一次函数中的注水问题

合集下载

一次函数信息题拔高

一次函数信息题拔高

一次函数信息题拔高前言题型分类:一般分为行程问题,注水问题,进出货问题三大类。

其中行程问题是出题最多、相对也较难的题型,应重点关注。

注水问题在2022年大连中考中第一次出现,是新出现的题型,体现了一次函数信息题从行程问题向其他生活相关问题思路的转化。

所以,对于一些生产效率、注水、进出货等也可以用一次函数图像解决的题目,也要给与一定的关注。

解题方法与技巧:一次函数信息题,重点是信息二字。

题目含有一部分信息,图像含有一部分信息,重点是信息的解读、结合与运用。

1,一次函数求解析式的方法:待定系数法,在一次函数图像中一般已知两点坐标就可以求出解析式;2,求交点(行程问题中的相遇),一般求解方式是划在同一坐标参照体系内求交点,联立两条直线的解析式,解二元一次方程组;3,行程问题:做题首先要区分坐标系中纵坐标的意义,一般纵坐标可以分为“相对同一出发点的距离”,“相对各自出发点的距离”,“两者之间距离”三种类型,再切换到该种类型下的解题思路;4,注水问题:要注意底面积改变相对应于一次函数图像发生转折。

5,进出货(进出水):注意货物的总量(或水的总量)是总量守恒的。

一、行程问题1,追及问题例1,(2022年大连)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆。

图10是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间某(秒)的函数图象。

(1)在跑步的全过程中,甲共跑了___米,甲的速度为___米/秒;(2)乙跑步的速度是多少?乙在途中等候甲用了多长时间?(3)甲出发多长时间第一次与乙相遇?此时乙跑了多少米?练习1,甲,乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC,线段DE分别表示甲,乙两车所行路程y(千米)与某(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故障停车检修)。

