微积分方法建模9如何预报人口的增长--数学建模案例分析
中国人口增长预测数学建模 (2)
中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
人口指数增长模型
《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期: 2009 年 4 月 22 日实验报告日期: 2009 年 4 月 26 日一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
二、实验内容根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。
利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。
三、实验环境MATLAB6.5四、实验步骤为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。
根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,’+’,t,x0*exp(rt),’-’),画出实际数据与计算结果之间的图形,看结果如何。
利用1790-1900年的数据进行试验,程序如下:t=linspace(0,11,12);x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0];p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2))plot(t,x,'+',t,x0*exp(r*t),'-')利用1790-2000年的数据进行试验,程序如下:t=linspace(0,21,22);x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106 .5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2))plot(t,x,'+',t,x0*exp(r*t),'-')五、实验结果以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象:以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:六、实验讨论、结论从图形1中可知,此模型基本上能够描述十九世纪以前美国人口的增长,因为+号基本上都在线上,说明拟合成功。
数学建模—微分方程之预测模型
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
b b t1 , t 2 t1 x
b
假设1)
dB dt
假设2)
t 2 t1
B(t2 )
假设3)4)
t2
x
t1
0
x
t1
t2 t
0
2 2 2 bt t t1 2 1 B(t )dt 2 2 2(x )
f1 ( x) c1B(t2 ), f 2 ( x) c2 x(t2 t1 ) c3 x
C( x) f1 ( x) f 2 ( x)
目标函数——总费用
模型建立
2
目标函数——总费用
2 2
c1 t1 c1 t1 c2 t1 x C ( x) c3 x 2 2(x ) x
1 如何预报人口的增长
背景 世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r s xm
r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
数学建模之中国人口增长的预测和人口结构的简析
中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
毕业设计_数学建模论文中国人口增长预测
中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
人口增长的预测(数学建模论文
关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。
" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。
二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。
首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。
并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。
按照这个假设,。
用参数=3.0,r=0.0386, =1908, =14.5。
画出N=N(t)的图像,作为人口增长模型的一种近似。
做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。
当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。
用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。
按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。
三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。
设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。
Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。
应用微分方程求解世界各国人口发展问题
应用微分方程求解世界各国人口发展问题近年来,人口问题成为世界关注的热点之一。
不同国家的人口增长率不同,人口老龄化、人口减少等问题也开始受到世界各国的重视。
但是,应用微分方程求解人口问题的方法似乎比较少见。
本文将探讨如何应用微分方程解决世界各国人口发展问题。
一、人口增长率的微分方程模型首先,我们需要知道人口增长率的微分方程模型是什么。
假设一个国家的人口数量为P,其增长率为r(单位为人/人年),则有:dP/dt = rP其中,dP/dt表示P对t的导数,即人口数量随时间变化的速率。
由于r是为常数,我们可以将其写成:dP/P = rdt对上述式子两边同时求积分,得到:ln(P) = rt + C其中,C为积分常数。
解出P,得到:P = e^(rt+C)由于e^C是一个常数,我们可以将其表示为K,即:P = Ke^(rt)这个式子被称为人口数量的微分方程模型。
通过这个模型,我们可以预测一个国家在未来的某个时间点的人口数量。
二、应用微分方程预测人口数量根据上面的式子,我们可以计算未来某个时间点的人口数量。
例如,我们可以应用这个式子预测中国未来10年的人口数量。
首先,我们需要知道中国目前的人口数量和增长率。
根据联合国的统计数据,中国在2019年的人口数量为13.91亿人,增长率为0.44%。
因此,我们可以将r和P代入上面的式子,得到:P = Ke^(0.0044t)假设我们要预测中国10年后的人口数量,即t=10,则有:P = Ke^(0.044)我们可以通过以下方式计算K值:K = P/e^(rt)将t=0、P=13.91亿代入上面的式子,得到:K = 13.91亿/e^0 = 13.91亿因此,代入上面的式子,我们可以计算出中国未来10年的人口数量为:P = 13.91亿*e^(0.044*10) = 15.92亿通过微分方程模型,我们得出了中国未来10年的人口增长情况。
类似地,我们也可以预测其他国家的人口增长情况。
人口增长问题数学模型
人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
微分方程数值解--案例(中国人口增长预测)
存在无穷多个解。所有满足上式的格式统称为 阶龙格 存在无穷多个解。所有满足上式的格式统称为2阶龙格 - 库 无穷多个解 塔格式。注意到, 塔格式。注意到,p = 1, λ 1 = λ 2 = 1 就是改进的欧拉法。 就是改进的欧拉法。
2
Q: 为获得更高的精度,应该如何进一步推广? 为获得更高的精度,应该如何进一步推广?
