[精校版]初一上期末数学试卷(含答案) (2)

合集下载

七年级上册数学期末测试试卷(含答案)2套

七年级上册数学期末测试试卷(含答案)2套

七年级(上)期末数学试卷(1)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.B.﹣C.D.﹣2.(3分)2021年10月16日0时23分,长征二号F遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,将神舟十三号送入近地点高度200000m,远地点高度356000m的近地轨道,并与天和核心舱对接.其中数字356000用科学记数法表示为()A.35.6×104B.3.56×105C.3.56×106D.0.356×1063.(3分)﹣5比﹣2()A.大3B.大7C.小3D.小﹣34.(3分)如图,分别从正面、左面、上面观察圆柱,得到的平面图形中,正确的是()A.圆、长方形、三角形B.长方形、长方形、圆C.圆、三角形、长方形D.长方形、圆、长方形5.(3分)下列等式变形正确的是()A.如果2a+1=b,那么B.如果,那么2a=3bC.如果ac=bc,那么a=bD.如果a=b,那么2a+3=2b+36.(3分)好又顺文具店中的必胜笔袋原价a元,暑假期间这种笔袋滞销,文具店降价15%,因9月初开学季,必胜笔袋供不应求,该文具店又提价10%,现在这种笔袋的价格是()A.a×(1﹣15%)×10%B.a×15%×10%C.a×(1﹣15%)×a×10%D.a×(1﹣15%)×(1+10%)7.(3分)如图,点A在点O的北偏东60°方向上,若∠BOC和∠AOD互余,在点O处观察点B,则点B所在的方向是()A.北偏东30°B.南偏西150°C.北偏西30°D.西偏北30°8.(3分)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC =2AB,则点B表示的数为()A.﹣1B.1C.D.9.(3分)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”中,把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方.请你探究如图洛书三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=()A.16B.8C.﹣16D.﹣810.(3分)两条直角边长度分别为3cm,4cm的直角三角形,绕其中一条直角边旋转一周,得到立体图形的体积(锥体的体积公式:)较大的是()A.9πcm3B.C.16πcm3D.12πcm311.(3分)20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.15012.(3分)在同一平面内,点O在直线AD上,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=α(0°<α<90°),则∠AOC=()A.90°﹣αB.90°+αC.D.90°±α二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填写在答题卷中的横线上.13.(3分)下列各数:(﹣1)2,,0.,其中有理数有个.14.(3分)在1﹣2a,,﹣2x2y3,2022,m(n﹣1)五个代数式中,单项式有个.15.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于(用数字作答).16.(3分)由成都开往北京的和谐号动车上共有m人,在西安停站后,上车人数是下车人数的5倍,列车驶离西安站时动车上共有n人,那么下车的人数有(用含m,n的式子表示).17.(3分)如图,点A,O,E在同一直线上,∠AOB=38°,∠EOD=28°46',∠COE=2∠DOE,则∠COB=.18.(3分)商场元旦节促销,购物原价不超过200元打九折,超过200元立减30元,小刚的妈妈结账时付款180元,则她购买的商品原价为元.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.19.(7分)计算:.20.(7分)解方程:.21.(8分)先化简,再求值:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2].(1)若|x|=1,求A的值;(2)若x的平方比它本身还要大3,求A的值.22.(8分)如图,点O是直线AB上一点,OM,ON在直线AB的异侧,且∠MON=90°,OE平分∠MOB,OF 平分∠AON.(1)若∠BOM=150°,求∠BOE和∠NOF的度数;(2)设∠AOF=θ,用含θ的式子表示∠MOE.23.(8分)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.24.(8分)有四个球队进行单循环比赛,每两队之间只比赛一场,每场比赛实行三局两胜制,即三局中获胜两局就获胜该场比赛,同时停止本场比赛.例如:表中第二行,比分2:0表示A队以2:0战胜B队.已知球队在每场比赛中都能获得积分,不同比分的积分不同,且积分为正整数.得到的比赛总积分表如下:A B C D总积分A2:02:11:29B0:21:2E mC1:22:11:27D2:1F2:1n(1)某球队要取得一场比赛的胜利,可能的比分结果是什么?(2)若比分为2:0时,净胜球为2,比分为2:1时,净胜球为1,依此类推,净胜球越多,积分也越多.请你根据表格中的数据,求出各种比分对应的积分分别是什么?(3)在(2)的条件下,若球队B战胜了球队D,但总积分m<n,求m,n的值.七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.B.﹣C.D.﹣【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(3分)2021年10月16日0时23分,长征二号F遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,将神舟十三号送入近地点高度200000m,远地点高度356000m的近地轨道,并与天和核心舱对接.其中数字356000用科学记数法表示为()A.35.6×104B.3.56×105C.3.56×106D.0.356×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:356000=3.56×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)﹣5比﹣2()A.大3B.大7C.小3D.小﹣3【分析】根据两数作差后的结果判断即可.【解答】解:∵﹣5﹣(﹣2)=﹣3,∴﹣5<﹣2,故选:C.【点评】本题考查了有理数的加减,通过作差后的结果判断,难度不大.4.(3分)如图,分别从正面、左面、上面观察圆柱,得到的平面图形中,正确的是()A.圆、长方形、三角形B.长方形、长方形、圆C.圆、三角形、长方形D.长方形、圆、长方形【分析】根据三视图的定义判断即可.【解答】解:从正面看该几何体是长方形,从左面看该几何体是长方形,从上面看该几何体是一个圆.故选:B.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.5.(3分)下列等式变形正确的是()A.如果2a+1=b,那么B.如果,那么2a=3bC.如果ac=bc,那么a=bD.如果a=b,那么2a+3=2b+3【分析】根据等式的性质,逐一判断即可解答.【解答】解:A、如果2a+1=b,那么a=,故A不符合题意;B、如果=,那么3a=2b,故B不符合题意;C、如果ac=bc(c≠0),那么a=b,故C不符合题意;D、如果a=b,那么2a+3=2b+3,故D符合题意;故选:D.【点评】本题考查了等式的性质,熟练掌握等式的性质是解题的关键.6.(3分)好又顺文具店中的必胜笔袋原价a元,暑假期间这种笔袋滞销,文具店降价15%,因9月初开学季,必胜笔袋供不应求,该文具店又提价10%,现在这种笔袋的价格是()A.a×(1﹣15%)×10%B.a×15%×10%C.a×(1﹣15%)×a×10%D.a×(1﹣15%)×(1+10%)【分析】根据现在这种笔袋的价格=原价×(1﹣降价百分率)×(1+提价百分率),列出代数式即可求解.【解答】解:依题意有:现在这种笔袋的价格是a×(1﹣15%)×(1+10%).故选:D.【点评】本题主要考查列代数式,弄清题中的数量关系是解题的关键.7.(3分)如图,点A在点O的北偏东60°方向上,若∠BOC和∠AOD互余,在点O处观察点B,则点B所在的方向是()A.北偏东30°B.南偏西150°C.北偏西30°D.西偏北30°【分析】根据题意得出∠AON=60°,根据∠BOC和∠AOD互余求出∠BOC+∠AOD=90°,再代入∠BON=180°﹣∠AON﹣(∠BOC+∠AOD)求出∠BON即可,【解答】解:∵点A在点O的北偏东60°方向上,∴∠AON=60°,∵∠BOC和∠AOD互余,∴∠BOC+∠AOD=90°,∴∠BON=180°﹣∠AON﹣(∠BOC+∠AOD)=180°﹣60°﹣90°=30°,即点B所在的方向是北偏西30°,故选:C.【点评】本题考查了余角与补角和方向角,能求出∠AON=60°和∠BOC+∠AOD=90°是解此题的关键.8.(3分)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC =2AB,则点B表示的数为()A.﹣1B.1C.D.【分析】先求出点A表示的数为﹣4,再由AC=8,BC=2AB,求出AB=,进而得到点B表示的数.【解答】解:∵A、C两点到原点的距离相等,且AC=8,∴A表示﹣4,C表示4,∵AC=8,BC=2AB,∴AB=,∴点B表示的数为﹣4+.故选:D.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.9.(3分)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”中,把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方.请你探究如图洛书三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=()A.16B.8C.﹣16D.﹣8【分析】观察左图,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,然后算出右图中的a和b的值即可.【解答】解:观察左图,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,∴右图中满足:b﹣1+3=1+2+3=5+a+3,∴a=﹣2,b=4,即a b=(﹣2)4=16,故选:A.【点评】本题主要考查数字的变化规律,总结归纳出数字的变化规律是解题的关键.10.(3分)两条直角边长度分别为3cm,4cm的直角三角形,绕其中一条直角边旋转一周,得到立体图形的体积(锥体的体积公式:)较大的是()A.9πcm3B.C.16πcm3D.12πcm3【分析】分两种情况,以4cm直角边为轴旋转一周,以3cm直角边为轴旋转一周,然后进行计算即可解答.【解答】解:分两种情况:以4cm直角边为轴旋转一周,得到立体图形的体积为:×π×32×4=12πcm3;以3cm直角边为轴旋转一周,得到立体图形的体积为:×π×42×3=16πcm3;∴体积较大的是16πcm3;故选:C.【点评】本题考查了点、线、面、体,分两种情况进行计算是解题的关键.11.(3分)20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.150【分析】设x名学生组装A部件,则(20﹣x)名学生组装B部件,根据“仪器是由三个A部件和两个B部件组成”和“每人可以组装好10个A部件或20个B部件”列出方程并解答.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.【点评】本题主要考查了一元一次方程的应用,根据题意找出等量关系是解决本题的关键.12.(3分)在同一平面内,点O在直线AD上,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=α(0°<α<90°),则∠AOC=()A.90°﹣αB.90°+αC.D.90°±α【分析】分两种情况如图①所示,当∠AOC<∠AOB时,根据角平分线的定义得∠AOM=∠AOC,∠AON=∠AOB,根据∠MON=∠AON﹣∠AOM,得∠AOB﹣∠AOC=2a,再根据已知条件∠AOC与∠AOB互补,得∠AOB=180°﹣∠AOC,进而得∠AOC=90°﹣a;如图②所示,当∠AOC>∠AOB时,根据角平分线的定义得∠AOM=∠AOC,∠AON=∠AOB,根据∠MON =∠AOM﹣∠AON,得∠AOC﹣∠AOB=2a,再根据已知条件∠AOC与∠AOB互补,得∠AOB=180°﹣∠AOC,进而得∠AOC=90°+a.