第九章 细胞骨架
09第九章细胞骨架
(4)应力纤维 )应力纤维(stress fiber) 广泛存在于真核细胞。成分:肌动蛋白、肌球蛋白、 广泛存在于真核细胞。成分 :肌动蛋白、肌球蛋白、原 肌球蛋白和α 肌动蛋白。 肌球蛋白和α-辅肌动蛋白。介导细胞间或细胞与基质表面的 粘着。 细胞贴壁与粘着斑的形成相关, 粘着。(细胞贴壁与粘着斑的形成相关,在形成粘合斑的质 膜下, 微丝紧密平行排列成束, 形成应力纤维, 膜下 , 微丝紧密平行排列成束 , 形成应力纤维 , 具有收缩功 能。) (5)参与胞质分裂 ) 收缩环由大量反向平行排列的微丝组成, 收缩环由大量反向平行排列的微丝组成,其收缩机制是 肌动蛋白和肌球蛋白相对滑动。 肌动蛋白和肌球蛋白相对滑动。
三、核纤层(Nuclear Lamina) 核纤层 (1)核纤层分布与形态结构 ) 核纤层蛋白(Lamin) (2)成分 )成分——核纤层蛋白 核纤层蛋白 (3)核纤层蛋白的分子结构及其与中间纤维蛋白的关系 ) 核纤层与中间纤维之间的共同点 两者均形成10nm纤维; 两者均形成10nm纤维; 10nm纤维 两者均能抵抗高盐和非离子去垢剂的抽提; 两者均能抵抗高盐和非离子去垢剂的抽提; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 某些抗中间纤维蛋白的抗体能与核纤层发生交叉反应; 两者在结构上有密切的联系, 两者在结构上有密切的联系,说明核纤层蛋白是中间纤维 蛋白。 蛋白。
是由G-actin单体形成的多聚体,肌动蛋白单体具有 单体形成的多聚体, (1)MF是由 ) 是由 单体形成的多聚体 极性, 装配时呈头尾相接, 故微丝具有极性,既正极与负极之别。 极性 装配时呈头尾相接 故微丝具有极性,既正极与负极之别。 正极与负极都能生长, (2)体外实验表明,MF正极与负极都能生长,生长快的一 )体外实验表明, 正极与负极都能生长 端为正极,慢的一端为负极;去装配时,负极比正极快。 端为正极,慢的一端为负极;去装配时,负极比正极快。由于 G-actin在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配,负极去装配,从而表现为踏车行为。 在正极端装配 呈现出动态不稳定性, (3)体内装配时,MF呈现出动态不稳定性,主要取决于 )体内装配时, 呈现出动态不稳定性 主要取决于Factin结合的 结合的ATP水解速度与游离的 水解速度与游离的G-actin单体浓度之间的关 结合的 水解速度与游离的 单体浓度之间的关 系。 动态变化与细胞生理功能变化相适应。 (4)MF动态变化与细胞生理功能变化相适应。在体内 有些 ) 动态变化与细胞生理功能变化相适应 在体内, 微丝是永久性的结构, 有些微丝是暂时性的结构。 微丝是永久性的结构 有些微丝是暂时性的结构。
细胞生物学教程第九章细胞骨架
+
Treadmilling
细胞中大多数微丝结构处于动态的组装和去组装过程中,并通过这种方式实现其功能。 细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。 鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显示微丝。
原肌球蛋白(tropomyosin.Tm) 每个Tm的长度相当于7个肌动蛋白,呈长杆状。组成两条平行纤维,位于肌动蛋白双螺旋的沟中,主要作用是加强和稳定肌动蛋白丝,抑制肌动蛋白与肌球蛋白结合。 肌钙蛋白(troponin,Tn), 含三个亚基,肌钙蛋白C特异地与钙结合,肌钙蛋白T与原肌球蛋白有高度亲和力,肌钙蛋白I抑制肌球蛋白的ATP酶活性,主要作用是调节肌肉收缩。
第二节 微管 Microtubule, MT
微管在胞质中形成网络结构,作为运输路轨并起支撑作用。微管是由微管蛋白组成的管状结构,对低温、高压和秋水仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
The Orientation of Microtubules in a Cell
PART ONE
五、微管的功能
支架作用
