三年高考(2016-2017-2018年)数学(文)试题分类汇编分项版解析-专题04 函数性质与应用

合集下载

三年高考(2016-2018)高考数学试题分项版解析 专题04 函数性质与应用 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题04 函数性质与应用 理(含解析)

专题04 函数性质与应用考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.2.【2018年江苏卷】函数满足,且在区间上,则的值为________.【答案】点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.【2018年理新课标I卷】已知函数,则的最小值是_____________.【答案】【解析】分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.2017年高考全景展示1.【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【解析】因为()f x 是奇函数且在R 上是增函数,所以在0x >时,()0f x >, 从而()()g x xf x =是R 上的偶函数,且在[0,)+∞上是增函数,22(log 5.1)(log 5.1)a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以即0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<,所以b a c <<,故选C .【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.2.【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭写成分段函数的形式:()())132,021112,0222112,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪>⎪⎩,函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增,且:)01111,201,12142g -⎛⎫-=++>⨯> ⎪⎝⎭,据此x 的取值范围是:1,4⎛⎫-+∞ ⎪⎝⎭. 【考点】 分段函数;分类讨论的思想【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 3.【2017山东,理15】若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【答案】①④④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x ex e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.【考点】1.新定义问题.2.利用导数研究函数的单调性. 【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f (x )在(a ,b )上的单调性,求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,要注意“=”是否可以取到.4.【2017浙江,17】已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________. 【答案】9(,]2-∞ 【解析】试题分析:[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【考点】基本不等式、函数最值【名师点睛】本题利用基本不等式,由[][]41,4,4,5x x x∈+∈,通过对解析式中绝对值号的处理,进行有效的分类讨论:①当5a ≥;②4a ≤;③45a <<,问题的难点最要在于对分界点的确认及讨论上,属难题.解题时,应仔细对各个情况进行逐一讨论. 5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤, 则实数a 的取值范围是 . 【答案】1[1,]2-【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增, 又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内2016年高考全景展示1.【2016年高考北京理数】已知x ,y R ∈,且0x y >>,则( )A.11x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.3. 【2016高考山东理数】已知函数f (x )的定义域为R.当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2 (B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.4.【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2 【解析】试题分析:因为函数()f x 是定义在R 上周期为2的奇函数,所以(1)(1),(1)(12)(1)f f f f f -=--=-+=,所以(1)(1)f f -=,即(1)0f =,125111()(2)()()422222f f f f -=--=-=-=-=-,所以5()(1)22f f -+=-.考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.5.【2015高考新课标1,理13】若函数f (x )=ln(x x 为偶函数,则a = 【答案】1【解析】由题知ln(y x =+是奇函数,所以ln(ln(x x +- =22ln()ln 0a x x a +-==,解得a =1. 【考点定位】函数的奇偶性【名师点睛】本题主要考查已知函数奇偶性求参数值问题,常用特值法,如函数是奇函数,在x =0处有意义,常用f (x )=0,求参数,否则用其他特值,利用特值法可以减少运算.6.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(a f f ->,则a 的取值范围是______. 【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有: (1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化。

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

2016-2018年全国卷高考文科数学试题解析(三年高考)

2016-2018年全国卷高考文科数学试题解析(三年高考)

3
点睛: 该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图, 要会从图中读出 相应的信息即可得结果.
4. 已知椭圆 :
的一个焦点为
,则 的离心率为
A.
B.
C.
D.
【答案】C 【解析】分析:首先根据题中所给的条件椭圆的一个焦点为 题中所给的方程中系数,可以得到 用椭圆离心率的公式求得结果. 详解:根据题意,可知 所以 ,即 ,因为 , ,故选 C. , ,利用椭圆中对应 ,从而求得 的关系,求得 ,再根据 ,最后利
点睛: 该题考查的是有关复数的运算以及复数模的概念及求解公式, 利用复数的除法及加法 运算法则求得结果,属于简单题目. 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解 该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例. 得 到如下饼图:
点睛:该题考查的是有关曲线
中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函 数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得 意义,结合直线方程的点斜式求得结果. 7. 在△ A. C. 【答案】A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得 , 中, B. D. 为 边上的中线, 为 的中点,则 ,借助于导数的几何
2016-2018 全国卷文数
2018/2017/2016 全国 I 卷
2018/2017/2016 全国 II 卷
2018/2017/2016 全国 III 卷
1
2018 年全国卷 1 文科数学解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 ,故选 A. B. , C. D. ,则

三年高考(2016-2018)高考数学试题分项版解析 专题28 离散性随机变量与期望 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题28 离散性随机变量与期望 理(含解析)

专题28 离散性随机变量与期望考纲解读明方向掌握期望与方差的求解方法.3.分布列、期望及方差均为高考的必考内容.本节在高考中一般以解答题形式立事件的概率求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌握正态曲线的性质.4.独立事件的概率及正态分布均为近几年高考的热点.本节在高考中一般以选择题、解答题形式出现,难度为易或中等,分值约为5分或12分.2018年高考全景展示1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:2.【2018年全国卷Ⅲ理】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。

3.【2018年理数天津卷】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. (i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. 【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).详解:(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.点睛:本题主要在考查超几何分布和分层抽样.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.4.【2018年理北京卷】电影公司随机收集了电影的有关数据,经分类整理得到下表:部数好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1) 概率为0.025(2) 概率估计为0.35(3) >>=>>【解析】分析:(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2) 恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) 服从0-1分布,因此,即得>>=>>.详解:解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.点睛:互斥事件概率加法公式:若A,B互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A,B相互独立,则P(AB)=P(A)P(B).5.【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1).(2) (i )490.(ii )应该对余下的产品作检验.详解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为. (2)由(1)知,.(i )令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于,故应该对余下的产品作检验.点睛:该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.2017年高考全景展示1.【2017浙江,8】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A 【解析】 试题分析:112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布均值与方差公式可得A 正确.2.【2017课标II ,理13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。

精品三年高考2016_2018高考数学试题分项版解析专题11解三角形理含解析61

精品三年高考2016_2018高考数学试题分项版解析专题11解三角形理含解析61

专题11解三角形
考纲解读明方向
1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.
2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.
3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.
2018年高考全景展示
1.【2018年理数全国卷II 】在中,,

,则
A.
B.
C.
D.
【答案】A
【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.
详解:因为所以
,选A.
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.
【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,2.
c=___________.
【答案】 3
点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.
3.【2018年全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,

A. B. C. D.
【答案】C
【解析】分析:利用面积公式和余弦定理进行计算可得。

详解:由题可知,所以,由余弦定理
,所以,,,故选C.
点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。

4.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,
且,则的最小值为________.
【答案】9。

三年高考(2016_2018)高考数学试题分项版解析专题28选修部分文(含解析)

三年高考(2016_2018)高考数学试题分项版解析专题28选修部分文(含解析)

专题28 选修部分 文考纲解读明方向 考纲解读考点内容解读要求 高考示例常考题型 预测热度 1.含绝对值不等 式的解法文解绝对值的几何意义,会证明和求解绝对值不等式掌握2017课标全国Ⅰ,23;2016课标全国Ⅰ,24 解答题★★★2.不等式的证明 了解证明不等式的基本方法掌握2017课标全国Ⅱ,23;2016课标全国Ⅱ,24解答题★★☆分析解读 1.本章主要考查绝对值的几何意义,绝对值不等式的解法及不等式证明的基本方法.2.绝对值不等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018年文数天津卷】已知圆的圆心为C ,直线(为参数)与该圆相交于A ,B 两点,则的面积为___________.【答案】【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.点睛:处文直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.2.【2018年文北京卷】在极坐标系中,直线与圆相切,则a=__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为,由,得,由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l 被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】分析:先根据直线与圆极坐标方程得直线与圆的一个交点为A(4,0),且OA为直径.设直线与圆的另一个交点为B,根据直线倾斜角得∠OAB=.最后根据直角三角形OBA求弦长.点睛:本题考查曲线的极坐标方程等基础知识,考查运算求解能力.4.【2018年文新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.5.【2018年全国卷Ⅲ文】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得。