【解答】解:①如图①所示,当∠AOC<∠AOB时,∵OM,ON分别为∠AOC,∠AOB的平分线,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AON﹣∠AOM=(∠AOB﹣∠AOC),∴∠AOB﹣∠AOC=2a,∵∠AOC与∠AOB互补,∴∠AOB=180°﹣∠AOC,∴180°﹣∠AOC﹣∠AOC=2a,∴∠AOC=90°﹣a;②如图②所示,当∠AOC>∠AOB时,∵OM,ON分别为∠AOC,∠AOB的平分线,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AOM﹣∠AON=(∠AOC﹣∠AOB),∴∠AOC﹣∠AOB=2a,∵∠AOC与∠AOB互补,∴∠AOB=180°﹣∠AOC,∴∠AOC﹣(180°﹣∠AOC)=2a,∴∠AOC=90°+a,综上所述:∠AOC=90°+a或∠AOC=90°﹣a,(0°<α<90°);故选:D.【点评】本题考查了余角和补角、角平分线的定义,掌握余角和补角、角平分线的定义的综合应用,分两种情况是解题关键.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填写在答题卷中的横线上.13.(3分)下列各数:(﹣1)2,,0.,其中有理数有3个.【分析】根据有理数的定义进行判断即可.【解答】解:根据有理数的定义知:(﹣1)2,,是有理数.故答案为:3.【点评】本题考查有理数定义的考查,解题关键是熟知有理数的定义.14.(3分)在1﹣2a,,﹣2x2y3,2022,m(n﹣1)五个代数式中,单项式有3个.【分析】数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.【解答】解:,﹣2x2y3,2022是单项式,故答案为:3.【点评】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.15.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.16.(3分)由成都开往北京的和谐号动车上共有m人,在西安停站后,上车人数是下车人数的5倍,列车驶离西安站时动车上共有n人,那么下车的人数有(用含m,n的式子表示).【分析】设下车人数为x,则上车人数为5x,列出等量关系式,求出x,即可得出下车的人数.【解答】解:设下车人数为x,则上车人数为5x,m+5x﹣x=n,∴x=,∴下车的人数为.故答案为:.【点评】本题主要考查列代数式,弄清题中的数量关系是解题的关键.17.(3分)如图,点A,O,E在同一直线上,∠AOB=38°,∠EOD=28°46',∠COE=2∠DOE,则∠COB=84°28'.【分析】根据角的和差和平角的的性质进行计算即可.【解答】解:∵∠EOD=28°46',∠COE=2∠DOE,∴∠COE=2×28°46'=57°32',∴∠COB=180°﹣∠AOB﹣∠COE=180°﹣38°﹣57°32'=84°28'.故答案为:84°28'.【点评】本题考查角的计算和度分秒的转化,解题关键是熟知度分秒的转化.18.(3分)商场元旦节促销,购物原价不超过200元打九折,超过200元立减30元,小刚的妈妈结账时付款180元,则她购买的商品原价为200或210元.【分析】设她购买的商品原价为x元,分x≤200及x>200两种情况考虑,根据“购物原价不超过200元打九折,超过200元立减30元”,结合小刚的妈妈结账时付款180元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设她购买的商品原价为x元.当x≤200时,x=180,解得:x=200;当x>200时,x﹣30=180,解得:x=210,∴她购买的商品原价为200或210元.故答案为:200或210.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.19.(7分)计算:.【分析】先算括号内的式子和乘方、再算乘除法、最后算减法即可.【解答】解:=÷(﹣)××﹣=×(﹣6)××﹣=﹣﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.20.(7分)解方程:.【分析】方程整理后,去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:整理得:3x﹣24﹣7=﹣(x﹣3)﹣2x,即5x﹣31=﹣(x﹣3),去分母得:15x﹣93=﹣x+3,移项得:15x+x=3+93,合并得:16x=96,系数化为1得:x=6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.21.(8分)先化简,再求值:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2].(1)若|x|=1,求A的值;(2)若x的平方比它本身还要大3,求A的值.【分析】(1)直接利用|x|=1,分情况讨论得出答案;(2)根据已知将原式变形,整体代入得出答案.【解答】解:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2]=﹣5x2+8x2﹣8x+(4x﹣3)+x2=﹣5x2+8x2﹣8x+4x﹣3+x2=4x2﹣4x﹣3,(1)若|x|=1,则x=±1,当x=1时,原式=4×12﹣4×1﹣3=4﹣4﹣3=﹣3;当x=﹣1时,原式=4×(﹣1)2﹣4×(﹣1)﹣3=4+4﹣3=5;综上所述:A的值为﹣3或5;(2)若x的平方比它本身还要大3,则x2﹣x=3,故原式=4x2﹣4x﹣3=4(x2﹣x)﹣3=4×3﹣3=9.【点评】此题主要考查了整式的加减——化简求值,正确掌握相关运算法则是解题关键.22.(8分)如图,点O是直线AB上一点,OM,ON在直线AB的异侧,且∠MON=90°,OE平分∠MOB,OF 平分∠AON.(1)若∠BOM=150°,求∠BOE和∠NOF的度数;(2)设∠AOF=θ,用含θ的式子表示∠MOE.【分析】解:(1)由OE平分∠BOM,可以求出∠BOE的度数,根据平角求出∠AOM30°,由∠MON=90°,求出∠AON=90°﹣30°=60°,再根据OF平分∠AON,即可求出∠NOF的度数.(2由OF平分∠AON,得到∠AON=2θ,所以∠MOA=90°﹣2θ,由平角得到∠BOM=180°﹣(90°﹣θ)=90°+θ,再根据OE平分∠MOB,即可求出∠MOE.【解答】解:(1)∵OE平分∠BOM,∠BOM=150°,∴∠BOE=,∵∠BOM=150°,∴∠AOM=180°﹣150°=30°,∵∠MON=90°,∴∠AON=90°﹣30°=60°,∵OF平分∠AON,∴∠NOF=.(2)∵∠AOF=θ,OF平分∠AON,∴∠AON=2θ,∵∠MON=90°,∴∠MOA=90°﹣2θ,∴∠BOM=180°﹣(90°﹣2θ)=90°+2θ,∵OE平分∠MOB,∴∠MOE=∠BOM=45°+θ.【点评】本题考查角的计算,角平分线的定义等知识,解题的关键是厘清各角之间的关系,属于基础题.23.(8分)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.【分析】(1)由非负性可求解;(2)由点Q恰好位于线段PB的中点处.列出方程可求解;(3)由BQ=2PQ,列出方程可求解.【解答】解:(1)∵(m+8)2+|2n﹣20|=0,∴m=﹣8,n=10,∴AB=10﹣(﹣8)=18;(2)设点Q每秒运动x个单位长度,由题意可得:2×2x=18﹣2×3,∴x=3,答:点Q每秒运动3个单位长度;(3)由题意可得:3t=2×|18﹣2﹣5t|,∴t=或.【点评】本题考查了一元一次方程的应用,非负性,找到正确的数量关系是解题的关键.24.(8分)有四个球队进行单循环比赛,每两队之间只比赛一场,每场比赛实行三局两胜制,即三局中获胜两局就获胜该场比赛,同时停止本场比赛.例如:表中第二行,比分2:0表示A队以2:0战胜B队.已知球队在每场比赛中都能获得积分,不同比分的积分不同,且积分为正整数.得到的比赛总积分表如下:A B C D总积分A2:02:11:29B0:21:2E mC1:22:11:27D2:1F2:1n(1)某球队要取得一场比赛的胜利,可能的比分结果是什么?(2)若比分为2:0时,净胜球为2,比分为2:1时,净胜球为1,依此类推,净胜球越多,积分也越多.请你根据表格中的数据,求出各种比分对应的积分分别是什么?(3)在(2)的条件下,若球队B战胜了球队D,但总积分m<n,求m,n的值.【分析】(1)根据比赛情况可得可能的比分为2:0和2:1;(2)设比分为2:0,2:1,1:2,0:2每场的积分分别为a,b,c,d,根据表中A队、C队的积分得,,解方程组再结合a+b+c=9且整数a>b>c>d>0,可得答案;(3)根据球队B战胜了球队D,分四种情况可得答案.【解答】解:(1)某球队要取得一场比赛的胜利,可能的比分结果是2:0或2:1;(2)设比分为2:0,2:1,1:2,0:2每场的积分分别为a,b,c,d,这里的a,b,c,d都是整数,且a>b>c>d>0,根据表中A队、C队的积分得,,①﹣②,得a﹣c=2,∵a+b+c=9,且整数a>b>c>d>0,∴a+b+c≤9,而此时若b>3,不妨假设b=4,则a为满足a>b只能为5,那么c=0,与c>0矛盾,且当b>4时,a无法同时满足a>b和a+b<9,∴b≤3,∵b+2c=7,∴c≥2,∵c<b,∴c=2,b=3,∴a=4,∵a>b>c>d>0,∴d=1,∴d=1,c=2,b=3,a=4,答:比分为2:0,2:1,1:2,0:2时,每场的积分分别为4,3,2,1;(3)若E是2:0,则F是0:2,m=a+c+d=4+2+1=7,n=2b+d=2×3+1=7,符合B队战胜D队,不符合m<n,若E是2:1,则F是1:2,m=b+c+d=3+2+1=6,n=2b+c=2×3+2=8,符合B队战胜D队,符合m<n,若E是1:2,则F是2:1,m=2c+d=2×2+1=5,n=3b=3×3=9,不符合B队战胜D队,符合m<n,若E是0:2,则F是2:0,m=c+2d=2+2×1=4,m=a+2b=4+2×3=10,不符合B队战胜D队,符合m<n.综上,符合B队战胜D队,又符合m<n的m,n值是m=6,n=8.【点评】本题考查三元一次方程组的应用,根据题意设出未知数并列出方程组是解题关键.七年级(上)期末数学试卷(2)一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有-•个符合题目要求,请把你认为正确的题号填入题后面的括号内)1.(3分)如图,能用∠1、∠ABC、∠B三种方法,表示同一个角的是()A.B.C.D.2.(3分)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=13.(3分)方程,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是()A.2B.3C.4D.64.(3分)把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短5.(3分)如果单项式5x a y5与﹣x3y b是同类项,那么a、b的值分别为()A.2,5B.3,5C.5,3D.﹣3,56.(3分)钟表在8:30时,时针与分针的夹角度数是()A.45°B.30°C.60°D.75°7.(3分)如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为()A.140°B.150°C.160°D.170°8.(3分)设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.2.(3分)如图是正方体的表面展开图,每一个面标有一个汉字,则与“美”相对的面上的字是()A.建B.设C.江D.油10.(3分)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑的快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)11.(3分)如图,表中给出的是某月的月历,任意选取“U”型框中的5个数(如阴影部分所示),请你运用所学的数学知识来研究,在本月历中这5个数的和可能的是()A.64B.75C.86D.12612.(3分)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为()A.或B.或或C.或6D.或6或二、填空题:(本大题共6个小题,每小题3分,共18分。