细胞内运输 是胞内物质运输的路轨。 涉及两大类马达蛋白:驱动蛋白kinesin,动力蛋白dyenin,均需ATP供能。 Kinesin发现于1985年,是由两条轻链和两条重链构成的四聚体 ,能向着微管(+)极运输小泡 。
胶质原纤维酸性蛋白glial fibrillary acidic protein 存在于星形神经胶质细胞和许旺细胞。起支撑作用。 波形纤维蛋白vimentin 存在于间充质细胞及中胚层来源的细胞中。 神经纤丝蛋白neurofilament protein 是由三种分子量不同的多肽组成的异聚体,功能是提供弹性使神经纤维易于伸展和防止断裂。
第九章 细胞骨架
态
(2)参与肌肉收缩
(3)与细胞运动密切相关
(4)与细胞内运输,细胞分泌活动有关 (5)与细胞爬行有关 (6)参与细胞分裂
二 、微管( Microtubule, MT)
• 微管是细胞骨架系统中的主要成分之一,由微管蛋白装配成的 的长管状结构,存在与所有真核细胞中(除人体红细胞外), 原核生物没有微管。 • 在胞质中形成网络结构,作为运输路轨,并起支撑作用,对低
微丝,又叫肌动蛋白纤 维,是由肌动蛋白构成 的两股螺旋形成的细丝, 普遍存在于真核细胞中
微管,是由微管蛋白单体 构成的基本组件形成的中 空的管状结构。普遍存在 于真核细胞中
中间纤维,又叫中间丝,粗 细位于微丝和肌球蛋白粗丝 之间,普遍存在于真核细胞 中,是三种骨架系统中结构 最为复杂的一种
一、微丝(microfilament, MF)
• ②增加微管稳定性。 • ③促进微管聚集成束。
4、微管特异性药物
长春花碱—抑制微管装配。
紫杉酚(taxol)——能促进微管的装配, 并使
已形成的微管稳定。(这种稳定对细胞是有 害的,使细胞停止于有丝分裂期)
秋水仙素(colchicine)——阻断微管蛋白组
装成微管,可破坏纺锤体结构。
5、微管的生物学功能 (1)支持细胞的功能:构成细胞内网状支架, 维持细胞形态,固定与支持细胞器的位臵; (2)与细胞器位移和细胞运动有关,染色体 的移动、纤毛、鞭毛的运动都是由微管聚合和 解聚产生的;
增强细胞抗机械压力的能力
角蛋白纤维参 与桥粒的形成 和维持
胞质骨架三种组分的比较
微丝 单体 结合核苷酸 纤维直径 结构 球蛋白 ATP-G-actin ~7nm 双链螺旋 微管 αβ 球蛋白 2GTP/αβ 二聚体 ~22nm 13 根源纤丝组成空心管 状纤维 有 无 有 有 动力蛋白,驱动蛋白 秋水仙素,长春花碱,紫 杉酚 中间纤维 杆状蛋白 无 10nm 8 个 4 聚体或 4 个 8 聚体组成的空心 管状纤维 无 有 无 无 无 无
第九章 细胞骨架
② 重链上含有两个结合位点:一是ATP结合位
点;二是微管结合位点。
③ 胞质动力蛋白轻链端还结合着动力蛋白激
活蛋白复合体,介导胞质动力蛋白与需转运物质 之间的结合。
胞质动力蛋白的结构示意图
胞质动力蛋白的功能:
• 膜结合蛋白:使微丝与细胞质膜结合。
单体隔离蛋白
封端蛋白
交联蛋白
成核蛋白
成束蛋白
单体聚合蛋白
膜结合蛋白 纤维-解聚蛋白
纤维切割蛋白
各种微丝结合蛋白功能示意图
三、微丝的功能
1、维持细胞形态,赋予质膜机械强度
微丝遍及胞质各处,其中集中分布于质膜下的微丝与微 丝结合蛋白形成网络结构,维持细胞形态,赋予质膜机械强 度,如血红细胞膜内表面的膜骨架。
尾部结构域:决定肌球蛋
白的功能。
8、参与肌肉收缩
◆肌肉的细微结构(以骨骼肌为例)
◆肌小节的组成 ◆粗丝和细丝的组成 ◆肌肉收缩的滑动丝模型
第二节 微管及其功能
微管:是由微管蛋白组成的外径为24nm,内径为 15nm的中空管状结构。
一、微管的结构组成
α亚基上有GTP结合位点:该位点能结合GTP,但不能水解
2、基体的功能
形成细菌的鞭毛和纤毛,参与细菌的运动。
六、微管结合蛋白(P288) (Microtubule Associated Protein, MAP)
微管结合蛋白是一类与微管相结合的蛋白,对微 管网络的形成和功能进行调节。一般来说,MAP至 少含有两个结构域:一个是结合微管的结构域,具 有稳定微管的作用;另一个是向外突出的结构域, 负责与微管外其他细胞组分(如中间纤维、质膜等)
【细胞生物学】第9章 细胞骨架
三
微丝的组装 1. 体外组装过程 ①G-actin聚合为较短 寡聚体 ②3-4个单体为装配核心 ③G-actin附着到寡聚体核心两端 ( F-actin生长)成为螺旋纤维.