2016-2018三年高考数学(文)真题分类专题汇编解析版

2016-2018三年高考数学(文)真题分类专题汇编解析版

考点1集合的概念与运算1.(E ,全国新课标,5 分)已知集合 A = {x | -1 < x < 2}, B = {x | 0 < x < 3}, 则 A B =( )A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2.(D ,全国新课标,5 分)已知集合 M = {x | -1 < x < 3}, N = {x | -2 < x < 1}, 则 MN =A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)3.(E ,广东,5 分)若集合 M = {-1,1}, N = {-2,1, 0}, 则 MN =A.{0,-1}B.{1}C.{0}D.{-1,1}4.(E ,福建,5 分)若集合 M = {x | -2 ≤ x < 2}, N = {0,1,2}, 则 MA.{0}B.{1}C.{0,1,2}D.{0,1}N 等于 ()5.(E ,安徽,5 分)设全集U = {1,2,3,4,5,6}, A = {1, 2}, B = {2,3,4}, 则 AA.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}(C ⋃ B) =A .{1,4}B .{2,3}C.{9,16}D.{1,2}6.(C ,全国新课标,5 分)已知集合 A = {1,2,3,4}, B ={x | x = n 2, n ∈ A}, 则A B =( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}7.(C ,北京,5 分)已知集合 A = {-1,0,1}, B = {x | -1 ≤ x < 1}, 则 A B =( )8.(E ,北京,5 分)若集合 A = {x | -5 < x < 2}, B = {x | -3 < x < 3}, 则 AB = ()A.{x | -3 < x < 2}B.{x | -5 < x < 2} c {x | -3 < x < 3} D.{x | -5 < x < 3}9.(C ,山东,5 分)已知集合 A ,B 均为全集U = {1,2, 3,4} 的子集,且¢ ( AB) = {4}, B = {1,2}, 则UA CB = ()UA.{3}B.{4}C.{3,4}D.∅10.(C ,江西,5 分)集合 A = {2,3}, B = {1,2,3}, 从 A,B 中各任意取一个数,则这两数之和等于 4 的概率是( )12.(B ,浙江,5 分)设全集U = {1,2,3,4,5,6}, 集合 P = {1,2,3,4}, Q = {3,4,5}, 则 P(C2 1 1 1 A.B.c. D.32 3 611.(B,辽宁,5 分)已知全集U = {0,1,2,3,4,5,6,7,8, 9}, 集合 A = {0,1,3,5,8}, 集合 B = {2,4,5,6,8}, 则(C A) (C B) = ()U UA.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}U Q) = (A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2})13. (B ,湖南,5 分)设集合 M = {-1,0,1}, N = {x | x 2 = x}, 则 MN =A.{-1,0,1}B .{0,1}c .{1}D .{0}14.(B ,陕西,5 分)集合 M = {x | kx > 0}, N = {x | x 2 ≤ 4}, 则 M N = A.(1,2) B.[1,2) C.(1,2] D.[1,2]A.{-1,0}B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2}15. (D ,四川,5 分)已知集合 A = {x | ( x +1)( x - 2) ≤ 0},集合 B 为整数集,则 AB = ()N=(16.(D,广东,5分)已知集合M={2,3,4},N={0,2,3,5},则M)A.{0,2}B.{2,3} c.{3,4} D.{3,5}B=()17.(E,山东,5分)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则AA.(1,3)B.(1,4)C.(2,3)D.(2,4)18.(B,广东,5分)设集合U={1,2,3,4,5,6},M={1,3,5},则C M=()UAU1h.{1,2,4h c.{1,3,5} D.{2,4,6}B=R,则a 19.(C,上海,5分)设常数a∈R,集合A={x|(x-1).(x-a)≥0},B={x x≥a-1}.若A的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.L2,+∞)Q等于()20.(D,福建,5分)若集合p={x|2≤x<4},Q={x|x≥3},则P.A.{x | 3 ≤ x < 4}B.{x | 3 < x < 4}C.{x | 2 ≤ x < 3}D.{x | 2 ≤ x ≤ 3}21. (E ,浙江,5 分)已知集合 p = {x {x 2 - 2 x ≥ 3}, Q = {x | 2 - 4}, 则 PQ =A.[3,4)B.(2,3]C.(-1,2) D(-1,3]22. (E ,天津,5 分)已知全集U = {1,2,3,4,5,6}, 集合 A = {2,3,5 }集合 B = {1,3,4,6}, 则集合 A C B =UA.{3}B.{2,5}C.(1,4,6)D.{2,3,5}23.(A ,福建,5 分)若集合 M = {-1,0,1}, N = {0,1, 2}, 则 MN 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}24.(E ,四川,5 分)设集合 A = {x | -1 < x < 2}, 集合 B = {x |1 < x < 3}, AB =A.{x | -1 < x < 3}B.{x | -1 < x < 1}C.{x | 1 < x < 2}D.{x | 2 < x < 3}25.(C,辽宁,5 分)已知集合 A = {0,1,2,3,4}, B = {x || x |< 2}, 则 AB =A.{0}B.{0,1}C.{0,2}D.{0,1,2}26.(A ,湖北,5 分)已知U = {1,2,3,4,5,6,7,8}, A = {1,3,5,7}, B = {2,4,5}, 则 C ( AB) =UA.{6,8}B.{5,7} c.{4,6,7} D.{1,3,5,6,8}27.(A ,全国新课标,5 分)已知集合 M = {0,1,2,3, 4}, N = {1,3,5}, P = MN , 则 P 的子集共有(A2 个 B. 4 个 C .6 个 D .8 个)28.(A ,安徽,5 分)集合U = {1,2,3,4,5,6}, s = {1,4,5}, T = {2,3,4}1 则 S(CUT ) 等于 ( )A.{1,4,5,611B.{1.5} c.{4} D.{1,2,3.4,5}29. (A ,江西,5 分)若全集U = {1,2,3,4,5,6}, M = {2,3}, N = {1,4}, 则集合{5,6}等于()A.M NB.M NC.(C M ) (C N )D.(C M ) (C N )UULJU30.(A,浙江,5 分)若 p = {x | x < 1},∈ -{x | x > -1}, 则A.P ⊆ QBQ ⊆ PC.C P ⊆ QD.Q ⊆ C PRR31.(E ,重庆,5 分)已知集合 A = {1,2,3}, B = {1,3}, 则 AB =A.{2}B.{1,2}C.{1,3}D.{1,2.3}, B = x x < 1 ,32.(E ,陕西,5 分)设集合 M = {x | x = x}, N = {x | lg x ≤ 0}, 则 MN = ()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]33.(D ,湖北,5 分)已知全集 U={l ,2,3,4,5,6,7),集合 A={1,3,5,6), C A =UA.{1,3,5,6}B.{2,3.7}C.{2,4,7}D.{2.5.7}34.(E,湖北,5 分)已知集合 A = {( x , y) | x 2 + y ≤ 1, x, y ∈ z}, B = {( x , y) x ≤ 2, y ≤ 2, x, y ∈ z},定义集合 A ⊕ B = {( x + x , y + y ) | ( x , y ) ∈ A, ( x , y ) ∈ B}, 则 A ⊕ B 中元素的个数为( )1 2121122A. 77B.49C.45D.3035.(E,江苏,5 分).已知集合 A = {1,2,3 }B = {2,4,5},则,则集合 AB 中元素的个数为36.(B ,上海,4 分)若集合 A = {x 2x - 1 > 0}{ }则A B =________37. (C ,江苏,5 分)集合{-1,O ,1}共有____个子集38. (A ,上海,4 分)若全集 U=R ,集合 A = {x x ≥ 1} ,则 C A =U39.(E,湖南,5 分)已知集合U = {1,2,3,4}, A = {1,3}B = {1,3,4}, 则 A40.(D ,江苏,5 分)已知集合 A = {-2, -1,3,4}, B = {-1,2,3 }则 AB =(C B) =U_______L41.(D,重庆,5 分)已知集合 A = {3,4,5,12,13} , B = {2,3,5,8,13}, 则 A B =________42.(E ,上海,4 分)设全集U = R. 若集合 A = {1,2,3,4}, B = x 2 ≤ x ≤ 3}, 则 A C B =U答案5 b c考点 2 逻辑联结词和四种命题l- (E ,湖北,5 分)命题 " ∃x ∈ (0, +∞),ln x = x - 1" 的否定是()0 0A.∃x ∈ (0, +∞), l nx =/ x - 1B.∃x ∉ (0,+∞), ln x = x - 10 0C.∀x ∈ (0,+∞), ln x =/ x - 1D.∀x ∉ (0,+∞), ln x = x - 12.(D ,安徽,5 分)命题 "∀x ∈ R,| x | + x 2 ≥ 0" 的否定是()A.∀x ∈ R,| x | + x 2 < 0B.∀x ∈ R,| x | + x 2 ≤ 0C.∃x ∈ R,| x | + x 2 < 0D.∃x ∈ R,| x | + x 2 ≥ 00 03.(D ,辽宁, 分)设 a , , 是非零向量.已知命题 p:若 a ⋅ b = 0, b ⋅ c = 0, 则 a * C = 0; 命题 q: a // b , b // c,则 a // c. 则下列 命题中真命题是()A.P ∨ qB.P ∧ qC.(⌝p ) ∧ (⌝q )D. p ∨ (⌝q )4.(D ,天津,5 分)已知命题 P : ∀x > 0, 总有 ( x + 1)e x > 1, 则 B.P ∧ q 为()A.∃x ≤ 0, 使得 ( x + 1)e x 0 ≤ 1B.∃x > 0, 使得 ; ( x + 1)e x 0 ≤ 10 0C.∀x > 0, 总有 ( x + 1)e x ≤ 1D.