七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共30分)1.(3分)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B2.(3分)若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.C.﹣8 D.83.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为4.(3分)下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位5.(3分)某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是()A.10% B.35% C.36% D.40%6.(3分)某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品()A.5 B.6 C.7 D.87.(3分)下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=68.(3分)如图,直线AB、CD交于O,OE是∠BOC的平分线且∠BOE=50度,那么∠AOE=()度.A.80 B.100 C.130 D.1509.(3分)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式10.(3分)∠α与∠β的度数分别是2m﹣67和68﹣m,且∠α与∠β都是∠γ 的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等二、认真填写,试一试自己的身手(每小题3分,共18分)11.(3分)在式子:、、、﹣、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(3分)3x m+5y2与x3y n是同类项,则m n的值是.13.(3分)如果2x﹣4的值为5,那么4x2﹣16x+16的值是.14.(3分)若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.(3分)如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(3分)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.三、认真解答,一定要细心(本大题共9小题,满分72分,要写出必要计算解答过程)17.(6分)化简并求值:﹣6(a2﹣2ab+b2)+2(2a2﹣3ab+3b2),其中a=1,b=.18.(10分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)﹣2=﹣19.(8分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.20.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.21.(8分)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求n m+mn的值.22.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.23.(8分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.24.(8分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?25.(8分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共30分)1.(3分)如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B【考点】IC:线段的性质:两点之间线段最短.【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.2.(3分)若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.C.﹣8 D.8【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】先依据非负数的性质求得a、b的值,然后再利用乘方法则求解即可.【解答】解:∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.【点评】本题主要考查的是偶次方的性质,依据非负数的性质求得a、b的值是解题的关键.3.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为【考点】42:单项式;43:多项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式的次数是2,系数为,符合单项式系数、次数的定义,正确;故选:D.【点评】本题考查的知识点为:单项式中的数字因数叫做这个单项式的系数.单项式中,所有字母的指数和叫做这个单项式的次数;多项式里次数最高项的次数叫做这个多项式的次数.单独的一个字母的系数和次数都是1.4.(3分)下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【考点】1L:科学记数法与有效数字;1H:近似数和有效数字.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【解答】解:A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.【点评】此题的目的在于考查学生对近似数有效数字的理解,必须掌握近似数有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.5.(3分)某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是()A.10% B.35% C.36% D.40%【考点】VB:扇形统计图.【分析】先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比,即可解答.【解答】解:∵其他部分对应的百分比为×100%=10%,∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,故选:D.【点评】本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.6.(3分)某商品的进价是500元,标价是750元,商店要求以利润率为5%的售价打折出售,售货员可以打几折出售此商品()A.5 B.6 C.7 D.8【考点】8A:一元一次方程的应用.【分析】设售货员可以打几折出售此商品,根据售价﹣进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设售货员可以打x折出售此商品,根据题意得:750×﹣500=500×5%,解得:x=7.答:售货员可以打7折出售此商品.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,未知数系数化为1,得t=1D.方程﹣=1化成3x=6【考点】86:解一元一次方程.【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【解答】解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程t=,未知数系数化为1,得t=,故本选项错误;D、方程﹣=1化成3x=6,故本选项正确.故选:D.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8.(3分)如图,直线AB、CD交于O,OE是∠BOC的平分线且∠BOE=50度,那么∠AOE=()度.A.80 B.100 C.130 D.150【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】先由角平分线的定义得出∠BOC=100°,再根据∠AOC与∠BOC互为邻补角即可求解.【解答】解:∵OE平分∠BOC,∠BOE=50°,∴∠BOC=2∠BOE=100°,∴∠AOC=180°﹣∠BOC=80°.∴∠AOE=∠AOC+∠COE=80°+50°=130°,故选:C.【点评】本题考查了角平分线的定义,邻补角的定义与性质,是需要熟记的内容.9.(3分)若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【考点】43:多项式.【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】解:多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,B是一个四次多项式,因此A+B一定是四次多项式或单项式.故选:B.【点评】要准确把握合并同类项的法则,合并同类项时只是把系数相加减,字母和字母的指数不变,多项式的次数是“多项式中次数最高的项的次数”.10.(3分)∠α与∠β的度数分别是2m﹣67和68﹣m,且∠α与∠β都是∠γ 的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等【考点】IL:余角和补角.【分析】根据补角的性质,可得∠α=∠β,根据解方程,可得答案.【解答】解:∠α与∠β都是∠γ的补角,得∠α=∠β,即2m﹣67=68﹣m,解得m=45,2m﹣67=68﹣m=23.故选:C.【点评】本题考查了余角和补角,关键是熟悉补角的性质:等角的补角相等.二、认真填写,试一试自己的身手(每小题3分,共18分)11.(3分)在式子:、、、﹣、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有3个.【考点】43:多项式.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.12.(3分)3x m+5y2与x3y n是同类项,则m n的值是4.【考点】34:同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出关于m和n的方程,解出即可得出m和n的值,继而代入可得出m n的值.【解答】解:∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握:同类项:所含字母相同,并且相同字母的指数也相同,难度一般.13.(3分)如果2x﹣4的值为5,那么4x2﹣16x+16的值是25.【考点】4C:完全平方公式.【分析】根据完全平方公式,转化为已知条件平方即可求解.【解答】解:∵2x﹣4=5,∴4x2﹣16x+16=(2x﹣4)2=25.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.14.(3分)若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=﹣1;x=.【考点】84:一元一次方程的定义;87:含绝对值符号的一元一次方程.【分析】根据一元一次方程的特点求出a的值,代入即可求出x的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=.故答案为:﹣1,.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.15.(3分)如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA= 72°,∠BOC的补角=162°.【考点】J3:垂线;IL:余角和补角.【分析】直接利用垂直的定义结合,∠BOC与∠BOA的度数之比得出答案.【解答】解:∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.【点评】此题主要考查了垂直的定义以及互补的定义,正确得出∠COA的度数是解题关键.16.(3分)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=35度.【考点】J2:对顶角、邻补角;IL:余角和补角.【分析】根据对顶角相等可得∠BOD=∠AOC,∠AOC的度数可由余角的定义求得.【解答】解:∵OE⊥AB,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).【点评】主要利用了余角的定义和对顶角相等的性质.三、认真解答,一定要细心(本大题共9小题,满分72分,要写出必要计算解答过程)17.(6分)化简并求值:﹣6(a2﹣2ab+b2)+2(2a2﹣3ab+3b2),其中a=1,b=.【考点】45:整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣6a2+12ab﹣6b2+4a2﹣6ab+6b2=﹣2a2+6ab,当a=1、b=时,原式=﹣2×12+6×1×=﹣2+3=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(10分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)﹣2=﹣【考点】86:解一元一次方程.【分析】(1)根据解一元一次方程的步骤依次:去括号、移项、合并同类项、系数化为1即可得;(2)根据解一元一次方程的步骤依次:去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(8分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【考点】43:多项式.【分析】根据已知得出方程2+m+1=6,求出m=3,根据已知得出方程2n+5﹣m=6,求出方程的解即可.【解答】解:∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点评】本题考查了多项式的有关内容的应用,注意:多项式中次数最高的项的次数叫多项式的次数.20.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【考点】ID:两点间的距离.【分析】(1)根据题意和图形可以求得DC和CE的长,从而可以求得DE的长;(2)根据题意和图形可以求得DC和CE的长,从而可以求得DE的长.【解答】解:(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求n m+mn的值.【考点】44:整式的加减.【分析】根据题意列出关系式,由题意确定出m与n的值,代入原式计算即可求出值.【解答】解:根据题意得:3x2+my﹣8+nx2﹣2y﹣7=(3+n)x2+(m﹣2)y﹣15,由题意得:m=2,n=﹣3,则原式=9﹣6=3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【考点】44:整式的加减.【分析】本题考查整式的加减运算灵活运用,先求出A表示的多项式,然后再求出2A+B,“要根据题意列出整式,再去括号,然后合并同类项进行运算.【解答】解:根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.【点评】本题考查整式的加减,整式的加减的实质就是去括号、合并同类项,这是各地中考的常考点.23.(8分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【考点】8A:一元一次方程的应用.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m 为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.24.(8分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?【考点】8A:一元一次方程的应用.【分析】设总工作量为1,小贝加入后打x分钟完成任务,则小宝完成任务的,小贝完成任务的,据此列方程即可求解.【解答】解:能.设小贝加入后打x分钟完成任务,根据题意得:,解这个方程得:x=7.5,则小宝完成共用时37.5分,∵37.5<40,∴他能在要求的时间内打完.【点评】本题考查了理解题意列方程的能力,解决本题的关键是“设总工作量为1”.25.(8分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【考点】IK:角的计算;IJ:角平分线的定义.【分析】(1)直接利用角的计算方法以及角平分线的定义计算得出答案;(2)直接利用角的计算方法以及角平分线的定义计算得出答案.(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,【解答】解:∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=(90°﹣α),∠DOC=α,∴∠DOE=∠EOC﹣∠DOC=(90°﹣α)﹣α=45°.【点评】此题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b2.下列每对数中,相等的一对是()A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)33.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5925.下列方程是一元一次方程的是()A.213+x=5x B.x2+1=3x C.32y=y+2 D.2x﹣3y=16.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯7.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°8.﹣2020的倒数是( ) A .﹣2020 B .﹣12020 C .2020 D .120209.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2) 11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题13.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.5535______.16.把53°24′用度表示为_____.17.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________18.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.19.单项式﹣22πa b的系数是_____,次数是_____.20.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.当12点20分时,钟表上时针和分针所成的角度是___________.23.观察“田”字中各数之间的关系:则c 的值为____________________.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.27.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点.(1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围);(3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.28.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)29.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.30.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?31.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B 两点之间的距离;(2)若在线段AB 上存在一点C,且AC=2BC,求C 点表示的数;(3)若在原点O 处放一个挡板,一小球甲从点A 处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.3.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.4.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.【详解】解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.9.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.11.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.12.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意,故选:A .【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题13.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n-解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x-++-+=(a-1)x2+(b-6)x+1,由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.18.【解析】【分析】根据题意分别表示P,Q的数为-8+2t和10-3t,并分到A前和到A后进行分析求值.【详解】解:由题意表示P,Q的数为-8+2t()和10-3t(),-8+3(t-6)()解析:12 5【解析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.19.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 20.20【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.21.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a 2.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -3.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .154.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或25.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |6.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数7.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .48.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3210.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°11.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .36112.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,则m-2n=______.14.按下面程序计算,若开始输入x 的值为正整数,最后输出的结果为506,则满足条件的所有x 的值是___________.15.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________. 16.若∠α=35°16′28″,则∠α的补角为____________.17.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.18.若25m n a b 与569a b -是同类项,则m n +的值是____.19.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.20.如图,一个正五边形的五个顶点依次编号为1,2,3,4,5,从某个顶点开始,若顶点编号是奇数,则一次逆时针走2个边长;若顶点编号是偶数,则一次顺时针走1个边长.若从编号2开始走,则第2020次后,所处顶点编号是_____________.21.观察下列式子:13111414a ==-⨯;23114747a ==-⨯;3311710710a ==-⨯;431110131013a ==-⨯,按此规律,则n a =_____________=______________(用含n的代数式表示,其中n 为正整数),并计算123100a a a a +++⋯+=________________.22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.如图,点,A B 在数轴上,它们对应的数分别是-2,34x -,且点,A B 到原点的距离相等,求x 的值.24.计算:(1)1108(2)()2--÷-⨯-; (2)2020313()12(1)468-+-⨯+-. 25.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ; (2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.26.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.27.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.28.如图,在数轴上有四个点A 、B 、C 、D ,点A 在数轴上表示的数是-12,点D 在数轴上表示的数是15, AB 长2个单位长度,CD 长1个单位长度.(1)点B 在数轴上表示的数是 ,点C 的数轴上表示的数是 ,线段BC = . (2)若点B 以1个单位长度/秒的速度向右运动,同时点C 以2个单位长度/秒的速度向左运动设运动时间为t 秒,若BC 长6个单位长度,求t 的值;(3)若线段..AB ..以1个单位长度/秒的速度向左运动,同时线段..CD ..以2个单位长度/秒的速度也向左运动.设运动时间为t 秒.①用含有t 的式子分别表示点A 、B 、C 、D ,则A 是 ,B 是 ,C 是 ,D 是 . ②若0<t <24时,设M 为AC 中点,N 为BD 中点,试求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据周长的计算公式,列式子计算解答. 【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-, ∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-, 同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -, ∴C 1 -C 2=0. 故选A . 【点睛】本题考查周长的计算,“数形结合”是关键.2.A解析:A 【解析】 【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决. 【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5, 故选A . 【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.3.B解析:B 【解析】 【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n =1,n =2和n =3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可. 【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况, 当盘子数量n =1时,游戏结束需要移动的最少次数为1;当盘子数量n =2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n =3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n =2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n =2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11, 故选B . 【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.4.A解析:A 【解析】 【分析】根据题意,利用绝对值的代数意义求出m 与n 的值,即可确定出原式的值. 【详解】解:∵|m|=5,|n|=3,且m+n<0, ∴m=−5,n=3或m=−5,n=−3, ∴m−n=−8或m-n=-2 故选A. 【点睛】本题考查了有理数的加减法和绝对值的代数意义.5.D解析:D 【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2, ∴|a|>|b|,a <﹣b ,b >a ,a <﹣2, 故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.6.D解析:D 【解析】 【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案. 【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数; 故选:D . 【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.7.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.11.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.12.C解析:C【解析】【分析】a的值.依次计算1a、2a、3a、4a、…,得到规律性答案,即可得到2020【详解】11a =-,212a a =-+=-1, 323a a =-+=-2,434a a =-+=-2, 5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题 13.16 【解析】 【分析】 【详解】 ∵x=8是偶数,∴代入-x+6得:m=-x+6=-×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7, ∴m-2n=2-2×(-7)=1解析:16 【解析】 【分析】 【详解】 ∵x=8是偶数, ∴代入-12x+6得:m=-12x+6=-12×8+6=2, ∵x=3是奇数,∴代入-4x+5得:n=-4x+5=-7,∴m-2n=2-2×(-7)=16,故答案是:16.【点睛】本题考查了求代数式的值,能根据程序求出m 、n 的值是解此题的关键.14.101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的解析:101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程51506x +=,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的结果为506,∴第一个数就是直接输出其结果时:51506x +=,则101x =>0;第二个数就是直接输出其结果时:51101x +=,则20x =>0;第三个数就是直接输出其结果时:5120x +=,则 3.8x =,不是正整数,不符合题意; 故x 的值可取101、20这2个.故答案为:101或20.【点睛】本题主要考查了代数式的求值和解方程的能力,注意理解题意与逆向思维的应用是解题的关键.15.5【解析】【分析】根据题意得出2x2+3y 的值,进而能得出3(2x2+3y )的值,就能求出代数式6x2+9y+2的值.【详解】由题意得:2x2+3y+7=8,可得:2x2+3y=1,3(解析:5【解析】根据题意得出2x 2+3y 的值,进而能得出3(2x 2+3y )的值,就能求出代数式6x 2+9y+2的值.【详解】由题意得:2x 2+3y+7=8,可得:2x 2+3y=1,3(2x 2+3y )=3=6x 2+9y ,∴6x 2+9y+2=5.故答案为5.【点睛】本题考查了代数式求值,整体法的运用是解题的关键.16.144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠=35°16′28″,∴的补角;故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的解析:144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠α=35°16′28″,∴α∠的补角18035162817959603516281444332''''''''''''=︒-︒=︒-︒=︒; 故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的计算,准确计算是解题的关键. 17.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°,据此即可得出∠BOD 的度数.【详解】∵∠CON=9解析:【解析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.18.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.19.3n+1【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.20.5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到解析:5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到达点4,第4次移位到达点5,第5次移位到达点3,第6次移位到达点1,第7次移位到达点4,第8次移位到达点5,…依此类推,可以发现结果按四次移位为一次循环,即按照3,1,4,5循环,∵2020÷4=505,∴第2020次移位为第505个循环的第4次移位,到达点5.故答案为:5.【点睛】本题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.21..【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】由,,,可知每个式子等 解析:3(32)(31)n n -+ 113231n n --+ 300301. 【解析】【分析】根据已知的式子中的数的特点得到分母是相差3的两个整数相乘,分子为3,结果等于分母中的两个数的倒数相减,由此得到答案.【详解】 由13111414a ==-⨯,23114747a ==-⨯,3311710710a ==-⨯,可知每个式子等于相差3的两个整数的乘积且第二个整数比序数的3倍大1,此时分子为3,等于相差3的两个整数的倒数的差, ∴311(32)(31)3231n a n n n n ==--+-+, ∴123100a a a a +++⋯+, =11111111114477101013298301-+-+-+-++-,=11301-, =300301, 故答案为:3(32)(31)n n -+, 113231n n --+,300301. 【点睛】 此题考查数字的规律探究,根据所给的代数式观察得到规律,并能表示出该规律是解题的关键,由此进行其他的应用计算.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2,解析:【解析】【分析】连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,02A A =032A A =,04A A =052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,02A A =,032A A =,04A A =052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴02020A A =故答案为:【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.x =2【解析】【分析】根据点A 、B 到原点的距离相等即点A ,B 表示两数的绝对值相等,列出方程,求出方程的解即可得到x 的值.【详解】由题意可得:3x -4=2解得 x =2故答案为x =2.【点睛】此题考查了解一元一次方程,以及数轴,熟练掌握运算法则是解本题的关键.24.(1)12-;(2)212-. 【解析】【分析】(1)有理数的混合运算,先做乘除,然后做加减;(2)有理数的混合运算,先做乘方,然后根据乘法分配律做乘法使得运算简便,最后做加减.【详解】解:(1)1108(2)()2--÷-⨯-= 1110822--⨯⨯=102--=12-(2)2020313()12(1)468-+-⨯+-=3131212121 468-⨯+⨯-⨯+=9 9212-+-+=21 2 -【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则及运用乘法分配律使得计算简便是本题的解题关键.25.(1)9;(2)a的值为10或-10;(3)见解析,c的值为6或60 7【解析】【分析】(1)依据|a-b|=15,a,b异号,即可得到a的值;(2)分点A在原点左、右两侧两种情况讨论,依据OA=2OB,即可得到a的值;(3)分点C在点B左、右两侧两种情况进行讨论,依据O为AC的中点,OB=3BC,设未知数列方程即可得到所有满足条件的c的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.26.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【解析】【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°. (2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.27.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).28.(1)-10;14;24;(2)6或10;(3)①-t-12,-t-10,14-2t,15-2t;②3 2 .【解析】【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)①找出运动时间为t秒时,即可得到点A、B、C、D在数轴上表示的数;②由①中的代数式,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式,即可求出线段MN的长.【详解】解:(1)∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10;∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14.∴BC=14-(-10)=24.故答案为:-10;14;24.(2)当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为:14-2t,∴BC=|t-10-(14-2t)|=|3t-24|.∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.∴当BC=6(单位长度)时,t的值为6或10.(3)①当运动时间为t秒时,点A在数轴上表示的数为:-t-12,点B在数轴上表示的数为:-t-10,点C在数轴上表示的数为:14-2t,点D在数轴上表示的数为:15-2t;故答案为:-t-12,-t-10,14-2t,15-2t;②∵0<t<24,∴点C一直在点B的右侧.∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为:232t-,点N在数轴上表示的数为:532t-,∴MN=53233= 222t t---.故答案为:32.【点睛】本题考查了两点间的距离、解含绝对值符号的一元一次方程以及数轴,解题的关键是:(1)根据点与点之间的位置关系找出点B、C在数轴上表示的数;(2)由两点间的距离公式结合BC=6,找出关于t的含绝对值符号的一元一次方程;(3)根据点的运动找出运动时间为t秒时,点M、N在数轴上表示的数.。