成核期 延长期 稳定期
(1)成核期(nucleation phase)
F-actin向两个相反的方向延长,有“+” 端和“-”端,也有踏车现象。
2. ① ② ③ ④ ⑤
影响组装的因素 肌动蛋白浓度 ATP K+、Na+、 Mg2+利于组装 pH﹥7易于组装 Ca2+不利于组装
工具药:细胞松弛素B(抑制聚合) 细胞松弛素D (抑制聚合) 鬼笔环肽(促进聚合)
四、
微丝的功能
在肌细胞和非肌细胞中的作用Fra bibliotek1.在肌细胞中的作用(肌肉收缩) 横纹肌由肌细胞组成 横纹肌收缩的基本单位--肌原纤维(myofibrils) 肌原纤维的基本结构功能单位--肌节(sarcomere) 每一肌节含有细肌丝和粗肌丝
2.动力(达因)蛋白(dynein) 具ATPase活性 将化学能转换为机械能
3.微管修饰蛋白(tau蛋白, τ蛋白) 存在于神经轴突中 加速微管组装 连接各微管成为微管束
二、微管的结构形态 外形笔直,坚硬中空直管状结构 外径24nm,内径15nm 长短不一
13条原纤维围成一圈。 α和β两种微管蛋白交 替排列(αβ–αβ–αβ– ….)。 原纤维亚单位间位移, 斜向(10-20o)盘旋围成圆 筒状。
第9章 细胞骨架 (cytoskeleton system )
微管 、微丝 、中间纤维和微梁网格 由蛋白形成的纤维网状结构 是细胞各种活动的结构基础
细胞骨架使细胞活动具有组织性和方向性 细胞骨架三个鲜明的特点:
第九章 细胞骨架
维以十分有序的方式组装在一起。
粗肌丝的成分是肌球蛋白,细肌丝的成分主要是肌动 蛋白,辅以原肌球蛋白和肌钙蛋白。
• 肌肉收缩是由肌动蛋白丝与肌球蛋白丝的相对滑 动所致。
原肌球蛋白(tropomyosin, Tm)由两条平行的多肽链形
成α-螺旋构型,位于肌动蛋白螺旋沟内,一个Tm分子 的长度相当于7个肌动蛋白。Tm结合于细肌丝,调节肌 动蛋白与肌球蛋白头部的结合 肌钙蛋白 (Troponin, Tn)为复合物,包括三个亚基: Tn-C (Ca2+ 敏感性蛋白)能特异与Ca2+结合,Tn-T与原肌 球蛋白结合;Tn-I抑制肌球蛋白ATPase活性。细肌丝中
组分的相互作用来实现。
迁移过程:前端伸出突起 →
突起与基质之间形成锚定
位点使突起附着在基质表面 → 以附着点为支点向前移动 → 后部的附着点与基质脱离,细胞的尾部前移。 在此过程中,都涉及肌动蛋白以多种方式发挥作用。 在迁移细胞的前缘,肌动蛋白的聚合使细胞伸出宽而扁
平的片状伪足,内部充满正向排列的微丝束,正极通常位于
和依赖于微丝的肌球蛋白(myosin)这三类蛋白质
超家族成员。 它们既能与微管/微丝结合,又能与一些细胞器 或膜状小泡特异性结合,利用水解ATP所产生的能量 有规则地沿微管或微丝等细胞骨架纤维运输所携带
的货物。
1. II型肌球蛋白
II型肌球蛋白存在于多种细胞,由2条重链和4 条轻链组成高度不对称分子。 • 在肌细胞中,II型肌 球蛋白组装成肌原纤维 的粗丝,其含量约占肌 细胞总蛋白的一半。 • 在非肌细胞中,II型 肌球蛋白参与胞质分裂 环和张力纤维的活动及 介导物质的运输。
(五)微绒毛(microvillus)
小肠上皮细胞微绒毛的轴心微丝是非肌肉细胞中
第九章 细胞骨架
细胞骨架三种组分的比较
思考: 下列各类细胞中,你认为哪一种最有可能在细胞质 中含有高密度的中间丝?哪一种可能含有高密度 的肌动蛋白丝?请作出你的解释 A 大变形虫 B 皮肤的上皮细胞 C 消化道的平滑肌细胞 D 大肠杆菌 E 脊髓中的神经细胞 F 精细胞 F 植物细胞
辨析: 1 驱动蛋白沿着微管驱动内质网从而使内质网遍布 在细胞内 2 如果没有肌动蛋白,细胞能够形成有功能的纺锤 体并将染色体拉开,但细胞不能分裂 3 细胞中的中间丝网络如果不能解聚的话,细胞就 会死亡
真 核 细 胞 中 微 管 的 三 种 位 置
微 管 的 结 构
微管结构的极 性: β 微管蛋白对 应正端, α 微管蛋白对 应负端 正端的组装速 度更快
微管蛋白在中心体上的聚合
注意区分γ 微管蛋白和中心粒
微管的动态不稳定性
中心体、细胞器、微管:类比为渔夫、鱼和钓绳
选择性地稳定微管导致细胞产生极性
中间丝的结构
中间丝的分类
角蛋白:分布在上皮细胞中,亚基变化最多。遗 传病-单纯性大疱性表皮松懈症 波形蛋白及波形蛋白相关蛋白:分布在结缔组织、 肌细胞和神经胶质细胞中 神经丝:分布在神经细胞中 核纤层蛋白:分布在核被膜内侧形成絮状的网, 较前三类而言,相对不稳定,在细胞分裂过程中 要重新组装。该过程由蛋白激酶催化的核纤层蛋 白磷酸化和去磷酸化控制。
影响肌动蛋白丝动态组装的药物: 细胞松弛素(cytochalasin)可切断微丝纤维,并 结合在微丝末端抑制肌动蛋白加合到微丝纤维上, 特异性的抑制微丝功能。 鬼笔环肽(phalloidin)与微丝能够特异性的结合, 使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环 肽可特异性的显示微丝。