∀ ≤ 0, 总有 ( x + 1)e x ≤ 15.(D ,重庆,5 分)已知命题p :对任意 x ∈ R, 总有 | x |≥ 0;q : x = 1是方程 x + 2 = 0 的根.则下列命题为真命题的是( )A. p ∧ ⌝qB.⌝p ∧ qC.⌝p ∧ ⌝qD. p ∧ q6.(D ,湖南,5 分)设命题 P : ∀x ∈ R, x 2 + 1 > 0, 则 ⌝p 为A.∃x ∈ R, x 2 + 1 > 0B.∃x ∈ R, x 2 + 1 ≤ 0C.∃xo ∈ R, x 2 + 1 < 0D.∀x ∈ R, x 2 + 1 ≤ 07.(E,山东,5 分)设 m ∈ R, 命题“若 m > 0, ,则方程 x 2 + x - m = 0 有实根”的逆否命题是()2 ; 命题 q :函数 y = cos x 的图象关于直线2对称,则下列判断正确的是(A.若方程 x 2 + x - m = 0 有实根,则 | m > 0B.若方程 x 2 + x - m = 0 有实根,则 m ≤ 0C .若方程 x 2 + x - m = 0 没有实根,则 m > 0D 若方程 x 2 + x - m = 0 没有实根,则 m ≤ 08.(C ,全国新课标,5 分)已知命题 P : ∀x ∈ R,2 x < 3 x ; 命题 q : ∃x ∈ R, x 3 = 1 - x 2 , 则下列命题中为真命题的是( )A.P ∧ qB.⌝P ∧ qC. p ∧ ⌝qD.⌝P ∧ ⌝q9.(C ,湖北,5 分)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题 p 是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A.(⌝P) ∨ (⌝q )B. p ∨ (⌝q )C.(⌝P) ∧ (⌝q )D. p ∨ q1O. (B ,湖北,5 分)命题“存在一个无理数,它的平方是有理数”的否定是 ()A 任意一个有理数,它的平方是有理数B 任意一个无理数,它的平方不是有理数C 存在一个有理数,它的平方是有理数D 存在一个无理数,它的平方不是有理数 11. (B ,山东,5 分)设命题 p :函数 y = sin 2 x 的最小正周期为πx =π)A.p 为真B.q 为假C. p ∧ q 为假D. p ∨ q 为真12.(A ,山东,5 分)已知 a, b , c ∈ R, 命题“若 a + b + c = 3. 则 a 2 + b 2 + c 2 ≥ 3,, 的否命题是()A.若 a + b + c =/ 3⋅, 则 a 2 + b 2 + c 2 < 3B.若 a + b + c = 3, 则 a 2 + b 2 + c 2 < 3C .若 a + b + c =/ 3, 则 a 2 + b 2 + C 2 ≥ 3D .若 a 2 + b 2 + c 2 ≥ 3, 则 a + b + c = 313.(A ,辽宁,5 分)已知命题 P : ∃n ∈ N ,2 n > 1000, 则 ⌝P 为()A.∀n ∈ N ,2 n ≤ 1000B.∀n ∈ N ,2 n > 1000C.∃n ∈ N ,2 n ≤ 10ωD.∃n ∈ N ,2 n < 100014.(C,广东,5分)设a是已知的平面向量且a=/0,关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+∝;③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μe;④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μr.上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.415.(D,福建,5分)命题∀x∈[0,+∞),x s+x≥0,,的否定是()A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0()c.∃x∈[0,+∞),x3+x<0000D.∃x∈[0,+∞),x3+x≥0000答案8.(B ,天津,5 分)设 x ∈ R, 则“x > ”是“2 x 2 + x - 1 > 0”的( )考点 3 充要条件1.(E ,浙江,5 分)设 a ,b 是实数,则“a + b > 0”是 ab > 0,, 的A 充分不必要条件B 必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(D ,北京,5 分)设 a ,b 是实数,则“a > b ”是“a 2 > b 2”的( )A 充分而不必要条件B 必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(E ,湖南,5 分)设 x ∈ R, 则“x>l”是“x 3 > 1”的()A 充分不必要条件B 必要不充分条件C 充要条件D .既不充分也不必要条件4.(D ,广东,5 分△)在 ABC 中,角 A ,B ,C 所对应的边分别为 a ,b ,c ,则“a ≤ b ”是“≤ sin A ≤ sin B ”的 ()A 充分必要条件B 充分非必要条件C 必要非充分条件D .非充分非必要条件5.(C ,浙江,5 分)若 α ∈ R, 则“α = 0”是“sin α < cos α”的( )A 充分不必要条件B .必要不充分条件C 充分必要条件D.既不充分也不必要条件6. (B ,陕西,5 分)设 a, b ∈ R, i 是虚数单位,则“ab = 0”是“复数 a + b i为纯虚数”的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D .既不充分也不必要条件7.(B ,浙江,5 分)设 a ∈ R, 则“a = 1”是“直线 l : ax + 2 y - 1 = 0 与直线 l : x + 2 y + 4 = 0 1 2平行”的( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D .既不充分也不必要条件1 2A 充分而不必要条件B 必要而不充分条件C 充分必要条件D .既不充分也不必要条件9.(E ,安徽,5 分)设 P : x < 3, q : -1 < x < 3, 则 p 是 q 成立的()A 充分必要条件B 充分不必要条件C .必要不充分条件D .既不充分也不必要条件10. (A ,天津,5 分)设集合 A = {x ∈ R | x - 2 > 0}, B = {x ∈ R | x < 0}, C = {x ∈ R | x ( x - 2) > 0 则“x ∈A B ”是“x ∈ c ”的 ( )A 充分而不必要条件B 必要而不充分条件11. (A ,浙江,5 分)设 a ,b 为实数,则“0 < ab < 1”是“b < ”的()| 5bC 充分必要条件D .既不充分也不必要条件1aA 充分而不必要条件B .必要而不充分条件C 充分必要条件D .既不充分也不必要条件12.(E ,天津,5 分)设 x ∈ R, 则“1 < x < 2”是“ x - 2 |< 1”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D .既不充分也不必要条件13.(E,湖北,5 分) l , l 表示空间中的两条直线,若 P : l , l 是异面直线; q : l , l 不相交,则 ( )1 21212A.p 是 q 的充分条件,但不是 q 的必要条件B.P 是 q 的必要条件,但不是 q 的充分条件C.p 是 Q 的充分必要条件D.p 既不是 q 的充分条件,也不是 q 的必要条件14. (D ,江西,5 分)下列叙述中正确的是 ( )A.若 a, b , c ∈ R, 则 " a x 2 + bx + c ≥ 0" 的充分条件是 b 2 - 4ac ≤ 0,,B.若 a, b , c ∈ R, 则 ab 2 > cb 2 , , 的充要条件是 " a > c "C .命题“对任意 x ∈ R, 有 x 2 ≥ 0,, 的否定是“存在 x ∈ R, 有 x 2 ≥ 0,,D .L 是一条直线,α , β 是两个不同的平面,若 l ⊥ α , l ⊥ β , 则 α // β15.(C ,天津,5 分)设 a, b ∈ R, 则 (a - b ) ⋅ a 2 < 0,, 是 a < b ,, 的()A 充分而不必要条件B .必要而不充分条件C.充要条件D .既不充分也不必要条件16.(B ,湖北,5 分)设 a, b , c ∈ R +, 则 abc = 1, , 是1 a + 1 b + 1c ≤ a + b + c,, 的()A.充分不必要条件 B 必要不充分条件C.充分必要条件D .既不充分也不必要条件17. (C ,山东,5 分)给定两个命题 P , q ⋅ 若 ⌝P 是 q 的必要不充分条件,则 p 是 ⌝q 的A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件18.(E,陕西,5 分) sin α = cos α , , x cos 2α = 0, , 的()A 充分不必要条件B 必要不充分条件C 充分必要条件D .既不充分也不必要条件19.(A ,湖北, 分)若实数 a , 满足 a ≥ 0, b ≥ 0, 且 ab = 0, 则称 a 与 b 互补.记 ϕ (a, b ) = a + b 2 - a - b ,那么 ϕ (a, b ) = 0 是 a 与 b 互补的( )2),k sin x cos x<x,,是"k<1"的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件20.(E,福建,5分)“对任意x∈(0,πA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件21.(D,浙江,5分)设四边形ABCD的两条对角线AC,BD.则“四边形ABCD为菱形”是"AC⊥BD"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件22.(D,全国新课标,5分)函数f(x)在x=x处导数存在,若P:f/(x)=0;q:x=x是f(x)的极值点,000则()A.p是q的充分必要条件B.p是g的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件23.(E,上海,4分)设z,z∈C,则"z,z均为实数”是z-z是实数”的121212A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件24.(A,陕西,5分)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=_________答案⎩ - log ( x + 1), x > 1, 4B. - 3.(B ,江西,5 分)设函数 f ( x) = ⎨ 2 则 f ( f (3)) = ( )⎩ x , x > 1,5 B.3 ⎩ 2 x , x < 0, 则 f ( f (-2)) = (⎧ 4 C.. f ( x ) = ⎨1T 若 f ( f ( )) = 4, 则 b = ( )⎩ 8c. 6.(B ,福建,5 分)设 f ( x ) = ⎨0, x = 0, g ( x ) = ⎧1, xweiyoulishu, ⎪- 1, x < 0, ⎩ 0, xweiwulishu,考点 4 函数及函数的表示方法1.