h2 y ( x i + 1 ) = y ( x i ) + h y ′( x i ) + y ′′( x i ) + O ( h 3 ) 2
3 则必须有: 要求 Ri = y( xi +1 ) − yi +1 = O( h ) ,则必须有:
1 λ1 + λ 2 = 1 , λ 2 p = 2
这里有 3 个未知 个方程。 数, 2 个方程。
truncation error */。 。
若某算法的局部截断误差为O(hp+1),则称该算法有 ,则称该算法有p 定义 若某算法的局部截断误差为 Ri 的主项 阶精度。 阶精度。 /* leading term */ 欧拉法的局部截断误差: 欧拉法的局部截断误差:
Ri = y( xi +1 ) − yi +1 = [ y( xi ) + hy′( xi ) + h2 y′′( xi ) + O(h3 )]− [ yi + hf ( xi , yi )]
微分方程及数学建模
一、常微分方程数值解法
考虑一阶常微分方程的初值问题 考虑一阶常微分方程的初值问题 /* Initial-Value Problem */: 一阶常微分方程的
dy = f ( x, y) dx y(a ) = y0 x ∈ [a , b ]
中国人口增长预测数学建模
中国人口增长预测数学建模引言中国作为世界人口最多的国家之一,人口增长一直是一个备受关注的话题。
为了能够合理规划和管理资源,预测中国人口的增长趋势对决策者来说至关重要。
本文将运用数学建模的方法,通过分析历史数据,来预测中国人口的增长。
数据收集与处理为了进行人口增长预测,首先需要收集和处理相关的数据。
我们可以通过查阅统计年鉴、人口普查数据等公开的数据来获取所需信息。
然后,需要对数据进行清洗和整理,以便进行后续的分析和建模工作。
人口增长模型选择人口增长涉及到多个因素的复杂影响,如出生率、死亡率、迁移率等。
为了能够对中国人口的增长进行模型化,我们需要选择适合的数学模型。
常用的人口增长模型有Malthusian模型、Logistic模型等。
在选择模型时,需要考虑模型的适用性和可解释性。
Malthusian模型Malthusian模型是由英国经济学家Malthus提出的,他认为人口增长是按指数规律进行的。
该模型是基于以下假设:1.出生率和死亡率是恒定的;2.人口的增长率与人口规模成正比。
Malthusian模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP $$其中,P为人口规模,P为时间,P为每个个体的平均增长率。
根据该模型,人口规模以指数形式增长。
Logistic模型Logistic模型是在Malthusian模型的基础上发展起来的,它考虑到了环境资源的有限性对人口增长的限制。
Logistic模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP(1 - \\frac{{P}}{{K}}) $$其中,P为人口规模,P为时间,P为每个个体的平均增长率,P为环境资源的极限容量。
该模型认为人口规模在达到环境资源的极限容量时,增长率将逐渐减小。
变量的估计和参数的拟合在建立模型之后,需要对模型进行参数估计和拟合。
可以利用历史数据来对模型中的参数进行估计,并通过优化算法来拟合模型与实际数据的拟合度。
建模示例之三如何预报人口的增长
问题分析
从几何上解释“1车长度规则”: 车速每增加10英里/小时,前后车的距离应 增加一个车身的长度,表明距离间隔D与车 速v成正比例关系。考虑一辆车的长度为15 英尺,根据方程D = k v,计算得到比例系 数k为:
问题分析
计数器 左轮盘 右轮盘 0000
录像带
磁头
主动轮
压轮 图 1 录像机计数器工作原理示意图
问题分析
录像带有两个轮盘,一开始录像带缠满 左轮盘,右轮盘的轴与计数器相连,右 轮转的圈数与计数器读数成正比,开始 时右轮盘是空的,计数器读数为0000。
问题分析
录像带从左往右运动,与小马达相连的 主动轮的转数是固定不变的,录像带靠 压轮压在主动轮上,录像带的运动速度 (线速度)为常数,使得录像机播放出 稳定的图像。 随着录像带从左向右运动,右轮盘半径 增加,转速越来越慢,计数器读数的增 长就越来越慢。
模型建立
另一方面,当右轮盘转到第 i 圈的时候, 其半径为 r+wi,周长为 2 (r wi) ,并且 m=kn,所以有 m 圈的总长度