肌动蛋白结合蛋白
第九章 细胞骨架
9第九章细胞骨架
第九章细胞骨架(Cytoskeleton)细胞骨架的概念细胞骨架是指存在于真核细胞中的蛋白纤维网架体系•有狭义和广义两种概念(1)在细胞质基质中包括微丝、微管和中间纤维。
(2 )在细胞核中存在核骨架-核纤层体系。
核骨架、核纤层与中间纤维在结构上相互连接,形成贯穿于细胞核和细胞质的网架体系。
第一节微丝(microfilament, MF)又称肌动蛋白纤维(actin filament),是指真核细胞中由肌动蛋白(actin)组成、直径为6-7nm的骨架纤维。
是由两条线性排列的肌动蛋白链形成的螺旋,形状如双线捻成的绳子。
一、微丝的组成与装配肌动蛋白(actin)是微丝的结构成分,大小为43KDa,外观呈哑铃状,这种actin又叫G-actin,由G-actin形成的微丝又称为F-actin。
(一)肌动蛋白的种类在哺乳动物和鸟类中,已至少发现6种肌动蛋白,其中4种称为-肌动蛋白,分布于横纹肌、心肌、血管平滑肌和肠道平滑肌。
另两种为-actin和-actin ,普遍存在于所有真核细胞中。
(二)肌动蛋白的存在形式与装配1、在缺乏离子时(Na+、K+),肌动蛋白成球形单体存在,球形肌动蛋白单体称为G-肌动蛋白。
2、在含有Mg2+和高浓度的Na+、K+的中性盐溶液中,G-actin装配成纤维状肌动蛋白,纤维状肌动蛋白也称为F-actin。
3、微丝的装配(1 )肌动蛋白单体具有极性,装配时单体呈头尾相接,成为具极性的微丝,既正极与负极之别。
(2)体外实验表明,具有极性的微丝在装配时,新的肌动蛋白单体加到微丝两端的速度不同,速度快的一端为正极,慢的一端为负极;去装配时,负极比正极快。
由于G-actin 在正极端装配,负极去装配,从而表现为踏车行为。
(3)体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结合的ATP水解速度与游离的G-actin单体浓度之间的关系。
在一定条件下,微丝表现为一端因加上肌动蛋白单体而延长,另一端因肌动蛋白单体脱落而缩短,形成一种踏车现象。
细胞生物学第九章细胞骨架
四、肌细胞的收缩运动
3、肌肉收缩的过程
动作电位产生 原肌球蛋白位移
肌动蛋白丝与肌球 蛋白丝的相对滑动
Ca2+的释放
Ca2+的回收
肌肉收缩
①肌球蛋白结合ATP,引起头部与肌动蛋白纤 维分离; ②ATP水解,引起头部与肌动蛋白弱结合; ③Pi释放,头部与肌动蛋白强结合,头部向M 线方向弯曲,引起细肌丝向M线移动; ④ADP释放ATP结合上去,头部与肌动蛋白纤 维分离。 如此循环。
条轻链和中间链。马达结构域位于重链C端。 (2)功能: 细胞内介导沿微管从正极向负极的膜泡运 输。 与有丝分裂纺锤体的定位及后期染色体的 分离有关。
神 经 元 内 部 的 物 质 运 输
神经元内部的物质运输
鱼色素细胞颗粒的运输
(三)纤毛和鞭毛的结构与功能
1、纤毛和鞭毛的结构
第九章 细胞骨架(Cytoskeleton)
第一节 微丝与细胞运动
第二节 微管及其功能
第三节 中间丝
Microbubules
Microfilamemts
Intermediate filaments
第九章 细胞骨架
细胞骨架的发现 细胞骨架的概念:真核细胞内由蛋白质组成
的纤维状网架结构体系。 细胞骨架的基本类型: 1、微丝(microfilament MF) 2、微管(microtubule MT) 3、中间丝(intermediate filament IF)
(二)微管特异性药物
秋水仙素阻断微管的装配,使细胞分裂停 止在中期。 紫杉酚、D2O促进微管的装配,稳定微管, 但破坏了微管的平衡,使细胞停止在有丝 分裂期。
三、微管组织中心(MTOC) 在活细胞内,能够起始微管的成核作用,
第九章 细胞骨架
一、细胞骨架的概念细胞骨架:指存在于真核细胞中的蛋白纤维网架体系。
⑴狭义:细胞骨架发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。
直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。
微丝、微管和中间纤维位于细胞质中,又称胞质骨架,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。
一、细胞骨架的概念(2)广义:细胞骨架为真核细胞所特有,其功能主要表现为决定细胞的形状,赋予其强度、支撑作用,并在细胞运动、膜泡运输、细胞分裂、信号转导中起重要作用。
决定细胞的形状,赋予其强度、支撑作用如细胞皮质、微绒毛、应力纤维等。
在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。
另外,在植物细胞中细胞骨架指导细胞壁的合成。