(D ,全国新课标,5 分)若函数 f ( x ) = kx - ln x 在区间 (1,+∞) 上单调递增,则 k 的取值范围是()A.(-∞,-2]B.(- ∝, -1]C.[2,+∞)D.[1,+∞)⎧ 2x -1 - 2,x ≤ 1,2.(E ,全国新课标,5 分)已知函数 f ( x ) = ⎨且 f (a) = -3, 则 f (6 - a) = ()2A. - 75 4 c. - 3 14 D. - 4⎧x 2 + 1, x ≤ 1, ⎪ ⎪ A. 1 C.2 133 D. 94.(E ,陕西,5 分)设 f ( x ) = ⎨1 -x , x ≥ 0,)A. - 1 .B. 1 1 32 D.25.(E ,山东,5 分)设函数⎧3x - b ,x < 1,⎪5 ⎪ 2 x , x ≥ 1. 6A.1B. 73 4 D. 12⎧1, x > 0,⎪⎩⎨ 则 f ( g (π )) 的值为 ( )A.1B.0C. - 1D.π7 . (D, 四 川 , 5 分 ) 设 f ( x ) 是 定 义 在 R 上 的 周 期 为 2 的 函 数 , 当 x ∈ [-1,1) 时 , f ( x ) =⎧- 4 x 2 + 2, - 1 ≤ x < 0, ⎨⎩x, 0 ≤ x < 1, 3则 f ( ) = 2 _________⎪ 9.(C ,福建,4 分)已知函数 f ( x ) = ⎨⎪ - tan x,0 ≤ x < ,11. (B ,陕西,5 分)设函数 f ( x) = ⎨ 1则 f ( f (-4)) = ________ ⎪( ) x , x < 0, 12.(B,江苏,5 分)设 f ( x ) 是定义在 R 上且周期为 2 的函数,在区间[-1,1]上, f ( x ) = ⎨ h x + 2其中 a, b ∈ R, 若 f ( ) = f ( ), 则 a + 3b 的值为_________1⎧ x 2, x ≤ 1,613.(E ,浙江,6 分)已知函数 f ( x ) = ⎨ ⎪⎩⎧e x -1 , x < 1,8.(D ,全国新课标,5 分)设函数 f ( x ) = ⎨1⎪⎩ x 3 ,x ≥ 1,则使得 f ( x ) ≤ 2 成立的 x 的取值范围是_____⎧2 x 3, x < 0,⎪π ⎩ 2π 则 f ( f ( )) =4 _________10. (E ,全国新课标,5 分)已知函数 f ( x) = ax 3 - 2 x 的图象过点(-1,4),则 a = _______⎧ x , x ≥ 0, ⎪ ⎩ 2⎧ax + 1,-1 - 0, ⎪⎪⎩ x + 1 , L1,⋅32 2⎪x + - 6, x > 1, x则 f ( f (-2)) = ______ f ( x) 的最小值是___14.(A,湖南,5 分)给定 k ∈ N *, 设函数 f : N * → N * 满足:对于任意大于 k 的正整数 n, f (n) = n - k.(1)设 k = 1, 则其中一个函数 f 在 n = 1处的函数值为_________(2)设 k = 4, 且当 n ≤ 4 时, 2 ≤ f (n) ≤ 3, 则不同的函数 f 的个数为________答案log x - 1 的定义域为(3-17.(成,北京,5 分)函数f ( x ) = ⎨ 的值域为_________考点 5 函数的定义域与值域1.(D ,山东,5 分)函数 f ( x ) =12A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞))2.(C ,山东,5 分)函数 f ( x ) = 1 - 2 x+1x + 3 的定义域为A.(-3,0]B.(-3,1]C.(-∞,-3) (-3,0]D.(-∞,-3) (-3,1]3.(E ,重庆,5 分)函数 f ( x ) = log ( x 2 + 2 x - 3) 的定义域是()2A.[-3,1]B.(-3,1)C.(-∞,-3]u[1,+∞)D.(-∞,-3) (1,+∞)4.(A ,江西,5 分)若 f ( x ) =1, 则 f ( x ) 的定义域为 (log (2 x + 1)1)21111A.(- ,0)B.(- ,+∞)C ⋅ (- ,0)u (0,+∞)D ⋅ (- ,2)22 22x 2 - 5x + 65.(E ,湖北,5 分)函数 f ( x ) =4 - x + lg的定义域为()x - 3A.(2,3)B.(2,4]C.(2,3) (3,4]D.(-1,3) (3,6]26.(D,上海,4 分) f ( x ) = x - x 2 , 则满足 f ( x ) < 0 的 x 的取值范周是________⎧log x, x ≥ 1,⎪1 2⎪⎩2x , x < 18.(B ,江苏,5 分)函数 f ( x ) = 1 - 2log x 的定义域为_________69.(B,广东,5 分)函数 y =x x + 1的定义域为________10.(A ,上海,4 分)设 g ( x ) 是定义在 R 上、以 1 为周期的函数,若 f ( x ) = x + g ( x ) 在[O ,1]上的值域为[-2,5],则 f ( x ) 在区间[0,3]上的值域为________答案A. y = cos 2 x , x ∈ RB. y = log | x |, x ∈ Rqiex =/ 0C. y = , x ∈ RD ⋅ y = x 3 + 1, x ∈ RA.B.C.D.1考点 6 函数的奇偶性与单调性1.(E ,福建,5 分)下列函数为奇函数的是( )A. y = xB ⋅ y = e xC ⋅ y = cos xD ⋅ y = e x - e - x2.(D ,全国新课标,5 分)设函数 f ( x ), g ( x ) 的定义域都为 R ,且 f ( x ) 是奇函数, g ( x ) 是偶函数,则下列结论中正确的是( )A. f ( x ) g ( x ) 是偶函数B.| f ( x ) g( x ) 是奇函数rC. f ( x ) g( x ) | 是奇函数D. | f ( x ) g ( x ) | 是奇函数3.(E ,安徽,5 分)下列函数中,既是偶函数又存在零点的是()A. y = ln xB. y = x 2 + 1C ⋅ y = sin xD ⋅ y = cos x4.(C ,北京,5 分)下列函数中,既是偶函数又在区间 (0,+∞ ) 上单调递减的是()A. y =1xB ⋅ y = e- xC ⋅ y = - x 2 + 1D ⋅ y = lg | x |5.(B ,天津,5 分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()2e x - e - x26.(A ,全国新课标,5 分)下列函数中,既是偶函数又在 (0,+∞ ) 上单调递增的函数是()A. y = x 3B. y =| x | +1 C ⋅ y = - x 2 + 1 D ⋅ y = 2- | x7.(C ,湖南,5 分)已知 f ( x ) 是奇函数, g ( x ) 是偶函数,且 f (-1) + g (1) = 2, f (1) + g (-1) = 4, 则g (1) 等于( )A.4B.3 c.2 D.18.(A ,辽宁,5 分)若函数 f ( x ) =x(2 x + 1)( x - a)为奇函数,则 a = ( )1 2 3 23 49.(B ,广东,5 分)下列函数为偶函数的是()A. y = ln x 2 + 1B. y = x 3C ⋅ y = e xD ⋅ y = sin x10.(E ,湖南,5 分)设函数 f ( x ) = ln(1 + x) - ln < 1 - x), 则 f ( x ) 是()A 奇函数,且在(O ,1)上是增函数 B.奇函数,且在(O ,1)上是减函数5C 偶函数,且在(O ,1)上是增函数D .偶函数,且在(O ,1)上是减函数11.(D ,湖北, 分)已知 f ( x ) 是定义在 R 上的奇函数,当 x ≥ 0 时, f ( x ) = x 2 - 3x, 则函数 g ( x ) = f ( x ) -x + 3 的零点的集合为()A.{1,3}B.{-3,-1,1,3} c.{2 - 7 ,1,3} D.{-2 - 7 ,1,3}12. (E ,山东,5 分)若函数 f ( x ) = 2 x + 1 2 x - a是奇函数,则使 f ( x ) > 3 成立的 x 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)13. (C ,天津,5 分)已知函数 f ( x ) 是定义在 R 上的偶函数,且在区间[0,+∞) 上单调递增.若实数 n 满足 f (log a) + f (log - La) ≤ 2 f (1), 则 a 的取值范围是()2211A.[1,2]B.(0, )C.[ ,2]D.(0,2]2214.(D ,全国新课标,5 分)偶函数 y = f ( x) 的图象关于直线 x = 2 对称, f (3) = 3, 则 f (-1) = (15.(D ,安徽,5 分)若函数 f ( x )( x ∈ R) 是周期为 4 的奇函数,且在[O ,2]上的解析式为 f ( x ) =)⎧ x (1- x),0 ≤ x ≤ 1, 29 41⎨则 f ( ) + f ( ) = ⎩sin π x,1 < x ≤ 2,4 16___________⎧ | x 2 - 4 |, x ≤ 0,16.(D ,天津,5 分)已知函数 f ( x ) = ⎨ 若函数 y = f ( x ) - a | x | 恰有 4 个零点,则实数 a⎩2 | x - 2 |, x > 0.的取值范围为__________17. (D ,湖南,5 分)若 f ( x) = ln(e 3x + 1) + ax 是偶函数,则 a = ________18.(E ,福建,4 分)若函数 f ( x ) = 2|x -a| (a ∈ R) 满足 f (1 + x) = f (1 - x), 且 f ( x ) 在 [m ,+∞ ) 上单调递增,则实数 m 的最小值等于__________( x + 1) 2 + sin x19.(B ,全国新课标,5 分)设函数 f ( x ) =的最大值为 M ,最小值为 m ,则 M+m =____x 2 + 120.(B ,安徽,5 分)若函数 f ( x) =| 2 x + a | 的单调递增区间是[3,+∞ ), 则 a = _________21.(B ,上海,4 分)已知 y = f ( x) 是奇函数.若 g ( x) = f ( x) + 2 且 g (1) = 1, 则 g (-1) = _________22.(D ,上海,14 分)设常数 a ≥ 0, 函数 f ( x ) =2 x + a 2 x - a⋅(I)若 a = 4, 求函数 y = f ( x ) 的反函数 y = f-1( x );24.(E ,福建,14 分)已知函数 f ( x ) = ln x - ⋅(Ⅱ)根据 a 的不同取值,讨论函数 y = f ( x ) 的奇偶性,并说明理由.23.(B,上海,14 分)已知 f ( x ) = lg( x + 1).(I)若 0 < f (1 - 2 x ) - f ( x ) < 1, 求 x 的取值范围;(Ⅱ)若 g ( x ) 是以 2 为周期的偶函数,且当 0 ≤ x ≤ 时,有 g ( x ) = f ( x ), 求函数 y = g ( x )( x ∈ [1,2])的反函数.