第19章 一次函数 实际应用题专练(二) 2020—2021学年人教版八年级数学下册

第19章  一次函数 实际应用题专练(二) 2020—2021学年人教版八年级数学下册

人教版八年级数学下册第19章一次函数实际应用题专练(二)1.某生态体验园推出了甲、乙两种消费卡(最多50次),设入园次数为x时所需费用为y元,选择这两种卡消费时y与x之间的函数关系如图所示,解答下列问题:(1)分别写出选择这两种卡消费时y关于x的函数表达式(不用写x的取值范围),;(2)请根据入园次数确定选择哪种消费卡比较合算.2.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为km;(2)两车经过h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.3.某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(小时)的变化情况如图所示,当成年人按规定剂量服药后.(1)当x≤2时,y与x之间的函数关系式是;(2)当x≥2时,y与x之间的函数关系式是;(3)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是小时.4.甲、乙两辆汽车沿同一公路从A地出发前往路程为100千米的B地,乙车比甲车晚出发15分钟,行驶过程中所行驶的路程分别用y1、y2(千米)表示,它们与甲车行驶的时间x(分钟)之间的函数关系如图所示.(1)分别求出y1、y2关于x的函数解析式并写出定义域;(2)乙车行驶多长时间追上甲车?5.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟?(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?(3)求出王老师吃完早餐后的平均速度是多少?6.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.7.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA表示小明与甲地的距离y1(米)与行走的时间x(分钟)之间的函数关系:折线BCDA表示小亮与甲地的距离y2(米)与行走的时间x(分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度是米/分钟;(2)线段OA与BC相交于点E,求点E坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值.8.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?9.2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?10.某超市在疫情期间购进一批含75%酒精的消毒湿巾投放市场,刚开始,由于消费者对此类产品认识不足,前几天的销量每况愈下;为了打开市场,提高销量,超市决定对该消毒湿巾打折销售,日销量每日增加,时间每增加1天,则日销量增加20包.超市工作人员对一个月(30天)销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ABC表示该消毒湿巾日销量y(包)与销售时间x(天)之间的函数关系.(1)第28天的日销售量是包;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)若该产品进价为5元/包,AB段售价为15元/包,BC段在15元/包的基础上打a折销售,并且在30天中利润不低于3400元的天数有且只有10天,试确定a的最小值.11.图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.(1)甲水槽中水的下降速度为厘米/分钟,铁块高度为厘米;(2)求出注水第几分钟时,甲、乙水槽中水的深度相同?(3)若甲、乙槽底面积均为48平方厘米(壁厚不计),乙槽中铁块的体积多少立方厘米?12.小明某天离家,先在A处办事后,再到B处购物,购物后回家.下图描述了他离家的距离s(米)与离家后的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)A处与小明家的距离是米,小明在从家到A处过程中的速度是米/分;(2)小明在B处购物所用的时间是分钟,他从B处回家过程中的速度是米/分;(3)如果小明家、A处和B处在一条直线上,那么小明从离家到回家这一过程(包括停留时间)的平均速度是米/分.13.小明家所在地的供电公司实行“峰谷电价”,峰时(8:00~21:00)电价为0.5元/度,谷时(21:00~8:00)电价为0.3元/度.为了解空调制暖的耗能情况,小明记录了家里某天0时~24时内空调制暖的用电量,其用电量y(度)与时间x(h)的函数关系如图所示.(1)小明家白天不开空调的时间共h;(2)求小明家该天空调制暖所用的电费;(3)设空调制暖所用电费为w元,请画出该天0时~24时内w与x的函数图象.(标注必要数据)14.小明家距离学校8千米,今天早晨小明骑车上学途中,自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到校.我们根据小明的这段经历画了一幅图象,该图描绘了小明行驶路程s与所用时间t之间的函数关系,请根据图象回答下列问题:(1)小明骑车行驶了千米时,自行车“爆胎”,修车用了分钟.(2)修车后小明骑车的速度为每小时千米.(3)小明离家分钟距家6千米.(4)如果自行车未“爆胎”,小明一直按修车前速度行驶,那么他比实际情况早到或晚到多少分钟?15.一个周末上午8:00,小张自驾小汽车从家出发,带全家人去一个4A级景区游玩,小张驾驶的小汽车离家的距离y(千米)与时间t(时)之间的关系如图所示,请结合图象解决下列问题:(1)小张家距离景区千米,全家人在景区游玩了小时;(2)在去景区的路上,汽车进行了一次加油,之后平均速度比原来增加了20千米/时,试求他加油共用了多少小时?(3)如果汽车油箱中原来有油25升,平均每小时耗油10升,问小张在加油站至少加多少油才能开回家?参考答案1.解:(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,根据题意得:20k2+100=300,解得k2=10,∴y乙=10x+100;故答案为:y甲=20x,y乙=10x+100;(2)①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,∵乙两种消费卡(最多50次),∴当入园次数大于10次小于50次时,选择乙消费卡比较合算.2.