2 (r wi ) 2rm wm(m 1) = i 1
m
= (2r w)kn wk
2
n
2
=vt
模型建立
容易算出
t
2.2 录像机计数器的用途
问题提出
一盘录像带,从头转到尾,时间用了 184 分钟,录像机计数器读数从 0000 变 到 6061。请你建立计数器读数与录像带 转过时间的关系,这样计数器就可以起 到记录时间的作用。比如说,计数器读 数为 4580 时,希望知道剩下的一段还能 否录下一小时的节目。为了解决这个问 题,现在提供一组实测数据:
微积分方法建模如何预报人口的增长--数学建模案例分析
§9 如何预报人口的增长人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果.建立人口模型的意义在于利用模型中的参数及时控制人口的增长.模型一 Malthus 指数增长模型英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型. 假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数;2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比. 建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ∆+时间内的人口增量为 t t rx t x t t x ∆=-∆+)()()( 易导出下面的微分方程⎪⎩⎪⎨⎧==0)0(x x rxdt dx求解 易解出)0()(0>=r e x t x rt分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异.出现这种差异的原因是19世纪以后人口的增长率已不再是常数.比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307. 模型二 Logistic 阻滞增长模型 假设 1、同模型一;2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率;3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量. 建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s =,于是)1()(mx xr x r -=,其中r ,m x 是根据人口统计数据确定的常数.m x 常由经验确定.仿模型一同样得⎪⎩⎪⎨⎧=-=0)0()1(xx x x x r dt dxm求解 tr m me x xx t x --+=)1(1)(0表 美国的实际人口与按两种模型计算的人口的比较分析1、模型表明人口增长率dt dx随着人口数x 的增加先增后减,在2m x x =处达到最大;且当∞→t 时,m x x →.2、模型在本世纪初曾被广泛使用,且预报效果很好,如预报美国人口时,66010179,31.0,109.3⨯==⨯=m x r x .但1960以后误差越来越大,究其原因是1960年美国实际人口已突破用过去数据确定的m x (它是用1800—1930的数据估计的),由此可知,模型的缺点之一是m x 不易准确地得到.。
数学建模 人口增长详解
摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。
关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
微分方程讲座-人口增长模型
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是为 了研究种群数量的增长情况而建立的,但它 们也可用来研究其他实际问题,只要这些实 际问题的数学模型有相同的微分方程即可。
r
p
r
p t
(r,
t)
p(r,
t
)
p(r,0) p0 (r), r 0 ~已知函数(人口调查)
p(0,
t
)
f
(t),
t0
~生育率(控制人口手段)
男女性别比
在增大
生育率
生育数
只生一个
育龄区间
晚婚、晚育
人口增长模型的总结
基于一个假设,形成了基础模型Malthus模 型,再通过对现实世界分析,改进模型引进 了阻滞项,从而得到了Logistic模型.