(精校版)初一数学上册期末测试卷及答案

(精校版)初一数学上册期末测试卷及答案

(直打版)初一数学上册期末测试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)初一数学上册期末测试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)初一数学上册期末测试卷及答案(word版可编辑修改)的全部内容。

初一数学上期末试题及答案一. 填空题(本大题共10小题,每小题3分,共30分)1。

设甲数为a ,乙数为b ,用代数式表示:甲数的31与乙数的21的差 .2。

用四舍五入法,把47.6精确到个位的近似值是 .3。

单项式5232yz x -的系数是 ,次数是 。

4。

把多项式322445323y x xy y x -+-按y 的降幂排列后,第二项是 .5。

最大的负整数与绝对值最小的数的和为 。

6. 在公式at v v +=0中,已知3=a ,17=v ,50=v ,则=t 。

7。

某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时相向施工,要 天可以铺好。

8。

若1=x 是关于x 的方程)0(0≠=+a b ax 的解,则=-+1b a .9。

某商品的进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的 折销售的.10. 如图是花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆)(1) (2) (3) (4)观察图案并探索:在第n 个图案中,红花有 盆,黄花有 盆。

二。

选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个答案正确,将正确答案的代号填入题后的括号里)11。

初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】

初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。

七年级上册数学期末试卷含答案

七年级上册数学期末试卷含答案

七年级上册数学期末试卷含答案一、选择题(每题2分,共20分)1、下列哪个选项不是我们常见的图形?(A)长方形(B)正方形(C)圆形(D)三角形2、下列哪个图形是轴对称的?(A)正方形(B)平行四边形(C)圆形(D)三角形3、下列哪个选项不能用于描述三角形的性质?(A)三角形内角和为180度(B)直角三角形的一个角为90度(C)三角形两边之和大于第三边(D)三角形两边之差小于第三边4、下列哪个选项不是有理数的性质?(A)有理数加法交换律(B)有理数乘法交换律(C)有理数乘法结合律(D)有理数除法交换律5、下列哪个函数不是一次函数?(A)y = 2x + 3(B)y = 3x² + 2x + 1(C)y = 2x - 1(D)y = x - 1二、填空题(每题3分,共30分)6、一个三角形的三个内角分别为∠A、∠B和∠C,其中∠A=70度,∠B=50度,则∠C=_____度。

61、在一个等腰三角形中,如果底边长为8,那么腰长为_____。

611、在一个直角三角形中,如果其中一个锐角为30度,那么另一个锐角为_____度。

6111、一个正方形的周长为P,那么它的面积为_____。

本文下列哪个选项不是我们常见的图形关系?(A)相交(B)平行(C)垂直(D)相切三、解答题(每题10分,共40分)11、一个多边形的内角和为1080度,求这个多边形的边数。

答:设这个多边形的边数为n,根据题意可得方程:本文n-2)×180°=1080°解得n=8所以这个多边形的边数为8。

12、已知一个一次函数y=kx+b的图象经过点(3,5)和(-1,-3),求这个一次函数的解析式。

答:将点(3,5)和(-1,-3)分别代入y=kx+b得:本文 3k+b=5, -k+b=-3 }解得:{ k=2, b=1 }所以这个一次函数的解析式为:y=2x+1。

13、在一个直角坐标系中,描出点A(4,2)和点B(1,4),连接AB,求直线AB的解析式。

[精校版]初一上册期末数学试卷(附答案)

[精校版]初一上册期末数学试卷(附答案)

