)二维随机变量的边缘分布和条件分布(6)随机变量的独立性(7)两个随机变量的简单函数的分布其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,一定要重视!第四部分:随机变量的数字特征(1)随机变量的数字期望的概念与性质(2)随机变量的方差的概念与性质(3)常见分布的数字期望与方差(4)随机变量矩、协方差和相关系数其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算第五部分:大数定律和中心极限定理(1)切比雪夫不等式(2)大数定律(3)中心极限定理其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。

2018考研数学概率论复习把握三点

2018考研数学概率论复习把握三点

2018考研数学概率论复习要着重把握这三点!来源:智阅网概率论在数学各大科目中,可以说是相对简单的一部分,考察的题目和类型大家都要了解,并且学会抓住重点,认真学习对待。

下面总结了概率论复习的相关内容,大家要认真学习哦。

一、把握学科核心主线概率论与数理统计的核心主线就是分布与数字特征,所以两个大题一般就是从下列三个方面选两个:1、一维随机变量及其函数的分布与数字特征2、二维随机变量及其函数的分布与数字特征3、点估计(矩估计、最大似然估计)与统计量的分布与数字特征二、概率统计命题特点纵观近十年概率统计真题,概率命题重视如下内容:1、综合高数:现代概率统计的发展离不开高等数学、微积分知识。

概率统计试题也与微积分知识密不可分,例如利用分布函数求一点处的概率就要用到分布函数的左极限。

求离散型随机变量数字特征会用到级数求和,求连续性随机变量的数字特征肯定要用到积分。

2、分类讨论:例如一维、二维随机变量函数的分布问题,二维离散型随机变量与连续性随机变量综合问题等,一般都需要进行分类讨论,分类讨论要求既不重复又不遗漏,这就要求我们构造完备事件组进行全集分解。

3、数形结合:概率论中不少问题也有明显的几何意义,例如概率密度、分布函数、正态分布的对称性、分布函数的几何意义等。

如果能够充分利用几何意义,我们将大大提升解题速度,化繁为简提高准确率。

4、正难则反:在处理概率大题过程中,如果遇到困难,无法继续做下去的时候,同学们要学会从反面来考虑,一般正面复杂的问题,反面往往比较简单,正难则反考察同学们的灵活性。

5、概率思维:近几年的试题中概率思维越来越突出,即有些问题我们可以拼高等数学的知识做出来,但如果能结合概率思维(分布背景、统计替换的思想)可以大大简化计算,巧妙给出答案。

三、复习建议概率统计学科主线清晰,建议同学们抽一定的时间强攻一下概率论与数理统计。

上面讲解的这几点内容,大家要认真学习,多总结归纳,《考研数学15年真题解析与方法指导》这本书涵盖了15年真题及其预测模拟题,有详细的答案解析,大家可以借鉴学习一下,好好利用。

2018考研数学冲刺:概率核心考点及题型_毙考题

2018考研数学冲刺:概率核心考点及题型_毙考题

下载毙考题APP免费领取考试干货资料,还有资料商城等你入驻2018考研数学冲刺:概率核心考点及题型考研备战剩1周时间,最后冲刺抓些什么?小编分享概率核心考点及题型,没有准备好的你该抓紧看看了!一、核心考点及常考题型分析1、随机变量及其分布在考试中,该考点所占比重很大,每年分值在12分左右。

核心考点:I、分布函数、分布律、概率密度的相关性质;II、联合分布、边缘分布与条件分布的计算;III、随机变量函数的分布以及随机变量独立性的判断;IV、常见分布的相关性质;以上考点中,要重点掌握边缘分布以及条件分布的定义与相关的计算公式、随机变量函数的分布,在历年考研数学中考查力度还是相当大的。

求解过程中重在理解分布函数的定义,尤其涉及到随机变量范围的讨论时,避免失误,各位考研君一定要多加注意!常考题型:I、有关分布函数、分布律、概率密度的相关性质的考察;II、离散型或连续型随机变量边缘分布、条件分布的计算;III、求解随机变量函数的分布。