解:(1)由题意,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得,解得:,则y=225x﹣900,自变量x的取值范围是4≤x≤6.3.解:(1)当x≤2时,设y与x之间的函数关系式是y=kx,2k=6,得k=3,即当x≤2时,y与x之间的函数关系式是y=3x,故答案为:y=3x;(2)当x≥2时,设y与x之间的函数关系式是y=ax+b,,得,即当x≥2时,y与x之间的函数关系式是y=﹣x+8,故答案为:y=﹣x+8;(3)当x≤2时,令3x≥3,得x≥1,当x≥2时,令﹣x+8≥3,得x≤5,由上可得,如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是5﹣1=4(小时),故答案为:4.4.解:(1)设y1关于x的函数解析为y1=kx,120k=100,得k=,即y1关于x的函数解析为y1=x(0≤x≤120),设y2关于x的函数解析为y2=ax+b,,得,即y2关于x的函数解析为y2=x﹣20(15≤x≤90);(2)令x=x﹣20,得x=40,40﹣15=25(分钟),即乙车行驶25分钟追上甲车.5.解:(1)学校离他家1000米,从出发到学校,王老师共用了25分钟;王老师吃早餐用了20﹣10=10分钟故答案为:1000,25,10;(2)根据图象可得:,所以吃完早餐以后速度快;(3)(1000﹣500)÷(25﹣20)=100(米/分)答:吃完早餐后的平均速度是100米/分.6.解:(1)汽车从出发到最后停止共经过了24min,它的最高时速是75km/h;(2)汽车大约在第2分钟到第6分钟和第18分钟到第22分种之间保持匀速行驶,时速分别是25km/h和75km/h;(3)出发后(8分)到(10分)速度为0,所以汽车是处于静止的.可能遇到了红灯或者障碍(或者遇到了朋友或者休息);(4)该汽车出发2分钟后以25km/h的速度匀速行驶了4分钟,又减速行驶了2分钟,又停止了2分钟,后加速了8分钟到75km/h的速度匀速行驶了4分钟,最后2分钟在减速行驶,直到速度减为0.7.解:(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500×10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.8.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.9.解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是想距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.10.解:(1)第28天的日销售量是:300+(28﹣22)×20=420(包),故答案为:420;(2)设AB段函数解析式为y=kx+b.由图知:当x=1时,y=390,当x=10时,y=300,∴,解得:,∴AB段函数解析式为y=﹣10x+400,设BC段对应的函数解析式为y=mx+n,由图象可知,BC段函数中,当x=22时,y=300,当x=28时,y=420,,解得,,即BC段对应的函数解析式为y=20x﹣140,当﹣10x+400=20x﹣140时,得x=18;由上可得,y与x之间的函数关系式是y=;(3)当1≤x≤18时,由(15﹣5)y≥3400,得10(﹣10x+400)≥3400,解得,x≤6,∴1≤x≤6,x=1,2,3,4,5,6,共6天,∵日销售利润不低于3400元的天数有且只有10天,∴当18<x≤30时,有4天日销售利润不低于3400元,由y=20x﹣140(18<x≤30),得y随x的增大而增大,∵x为整数,∴当x=27,28,29,30时,日销售利润不低于3600元,且当x=27时,利润最低,由题意得,(15×0.1a﹣5)(20×27﹣140)≥3400,解得,a≥9,∴a的最小值为9.11.解:(1)根据题意得,甲水槽的下降速度为:12÷6=2(厘米/分钟),∵折线ABC上,B(4,14)点前后变化不同,∴铁块高度是14cm.故答案为:2;14;(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,,解得,,∴解析式为y=3x+2和y=﹣2x+12,令3x+2=﹣2x+12,解得x=2,∴当2分钟时两个水槽水面一样高.(3)设铁块的底面积为acm2,则乙水槽中4分钟内乙水槽中上升的水体积为:12(48﹣a)cm3,根据题意得,12(48﹣a)=48×(12÷6×4),解得,a=16∴铁块的休积为:16×14=224(cm3).答:槽中铁块的体积为224立方厘米.12.解:(1)由图可知,x=5时小明到达A处,A处离家距离为200米;200÷5=40(米/分).(2)10﹣5=5(分);800÷(25﹣20)=160(米/分).(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分.∴1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.13.解:(1)小明家白天不开空调的时间为:18﹣8=10(h),故答案为:10;(2)峰时所用电费为:3×3×0.5=4.5(元),谷时所用电费为:11×3×0.3=9.9(元),所以小明家该天空调制暖所用的电费为:4.5+9.9=14.4(元);(3)根据题意,可得该天0时~24时内w与x的函数图象如下:14.解:(1)小明骑车行驶了3千米时,自行车“爆胎”,修车用了5分钟.故答案为:3;5;(2)修车后小明骑车的速度为每小时千米.故答案为:20;(3)当s=6时,t=24,所以小明离家后24分钟距家6千米.故答案为:24;(4)当s=8时,先前速度需要分钟,30﹣=,即早到分钟;15.解:(1)由图示信息可知,小张家距离景区200千米,在景区停留了15﹣10.5=4.5(小时),所以游玩了4.5小时.故答案为:200;4.5;(2)120÷(9.5﹣8)=80(千米/时)=0.8(小时),10.5﹣9.5﹣0.8=0.2(小时).故他加油共用了0.2小时;(3)200÷=2.5(小时),9.5﹣8+0.8+2.5=4.8(小时),10×4.8﹣25=23(升).故小张在加油站至少加23升油才能开回家.。