2017-2018学年韶关市七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱3.(3分)如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC 的长为()A.2cm B.4cm C.8cm D.13cm4.(3分)如果代数式与ab是同类项,那么m的值是()A.0 B.1 C.D.35.(3分)如图,在数轴上点A表示的数最可能是()A.﹣2 B.﹣2.5 C.﹣3.5 D.﹣2.96.(3分)当x=3,y=2时,代数式的值是()A.B.2 C.0 D.37.(3分)下列式子中,是一元一次方程的有()A.x+5=2x B.x2﹣8=x2+7 C.5x﹣3 D.x﹣y=48.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)29.(3分)数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能10.(3分)观察下列算式并总结规律:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22016的末位数字是()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.(3分)计算:①﹣2+1=②4﹣(﹣4)=③×()=2.12.(3分)计算:①﹣2=②=③﹣x+2x= .13.(3分)直接写出下列方程的解:①x=﹣x+2②﹣x=6③x=2x .14.(3分)把一根木条固定在墙上,至少要钉2根钉子,这是根据.15.(3分)若3 070 000=3.07×10x,则x= .16.(3分)如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD= 度.17.(3分)一个角是70°,则这个角的余角为度.18.(3分)某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为.三、解答题(一)(本大题共21分)19.(8分)计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].20.(8分)解方程:(1)4x=5x﹣5(2)﹣1=.21.(5分)先化简,再求值:2ab2﹣3a2b﹣2(a2b+ab2),其中a=1,b=﹣2.四、解答题(二)(本大题共18分)22.(6分)一只船从甲码头到乙码头是顺流行驶,用了2小时;从乙码头返回到甲码头是逆流行驶,用了2.5小时.如果水流的速度是3千米/小时,求船在静水中的速度?23.(6分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°(1)求∠AOB的度数;(2)∠COD的度数.24.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?五、解答题(三)(本大题共7分)25.(7分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?2017-2018学年广东省韶关市乐昌市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣5的倒数是()A.5 B.﹣5 C.D.﹣【解答】解:﹣5的倒数是﹣.故选:D.2.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.[]3.(3分)如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC 的长为()A.2cm B.4cm C.8cm D.13cm【解答】解:∵BC=3cm,BD=5cm,∴CD=BD﹣BC=2cm,∵D是AC的中点,∴AC=2CD=4cm,故选:B.4.(3分)如果代数式与ab是同类项,那么m的值是()A.0 B.1 C.D.3【解答】解:根据题意得:2m=1,解得:m=.故选C.5.(3分)如图,在数轴上点A表示的数最可能是()A.﹣2 B.﹣2.5 C.﹣3.5 D.﹣2.9【解答】解:∵点A表示的数在﹣3与﹣2中间,∴A、C、D三选项错误,B选项正确.故选:B.6.(3分)当x=3,y=2时,代数式的值是()A.B.2 C.0 D.3【解答】解:==7.(3分)下列式子中,是一元一次方程的有()A.x+5=2x B.x2﹣8=x2+7 C.5x﹣3 D.x﹣y=4【解答】解:A、是一元一次方程,故A正确;B、不是方程,故B错误;C、是多项式,故C错误;D、二元一次方程,故D错误;故选:A.8.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.9.(3分)数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能【解答】解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.10.(3分)观察下列算式并总结规律:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律,写出22016的末位数字是()A.2 B.4 C.6 D.8【解答】解:由21=2,22=4,23=8,24=16,…;可以发现他们的末尾数字是4个数一个循环,2,4,8,6,…∵2016÷4=504,∴22016的与24的末尾数字相同是6.故选:C.二、填空题(每小题3分,共24分)11.(3分)计算:①﹣2+1= ﹣1②4﹣(﹣4)= 8③×(﹣4 )=2.【解答】解:①﹣2+1=﹣1②4﹣(﹣4)=8③×(﹣4)=2故答案为:﹣1、8、﹣4.12.(3分)计算:①﹣2= ﹣4②= ﹣4.5③﹣x+2x= x .【解答】解:①﹣2=﹣4;②=﹣4.5;③﹣x+2x=x.故答案为:﹣4,﹣4.5,x.13.(3分)直接写出下列方程的解:①x=﹣x+2 x=1②﹣x=6 x=﹣18③x=2x x=0 .【解答】解:①移项得,x+x=2,合并同类项得,2x=2,系数化为1得,x=1;②方程两边都乘以﹣3,系数化为1得,x=﹣18;③移项得,x﹣2x=0,合并同类项得,﹣x=0,系数化为1得,x=0.故答案为:①x=1;②x=﹣18;③x=0.14.(3分)把一根木条固定在墙上,至少要钉2根钉子,这是根据过两点有且只有一条直线.【解答】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是过两点有且只有一条直线或两点确定一条直线.15.(3分)若3 070 000=3.07×10x,则x= 6 .【解答】解:∵3 070 000=3.07×106=3.07×10x,∴x=6.16.(3分)如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD= 155 度.【解答】解:∵点A、O、B在一条直线上,∴∠COB=180°﹣∠AOC=180°﹣50°=130°,∵OD平分∠AOC,∴∠COD=×50°=25°,∴∠BOD=∠COB+∠COD=130°+25°=155°.故答案为:155.17.(3分)一个角是70°,则这个角的余角为20 度.【解答】解:∵一个角是70°,∴这个角的余角=90°﹣70°=20°.故答案为:20.18.(3分)某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为160元.【解答】解:设成本为x元,则获利为20%x元,售价为0.8×240元,由题意得:x+20%x=0.8×240,解得:x=160.答:这件T恤的成本为160元.故答案为160元.三、解答题(一)(本大题共21分)19.(8分)计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].【解答】解:(1)原式=26﹣17﹣6﹣33=26﹣56=﹣30;(2)原式=﹣1﹣×(﹣6)=﹣1+1=0.20.(8分)解方程:(1)4x=5x﹣5(2)﹣1=.【解答】解:(1)4x=5x﹣54x﹣5x=﹣5,则﹣x=﹣5,解得:x=5;(2)﹣1=去分母得:3(x+2)﹣12=2(2x﹣3),则3x+6﹣12=4x﹣6,3x﹣4x=﹣6﹣6+12,解得:x=0.21.(5分)先化简,再求值:2ab2﹣3a2b﹣2(a2b+ab2),其中a=1,b=﹣2.【解答】解:原式=2ab2﹣3a2b﹣2a2b﹣2ab2=﹣5a2b;当a=1,b=﹣2时,原式=﹣5×12×(﹣2)=10.四、解答题(二)(本大题共18分)22.(6分)一只船从甲码头到乙码头是顺流行驶,用了2小时;从乙码头返回到甲码头是逆流行驶,用了2.5小时.如果水流的速度是3千米/小时,求船在静水中的速度?【解答】解:设船在静水中的速度为xkm/h.2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:船在静水中的平均速度是27千米/小时.23.(6分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°(1)求∠AOB的度数;(2)∠COD的度数.【解答】解:(1)∵∠BOC=2∠AOC,∠AOC=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=120°;(2)∵OD平分∠AOB,∴∠AOD=∠AOB=60°,∴∠COD=∠AOD﹣∠AOC=20°.24.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?【解答】解:(1)设顾客在甲超市购物所付的费用为y甲,顾客在乙超市购物所付的费用为y乙,根据题意得:y甲=300+0.8(x﹣300)=0.8x+60;y乙=200+0.85(x﹣200)=0.85x+30.(2)他应该去乙超市,理由如下:当x=500时,y甲=0.8x+60=460,y乙=0.85x+30=455,∵460>455,∴他去乙超市划算.(3)令y甲=y乙,即0.8x+60=0.85x+30,解得:x=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.五、解答题(三)(本大题共7分)25.(7分)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?【解答】解:(1)OB=3OA=30.故B对应的数是30;(2)设经过x秒,点M、点N分别到原点O的距离相等①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等;(3)设经过y秒,恰好使AM=2BN.①点N在点B左侧,则3y=2(30﹣2y),解得y=,3×﹣10=;②点N在点B右侧,则3y=2(2y﹣30),解得y=60,3×60﹣10=170;即点M运动到或170位置时,恰好使AM=2BN.故答案为:30.。

七年级数学上册期末考试卷及答案【完整版】

七年级数学上册期末考试卷及答案【完整版】

七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .46.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若13a +与273a -互为相反数,则a=________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +18.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=69.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.3的倒数是( ) A .3B .3-C .13D .13-12.下列方程的变形正确的有( ) A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x =13.下列变形中,不正确的是( )A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m =,则x y = D .若x y =,则x y m m= 14.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .15.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 19.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.20.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.219________22.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________23.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.26.若∠1=35°21′,则∠1的余角是__.27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 28.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.29.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 30.用度、分、秒表示24.29°=_____.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.35.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数36.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.37.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .2.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.A解析:A 【解析】 【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题. 【详解】解:延长CD 交直线a 于E .∵a ∥b , ∴∠AED =∠DCF , ∵AB ∥CD ,∴∠DCF =∠ABC =70°, ∴∠AED =70°∵∠ADC =∠AED +∠DAE , ∴∠ADC >70°, 故选A . 【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.A解析:A 【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.7.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C 【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C .【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.10.D解析:D【解析】A. ∵∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;B. ∵∠AOB =2∠BOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;C. ∵∠AOC =12∠AOB , ∴∠AOB =2∠AOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确.故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 11.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】 本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 13.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确;D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.14.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.15.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题16.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.19.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.20.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.22.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.23.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠A CB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.24.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.25.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5;若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】 本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.26.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.27.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.28.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8. 故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解. 29.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.30.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.33.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.34.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.35.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.。

七年级数学上册期末考试及答案【完整版】

七年级数学上册期末考试及答案【完整版】

七年级数学上册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或010.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.已知654a b c ==,且26a b c +-=,则a 的值为__________. 3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.解不等式组()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、B7、D8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、123、15°4、50°5、16、35三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、非负整数解是:0,1、2.3、4.4、(1)略;(2)略;(3)略;(4)略;5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元;(2)41.6元/千克.。

七年级(上)期末数学试卷(含答案)(002)

七年级(上)期末数学试卷(含答案)(002)

第一学期期末考试七年级数学试卷试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为( ).(A )673610⨯ (B )773.610⨯ (C )87.3610⨯ (D )90.73610⨯ 2. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个立体图形,得到的平面图形是( ).(A ) (B ) (C ) (D ) 3. 下列运算中,正确的是( ).(A )2(2)4=-- (B ) 224=- (C )236= (D )3(3)27-=-4. 下列各式进行的变形中,不正确...的是( ). (A )若3a =2b ,则3a +2 =2b +2 (B )若3a =2b ,则3a -5 =2b - 5 (C )若3a =2b ,则 9a =4b (D )若3a =2b ,则23a b= 5.若2(1)210x y -++=,则x +y 的值为( ).(A )12(B )12-(C )32(D )32-6. 在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转. 旋转门的三片旋转翼把空间等分..成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是( ).(A )100° (B )120° (C )135° (D )150°7. 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是(A)a > c(B)b +c > 0 (C)|a|<|d| (D)-b<d的是().8. 如图,在下列各关系式中,不正确...(A)AD - CD=AB + BC(B)AC- BC=AD -DB(C)AC- BC=AC + BD(D)AD -AC=BD -BC9. 某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是().(A)(B)(C)(D).10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人? 如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( ).(A )10060100x x -= (B )10010060x x -=(C )10060100x x += (D )10010060x x -=二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分) 11.已知x = 2是关于x 的方程3x + a = 8的解,则a = .12.一个有理数x 满足: x <02<,写出一个满足条件的有理数x 的值: x = . 13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为 . 14.已知222x x +=,则多项式2243x x +-的值为 . 15.已知一个角的补角比这个角的一半多30°,设这个角的度数为x °,则列出的方程是: . 16.右图是一所住宅的建筑平面图(图中长度单位:m ),. 17.如图,点A ,O ,B 在同一条直线上,射线OD平分∠BOC ,射线OE 在∠AOC 的内部,且 ∠DOE =90°,写出图中所有互为余角的角: .18.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,到达B 地,此时发现灯塔A 在它的北偏西60°的方向上. (1) 在图中用直尺、量角器画出B 地的位置;(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为 千米(精确到0.1千米).三、计算题(本题共16分,每小题4分) 19.(21)(9)(8)(12)---+--- 解:20. 311()()(2)424-⨯-÷-解: 21.31125(25)25()424⨯--⨯+⨯- 解:22.3213(2)0.254[()]4028-⨯-÷---解:四、解答题(本题共20分,每小题5分) 23.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解: 24.解方程12423x x +-+=. 解:25.解方程组 253 1.x y x y +=⎧⎨-=⎩,解:26.已知AB =10,点C 在射线 AB 上, 且12BC AB =,D 为AC 的中点.(1)依题意,画出图形;(2)直接写出线段BD的长.解:(1)依题意,画图如下:(2)线段BD的长为.五、解答题(本题共13分,第27题6分,第28题7分)27.列方程或方程组解应用题为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?28. 如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;②若∠MON=40°,求∠BOD的度数.解:(1)答:∠AOC与∠BOD之间的数量关系为:;理由如下:(2)①补全图形;②备用图北京市西城区2017— 2018学年度第一学期期末试卷七年级数学参考答案及评分标准2018.1 一、选择题(本题共30分,每小题3分)19.(21)(9)(8)(12)---+---解:(21)(9)(8)(12)---+---= -21 + 9 - 8 + 12 ········································································ 1分 = -29 + 21 ··················································································· 3分 = -8 ·························································································· 4分20. 311()()(2)424-⨯-÷-解:311()()(2)424-⨯-÷-319424=-⨯÷ ·············································································· 2分314429=-⨯⨯ ·············································································· 3分16=- ······················································································· 4分21. 31125(25)25()424⨯--⨯+⨯-解:31125(25)25()424⨯--⨯+⨯-=311252525424⨯+⨯-⨯ ··························································· 1分=31125()424⨯+- ······································································ 2分=25 ··································································································· 4分22.3213(2)0.254[()]4028-⨯-÷---解:3213(2)0.254[()]4028-⨯-÷---=1380.254()4048-⨯-÷-- ··························································· 1分=180.254()408-⨯-÷-- ······························································ 2分 =24840-+⨯- ··········································································· 3分 =10- ······················································································· 4分四、解答题(本题共21分,23~25题每小题5分,第26题6分)23.2223()2()3x xy x y xy ---+,其中1x =-,3y =. 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++ ·························································· 2分 =222x y + ·················································································· 3分 当1x =-,3y =时,原式=22(1)23-+⨯ ······································································ 4分=19. ·················································································· 5分24.解方程12423x x +-+= . 解: 去分母,得 3(1)2(2)2x x ++-=. ··········································· 1分去括号,得 332424x x ++-=. ··············································· 2分 移项,得 322443x x +=+-. ·················································· 3分 合并同类项,得 525x =. ························································ 4分 系数化1,得 5x =. ································································ 5分25.253 1.x y x y +=⎧⎨-=⎩,解:由①得 52x y =-.③ ······························································ 1分把③代入②,得 3(52)1y y --=. ················································ 2分 解这个方程,得 2y =. ······························································ 3分 把2y =代入③,得 1x =. ························································ 4分所以,这个方程组的解为 12.x y =⎧⎨=⎩, ················································· 5分26.解:(1)依题意,画图如下:①② D C B A D CB A图1 图2························································································ 4分 (2)15或5. ································································· 6分五、解答题(本题共13分,第27题6分,第28题7分)27.(1)525 ,585; ············································································· 2分(2)解:设这个班购买x ( x >5 ) 盒乒乓球时,在甲、乙两家商店付款相同. ································································································ 3分由题意,得100525(5)0.910050.925x x ⨯+-=⨯⨯+⨯. ······· 5分 解方程,得 30x =.答:购买30盒乒乓球时,在甲、乙两家商店付款相同. ·············· 6分28.解:(1)∠AOC =∠BOD ; ································································· 1分理由如下:∵ 点A ,O ,B 三点在同一直线上,∴ ∠AOC +∠BOC = 180°. ················································· 2分 ∵ ∠BOD 与∠BOC 互补, ∴ ∠BOD +∠BOC = 180°.∴ ∠AOC =∠BOD . ························································· 3分(2)①补全图形,如图所示.②设∠AOM =α,∵ OM 平分∠AOC ,∴ ∠AOC =2∠AOM =2α. ∵ ∠MON =40°,∴ ∠AON =∠MON +∠AOM =40°+ α. ∵ ON 平分∠AOD ,∴ ∠AOD =2∠AON =80° +2α. 由(1)可得 ∠BOD =∠AOC =2α, ∵∠BOD +∠AOD =180°, ∴ 2α. + 80 +2α.=180°. ∴ 2α. =50°.∴ ∠BOD =50°. ························································ 7分。