p
P(r,t)
方 程
rm ~ 最高年龄
F (0, t) 0, F (rm , t) N (t)
p(r, t) F r
0 F(r0,t) r0
r rm
t,年dr龄]人[r数, r
t r
dt,年龄[r dr1 dr1 dr]人数
,
dt
dr1
死(t, t亡人dt数)内
p(r, t)dr p(r dr1,t dt)dr (r,t) p(r,t)drdt
马尔萨斯模型人口预测图
11
x 10 3.5
马尔萨斯模型人口预测
3
2.5
N/人
2
自然资源限制
常微分方程在人口增长模型中的数学建模
常微分方程在人口增长模型中的数学建模人口增长是一个复杂而重要的社会问题,对于解决人口问题,了解人口增长模型是十分必要的。
常微分方程是研究自然现象的重要工具,它在人口增长模型中的应用也是十分广泛的。
本文将介绍常微分方程在人口增长模型中的数学建模。
一、人口增长模型的基本假设在建立人口增长模型之前,我们需要先进行一些基本假设。
首先,我们假设人口增长是一个连续的过程,即人口数量的变化是连续的。
其次,我们假设人口增长的速率与当前人口数量成正比,即人口增长率与人口数量成正比。
最后,我们假设人口增长的速率还受到其他因素的影响,比如出生率、死亡率、迁移率等。
二、人口增长模型的建立为了建立人口增长模型,我们需要引入常微分方程。
常微分方程是描述变量之间关系的方程,它包含一个未知函数及其导数。
在人口增长模型中,我们可以将人口数量表示为一个未知函数P(t),其中t表示时间。
根据前面的假设,我们可以得到人口增长率与人口数量的关系式:dP/dt = kP其中dP/dt表示人口数量P关于时间t的导数,k表示人口增长率。
这个关系式描述了人口数量随时间的变化规律。
三、人口增长模型的求解为了求解上述的常微分方程,我们可以使用分离变量法。
将上述方程改写为:1/P dP = k dt对上述方程两边同时积分,得到:ln|P| = kt + C其中C为常数。
进一步求解,得到:P(t) = e^(kt+C) = Ce^kt由于人口数量不能为负数,所以常数C必须为正数。
这个解表示了人口数量随时间的变化规律。
四、人口增长模型的应用通过上述的人口增长模型,我们可以对人口增长进行预测和分析。
通过调整人口增长率k和常数C的值,我们可以模拟不同的人口增长情况。
例如,如果k为正数,表示人口增长率为正,那么人口数量将会呈指数增长。
这在一些发展中国家中是比较常见的情况。
相反,如果k为负数,表示人口增长率为负,那么人口数量将会呈指数减少。
这在一些发达国家中是比较常见的情况。
基于微分方程的人口增长模型及其应用探讨
基于微分方程的人口增长模型及其应用探讨近年来,随着全球人口的不断增长,人口问题逐渐成为一个全球关注的焦点。
为了更好地理解和预测人口增长的趋势,许多学者和研究人员使用微分方程建立了各种人口增长模型。
本文将探讨基于微分方程的人口增长模型及其应用。
首先需要明确的是,人口增长模型的目的是描述人口数量随时间变化的规律。
微分方程是描述变化的数学工具之一,因此被广泛用于人口增长模型的建立。
在构建人口增长模型时,我们需要考虑以下几个关键因素:出生率、死亡率和迁移率。
一种常用的人口增长模型是简单的人口增长模型,也被称为Malthusian模型。
该模型基于一个简单的假设,即人口数量的增长速度与目前的人口数量成正比。
用数学语言表达,可以得到以下微分方程:dP/dt = rP其中,P表示人口数量,t表示时间,r表示人口增长率。
另一种常见的人口增长模型是Logistic模型。
该模型首先假设人口的增长速度受到环境资源的限制,当人口数量接近环境容纳量时,人口增长速度将减缓。
这可以通过以下微分方程来描述:dP/dt = rP(1- P/K)其中,K表示环境容纳量。
除上述两种基本的人口增长模型外,还有许多其他模型可以用于特定情况的研究。
例如,Lotka-Volterra模型可以更好地描述捕食者和猎物之间的相互作用;SIR 模型可以用于描述传染病在人群中的传播过程。
基于微分方程的人口增长模型在许多领域有着广泛的应用。
首先,它们可以用于预测人口数量的未来趋势。
通过建立适当的模型并进行参数估计,我们可以预测未来的人口数量,并为政府和社会组织提供重要的参考。
其次,它们也可以用于制定人口政策和规划。
通过分析模型结果,我们可以了解不同政策对人口增长的影响,从而为合理制定政策提供支持。
此外,基于微分方程的人口增长模型还可以用于研究人口数量与其他因素之间的关系。
例如,可以通过引入经济因素或环境因素,建立人口与经济增长、资源利用等之间的模型,从而了解它们之间的相互作用。
关于人口问题数学建模
关于⼈⼝问题数学建模中国⼈⼝增长预测摘要:本⽂通过对题⽬中所给数据和参考资料以及⽹站上获得的数据进⾏分析,利⽤多种模型对数据规律进⾏归纳提炼.⾸先我们建⽴了,Malthus微分⽅程,通过求借建⽴了我国⼈⼝增长的指数模型,通过常识和分析我们知道,由于受到资源和多种外在和内在因素的影响,⼈⼝的这种增长模式是不可能实现的,它只是在理想情况下的⼀种模式.为了弥补这个模型的缺点,我们⼜分别建⽴了[1]L eslie⼈⼝模型,微分差分混和模型,神经⽹络模型,灰⾊模型,等多种模型⽅式. 建⽴Leslie模型来预测未来中国⼤陆⼈⼝增长模型。