中考数学 精讲篇 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用

中考数学 精讲篇 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用

(1)写出 y 与 x 之间的函数解析式; 解:由题意可得,当 0≤x≤20 时,y=2x, 当 x>20 时,y=20×2+(x-20)×2.6=2.6x-12,
2x(0≤x≤20), 综上可得,y=2.6x-12(x>20).
(2)小明家第二季度交纳水费的情况如下: 月份 四月份 五月份
交费金额 30 元 34 元 小明家这个季度共用水多少立方米?
(2)图象型:提取两个满足题意的点的坐标利用待定系数法求解. 注:若为分段函数,需分段求解,并写出各段自变量的取值范围.
设问二:求最值 (1)利用不等式确定自变量的取值范围; (2)自变量的端点处可能为最值; (3)根据一次函数的增减性确定最值. 注:最优方案本质也是求解最值的问题.
设问三:方案设计 (1)方案个数:根据限定的自变量取值范围,自变量取到几个值,就有几 种方案; (2)两种方案比较:根据解析式分类讨论,比较两个方案在不同取值下的 最优结果.
解:(1)甲书店:y=0.8x(x>0). 乙书店:当 0<x≤100 时,y=x.
当 x>100 时,y=100+0.6(x-100)=0.6x+40. x(0<x≤100),
∴y=0.6x+40(x>100).
(2)当 0<x≤100 时,选择甲书店可以享受优惠,而选择乙书店不会优惠.因 此选择甲书店购书更省钱. 当 x>100 时, 若 0.8x>0.6x+40,即 x>200,则选择乙书店购书更省钱. 若 0.8x=0.6x+40,即 x=200,则选择甲、乙两书店购书花费相同. 若 0.8x<0.6x+40,即 x<200,则选择甲书店购书更省钱. 综上所述,当 0<x<200 时,选择甲书店购书更省钱;当 x=200 时,选择 甲、乙两书店购书花费相同;当 x>200 时,选择乙书店购书更省钱.

人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案

人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案

19.2.2 一次函数第9课时【巩固提优】1.为增强居民的节水意识,某市自2014年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是()A.240立方米B.236立方米C.220立方米D.200立方米2.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元第1题图第2题图第5题图第7题图3.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个4.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1505.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.6.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中数据信息,解答下列问题(1)求摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式为;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是cm.7.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.8.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?9.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【能力拔高】10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.11.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,两车之间的距离为300km?12.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?参考答案1.C;2.A;3.C;4.C;5.5;6.y=1.5x+4.5(x是正整数),21;7.60≤v≤80;8.(1)y=﹣6x+60;(2)250千米;9.(1)4000,100;(2)0≤x(3)8分钟;10.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=﹣60x+540(8≤x≤9).11.(1)80,120;(2)y=200x﹣540(2.7≤x≤4.5);(3)x=1.2 h或4.2 h;12.(1)当2 000≤x≤2 600时,y=16x﹣15600;当2 600<x≤3 000时,y=2600×10=26000;(2)2 350≤x≤3000。

第14课正比例反比例一次函数

第14课正比例反比例一次函数

第14课正比例反比例一次函数一、正比例关系的一次函数正比例关系是指两个变量之间的关系成比例关系,即一个变量的增加或减少导致另一个变量以相同的比例增加或减少。

正比例关系可以用一次函数进行表示。

假设变量x和变量y之间存在正比例关系,那么可以表示为:y=kx,其中k是比例系数,表示y和x之间的比例关系。

以实例来说明:例1:家庭的水费与用水量成正比,当用水量为10立方米时,水费为50元,如果用水量增加到20立方米,求此时的水费。

解:由题目可知,水费与用水量成正比。

设水费为y,用水量为x,则有y=kx。

当x=10时,y=50,可以得到一个方程:50=k*10,解得k=5、所以此时的比例系数为5、用水量增加到20立方米时,此时的水费为y=5*20=100元。

例2:商品的单价是50元/件,如果购买3件该商品,需要支付多少钱?解:由题目可知,商品的单价与购买数量成正比。

设购买数量为x,支付金额为y,则有y=kx。

购买3件商品时,此时的单价是50元/件,可以得到一个方程:3*k=50,解得k=50/3、所以此时的比例系数为50/3、购买3件商品需要支付的金额为y=(50/3)*3=50元。