初中七年级数学上册期末测试卷(带答案)

初中七年级数学上册期末测试卷(带答案)

初中七年级数学上册期末测试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.下列图形中,是轴对称图形的是( )A .B .C .D .4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.一次数学竞赛出了15个选择题,选对一题得4分,选错或不答一题倒扣2分,小明同学做了15题,得42分.设他做对了x 道题,则可列方程为________.4.已知15xx+=,则221xx+=________________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S 2=9,S3=8,S4=10,则S=________.6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程(组):(1)2321x yx y+=⎧⎨-=⎩(2)30.20.20.030.70.20.01x x++-=2.已知关于x,y的方程组54522x yax by+=⎧⎨+=-⎩与2180x yax by-=⎧⎨--=⎩有相同的解,求a,b的值.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.6.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、C6、C7、A8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、60°3、4x﹣2(15﹣x)=42.4、235、316、56°三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2) 2.85x=-.2、12 ab=⎧⎨=-⎩.3、24°.4、(1)略;(2)略.5、(1)150,(2)36°,(3)240.6、(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.。

七年级(上)期末数学试卷(含答案) (2)(002)

七年级(上)期末数学试卷(含答案) (2)(002)

第一学期期末联考七年级数学试卷注意事项:1、本试卷共三个大题,满分100分,考试时间120分钟;2、请用黑色水性笔或钢笔在答题卡上作答,所有试题在试卷上作答均无效;3、选择题在答题卡用2B铅笔作答。

一、选择题(每题2分,共20分)1.−12的绝对值是( )A.2B.-2C.12D. −122.在-6,0,3,8这四个数中,最小的数是( )A.-6 B.0 C.3 D.83.下列运算中,正确的是( )A. a+2a=3a B.4m−m=3 C.2as+as=3as D. d2+d3=d5 4.下列判断中正确的是( )A.单项式−2ab23的系数是-2 B.单项式−23的次数是1C.多项式2x2−3x2y2−y的次数是2 D.多项式1+2ab+ab2是三次三项式5.如图所示的几何体是由五个小正方体搭建而成的,则从正面看,得到的平面图形是( )6.已知关于x的方程2x=5−a的解为x=3,则a的值为( )A.1 B.2 C.5 D.-l7.下列说法正确的是( )A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3×104精确到十分位D.近似数3.61万精确到百分位8.下列图形中,线段PQ的长表示点P到直线MN的距离是( )9.如右图,射线OA的方向是北偏西60°,射线OB的方向是南偏东25°,则∠AOB的度数为( ) A. 120° B. 145° C. 115° D. 130°10.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米,根据题意,可列出的方程是( )A.x28=x24−3 B. x26=x+326C.x28=x24+3 D. x30=x22−3二、填空题(每题3分,共30分)11.如果+15表示高出标准水位15米,那么-4表示.12.我国南海海域面积约为3500000 k m2,用科学记数法表示数3500000为.13.下列说法:①-a是负数;②一个数的绝对值一定是正数;③一个有理数不是正数就是负数;④平方等于本身的数是0和1.其中正确的是.14.已知23x3m−1y3与−14x5y2n+1是同类项,则5m+3n的值是.15.若x,y互为相反数,a、b互为倒数,则2x+2y−3ab代数式的值为.16.在直线上顺次取A、B、C三点,使得AB=5cm, BC=3cm.如果O是线段AC的中点,那么线段OC的长度是____.17.若|3a+6|+(b−3)2,则a b=____.18.如图,我们可以把弯曲的河道改直,这样做的数学依据是.改直后.A、B丙地间的河道长度会.(填“变短”,“变长”或“不变”),其原因是.19.下列式子按一定规律排列a2,a34,a56,a78……则第2017个式子是.20.在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15°,则∠EBF 的度数为:.三、解答题(共50分)21.(共10分,每小题5分)(1)计算−33÷(−3)2+3×(−2)+|−4|(2)解方程x−32−4x+15=122.(6分)已知x-2y=l,求5x−3y− (x+y)一2(3x−4y)的值.23. (6分)一个角的补角比它的余角的3倍少20°,求这个角的度数.24. (8分)有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等.(1)用“>”“=”“<”填空:b0,a+b0,a-c0,b-c0;(4分)(2)化简|a+b|+|c−a|−|b|.(4分)25.(10分)如图所示,点0为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角:(2分)(2)求出∠BOD的度数;(3分)(3)试判断OE是否平分∠BOC,并说明理由.(5分)26.(10分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:每本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(3分)( 2)买多少本时到两个商店付的钱一样?(3分)(3)小明现有32元钱,最多可买多少本?(4分)2017—2018学年第一学期七年级期末考试数学试卷答案一、选择题(每题2分,共20分) 1 2 3 4 5 6 7 8 9 10 C ACDCDBABA二、填空题(每题3分,共30分) 11. 低于标准水位4米 12.13. ④ 14. 13 15. -316. 4 cm 17. -8 18. 两点确定一条直线,变短, 两点间线段最短 19.40334034a 20.25°三、解答题(共50分) 21. (共10分,每小题5分)(1)解:原式=-27÷9-6+4……………(3分) =-3-6+4……………(4分) =-5……………(5分) (2)解:去分母得:……………(2分)去括号得:……………(4分)移项合并得:系数化为1得:……………(5分)22. (6分)解:5x -3y -(x +y )-2(3x -4y ) =5x -3y -x -y -6x +8y ……………(2分) =-2x +4y ……………(3分) =-2(x -2y ) ……………(5分) 因为x -2y =1所以原式=-2×1=-2……………(6分)23.(6分)解:设这个角为x 度,……………(1分) 则180°-x =3(90°-x )-20°,……………(3分) 解得:x =35°.……………(5分)答:这个角的度数是35°.……………(6分)24.(8分)解:(1) <,=, >, <……………(4分) (2)原式=……………(2分)=a -c +b ……………(4分)25.(10分)解:(1)共有9个小于平角的角;……………(2分)(2)因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25°,所以∠BOD =180°-25°=155°;……………(3分) (3)解OE 平分∠BO C. ……………(1分)理由如下:因为∠DOE =90°,∠COD =25°,所以∠COE =90°-25°=65°. 因为∠AOC =50°,所以∠BOC =180°-50°=130°. ……………(2分)所以∠COE =21∠BOC ,所以OE 是否平分∠BO C. ……………(2分)26. (10分)解:(1)甲店需付款10+10×0.7=17元;(1分) 乙店需付款20×0.8=16元,……………(2分) 所以到乙商店省钱. ……………(3分) (2)设买x 本时到两个商店付的钱一样。