大分子物质及颗粒性物质不能穿过细胞膜,是以另外一种特殊方式来进行跨细胞膜转运的,即物质在进出细胞的转运过程中都是由膜包裹、形成囊泡、与膜融合或断裂来完成的,故又称囊泡转运参与细胞分裂●收缩环(c o n t r a c t i l e r i n g):由微丝构成。
●有丝分裂器(纺锤体):由微管是构成。
第一节微丝(microfilament,MF)●微丝(肌动蛋白纤维):指真核细胞中由肌动蛋白(a c t i n)组成的实心纤维细丝。
直径6-7n m,长短不一。
●分布:以束状、网状或散在等多种形式存在于细胞质,特别在有运动功能的细胞中。
一般细胞中含量约占细胞内总蛋白质的1%-2%,但在活动较强的细胞中可占20%-30%。
在一般细胞主要分布于细胞的表面,直接影响细胞的形状。
微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用。
第九章 细胞骨架
第九章细胞骨架细胞骨架:真核细胞中的蛋白质纤维网架体系。
具有弥散性、整体性、变动性。
广义:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
狭义:细胞质骨架由微丝、微管、中间丝组成,它们由相应的蛋白亚基组装而成。
功能:结构与支持、胞内运输、收缩与运动、空间组织。
第一节微丝与细胞运动微丝:肌动蛋白丝或纤维状肌动蛋白,直径7nm存在所有真核细胞中。
一、微丝的组成及其组装(一)结构与成分1.微丝的主要结构成分是肌动蛋白。
2.肌动蛋白的2种存在形式:①肌动蛋白单体(球状肌动蛋白,G-actin):单个肽链折叠而成,蝶状,中央一个裂口,裂口内部有ATP结合位点和镁离子结合位点;②纤维状肌动蛋白。
3.肌动蛋白高度保守。
6种:4种为α-肌动蛋白,分别为横纹肌、心肌、血管平滑肌、肠道平滑肌,均组成细胞的收缩性结构;2种为ß-肌动蛋白(位于细胞边缘)和γ-肌动蛋白(与张力纤维有关)。
4.微丝直径7nm的扭链,双股螺旋。
每条丝由肌动蛋白单体头尾相连呈螺旋状排列,螺距36nm。
纤维内部,每个肌动蛋白单体都有4个单体,上下各一个,另外2个位于一侧。
肌动蛋白分子上的裂口使得该蛋白本身在结构上不对称,在整根微丝上每一个单体上的裂口都朝向同一端,使微丝具有极性。
裂口一端为负极,另一端是正极。
(二)组装及动力学特性1.只有结合ATP的肌动蛋白单体才能参与微丝的组装。
解聚:溶液中含有适当浓度的钙离子,钠离子、钾离子浓度很低时,微丝趋向于解聚成G-actin;组装:溶液中含有ATP、镁离子以及较高浓度的钠钾离子时,溶液中的G-actin组装成F-actin,即新的G-actin加到微丝末端,微丝延伸,通常是正极的组装速度较负极快。
溶液中携带ATP的G-actin处于临界浓度时,组装与去组装达到平衡。
2.过程:①成核反应:Arp2和Arp3等蛋白质相互作用,形成起始复合物,至少有2-3个肌动蛋白单体与起始复合物结合,形成一段可供肌动蛋白单体继续组装的寡聚体。
第九章细胞骨架
第九章细胞骨架第九章细胞骨架用电子显微镜观察经非离子去垢网架结构通常称为细胞骨架(cytoskeleton)。
细胞骨架包括微丝(microfilament,MF)、微管(microtube,MT)和中间丝(intermediate filament,IF)3种结构组分,他们都是由相应的蛋白亚基组装而成。
第一节微丝与细胞运动微丝又称肌动蛋白丝(actin filament)或纤维状肌动蛋白(fibrous actin,F-actin),这种直径为7nm的细胞骨架存在于所有真核细胞中。
微丝网格的空间结构与功能取决于所结合的微丝结合蛋白(miceofilament-associated proteins)的种类。
细胞内微丝的组装和去组装的动力学过程与细胞突起(微绒毛、伪足)的形成、细胞质分裂、细胞内物质运输、肌肉收缩、吞噬作用、细胞迁移等多种细胞运动过程相关。
一、微丝的组成及其组装(一)结构与成分微丝的主要结构成分是肌动蛋白(actin)。
肌动蛋白在细胞内有两种存在形式,即肌动蛋白单体(又称球状肌动蛋白,G-actin)和由单体组装而成的纤维状肌动蛋白。
肌动蛋白在生物进化过程中是高度保守的。
(二)微丝的组装及动力学特征肌动蛋白单体组装称微丝的过程大体上可以分为几个阶段:第一个阶段是成核反应,即形成至少有2~3个肌动蛋白单体组成的寡聚体,然后开始多聚体的组装。
第二个阶段是纤维的延长。
在体外组装过程中有时可见到微丝的正极由于肌动蛋白亚基的不断添加二延长,而负极则由于肌动蛋白亚基去组装而缩短,这一现象称为踏车行为(treadmilling)。
(三)影响微丝组装的特异性药物一些药物可以影响肌动蛋白的组装和去组装,从而影响细胞内微丝网格的结构。
细胞松弛素(cytochalasin),与微丝结合后可以将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显的影响。
鬼笔环肽(philloidin),与微丝表面有强亲和力,但不与肌动蛋白单体结合,对微丝的解聚有抑制作用。
细胞生物学第九章细胞骨架