( x - 1) 22(I)求函数 f ( x ) 的单调递增区间;(Ⅱ)证明:当 x > 1时, f ( x ) < x - 1;(Ⅲ)确定实数 k 的所有可能取值,使得存在 x > l ,当 x ∈ (1, x ) 时,恒有 f ( x ) > k ( x - 1).0 0答案(I)当 b = + 1时,求函数 f ( x ) 在[-1,1]上的最小值 g (a) 的表达式;考点 7 二次函数1.(C ,浙江,5 分)已知 a, b , c ∈ R, 函数 f ( x ) = ax 2 + bx + ⋅c. 若 f (0) = f (4) > f (1), 则()A.a > 0,4a + b = 0B.a < 0,4a + b = 0C.a > 0,2a + b = 0D.a x 0,2a + b = 0⎧ x 2 + 2x + 2, x ≤ 0,2.(D ,浙江,4 分)设函数 f ( x) = ⎨ 若 f ( f (a)) = 2, 则 a = ________⎩ - x 2 ,x > 0.3.(E ,广东,5 分)不等式 - x 2 - 3x + 4 > 0 的解集为________(用区间表示).4.(D ,江苏,5 分)已知函数 f ( x ) = x 2 + mx - 1, 若对于任意 x ∈ [m , m + 1], 都有 f ( x ) < 0 成立,则实数m 的取值范围是________5.(E ,浙江,15 分)设函数 ⋅ f ( x ) = x 2 + ax + b (a , b ∈ R).a 24(Ⅱ)已知函数 f ( x ) 在[-1,1]上存在零点, 0 ≤ b - 2a ≤ 1. 求 b 的取值范围.6.(B ,福建,12 分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销, 得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.89I 销量y (件) 9084 83 80 7568(工)求回归直线方程 y = bx + a, 其中 b = -20.a = y - bx;(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是 4 元/件,为使工厂 获得最大利润,该产品的单价应定为多少元?(利润=销售收入一成本)答案, b = log 2 , c = log 112 π , c = π -2 , 则( )4B. 2C.2x - 1 的定义域是(A.( , b )B.(10a,1 - b )C.(102考点 8 根式、指数式、对数式与幂函数、指数函数、对数函数1.(D ,安徽,5 分)设 a = log 7, b = 21.1 , c = 0.83.1 , 则 ()3A.b < a < CB.c < a < bC.c < b < aD.a < c < b2.(D ,,辽宁,5 分)已知 a = 2- 1 313 23 , 则()A.a > b > cB.a > c > bC.c > b > aD.c > a > b3.(D ,天津,5 分)设 a = log 2π , b = log 1A.a > b > cB.b > a > cC.a > c > bD.c > b > a4.(B ,安徽,5 分) (log 9) ⋅ (log 4) =23( )A. 11D.45.(C ,广东,5 分)函数 f ( x ) = lg( x + 1))A.(-1,+∞ )B.[-1,+∞ )C.(-1,1) (1,+∞)D.[-1,1) (1,+∞)6.(A ,安徽,5 分)若点(a ,b )在 y = lg x 图象上, a =/ 1, 则下列点也在此图象上的是()1 a a , b + 1)D.(a 2 ,2b )7.(C ,陕西,5 分)设 a ,b ,c 均为不等于 1 的正实数,则下列等式中恒成立的是()A.log b ⋅ log b = log aB.log b ⋅ log a = log ba ccaccC.log (bc ) = log b ⋅ log cD.log (b + c) = log b + log caa aaxa8.(E ,山东,5 分)设 a = 0.6 0.6 , b = 0.61.5 , c = 1.50.6 , 则 a ,b ,c 的大小关系是( )A.a < b < cB.a < c < bC.b < a < cD.b < c < a 19.(B ,天津,5 分)已知 a = 21.2 , b = ( ) -α8 , c = 2 log 2, 则 a ,b ,c 的大小关系为5 A.c < b < a 13.c < a < b C.b < a < c D.b < c < a1lO .(C ,辽宁,5 分)已知函数 f ( x ) = ln( 1 + 9 x 2 - 3x) + 1, 则 f (lg 2) + f (lg ) = ()2A. - 1B.0C.1D.211.(A ,天津,5 分)已知 a = log 3.6, b = log 3.2, c = log 3.6, 则244A.a > b > cB.a > c > bC.b > a > cD.c > a > b12.(C ,全国新课标,5 分)设 a = log 2, b = log 2, c = log 3, 则352A.a > c > bB.b > c > aC.c > b > aD.c > a > b⎧ 18. (A ,湖北,5 分)里氏震级 M 的计算公式为: M = lg A - lg A其中 A 是测震仪记录的地震曲线的最大13.(B ,浙江,5 分)设 a > 0, b > 0, e 是自然对数的底数()A 若 e a + 2a = e b + 3b , 则 a > bB.若 e a + 2a = e b + 3b , 则 a < bC.若 e a - 2a = e b - 3b , 则 a > bD .若 e a - 2a = e b - 3b , 则 a < b14.(E ,安徽,5 分) lg 5 1+ 2 lg 2 - ( ) -1 = 2 2___________15.(E ,浙江,6 分)计算: log2 2 2 =_________2log 23+log 43 = ________⎧ x 2 - 2, x ≤ 0,16.(D ,福建,4 分)函数 f ( x ) = ⎨ 的零点个数是________⎩2x - 6 + ln x, x > 017.(A ,陕西,5 分)设 f ( x ) = ⎨lg x, x > 0,⎩10 x , x ≤ 0,则 f ( f (-2)) =________0,振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是 1000,此时标准地震的振幅为 0.001,则此次地震的震级为____级;9 级地震的最大振幅是 5 级地震最大振幅的____倍.答案考点9函数的图象1.(D,浙江,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log x的图象可能是()a2.(D,北京,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系P=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟3.(D,福建,5分)若函数y=log x(a>0,且a=/1)的图象如下图所示,则下列函数图象正确的是()a4.(C,湖南,5分)函数f(x)=ln x的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.315.(A,陕西,5分)函数y=x3的图象是()6.(A,安徽,5分)函数f(x)=ax n(1-x)2在区间[O,1]上的图象如图所示,则n可能是()7.(E,浙江,5分)函数f(x)=(x-)cos x(-π≤x≤πqiex=/0)的图象可能为.A.y=1A.1B.2C.3D.41x8.(C,湖北,5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()9.(D,江西,5分)在同一直角坐标系中,函数y=ax2-x+象不可能的是()a2与y=a2x3-2ax2+x+a(a∈R)的图10.(D,陕西,5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切)已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()111111 x3-x2-x B.y=x3+x2-3x c⋅y=x3-x D⋅y=x3+x2-2x222244211.(C,福建,5分)函数f(x)=ln(x2+1)的图象大致是()12.(C,浙江,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f(x)的图象如图所示,则该函数的图象是()⎧13.(B ,山东,5 分)函数 y =∝2 x - 2 - x的图象大致为( )14.(E,安徽,5 分)函数 f ( x ) = ax 3 + bx 2 + cx + d 的图象如图所示,则下列结论成立的是( )A.a > 0, b < 0, c > 0, d > 0B.a > 0, b < 0, c < 0.d > 0C.a < 0, b < 0, c > 0, d > 0D.a > 0, b > 0, c > 0, d < 015. (B ,湖北,5 分)已知定义在区间[O ,2]上的函数, y = f ( x ) 的图象如下右图所示,则 y = - f (2 - x)的图象为 ()16.(E ,全国新课标,5 分)如图,长方形 ABCD 的边 AB = 2, BC = 1, O 是 AB 的中点,点 P 沿着边 BC ,CD与 DA 运动,记∠BOP = x. 将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f ( x ), 则 y = f ( x ) 的图象大致为 ()17.(A ,天津,5 分)对实数 a 和 b ,定义运算 ⊗,: a ⊗ b = ⎨a, a - b ≤ 1, ⎩b , a - b > 1.设函数 f ( x ) = ( x 2 - 2) ⊗ ( x - 1),x ∈ R. 若函数 y = f ( x ) - c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是( )A.(1,1](2,)B.(2,1](1,2]C.(,2)(1,2]D.[2,1]18.(A,江西,5分)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点0处,一顶点及中心M在y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.今使“凸轮”沿X轴正向滚动前进,在滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为()19.(C,江西,5分)如图,已知l1l,圆心在l上、半径为1m的圆0在t=O时与l相切于点A,圆0 212沿l以l m/s的速度匀速向上移动,圆被直线l所截上方圆弧长记为x,令y co.x,则y与时间t(0K 12l,单位:s)的函数y f(t)的图象大致为()20.(B,陕西,5分)下图是抛物线形拱桥,当水面在L时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____米.。