七年级上期末数学试题含答案

七年级上期末数学试题含答案

七年级数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.-(+2)等于( ▲ )A.-2B.2C.-21D.21 2.方程2x -1=3x +2的解为( ▲ )A .x =1B .x =-1C .x =-3D .x =33.如图,△ABC 沿着由点B 到点E 的方向平移到△DEF ,已知BC =5,EC =3,那么平移的距离为( ▲ )A .7B .5C .3D .24.下列说法中,错误的是( ▲ )A .对顶角相等B .同旁内角相等,两直线平行C .垂线段最短D .垂直于同一直线的两直线平行 (第3题)5.下列几何体中,主视图、左视图和俯视图完全相同的是 ( ▲ )6.在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍.问支援拔草和支援植树的分别有多少人?若设支援拔草的有x 人,则下列方程中正确的是 ( ▲ )A .32+x =2×18B .32+x =2(38-x )C .52-x =2(18+x )D .52-x =2×18 二、填空题(本大题共10小题,每小题3分,共30分)7.某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为 ▲ _元.8.若x 4-3k +2k =3是关于x 的一元一次方程,则k = ▲ .9.若nm y x y x -和25是同类项,则n m 52-= ▲ . 10.在227,0.2020020002(每两个2之间0的个数逐次 加1),3π,0.89-中,无理数有_ ▲ _个. 11.某几何体的三视图如图所示,这个几何体是 ▲ .12.甲乙两人从相距40千米的两地同时出发,相向而行,3小时正方体长方体圆柱圆锥C DA B后相遇.•已知甲每小时比乙多走3千米,求乙的速度.若设 (第11题)乙的速度为x 千米/时,列出方程为3x +3(x +3)=40,其中3(x +3)表示 ▲ .13.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是 ▲ .14.在甲、乙两地要修一条笔直的公路,从甲地测得公路的走向 (第12题)是北偏东48°,甲、乙两地同时施工,若干天后公路准确接通,则乙地所修公路的走向是 ▲ .15.如图,直线AB 、CD 相交于点O ,∠AOC +∠BOD =210°,则∠BOC = ▲ °.16.已知关于x 的方程1425825+=-x a x 的解为自然数, 自然数a 的最小值是 ▲ . (第15题)三、解答题(本大题共10小题,共102分)17.(本题满分12分)计算:(1)5)1(-5)311(532-⨯-⨯-+⨯; (2))()(41618220162-÷--⨯+-. 18.(本题满分8分)解方程: (1)7-2x =3-4x (写出检验过程); (2)133221+-=+x x . 19.(本题满分8分) (1)如图,线段AB =10cm ,C 是线段AB 上的一点,AC =4cm ,M 是AB 的中点,N 是AC 的中点,求线段MN 的长;(2)一个角的补角比它的余角的3倍少12°,求这个角的度数.20.(本题满分8分)(1)化简:)32(5)5(422x x x x +--;(2)已知:245A a b =+,232B a b =--,求2A B -的值,其中2,1a b =-=.21.(本题满分10分)如图,EF ⊥BC ,AD ⊥BC ,∠1 =∠2,∠BAC =80°.求∠AGD 的度数. 请将求∠AGD 度数的过程填写完整.解:因为EF ⊥BC ,AD ⊥BC ,所以∠BFE =90°,∠BDA =90即∠BFE =∠BDA ,所以EF ∥ ▲ ,理由是(第19题)A C所以∠2 = ▲,理由是▲.因为∠1 =∠2,所以∠1=∠3,所以AB∥▲,理由是▲,所以∠BAC + ▲= 180°,理由是▲.又因为∠BAC = 80°,所以∠AGD = ▲.22.(本题满分10分) 如图,在6×6的正方形网格中,点P是AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到直线▲的距离,线段▲的长度是点C到直线OB的距离;(3)图中线段PC、PH、OC这三条线段大小关系是▲(用“<”号连接).(第22题)(第23题)23.(本题满分10分)新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为▲ cm,课桌的高度为▲ cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离▲(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.24.(本题满分10分)(1)如图1,贤贤同学用手工纸制作一个台灯灯罩,请画出这个几何体的左视图和俯视图.(2)如图2,已知直线AB与CD相交于点O,EO⊥AB,OF是∠AOC的平分线,∠EOC=72∠AOC,求∠DOF的度数.(第21题)图1 图2(第24题)25.(本题满分12分)列方程解应用题:运动场环形跑道的周长为400m ,小红跑步的速度 是爷爷的35倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇,小红和爷爷跑步的速度各是多少?(1)①请写出这个问题中的相等关系;②这个问题可用列表和画线段示意图的方法来分析,请你选择其中的一种方法给出分析过程;(2)给出本题的完整解答过程;(3)如果小红与爷爷相遇后,立即转身沿相反方向跑,那么相遇后几分钟小红再次与爷爷相遇?26.(本题满分14分)(1)如图1,将△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内点A '的位置,若∠A =40°,求∠1+∠2的度数;(2)通过(1)的计算你发现∠1+∠2与∠A 有什么数量关系?请写出这个数量关系,并说明这个数量关系的正确性;(3)将图1中△ABC 纸片的三个内角都进行同样的折叠.①如果折叠后三个顶点A 、B、C 重合于一点O 时,如图2,则图中∠α+∠β+∠γ=▲ ;∠1+∠2+∠3+∠4+∠5+∠6= ▲ ;②如果折叠后三个顶点A 、B 、C 不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论是否仍然成立?请说明你的理由.图1 图2 图3(第26题)A C D A CD A C D2015年秋学期期末学业质量测试七年级数学试卷答案一、选择题(本大题共有6小题,每小题3分,共18分)二、7.4.1×106 8.1 9.-1 10.2 11.圆锥 12.甲3小时所走的路程 13.城 14.南偏西48° 15.75° 16.2三、解答题(本大题共有10小题,共102分)17.(本题满分12分)(1)原式=-)13432(5-+⨯(2分)=-5×1(4分)=-5(6分);(2)原式=-4+8×1+4(3分)=8(6分).18.(本题满分8分)(1)4x -2x =3-7,2x = -4,x = -2,当x =-2时,左边=7-(-4)=11,右边=3+8=11,因为左边等于右边,所以x = -2是方程的解(4分);(2)3x +3=4-6x +6,3x +6x =4-3+6,9x =7,x =7/9(4分).19.(本题满分8分)(1)∵AB =10cm ,M 是AB 的中点,∴AM =21AB =5cm (2分);同理AN =21AC =2cm (3分)∴MN =AM -AN =3cm (4分);(2)设所求角为x (1分),根据题意得:180-x =3(90-x )-12,∴x =39(3分),答:这个角的度数为39°.(4分)20.(本题满分8分)(1)原式=x x x x x x 35621510204222--=---分)((4分);(2)2A -B =2(245a b +)-(232a b --)(1分)=11a 2+12b (3分),当2,1a b =-=时, 原式=56(4分).21. (本题满分10分)解:∵EF ⊥BC ,AD ⊥BC ,∴∠BFE =90°,∠BDA =90°(垂 直的定义),即∠BFE =∠BDA , ∴EF ∥AD (同位角相等,两直线平行),∴∠2 =∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1 =∠3,∴AB ∥DG (内错角相等,两直线平行)∴∠BAC +∠AGD =180°(两直线平行,同旁内角互补).又∵∠BAC =80°,∴∠AGD = 100°.(每空1分)22.(本题满分10分)(1)略(4分);(2)OA (6分),CP (8分);(3)PH <PC <OC(10分)23.(本题满分10分)(1)0.5(2分),85(4分);(2)855.0+x (7分);(3)103.5cm (10分).24. (本题满分10分) (1)如图所示(每个2分,共4分);(2)因为∠EOC =72∠AOC ,设∠EOC =2x °,则 ∠AOC =7x °(1分),因为EO ⊥AB ,所以∠EOB =90°,所以∠BOC =90°-2x °(2分),由∠ABC =180°,7x +90-2x =180,x =18,所以 ∠AOC =126°(4分);因为OF 是∠AOC 的平分线,所以∠COF =63°(5分),∠DOF=180°-∠COF =117°(6分).25.(本题满分12分)(1)①小红跑的路程-爷爷跑的路程=400m (2分); ②表格法(5分):或:线形示意图(5分):(2)设爷爷跑步的速度为x (m/min ),则小红跑步的速度为35x (m/min )(6 分),根据题意得:5×35x -5x =400,解这个方程得x =120,35x =200(8分). 答:(略)(9分);(3)设ymin 后小红再次与爷爷相遇,根据题意得:120y +200y =400,解得y =45(11分).答:(略)(12分). 26.(本题满分14分)(1)因为∠A =40°,所以∠AED +∠ADE =∠A 'ED +∠A 'DE = 140°(2分),∠1+∠2=360°-(∠AED +∠ADE )-(∠A 'ED +∠A 'DE )=80° (4分);(2)∠1+∠2=2∠A (6分),证明见教师教学参考书P44页(8分);(3)速度(m/min ) 时间) 路程(m ) x 5x 5①180°(9分),360°(11分);②仍然成立(12分),理由:由(2)中的结论有∠1+∠2=2∠A,∠3+∠4=2∠B,∠5+∠6=2∠C,所以∠1+∠2+∠3+∠4+∠5+∠6=2∠A+2∠B+2∠C=2(∠A+∠B+∠C)=360°(14分).。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1062.下列判断正确的是()A.3a2bc与bca2不是同类项B.225m n的系数是2C.单项式﹣x3yz的次数是5D.3x2﹣y+5xy5是二次三项式3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短 B.两点确定一条直线C.垂线段最短 D.两点之间直线最短4.在220.23,3,2,7-四个数中,属于无理数的是()A.0.23B.3C.2-D.22 75.如果﹣2xy n+2与 3x3m-2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.66.如图所示,数轴上A,B两点表示的数分别是2﹣1和2,则A,B两点之间的距离是()A.22B.22﹣1 C.22+1 D.17.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+58.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A .1个B .2个C .3个D .4个9.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =1310.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°11.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =12.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

初一(上)期末数学试卷(含答案)

初一(上)期末数学试卷(含答案)

七年级数学试卷第一学期期末检测(时间:90分钟 满分:100分)一、 选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.中美两国企业家对话会于2017年11月9日在北京人民大会堂举行,在两国元首的正确引领下,两国企业创造了奇迹,经贸合作的金额达到253 500 000 000美元,这既创造了中美经贸合作的新纪录,也刷新了世界经贸合作史的纪录.将253 500 000 000用科学记数法表示应为 A .120.253510⨯ B .122.53510⨯ C .112.53510⨯ D .9253.510⨯ 2.如图,在不完整的数轴上有A ,B 两点,它们所表示的两个有理数互为..相反..数.,则关于原点位置的描述正确的是A .在点A 的左侧B .与线段AB 的中点重合C .在点B 的右侧D .与点A 或点B 重合3.下列各式中结果为负数的是A .(3)--B .3- C .2(3)- D .23- 4.已知2x =-是方程410x a +=的解,则a 的值是A .3B .12C .2D .-3 5.下列计算正确的是A .2233x x -=B .22232a a a --=-C .3(1)31a a -=-D .2(1)22x x -+=--6.下面四组图中,每组左边的平面图形能够折叠成右边的立体图形的是A .①②B .①④C .②D .③ 7.李老师用长为6a 的铁丝做了一个长方形教具,其中一边长为b -a ,则另一边的长为A .7a b -B .2a b -C .4a b -D .82a b - 8.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能..画出的角度是 A .18° B .55° C .63° D .117°二、填空题(本题共24分,每小题3分)9.写出一个比324-小的有理数: . 10.若a ,b 互为倒数,则2ab -5= . 11.计算11512________.436⎛⎫-+⨯=⎪⎝⎭ 12.下列三个现象:①用两个钉子就可以把一根木条固定在墙上;②从A 地到B 地架设电线,只要尽可能沿着线段AB 架设,就能节省材料; ③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上. 其中可用“两点确定一条直线”来解释的现象有 .(填序号) 13.下面的框图表示了小明解方程5(3)3x x -+=的流程:其中,步骤“③”的依据是 .14.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x 的值为 .15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°12'的方向上,则∠AOB 的补角的度数是 .第14题图 第15题图16.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.右表记录了5个 参赛者的得分情况.在此次竞赛中,有一位 参赛者答对8道题,答错12道题,则他的 得分是 .三、解答题(本题共52分, 17-21题每小题4分, 22-25题每小题5分, 26-27题每小题6分) 17.计算:()()41230(5)-⨯-+÷-. 18.解方程:72122x x +=-. 19.解方程:12146x x-++=.20.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线AB ; (2)连接BC ;(3)反向延长BC 至D ,使得BD =BC ; (4)在直线l 上确定点E ,使得AE +CE 最小.21.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.22.某学校为表彰在“庆祝党的十九大胜利召开”主题绘画比赛中表现突出的同学,购买了30支水彩笔和40本笔记本,共用1360元,每本笔记本的价格比每支水彩笔的价格贵6元.每支水彩笔的价格是多少元?23.阅读下面材料:数学课上,老师给出了如下问题:如图,∠AOB =80°,OC 平分∠AOB .若∠BOD =20°,请你补全图形,并求∠COD 的度数.以下是小明的解答过程:解:如图1,因为OC 平分∠AOB ,∠AOB =80°,所以BOC ∠=________AOB ∠=_________°. 因为∠BOD =20°,所以COD ∠= °.小静说:“我觉得这个题有两种情况,小明考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部” . 图1完成以下问题: (1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图2中画出另一种情况对应的图形,并直接写出此时∠COD 的度数为 °.图224.对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=. (1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n = (用含m ,n 的式子表示).25.自2014年5月1日起,北京市居民使用自来水实施阶梯水价,具体标准如下表:例如,某户家庭年使用自来水200 m,应缴纳:180×5+(200-180)×7=1040元;某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.(1)小刚家2016年共使用自来水170 m3,应缴纳元;小刚家2017年共使用自来水260 m3,应缴纳元.(2)小强家2017年使用自来水共缴纳1180元,他家2017年共使用了多少自来水?26.如图,数轴上点A,B表示的有理数分别为-6,3,点P是射线AB上的一个动点(不与点A,B 重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.27.观察下面的等式:5112+322-=--+; 3112+3-=--+; 1112+3-=-+;15()12+322--=-+; (2)142+3--=-+.回答下列问题:(1)填空: 152+3-=-+;(2)已知212+3x -=-+,则x 的值是 ;(3)设满足上面特征的等式最左边的数为y ,求y 的最大值,并写出此时的等式.七年级数学试卷参考答案及评分标准一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分) 9.答案不唯一,例如-3 10.-3 11. 9 12. ①③13.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等14.-515.100°12′16.24三、解答题(本题共52分,第17-21题每小题4分,第22-25题每小题5分,第26-27题每小题6分) 17.解:原式1(2)(6)=⨯-+-26=-- 8=-.18.解:72122x x +=-22127x x +=-.45x =.54x =.19.解:12146x x-++= 3(1)122(2)x x -+=+.331242x x -+=+. 324123x x -=-+. 5.x =-20.解:如图.21.解:223(2)(6)4x xy x xy y ----223664x xy x xy y =--+- 224x y =-.因为2250x y --=, 所以225x y -=. 所以原式=10.22.解:设每支水彩笔的价格为x 元.由题意,得 3040(6)136x x ++=. 解得 16x =. 答:每支水彩笔的价格为16元.23.解:(1)12,40,60.(2)如图.图2∠COD 的度数为 20 °.24.解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +.25.解:(1)850,1460.(2)设小强家2017年共使用了x m 3自来水.由题意,得 18057(180)1180x ⨯+-=. 解得 220x =.答:小强家2017年共使用了220 m 3自来水.26.解:(1)6,6.(2)MN 的长不改变.①如图1,当点P 在线段AB 上时,因为M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,所以22,33PM AP PN BP ==. 所以MN PM PN =+2233AP BP =+2()3AP BP =+.因为AP +BP =AB ,所以MN 23AB =.②如图2,当点P 在线段AB 的延长线上时,因为M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点,所以22,33PM AP PN BP ==. 所以MN PM PN =-2233AP BP =-2()3AP BP =-.因为AP BP AB -=, 所以MN 23AB =.综上所述,点P 在射线AB 上运动(不与点A ,B 重合)的过程中,始终有MN 263AB ==.27.解:(1)3-. (2)0或4-.(3)设绝对值符号里左边的数为a . 由题意,得 12+3y a -=-+. 所以24a y +=-.因为 2a +的最小值为0, 所以4y -的最小值为0. 所以y 的最大值为4.此时20a +=.所以 2a =-.所以此时等式为4122+3-=--+.综上所述,y 的最大值为4,此时等式为4122+3-=--+.说明:以上答案仅供参考,若有不同解法,只要过程和解法正确,可相应给分.祝老师们身体健康,假期愉快!。