肌球蛋白(myosin)
组成粗肌丝的肌球蛋白是一类马达蛋白,目前已 知各类细胞中的此类马达蛋白有15种,其共同 特征是都具有一个包含微丝结合位点与ATP结合 位点的头部作为马达结构域。 根据分子结构成分的差异,肌球蛋白可以分为两 大类: 传统的肌球蛋白:Ⅱ型肌球蛋白(myosinⅡ) 非传统的肌球蛋白:Ⅱ型之外的其他14型肌 球蛋白,其中Ⅰ型与Ⅴ型肌球蛋白参与胞内 沿着微丝的膜泡运输。
2014年7月
9.3.1 微管的组成与装配
微管(microtubule,MT)是真核细胞中呈中 空管状结构的骨架纤维,内外径分别为15nm、 24nm,构成多种不同的细胞内结构。 微管的组成与结构
微管的装配: 装配条件:GTP、Mg2+、37℃、无Ca2+等。 装配过程 动态不稳定性 微管特异性药物 微管结合蛋白
2014年7月
肌肉的细微结构
骼纤肌 肌维节 肌肌 纤原 维纤 束维 骨肌
2014年7月
→ → → →
肌节
肌原纤维由许多肌节线性重复排列而成,所谓肌 节(sarcomere)指相邻两条Z线之间长约2~ 2.5μm的结构单位,是肌肉收缩的基本单位,其 主要结构包括:
A带(暗带):为粗肌丝所在。
2014年7月
三种形式的微管结构
微管原纤 维可以组 装成三种 形式的微 管结构: 单管 二联 微管 三联 微管
2014年7月
微管的装配过程
由于细胞内部结构与蛋白的复杂性,目前关于微 管装配的资料主要源于体外试验,其过程可分为 三个阶段: 成核:微管蛋白亚基纵向聚合成短的丝状结 构→两端以及侧面增加二聚体,扩展成片状 →约13根原纤维,合拢成一段微管。 延伸:新的微管蛋白亚基不断组装到这段微 管两端,使之延长,或去组装缩短。 稳定:正极组装与负极去组装速度平衡,微 管长度稳定,即所谓踏车行为。
第9章 细胞骨架
§9.1 细胞骨架概述一、细胞骨架的概念细胞骨架是指细胞中由纤维蛋白构成的空间网络结构。
广义的细胞骨架包括:细胞核骨架、细胞质骨架、质膜骨架以及胞外基质。
狭义的细胞骨架包括:细胞质骨架(微管、微丝、中间丝)细胞中同时存在多种类型的细胞骨架并非物质能量的浪费,每种细胞骨架及其组成成分均行使不同的功能,多种组分间分工协作,功能互补,对细胞完成正常的生理功能至关重要。
二、细胞骨架的特点1.细胞骨架由相应的蛋白亚基构成,在组装与解聚间二者达到平衡。
2.细胞骨架具有动态不稳定性,即一定条件下存在组装与去组装现象,在细胞生命活动中起到重要作用。
(1)细胞周期中,细胞骨架经历动态的组装与去组装,周期性的重塑,在分裂期与分裂间期,其分布与组织形式不同。
(2)踏车行为能够改变微管或微丝在细胞中的分布,可能与细胞运动有关。
(3)细胞分裂伴随着纺锤体的形成于分解。
(4)细胞胞质环流伴随着细胞骨架的形成于解聚。
3.细胞骨架是三维的空间网状结构。
三、细胞骨架的功能特点1.细胞骨架构成多种细胞结构。
(1)微管:鞭毛、纤毛、中心体、纺锤体(2)微丝:微绒毛、收缩环、应力纤维、黏合斑、黏合带(3)中间丝:桥粒、半桥粒2.细胞骨架为细胞提供结构支撑,维持细胞形态。
3.细胞骨架介导细胞内物质运输、细胞器运输。
4.细胞骨架介导细胞运动。
5.细胞骨架对细胞分裂起到重要作用。
6.细胞骨架是细胞内结构与功能的空间组织者。
细胞内生物大分子或细胞器的分布具有不对称性,这与细胞骨架的不同组织方式有关,其结构与功能相适应。
四、细胞骨架的研究方法1.荧光显微镜细胞骨架的蛋白亚基可与相应的荧光染料或荧光抗体特异性结合,从而通过荧光显微镜观察其在活细胞中的组织、分布、功能与行为模式。
2.电子显微镜细胞经非离子型去污剂处理后,可溶性物质与膜被抽离,留下不溶的细胞骨架结构,经金属复型后可在电镜下观察细胞骨架的结构。
3.特异性药物处理微管:秋水仙素、长春花碱、紫杉醇微丝:细胞松弛素、鬼笔环肽微管微丝中间丝单体α/β-微管蛋白肌动蛋白杆状蛋白分子量50×10343×10340~200×103结合核苷酸GTP ATP无直径内径 15nm7nm10nm外径 24nm结构13 根原纤维构成的肌动蛋白单体首尾相8 个四聚体或 4 个八空间空心管状结构连构成的双股螺旋聚体构成的螺旋结构极性有有无组织特异性无无有单体库有有无踏车行为有有无结合蛋白动力蛋白肌球蛋白无驱动蛋白特异性药物秋水仙素细胞松弛素未发现长春花碱鬼笔环肽紫杉醇§9.2 微管一、微管的组成与结构1.微管蛋白微管是中空管状的细胞骨架,外径约 24nm,内径约 15nm,由α、β两种球状蛋白形成的异二聚体,即微管蛋白亚基构成,微管蛋白亚基是微管组装的结构单位。
细胞生物学第九章细胞骨架
第九章细胞骨架真核细胞中由多种蛋白质纤维组成的复杂网架系统,称为细胞骨架cytoskeleton。
广义的细胞骨架包括细胞核骨架(核内骨架、核纤层及染色体骨架)、细胞质骨架(微丝、微管、中间纤维)、细胞膜骨架及细胞外基质,但通常狭义的仅指细胞质骨架。
目前认为细胞骨架主要功能:①维持细胞整体形态和内部结构有序的空间分布;②与细胞运动、胞内物质运输、能量转换、信息传递、细胞分裂、基因表达及细胞分化等生命活动密切相关。