三年高考(2016-2018)高考数学试题分项版解析 专题26 排列组合、二项式定理 理(含解析)

三年高考(2016-2018)高考数学试题分项版解析 专题26 排列组合、二项式定理 理(含解析)

专题26 排列组合、二项式定理考纲解读明方向两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.分析解读 1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.2018年高考全景展示1.【2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C点睛:本题主要考查二项式定理,属于基础题。

2.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.3.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.4.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.【2018年理新课标I卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.2017年高考全景展示1.【2017课标1,理6】621(1)(1)x x ++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.2.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y - 展开式的通项公式:()()5152rrrr T C x y -+=- 可得:当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=- , 当2r = 时,()52y x y - 展开式中33x y 的系数为()22352180C ⨯⨯-= ,则33x y 的系数为804040-= . 故选C .【考点】 二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【考点】 排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。

专题01 集合-三年高考(2016-2018)数学(文)试题分项版解析(原卷版)

专题01 集合-三年高考(2016-2018)数学(文)试题分项版解析(原卷版)

考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题[来源:1]Ⅰ选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2019年高考全景展示1.【2019年新课标I卷文】已知集合,,则A. B. C. D.2.【2019年全国卷Ⅲ文】已知集合,,则()A. B. C. D.3.【2019年全国卷II文】已知集合,,则()A. B. C. D.4.【2019年北京卷文】已知集合A ={(xx |<2)},B ={−2,0,1,2},则( ) A. {0,1} B. {−1,0,1} C. {−2,0,1,2} D. {−1,0,1,2}5.【2019年天津卷文】设集合,,,则( ) A. B. C. D.6.【2019年浙江卷】已知全集U ={1,2,3,4,5},A ={1,3},则( ) A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}7.【2019年江苏卷】已知集合,,那么________.[来源:1ZXXK] 2019年高考全景展示 1.【2019课表1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则( )A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅[来源:1ZXXK]C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R2.【2019课标II ,文1】设集合{1,2,3},{2,3,4}A B ==则A B = ( )A. {}123,4,,B. {}123,,C. {}234,,D. {}134,,3.【2019课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为()A .1B .2C .3D .44.【2019天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =( )(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6}5.【2019北京,文1】已知U =R ,集合{|22}A x x x =<->或,则U A =( )[来源学*科*网Z*X*X*K](A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]- (D )(,2][2,)-∞-+∞6.【2019浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(7.【2019山东,文1】设集合{}11M x x =-<,{}2N x x =<,则M N = ( )A.()1,1-B. ()1,2-C. ()0,2D. ()1,28.【2019江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .2019年高考全景展示1. 【2019高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =,则AB =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 2.【2019高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},3. [2019高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,,4. 【2019高考天津文数】已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( ) (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{5.【2019高考四川文科】设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)36. 【2019高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}7.【2019高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x >8. 【2019高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =( )(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 9.【2019江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________.。