七年级(上)期末数学试卷(带答案)

七年级(上)期末数学试卷(带答案)

七年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数2.(3分)下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|3.(3分)若8x m y与6x3y n的和是单项式,则m+n的值为()A.4 B.8 C.﹣4 D.﹣84.(3分)在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③5.(3分)如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信6.(3分)如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条7.(3分)如图,太和县在合肥市的北偏西44°方向上,且相距215千米,则合肥市在太和县的()A.南偏东46°方向上,距215千米处B.南偏东44°方向上,距215千米处C.南偏西46°方向上,距215千米处D.南偏西46°方向上,距215千米处8.(3分)下列等式变形中不正确的是( ) A .若x =y ,则x +5=y +5 B .若xa =ya ,则x =yC .若﹣3x =﹣3y ,则x =yD .若mx =my ,则x =y9.(3分)由方程组{2x +m =1y −3=m,可得x 与y 的关系是( )A.2x+y=﹣4 B.2x﹣y=﹣4 C.2x+y=4 D.2x﹣y=410.(3分)两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm11.(3分)小明在某月的日历上圈出相邻的三个数,算出这三个数的和是75,则这三个数的排列方式一定不可能是()A.B.C.D.12.(3分)观察下列图形:它们是按一定规律排列的,依照此规律,第n(n为正整数)个图形中共有的点数是()A.6n﹣1 B.6n+4 C.5n﹣1 D.5n+4 二、填空题:本大题共6小题,每小题3分,共18分13.(3分)单项式πab2的系数和次数的和为.14.(3分)天文学里常用“光年”作为距离单位.规定1“光年”为光在一年内传播的距离,大约等于94600亿千米,用科学记数法可表示为千米.15.(3分)度分秒换算:45°19′12″=°.16.(3分)如图,在正方形网格中,∠1+∠2+∠3=.17.(3分)我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马x天可以追上慢马,则可以列方程为.18.(3分)数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0.点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,的以每秒10个单位的速度向右运动,P、Q分别为ME、ON的中点.思考,在运动过程中,MN−OEPQ值.三、解答题(共46分) 19.(6分)计算(1)﹣32﹣(﹣112)3×29−|−23|(2)﹣14+16×[|﹣2|﹣(﹣3)3﹣(﹣2)2]÷(−52)220.(8分)解方程或方程组(1)解方程x−14=2x+16(2)解方程组{2x+3y=16x+4y=1321.(8分)已知A =a 2﹣2b 2+2ab ﹣3,B =2a 2﹣b 2−25ab −15.(1)求2(A +B )﹣3(2A ﹣B )的值(结果用化简后的a 、b 的式子表示); (2)当|a +12|与b 2互为相反数时,求(1)中式子的值.22.(8分)如图,线段BD=14AB=15CD,点E、F分别是线段AB、CD的中点,EF=14cm,求线段AB、CD的长.23.(8分)某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?24.(8分)将一副三角板如图1摆放,∠DCE=30゜,现将∠DCE绕C点以15゜/s的速度逆时针旋转,旋转时间为t(s).(1)t为多少时,CD恰好平分∠BCE?请在图2中自己画图,并说明理由.(2)当6<t<8时,CM平分∠ACE,CN平分∠BCD,求∠MCN,在图3中完成.(3)当8<t<12时,(2)中结论是否发生变化?请在图4中完成.七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数【解答】解:A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0℃不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选:C.2.(3分)下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23| 【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选:A.3.(3分)若8x m y与6x3y n的和是单项式,则m+n的值为()A.4 B.8 C.﹣4 D.﹣8 【解答】解:∵8x m y与6x3y n的和是单项式,∴m=3,n=1,则m+n=3+1=4,故选:A.4.(3分)在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③【解答】解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.5.(3分)如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“善”字相对的面上的字是“文”.故选:A.6.(3分)如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条【解答】解:可以作为△ACD的高的有AD,CD共2条;可以作为△BCD的高的有BD,CD共2条;可以作为△ABC的高的有AB,AC、CD共3条.综上所述,可以作为三角形“高”的线段有:AD,CD、BD,AB,AC共5条.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年天津市七年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中)1.(3分)如果零上2℃ 记作+2℃,那么零下3℃ 记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与D.2与|﹣2|3.(3分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1074.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A.B.C.D.5.(3分)下列说法正确的是()A.一点确定一条直线B.两条射线组成的图形叫角C.两点之间线段最短D.若AB=BC,则B为AC的中点6.(3分)如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=07.(3分)a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b<a D.﹣a<﹣b<b<a8.(3分)下列结论中,正确的是()A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式9.(3分)某种商品每件的进价为210元,按标价的8折销售时,利润率为15%,设这种商品的标价为每件x元,根据题意列方程正确的是()A.210﹣0.8x=210×0.8 B.0.8x=210×0.15C.0.15x=210×0.8 D.0.8x﹣210=210×0.1510.(3分)关于x的方程2(x﹣a)=5的解是3,则a的值为()A.2 B.C.﹣2 D.﹣11.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.512.(3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)数轴上点A表示的数是﹣4,点B表示的数是3,那么AB= .14.(3分)8.7963精确到0.01的近似数是.15.(3分)已知方程(a﹣5)x|a|﹣4+2=0是关于x的一元一次方程,则a的值是.16.(3分)如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.17.(3分)如图,已知点D在点O的西北方向,点E在点O的北偏东50°方向,那么∠DOE 的度数为度.18.(3分)已知线段AB,在AB的延长线上取一点C,使AC=3BC,在AB的反向延长线上取一点D,使DA=AB,那么线段AC是线段DB的倍.三、解答题(本大题共7小题,共计46分。

解答应写出文字说明、演算步骤或证明过程)19.(6分)计算:(1)4×(﹣3)2﹣13+(﹣)﹣|﹣43|;(2)﹣9÷3+(﹣)×12+32.20.(6分)(1)化简:2﹣3(﹣2a+a2)+2(﹣3a2+a+1)(2)先化简,再求值:(2x2+3xy﹣2x﹣1)﹣(﹣x2+xy),其中x=﹣3,y=2.21.(5分)如图,点C、D在线段AB上,且AC=CD=DB,点E是线段AC的中点,若ED=12cm,求AB的长度.22.(6分)解方程:(1)5(2﹣x)=﹣(2x﹣7);(2)=1﹣.23.(8分)用方程解答下列问题(1)一个角的余角比它的补角的还少15°,求这个角的度数.(2)几个人共同搬运一批货物,如果每人搬运8箱货物,则剩下7箱货物未搬运;如果每人搬运12箱货物,则缺13箱货物,求参与搬运货物的人数.24.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOC的度数.25.(8分)某区运动会要印刷秩序册,有两个印刷厂前联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的?(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少?为什么?2017-2018学年天津市武清区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中)1.(3分)如果零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故选:D.2.(3分)下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.(﹣1)2与1 C.2与D.2与|﹣2|【解答】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.3.(3分)天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107【解答】解:用科学记数法表示1326000的结果是1.326×106,故选:B.4.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是()A.B.C.D.【解答】解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D.5.(3分)下列说法正确的是()A.一点确定一条直线B.两条射线组成的图形叫角C.两点之间线段最短D.若AB=BC,则B为AC的中点【解答】解:A、两点确定一条直线,故本选项错误;B、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C、两点之间线段最短,故本选项正确;D、若AB=BC,则点B为AC的中点错误,因为A、B、C三点不一定共线,故本选项错误.故选C.6.(3分)如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=0【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选D.7.(3分)a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.b<﹣a<﹣b<a B.﹣b<b<﹣a<a C.﹣a<b<﹣b<a D.﹣a<﹣b<b<a【解答】解:根据图示,可得:﹣1<b<0,a>1,∴0<﹣b<1,﹣a<﹣1,∴﹣a<b<﹣b<﹣a.故选:C.8.(3分)下列结论中,正确的是()A.单项式的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【解答】解:A、单项式的系数是,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.9.(3分)某种商品每件的进价为210元,按标价的8折销售时,利润率为15%,设这种商品的标价为每件x元,根据题意列方程正确的是()A.210﹣0.8x=210×0.8 B.0.8x=210×0.15C.0.15x=210×0.8 D.0.8x﹣210=210×0.15【解答】解:设这种商品的标价为每件x元,根据题意得:0.8x﹣210=210×0.15.10.(3分)关于x的方程2(x﹣a)=5的解是3,则a的值为()A.2 B.C.﹣2 D.﹣【解答】解:根据题意将x=3代入得:2(3﹣a)=5,解得:a=.故选:B.11.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2 B.3 C.4 D.5【解答】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4.答:小强胜了4盘.故选C.12.(3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6 B.7 C.8 D.9【解答】解:两点确定一条直线;不同三点最多可确定3条直线;不同4点最多可确定(1+2+3)条直线,不同5点最多可确定(1+2+3+4)条直线,因为1+2+3+4+5+6+7=28,所以平面上不同的8个点最多可确定28条直线.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)数轴上点A表示的数是﹣4,点B表示的数是3,那么AB= 7 .【解答】解:∵﹣4<0,3>0,∴AB=3+4=7.14.(3分)8.7963精确到0.01的近似数是8.80 .【解答】解:8.7963≈8.80(精确到0.01).故答案为8.80.15.(3分)已知方程(a﹣5)x|a|﹣4+2=0是关于x的一元一次方程,则a的值是﹣5 .【解答】解:由题意可知:解得:a=﹣5故答案为:﹣516.(3分)如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【解答】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°,故答案为:140.17.(3分)如图,已知点D在点O的西北方向,点E在点O的北偏东50°方向,那么∠DOE 的度数为95 度.【解答】解:如图,由题意,得∠1=45°,∠2=50°.由角的和差,得∠DOE=∠1+∠2=45°+50°=95°,故答案为:95°.18.(3分)已知线段AB,在AB的延长线上取一点C,使AC=3BC,在AB的反向延长线上取一点D,使DA=AB,那么线段AC是线段DB的倍.【解答】解:设AB=x,则BC=x,DA=AB,∴AC=x+x=x,DB=x+x=x,∴==.故答案为:.三、解答题(本大题共7小题,共计46分。

相关文档
最新文档