一、微丝microfilament(一)组分与性质微丝的主要成分是肌动蛋白actin,是在真核细胞中的直径为7nm的骨架纤维,肌动蛋白的单体是球型(G-肌动蛋白),两股由G-肌动蛋白联结成的单链相互螺旋缠绕形成纤维型肌动蛋白(F—肌动蛋白)。
从球型→纤维型的变化是自组装的,除肌肉细胞的细肌丝中的微丝以及肠上皮细胞微绒毛中的微丝是稳定的结构外,通常细胞中的微丝都是处在组装和解聚的动态之中,微丝装配具有极性(即有正负极),并常表现出一端装配而另一端脱落的踏车行为treadmilling ,脱落下来的单体进入细胞质中的肌动蛋白单体库。
关于微丝组装的适宜条件是:ATP、Mg2+和高浓度的Na+、K+离子;而解聚的条件是:Ca2+和低浓度的Na+、K+离子。
微丝的形态是细而长,经常成束平行排列,也有的组成疏散的网络。
在不同类型细胞中,微丝还含有不同种类的微丝结合蛋白,形成各自独特的结构或特定功能。
例如肌细胞中的就有肌球蛋白myosin、原肌球蛋白和肌钙蛋白等。
肌球蛋白约占肌肉中蛋白总量的一半,由双股多肽链盘绕成像“豆芽”状的纤维。
再由多条肌球蛋白成束构成肌原纤维中的粗肌丝,其上外露的“豆芽”头部具ATP酶活性,是粗肌丝与细肌丝(肌动蛋白纤维)能暂时性结合的部位(“横桥”),也是导致细肌丝与粗肌丝之间相对滑动的支点。
而原肌球蛋白和肌钙蛋白则是特异性附着在细肌丝(即F—肌动蛋白纤维)上的两种微丝结合蛋白,它们是以构象变化方式来调节细肌丝与粗肌丝(肌球蛋白头部)的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
α、β微管蛋白性质相似,所构成的异二聚体上有 GTP或GDP 、Mg2+和Ca2+、秋水仙素等的结合位点。
微管组织中心
-----微管装配的起始点
概念:微管在生理状态及实验处理解聚后重新装 配的发生处称为微管组织中心(microtubule organizing center,MTOC)。 MTOC的主要作用:
47
肌动蛋白的踏车行为
48
(3)影响微丝组装的因素
1.促进组装:含ATP、Mg2+、高Na+、K+ 2.促进解聚:含Ca2+、低Na+、K+ 3.药物:
细胞松弛素B:特异的破坏微丝的组装;
鬼笔环肽:稳定微丝,促进微丝聚合。
49
四、微丝的功能
(一)构成细胞的支架,维持细胞形态
微绒毛(microvilli) 是肠
第九章 细胞骨架 (Cytoskeleton)
许聪 细胞生物学教研室
细胞骨架:(cytoskeleton)
是指存在于真核细胞中的蛋白纤维网架体系。 功能:维持细胞形态,细胞运动、物质 运输、细胞分裂等生命活动。
⑴ 狭义:指细胞质骨架,由微管、微丝和 中间纤维组成。 ⑵ 广义:包括细胞质骨架、细胞核骨架和 细胞外基质。
概念:附着在微管上,参与 微管组装、增加微管稳定性 的蛋白质。 MAP由两个区域组成: (1)碱性的微管结合结构域 作用:加速微管成核 (2)酸性的突出结构域 作用:与其他骨架纤维联系
16
种类: MAP-1 MAP-2 Tau MAP-4 功能:
主要存在神经元细胞中
主要存在神经元和非神经元细胞中
⑴ 促进微管组装; ⑵ 增加微管稳定性; ⑶ 促进微管聚集成束。
2
电镜下示细胞骨架
微丝(红色荧光)
微管(黄色荧光)
4
第一节 微 管 (Microtubule, MT)
微管普遍存 在于真核细 胞的胞质中, 分布于核周 围,呈放射 状向四周扩 散。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
(三)参与中心粒、纤毛、和鞭毛的形成
1.纤毛(cilia)和鞭毛(flagella) 杆部: 9×2+2结构 具ATP酶活性
基体: 9×3结构
30
二联体微管
中央鞘(内鞘) 中央微管
B
A
B A
B A B A
外 臂
动力蛋白
质膜 轴丝
纤 毛 杆 部
内 臂
辐 条
A B A B
C1
C2
B A A B A B
踏车现象( Tread milling )
+ αβ异二聚体添加到 新生MT后,β亚基的 GTP逐渐被水解成GDP。 所以在一定条件下, (+)具有GTP帽, MT趋于装配而延长; (-)具有GDP帽, MT趋于解聚而缩短。 表现为Tread milling。
①α-微管蛋白和β-微管蛋白形成8nm的αβ二聚体,αβ二聚 体先形成环状核心(ring); ②两端、侧面增加二聚体而扩展为螺旋带,αβ二聚体平行于 长轴重复排列形成原纤维(protofilament); ③当螺旋带加宽至13根原纤维时,即合拢形成一段微管。新的二 聚体添加到MT的两端使之延长。
33
C C B A A C B
C B B A A
C B A
C A B
A A B B AB C C C
中心粒
(9 X 3 + 0)
(四)维持细胞器的定位和分布
红色 显示 微丝
绿色 显示 微管
35
(五)参与染色体的运动,调节细胞分裂