三年高考2016_2018高考数学试题分项版解析专题11解三角形文含解析62

三年高考2016_2018高考数学试题分项版解析专题11解三角形文含解析62

专题11 解三角形文考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题掌握2017山东,9;2017浙江,14;2017天津,15;2017北京,15;2016课标全国Ⅱ,13;2016天津,3;2015天津,13选择题填空题★★★2.正、余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题掌握2017课标全国Ⅱ,17;2017课标全国Ⅲ,17;2017江苏,18;2016课标全国Ⅲ,8;2016山东,16; 2016浙江,16;2015湖北,13解答题★★★分析解读 1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.2018年高考全景展示1.【2018年全国卷Ⅲ文】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。

2.【2018年全国卷Ⅲ文】若,则A. B. C. D.【答案】B【解析】分析:由公式可得。

详解:,故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

3.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】 3【解析】分析:根据正弦定理得sin B,根据余弦定理解出c.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.4.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.5.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.【2018年新课标I卷文】△的内角的对边分别为,已知,,则△的面积为________.【答案】点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得,利用面积公式求得结果.7.【2018年天津卷文】在中,内角A,B,C所对的边分别为a,b,c.已知.(I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC 中,由余弦定理可得b =.结合二倍角公式和两角差的正弦公式可得点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.2017年高考全景展示1.【2017课标1,文11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【答案】B 【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即sin (sin cos )sin()04C A A C A π+=+=,所以34A π=.由正弦定理sin sin a c A C =得23sin 4π=1sin 2C =,得6C π=,故选B .【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2017课标II ,文16】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos bc B a C c A =+,则B =【答案】3π【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.3.【2017浙江,13】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】【考点】解三角形【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.4.【2017课标3,文15】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =_________.【答案】75°【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5.【2017浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .【解析】试题分析:将正六边形分割为6个等边三角形,则233)60sin 1121(66=⨯⨯⨯⨯= S 【考点】数学文化【名师点睛】本题粗略看起来文字量大,其本质为将正六边形分割为6个等边三角形,确定6个等边三角形的面积,其中对文字信息的读取及提取有用信息方面至关重要,考生面对这方面题目时应多加耐心,仔细分析题目中所描述问题的本质,结合所学进行有目的的求解.6.【2017天津,文15】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(I )求cos A 的值;(II )求sin(2)B A -的值.【答案】(Ⅰ);(Ⅱ) .【解析】试题分析(Ⅰ)首先根据正弦定理sin sin A aB b=代入得到2a b =,再根据余弦定理求得cos A ;(Ⅱ)根据(Ⅰ)的结论和条件,根据cos A 求sin A ,和2,a b =以及正弦定理求得sin B,再求cos B ,以及sin 2,cos 2B B ,最后代入求()sin 2B A -的值.【考点】1.正余弦定理;2.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式7.【2017山东,文17】(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】3=π,4A a 【解析】试题分析:先由数量积公式及三角形面积公式得,3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a.【考点】解三角形【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.2016年高考全景展示1.【2016高考新课标1文数】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )(A(B(C )2 (D )3【答案】D 【解析】试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D.考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!2.【2016高考山东文数】ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3(C )π4(D )π6【答案】C【解析】考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3. [2016高考新课标Ⅲ文数]在ABC △中,π4B =,BC 边上的高等于13BC ,则sin A =( )(A )310(B(C(D【答案】D 【解析】试题分析:设BC 边上的高线为AD ,则3,2BC AD DC AD ==,所以AC ==.由正弦定理,知sin sin AC BCB A =3sin AD A =,解得sin A =,故选D .考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4. 【2016高考上海文科】已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C == 考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.5.【2016高考新课标2文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________.【答案】2113【解析】考点: 正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6. 【2016高考北京文数】在△ABC 中,23A π∠=,a =,则b c=_________.【答案】1【解析】试题分析:由正弦定理知sin sin A a C c==1sin 2C ==,则6C π=,所以2366B ππππ=--=,所以b c =,即1b c =.考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.7.【2016高考天津文数】(本小题满分13分)在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c,已知sin 2sin a B A =.(Ⅰ)求B ;(Ⅱ)若1cos A 3=,求sinC 的值.【答案】(Ⅰ)6π=B【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:2sin sin cos A B B A ,再根据三角形内角范围化简得23cos =B ,6π=B (Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为π,将所求角化为两已知角的和)sin()](sin[sin B A B A C +=+-=π,再根据两角和的正弦公式求解考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.8.【2016高考浙江文数】(本题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若cos B=23,求cos C的值.【答案】(I)证明见解析;(II)22 cos27C=.【解析】试题分析:(I)先由正弦定理可得sin sin C2sin cosB+=A B,进而由两角和的正弦公式可得()sin sinB=A-B,再判断A-B的取值范围,进而可证2A=B;(II)先用同角三角函数的基本关系可得sin B,再用二倍角公式可得cos2B,进而可得cos A和sin A,最后用两角和的余弦公式可得cos C.考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A,B的式子,根据角的范围可证2A=B;(II)先用同角三角函数的基本关系及二倍角公式可得cos2B,进而可得cos A和sin A,再用两角和的余弦公式可得cos C.9.【2016高考四川文科】(本题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C a b c +=.(I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B .【答案】(Ⅰ)证明详见解析;(Ⅱ)4.【解析】试题分析:(Ⅰ)已知条件式中有边有角,利用正弦定理,将边角进行转化(本小题是将边转化为角),结合诱导公式进行证明;(Ⅱ)从已知式可以看出首先利用余弦定理解出cos A =35,再根据平方关系解出sinA ,代入(Ⅰ)中等式sin A sin B =sin A cos B +cos A sin B ,解出tanB 的值.(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有cos A =2222b c a bc +-=35.所以sin A =45.由(Ⅰ),sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B ,故sin tan 4cos B B B ==.考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.。

三年高考2016_2018高考数学试题分项版解析专题26算法文含解析201811241292

三年高考2016_2018高考数学试题分项版解析专题26算法文含解析201811241292

专题26 算法文考纲解读明方向考纲解读考点内容解读要求高考示例常考题型预测热度(1)算法的含义、程序框图2017课标全国Ⅰ,8;①了解算法的含义,了解算法的思想;2017课标全国Ⅲ,7;②文解程序框图的三种基本逻辑结构:顺序结构、算法和程2016课标全国Ⅰ,9;条件结构、循环结构了解选择题★★★序框图2015课标Ⅰ,9;(2)基本算法语句2015课标Ⅱ,8;了解几种基本算法语句——输入语句、输出语2014课标Ⅰ,7句、赋值语句、条件语句、循环语句的含义分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A)12(B)56(C)767(D)12【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式:①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II,文8】执行右面的程序框图,如果输入的a 1,则输出的S ()A.2 B.3 C.4 D.5【答案】B【解析】试题分析:阅读流程图,初始化数值a 1,k 1,S 0循环结果执行如下:第一次:S 0 1 1,a 1,k 2 ;【考点】流程图【名师点睛】识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构。

三年高考2016_2018高考数学试题分项版解析专题30推理与证明理含解析98.doc

三年高考2016_2018高考数学试题分项版解析专题30推理与证明理含解析98.doc

专题30 推理与证明考纲解读明方向考纲解读分析解读 1.能利用已知结论类比未知结论或归纳猜想结论并加以证明.2.了解直接证明与间接证明的基本方法,体会数学证明的思想方法.3.掌握“归纳—猜想—证明”的推理方法及数学归纳法的证明步骤.4.归纳推理与类比推理是高考的热点.本章在高考中的推理问题一般以填空题形式出现,分值约为5分,属中档题;证明问题一般以解答题形式出现,分值约为12分,属中高档题.2017年高考全景展示1. 【2017课标II,理7】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

看后甲对大家说:我还是不知道我的成绩。

根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【考点】合情推理【名师点睛】合情推理主要包括归纳推理和类比推理。