根据死亡率,⽣育率是否变化,我们建⽴了两个模型,第⼀个是死亡率变化的模型,在这个模型中,由于两个因素的变化,使得在预测时只能简单的预测下⼀年的数据,虽然精度很⼤,但是预测的时间太短。
于是,在分析了死亡率和⽣育率在所给五年的各年龄段的情况,我们提出了忽略两个因素变化所带来的影响,以使模型更⼤众化。
最后通过检验,发现,在做中短期预测时,结果很令⼈满意,误差很⼩。
但对于长期的预测准确度有所下降。
通过对第⼀个模型—Leslie⼈⼝模型的求解,我们分析得到了短期,中期,长期,较长期(在这我们定义1—3年为短期,5—10年为中期,10年以上是长期)的预测⼈⼝数量在各个年龄段的分布。
再对预测数据进⾏分析,并结合中国的实际国情,很容易知道Leslie⼈⼝模型增长只能⽤来预测中短期的⼈⼝发展规律(对与中国的实际国情⽽⾔)。
于是为了预测探究长期的⼈⼝发展模型,我们必须找到更好的模型,结合别⼈的资料,然后我们⼜建⽴了⼀个有关⼈⼝数量的微分⽅程,这个微分⽅程包括了各⽅⾯影响⼈⼝增长和变化的因素,如,育龄⼥性的百分⽐,潜在育龄⼥性的百分⽐,⼈⼝⽼龄百分⽐等等。
这些因素的介⼊使得分析⼈⼝变化规律更接近实际的情况。
随后⼜建⽴了另外的模型,多种模型相互结合,是本⽂的⼀⼤特⾊.⼀、问题重述中国是⼀个⼈⼝⼤国,⼈⼝问题始终是制约我国发展的关键因素之⼀。
数学建模实例人口预报问题
数学建模实例:人口预报问题1.问题人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口.表1 美国人口统计数据2.指数增长模型(马尔萨斯人口模型)此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r 是常数(或单位时间内人口的增长量与当时的人口成正比).[2] 建立模型: 记时刻t=0时人口数为x 0, 时刻t 的人口为()t x ,由于量大,()t x 可视为连续、可微函数.t 到t t ∆+时间内人口的增量为:()()()t rx tt x t t x =∆-∆+于是()t x 满足微分方程:()⎪⎩⎪⎨⎧==00x x rx dt dx(1)[3] 模型求解: 解微分方程(1)得()rt e x t x 0= (2)表明:∞→t 时,()∞→t x (r>0).[4] 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章.通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验:将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2.表2 美国实际人口与按指数增长模型计算的人口比较年以后的误差越来越大.分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个.3. 阻滞增长模型(Logistic 模型)[1]假设:(a )人口增长率r 为人口()t x 的函数()x r (减函数),最简单假定()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率.(b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当mx x =时,增长率应为0,即()m x r =0,于是m x rs =,代入()sxr x r -=得:()⎪⎪⎭⎫⎝⎛-=m x x r x r 1 (3)将(3)式代入(1)得:模型为: ()⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=001xx x x x r dt dx m (4)[3] 模型的求解: 解方程组(4)得()rt m me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110 (5)根据方程(4)作出x dtdx~ 曲线图,见图1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出x~t 曲线,见图1-2,由该图可看出人口数随时间的变化规律.[4] 模型的参数估计:利用表1中1790-1980的数据对r 和x m 拟合得:r=0.2072, x m =464. [5] 模型检验:将r=0.2072, x m =464代入公式(5),求出用指数增长模型预测的1800-1990的人口数,见表3第3、4列.也可将方程(4)离散化,得)())(1()()()1(t x x t x r t x x t x t x m-+=∆+=+ t=0,1,2,… (6) 用公式(6)预测1800-1990的人口数,结果见表3第5、6列.表3 美国实际人口与按阻滞增长模型计算的人口比较图1-2 x~t 曲线现应用该模型预测人口.用表1中1790-1990年的全部数据重新估计参数,可得r=0.2083, x m=457.6. 用公式(6)作预测得:x(2000)=275; x(2010)=297.9.也可用公式(5)进行预测.。
建模示例之如何能预报人口地增长