微管是构成有丝分裂器的主要成分。
有丝分裂时,微管重组形成纺锤体,牵引染色体到达分裂极。
踏 车
20
非稳态动力学模型
(Dynamic instability model)
1)GTP-微管蛋白与微管末端亲和性大。 2)GDP-微管蛋白与微管末端亲和性小。 3)GTP-微管蛋白的组装速度大于GTP的 水解速度时,形成一GTP帽,微管延长。 4)组装速度小于GTP水解速度时,GTP帽缩小、消失,暴露出GDP-微管蛋白, 微管不稳定、解聚。
上皮细胞的指状突起,用以 增加肠上皮细胞表面积,以 利于营养的快速吸收。
50
应力纤维(stress fiber)
真核细胞中广泛存在的由微丝束构成的 较为稳定的纤维状结构,位于细胞内紧 邻质膜下方。
内含肌动蛋白纤维和肌球蛋白纤维 有收缩功能,与细胞运动有关 维持细胞的扁平铺展和特异形状 赋予细胞韧性和强度
是帮助微管装配过程中的成核反应,使微管
从MTOC开始生长。
14
常见微管组织中心
◆间期细胞MTOC:
中心体(动态微管)
◆分裂细胞MTOC: 有丝分裂纺锤体极(动态微管) ◆鞭毛纤毛细胞MTOC: 基体(永久性结构)
15
二、微管相关蛋白
(microtubule associated protein,MAP)
43
各种微丝结合蛋白
末端阻断蛋白 交联蛋白
单体隔离蛋白
去聚合蛋白
膜结合蛋白
纤维切割蛋白
四. 微丝的组装
条件:ATP,盐浓度,K+ Mg++ 过程(三个阶段): 成核期 — 球状肌动蛋白聚合成核心 延长期 — 肌动蛋白在核心两端聚合 正端快,负端慢 稳定期 — 聚合速度与解离速度达到平衡
(六)参与细胞内信号转导
36
第二节 微 丝 (microfilament,MF)
微丝又称肌动蛋白纤维(actin filament), 是
指真核细胞中由肌动蛋白(actin)组成、直径为57nm的骨架纤维。比微管细,更具有弹性,细胞中的 微丝可成束、成网或纤维状存在于细胞质。
37
电镜下显示微丝
38
21
(二)体内组装
微管在体内的组装和去组装在时间和空间上是 高度有序的。 间期:细胞质微管与微管亚蛋白库处于相对平衡 状态; 分裂期:胞质微管组装和去组装动态受细胞周期 的调控 前期:胞质微管网络中的微管去组装,游离的 微管蛋白亚单位装配为纺锤体; 末期:发生逆向转变
22
γ-微管蛋白 所有微管组织中心都具有γ-微管蛋白,可聚合成环状复合体, 像模板一样参与微管蛋白的核化,帮助α和β-微管蛋白聚合为微管 纤维。 γ-微管蛋白作用: 可刺激微管核心形成;并包裹微管负端,阻止微管蛋白的渗入, 使负端稳定;还可影响微管从中心粒上释放。
45
微丝组装的动态调节
(1)踏车模型 当G-肌动蛋白达到一定浓度时,微丝出现一端因 添加G-肌动蛋白单体而延长,另一端因单体的解 离而缩短,肌动蛋白丝的净长度不变。
46
(2)非稳态动力模型
该模型认为ATP是调节微丝组装的主要因素。 ATP-肌动蛋白:对纤维状肌动蛋白末端的亲和 力高,使微丝蛋白纤维延长。 ADP-肌动蛋白:对纤维状末端的亲和力低,易 脱落,使微丝蛋白纤维缩短。
一、微丝的组成与形态
基本单位是肌动蛋白(actin) 肌动蛋白类型:
α分布于各种肌肉细胞中 β和γ分布于肌细胞和非肌细胞中
微丝的形态:
是由两条线性排列的肌动蛋白链形成的螺旋, 状如双线捻成的绳子
40
二、肌动蛋白和微丝的结构
(1)肌动蛋白(actin) * 由375个氨基酸组成的, 有ATP或ADP,Ca2+、Mg2+的结 合位点 * 极性结构 正端(+);负端(-) *存在形式 球状肌动蛋白(G-actin) 纤丝状肌动蛋白(F-actin)
6
光镜下荧光显示微管
电镜下的微管
一、微管的结构与组成
形态结构:
• 13条原纤维围成中空、 管状结构。 • 外径约25nm、壁厚约 5nm、内径约15nm。 • 微管具有极性: 增长速度快为+极, 生长缓慢为-极。
9
种类
单管 二联管 三联管
10
单管:由13根原纤维螺旋排列围成,常分散于细胞 质中或成束分布。大部分细胞质微管是单管 微管,它在低温、Ca2+和秋水仙素作用下容 易解聚,属于不稳定微管。 二联管:由A、B两根单管组成,构成纤毛和鞭毛 的杆状部分,是运动类型的微管,它对低 温、Ca2+和秋水仙素都比较稳定。
26
1.驱动蛋白
结构:两个球形的头部,具有ATP活性,水解ATP产生 能量,与微管结合;尾部与被转运分子结合。 方向性:由微管的负端向正端运动。
27
2.动力蛋白
多亚基蛋白 动力蛋白
驱动蛋白
△动力蛋白通过可溶的多亚基蛋白复合体与被运输物结合 △由微管的正端向负端运动
28
驱动蛋白
+
动力蛋白
沿微管运输的马达蛋白
17
三、微管的组装 (一)体外组装
成核期(nucleation phase)
微管蛋白聚合成短的寡聚体(核心) 片状 微管 聚合期(polymerization phase) 聚合速度大于解聚速度 稳定期(steady phase) 聚合速度等于解聚速度(游离微管蛋白达到 临界浓度)