数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。

合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。

而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。

2.(2017北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.答案①Q1②p23.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.4.(2017北京,20,13分)设{a n}和{b n}是两个等差数列,记c n=max{b1-a1n,b2-a2n,…,b n-a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n-1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.解析本题考查等差数列,不等式,合情推理等知识,考查综合分析,归纳抽象,推理论证能力.(1)c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2.当n≥3时,(b k+1-na k+1)-(b k-na k)=(b k+1-b k)-n(a k+1-a k)=2-n<0,所以b k-na k关于k∈N*单调递减.所以c n=max{b1-a1n,b2-a2n,…,b n-a n n}=b1-a1n=1-n.所以对任意n≥1,c n=1-n,于是c n+1-c n=-1,所以{c n}是等差数列.(2)设数列{a n}和{b n}的公差分别为d1,d2,则b k-na k=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以c n=①当d1>0时,取正整数m>,则当n≥m时,nd1>d2,因此c n=b1-a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>时,有nd1<d2.所以==n(-d1)+d1-a1+d2+≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>max,故当n≥m时,>M.2016年高考全景展示1.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.【答案】1和3考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.。

三年高考2016_2018高考数学试题分项版解析专题26算法文含解析92

三年高考2016_2018高考数学试题分项版解析专题26算法文含解析92

专题26 算法文考纲解读明方向考纲解读分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A )12 (B )56 (C )76 (D )712【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式: ①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】 流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II ,文8】执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:阅读流程图,初始化数值1,1,0a k S =-== 循环结果执行如下:第一次:011,1,2S a k =-=-== ;【考点】 流程图【名师点睛】识别、运行程序框图和完善程序框图的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构。

三年高考(2016-2018)数学(文)真题分类解析:专题11-解三角形

三年高考(2016-2018)数学(文)真题分类解析:专题11-解三角形

考纲解读明方向1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.2018年高考全景展示1.【2018年全国卷Ⅲ文】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。

2.【2018年全国卷Ⅲ文】若,则A. B. C. D.【答案】B【解析】分析:由公式可得。

详解:,故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

3.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】3【解析】分析:根据正弦定理得sin B,根据余弦定理解出c.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.4.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.点睛:此题考查解三角形的综合应用,余弦定理的公式有三个,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含的表达式的最值问题是解题的第二个关键.5.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.【2018年新课标I卷文】△的内角的对边分别为,已知,,则△的面积为________.【答案】点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得,利用面积公式求得结果. 7.【2018年天津卷文】在中,内角A,B,C所对的边分别为a,b,c.已知.(I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.2017年高考全景展示1.【2017课标1,文11】△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=A.B.C.D.【答案】B【解析】试题分析:由题意得,即,所以.由正弦定理得,即,得,故选B.【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【2017课标II,文16】的内角的对边分别为,若,则【答案】【解析】由正弦定理可得【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.3.【2017浙江,13】已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是______,cos∠BDC=_______.【答案】【解析】【考点】解三角形【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.4.【2017课标3,文15】△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A=_________.【答案】75°【考点】正弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5.【2017浙江,11】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积,.【答案】【解析】试题分析:将正六边形分割为6个等边三角形,则【考点】数学文化【名师点睛】本题粗略看起来文字量大,其本质为将正六边形分割为6个等边三角形,确定6个等边三角形的面积,其中对文字信息的读取及提取有用信息方面至关重要,考生面对这方面题目时应多加耐心,仔细分析题目中所描述问题的本质,结合所学进行有目的的求解.6.【2017天津,文15】在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.【答案】(Ⅰ);(Ⅱ).【解析】试题分析(Ⅰ)首先根据正弦定理代入得到,再根据余弦定理求得;(Ⅱ)根据(Ⅰ)的结论和条件,根据求,和以及正弦定理求得,再求,以及,最后代入求的值.【考点】1.正余弦定理;2.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式7.【2017山东,文17】(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,,S△ABC=3,求A和a.【答案】【解析】试题分析:先由数量积公式及三角形面积公式得,,由此求A,再利用余弦定理求a.【考点】解三角形【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.2016年高考全景展示1.【2016高考新课标1文数】△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=()(A)(B)(C)2 (D)3【答案】D【解析】试题分析:由余弦定理得,解得(舍去),故选D.考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.【2016高考山东文数】中,角A,B,C的对边分别是a,b,c,已知,则A=()(A)(B)(C)(D)【答案】C【解析】考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3. [2016高考新课标Ⅲ文数]在中,,边上的高等于,则()(A)(B)(C)(D)【答案】D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4.【2016高考上海文科】已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【答案】【解析】试题分析:由已知,∴,∴,∴考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.5.【2016高考新课标2文数】△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.【答案】【解析】考点:正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【2016高考北京文数】在△ABC中,,,则=_________.【答案】1【解析】试题分析:由正弦定理知,所以,则,所以,所以,即.考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.7.【2016高考天津文数】(本小题满分13分)在中,内角所对应的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.【答案】(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:,再根据三角形内角范围化简得,(Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为,将所求角化为两已知角的和,再根据两角和的正弦公式求解考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.8.【2016高考浙江文数】(本题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若cos B=,求cos C的值.【答案】(I)证明见解析;(II).【解析】试题分析:(I)先由正弦定理可得,进而由两角和的正弦公式可得,再判断的取值范围,进而可证;(II)先用同角三角函数的基本关系可得,再用二倍角公式可得,进而可得和,最后用两角和的余弦公式可得.考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有,的式子,根据角的范围可证;(II)先用同角三角函数的基本关系及二倍角公式可得,进而可得和,再用两角和的余弦公式可得.9.【2016高考四川文科】(本题满分12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且.(I)证明:;(II)若,求.【答案】(Ⅰ)证明详见解析;(Ⅱ)4.【解析】试题分析:(Ⅰ)已知条件式中有边有角,利用正弦定理,将边角进行转化(本小题是将边转化为角),结合诱导公式进行证明;(Ⅱ)从已知式可以看出首先利用余弦定理解出cos A=,再根据平方关系解出sinA,代入(Ⅰ)中等式sin A sin B=sin A cos B+cos A sin B,解出tanB的值.(Ⅱ)由已知,b2+c2–a2=bc,根据余弦定理,有cos A==.所以sin A==.由(Ⅰ),sin A sin B=sin A cos B+cos A sin B,所以sin B=cos B+sin B,故.考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.。

三年高考(2016-2018)数学(文)试题分项版解析——专题26 算法(解析版)

三年高考(2016-2018)数学(文)试题分项版解析——专题26 算法(解析版)

考纲解读明方向考纲解读考点内容解读要求高考示例常考题型预测热度算法和程序框图(1)算法的含义、程序框图①了解算法的含义,了解算法的思想;②文解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构(2)基本算法语句了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义了解2017课标全国Ⅰ,8;2017课标全国Ⅲ,7;2016课标全国Ⅰ,9;2015课标Ⅰ,9;2015课标Ⅱ,8;2014课标Ⅰ,7选择题★★★分析解读 1.文解算法的概念与特点,会用自然语言描述算法,能熟练运用程序框图表示算法.2.文解基本算法语句,掌握算法的基本思想,能编写程序解决简单问题.3.程序框图.高考对本章主要考查三种基本逻辑结构,有时与函数、数列、概率结合进行综合考查.根据题目条件补充判断框中的条件,读出程序框图的功能,执行程序框图并输出结果是高考的热点.一般以选择题形式出现,分值约为5分,属中低档题.2018年高考全景展示1.【2018年文数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2. 【2018年文数北京】执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712【命题立意】本题考查循环结构的程序框图,为容易题.【答案】B【举一反三】高考对循环结构的程序框图的考查注意有以下三种方式:①已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.②完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.③对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.3. 【2018年文数天津】阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,文解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2017年高考全景展示1.【2017课标3,文7】执行右图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.2【答案】D【解析】【考点】 流程图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处文框、判断框的功能,不可混用;赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.2.【2017课标II ,文8】执行右面的程序框图,如果输入的1a =-,则输出的S =( ) A .2 B .3 C .4 D .5【答案】B 【解析】试题分析:阅读流程图,初始化数值1,1,0a k S =-== 循环结果执行如下:第一次:011,1,2S a k =-=-== ;【考点】 流程图【名师点睛】识别、运行程序框图和完善程序框图的思路 (1)要明确程序框图的顺序结构、条件结构和循环结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考纲解读明方向分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018的图像关于直线D.【答案】B1,0)关于x=1对称点,代入选项验证即可。

1,0),(1,0)关于x=1对称的点还是(1,0)故选项B 正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。

2.【2018.2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x xg x -=⋅,11'()e (22ln )e 2(1ln )022xxx x x g x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( )A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2x x y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等. 本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= . 【答案】-2 【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性=+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区f x f x T()()间上,再由函数式求值即可.。

相关文档
最新文档