建模示例:如何预报人口的增长人类社会进入20世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。
统计数据显示:可以看出,人口每增加十亿的时间,由一百年缩短为十二三年。
我们赖以生存的地球,已经携带着它的60亿子民踏入21世纪。
长期以来,人类的繁殖一直在自发地进行着。
只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如何进行人口控制等问题。
我国是世界第一人口大国,地球上每五个人中就有一个中国人。
在20世纪的一段时间内我国人口的增长速度过快,请看:有效地控制我国人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。
认识人口数量的变化规律,建立人口模型,做出准确的预报,是有效控制人口增长的前提。
长期以来人们在这方面作了不少工作,下面介绍两个最基本的人口模型,并利用表1给出的近两个世纪的美国人口统计数据(以百万为单位),对模型作检验,最后用它预报2010年美国的人口。
表1 美国人口统计数据1) 指数增长模型最简单的人口增长模型使人所共识的:记今年人口为0x ,k 年后人口为k x ,年增长率为r ,则(1)kk x x r =⋅+ (1) 显然,这个公式的基本条件是年增长率r 保持不变。
二百多年前英国人口学家马尔塞斯(Malths ,1766—1834)调查了英国一百多年的人口统计资料,得出了人口增长率不变的假设,并据此建立了著名的人口指数增长模型。
模型建立 记时刻t 的人口为()x t ,当考察一个国家或一个较大地区的人口时,()x t 是一个很大的整数。
为了利用微积分这一数学工具,将()x t 视为连续、可微函数。
记初始时刻(0=t )的人口为0x . 假设人口增长率为常数r ,即单位时间内()x t 的增量等于r 乘以()x t . 考虑t 到t t ∆+时间内人口的增量,显然有()()()t t rx t x t t x ∆+=∆+令0→∆t ,得到()t x 满足微分方程:rx dtdx=,0)0(x x = (2) 有这个方程很容易解出()rt e x t x 0= (3)0>r 时(3)式表示人口将按指数规律随时间无限增长,称为指数增长模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9 如何预报人口的增长
人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果。
建立人口模型的意义在于利用模型中的参数及时控制人口的增长。
模型一 Malthus 指数增长模型
英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型。
假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数;
2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比。
建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ∆+时间内的人口增量为 t t rx t x t t x ∆=-∆+)()()( 易导出下面的微分方程
⎪⎩⎪⎨⎧==0
)0(x x rx
dt dx
求解 易解出)0()(0>=r e x t x rt
分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很
好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异。
出现这种差异的原因是19世纪以后人口的增长率已不再是常数。
比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307。
模型二 Logistic 阻滞增长模型 假设 1、同模型一;
2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率;
3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量。
建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s =
,于是)1()(m
x x
r x r -
=,其中r ,m x 是根据人口统计数据确定的常数。
m x 常由经验确定。
仿模型一同样得
⎪⎩
⎪
⎨⎧=-=0)0()1(x
x x x x r dt
dx
m
求解 t
r m m
e x x
x t x --+=
)1(1)(0
表 美国的实际人口与按两种模型计算的人口的比较
分析1、模型表明人口增长率
dt dx
随着人口数x 的增加先增后减,在2
m x x =处达到最大;且当∞→t 时,m x x →。
2、模型在本世纪初曾被广泛使用,且预报效果很好,如预报美国人口时,
66010179,31.0,109.3⨯==⨯=m x r x 。
但1960以后误差越来越大,究其原因是1960年美
国实际人口已突破用过去数据确定的m x (它是用1800—1930的数据估计的),由此可知,模型的缺点之一是m x 不易准确地得到。