1、数字特征考研中对数字特征的考察,频率也是很高的,在考试中,此考点一般与随机变量结合出题,每年的平均分值大概也在8分左右,所以考研的小伙伴更是不能忽视呦!核心考点:I、随机变量以及随机变量函数的期望、方差相关计算公式;II、数字特征的常用性质、常见分布的数字特征及运用;III、二维随机变量协方差、相关系数的计算及其性质;IV、独立性与不相关性的讨论;常考题型:I、直接考察数字特征的计算;II、考察数字特征的常用性质;对于该高频考点,公式多,记忆量大,所以要把相关的公式以及性质进行有效记忆,避免出现公式错用、混用的情况。

在考研中该考点与考点1经常结合出题,构成考研数学概率中的一道大题,各位考研君一定要提高警惕!2、参数估计参数估计是数理统计的重要内容,也是考试的重点,考研中对此考点的考查方式多以大题为主。

核心考点:点估计。

点估计方法中,以矩估计和最大似然估计为主。

在复习该核心考点时,重点把握两种估计方法的求解步骤。

概率论重点总结

概率论重点总结

概率论重点总结概率论是数学的一个分支,研究随机试验的可能结果和概率规律。

在学习概率论过程中,我们会遇到许多重要的概念和定理。

本文将对概率论的重点内容进行总结,帮助读者更好地理解和掌握概率论的核心知识。

一、概率的基本概念1. 随机试验:指具有多个可能结果的试验。

2. 样本空间:代表随机试验所有可能结果的集合,记作S。

3. 事件:样本空间中的一个子集,表示随机试验的某个可能结果或者一类可能结果的集合。

4. 事件的概率:事件发生的可能性大小,通常用P(A)表示,其中A为事件。

二、概率的性质和计算方法1. 事件的互斥:若两个事件A和B不可能同时发生,则称事件A和事件B互斥。

概率计算公式为:P(A∪B) = P(A) + P(B)。

2. 事件的独立:若事件A的发生与事件B的发生互不影响,则称事件A和事件B独立。

概率计算公式为:P(A∩B) = P(A) × P(B)。

3. 事件的全概率公式:若对于事件B的一个划分{B₁,B₂,...,Bₙ},则有P(A) = ΣP(A|Bᵢ) × P(Bᵢ),其中P(A|Bᵢ)表示在事件Bᵢ发生的条件下,事件A发生的概率。

4. 贝叶斯定理:若对于事件B的一个划分{B₁,B₂,...,Bₙ},且P(Bᵢ) > 0,则有P(Bᵢ|A) = [P(A|Bᵢ) × P(Bᵢ)] / Σ[P(A|Bₙ) × P(Bₙ)],其中P(Bᵢ|A)表示在事件A发生的条件下,事件Bᵢ发生的概率。

三、随机变量及其分布1. 随机变量:将样本空间S中的每个元素与实数对应起来的函数X,记作X(ω),其中ω属于S。

2. 离散型随机变量:其取值为有限或无限可数个的随机变量。

概率质量函数P(X = x)用来描述离散型随机变量X的取值概率分布。

3. 连续型随机变量:其取值为一个区间内的随机变量。

概率密度函数f(x)用来描述连续型随机变量X的取值概率分布。

4. 期望与方差:离散型随机变量X的期望值E(X) = Σ[xP(X = x)],方差Var(X) = E[(X - E(X))²];连续型随机变量X的期望值E(X) =∫[xf(x)dx],方差Var(X) = E[(X - E(X))²]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页 2018考研数学:概率论重点考点归纳 从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

随机变量之于概率正如矩阵之于线性代数。

考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X ……”,“设总体X ……”,“设X1,X2,…,Xn 为来自X 的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。

所以随机变量的理解至关重要。

讨论完随机变量之后,讨论其描述方式。

分布即为描述随机变量的方式。

分布包括三种:分布函数、分布律和概率密度。

其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。

之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。

多维分布总体上分成三种:联合分布,边缘分布和条件分布。

其中每种分布又细分为分布函数、分布律和概率密度。

只不过条件分布函数我们不考虑。

该章常考大题,常考随机变量函数的分布和边缘分布、条件分布。

之后讨论随机变量的独立性。

分布包含着随机变量的全部信息,如果只关心部分信息就要考虑数字特征了。

数字特征考小题。

把公式性质记清楚,多练习即可。

大数定律和中心极限定理是偏理论的内容,考试要求不高。

数理统计是对概率论的应用。

其中考大题的地方是参数估计(矩估计和极大似然估计),考小题的点是常用统计量及其数字特征,三大统计分布,正态总体条件下统计量的特殊性质。

相关文档
最新文档