对于正比例关系的一次函数,我们可以根据已知的条件,求解未知的变量的值。

二、反比例关系的一次函数反比例关系是指两个变量之间的关系成反比例关系,即一个变量的增加或减少导致另一个变量以相反的比例增加或减少。

反比例关系可以用一次函数进行表示。

假设变量y和x之间存在反比例关系,那么可以表示为:y=k/x,其中k是比例系数,表示y和x之间的反比例关系。

以实例来说明:例3:工人的工作效率与完成工作所需时间成反比,一些工人需要10小时完成一项工作,那么如果他的工作效率提高到原来的2倍,他只需要多长时间完成同样的工作?解:由题目可知,工作效率与完成工作所需时间成反比。

设工作效率为y,完成工作所需时间为x,则有y=k/x。

当x=10时,y=1,可以得到一个方程:1=k/10,解得k=10。

第11讲 一次函数的图象与性质(讲练)(解析版)

第11讲 一次函数的图象与性质(讲练)(解析版)

2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。

北京市2023年九年级中考数学一轮复习——一次函数 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一次函数 练习题(解析版)

北京市2023年九年级中考数学一轮复习——一次函数练习题一、单选题1.(2022·北京·中考真题)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③2.(2020·北京·中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系3.(2022·北京四中模拟预测)对于温度的计量,世界上大部分国家使用摄氏温标(℃) ,少数国家使用华氏温标(°F),两种温标间有如下对应关系:则摄氏温标(℃) 与华氏温标(°F)满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系4.(2022·北京密云·二模)一辆经营长途运输的货车在高速公路某加油站加满油后匀速行驶,下表记录了该货车加满油之后油箱内剩余油量y (升)与行驶时间x (小时)之间的相关对应数据,则y 与x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系5.(2022·北京西城·二模)一条观光船沿直线向码头前进,下表记录了4个时间点观光船与码头的距离,其中t 表示时间,y 表示观光船与码头的距离.如果观光船保持这样的行进状态继续前进,那么从开始计时到观光船与码头的距离为150m 时,所用时间为( ) A .25minB .21minC .13minD .12min6.(2022·北京丰台·二模)如图,某容器的底面水平放置,匀速地向此容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系的图象大致是( )A .B .C .D .7.(2022·北京东城·一模)将一圆柱形小水杯固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度(cm)h 与注水时间(s)t 的函数图象大致是( )A.B.C.D.8.(2022·北京师大附中模拟预测)若A、B两地的距离是120km,甲和乙沿相同的路线由A地到B地的行驶路程与时间的关系如图所示,根据图象判断以下结论正确的个数有()①甲比乙晚两小时出发②甲的速度是30km/h,乙的速度是15km/h③乙出发4小时后,甲在乙的前面④甲行驶的路程y与时间x的函数关系是y=15xA.1个B.2个C.3个D.4个9.(2022·北京·中国人民大学附属中学分校一模)为了缅怀先烈.继承遗志,某中学初二年级同学于4月初进行“清明雁栖湖,忆先烈功垂不朽”的定向越野活动.每个小组需要在点A出发,跑步到点B打卡(每小组打卡时间为1分钟),然后跑步到C点,……,最后到达终点(假设点A,点B,点C在一条直线上,且在行进过程中,每个小组跑步速度是不变的),“函数组”最先出发.过了一段时间后,“方程组”开始出发,两个小组恰好同时到达点C.若“方程组”出发的时间为x(单位:分钟),在点A与点C之间的行进过程中,“函数组”和“方程组”之间的距离为y(单位:米),它们的函数图像如图所示,则下面判断不正确的有()个.(1)当2x 时,“函数组”恰好到达B点;(2)“函数组”的速度为150米/分钟,“方程组”的速度为200米/分钟;(3)两个小组从A点出发的时间间隔为1分钟;(4)图中M点表示“方程组”在B点打卡结束,开始向C点出发;(5)出发点A到打卡点B的距离是600米,打卡点B到点C的距离是800米;A.1 B.2 C.3 D.410.(2022·北京昌平·模拟预测)如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短()A.(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B.(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C.(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D.以上都不对11.(2022·北京·中国人民大学附属中学朝阳学校一模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:例如,购买A 类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40250(0.910)940+⨯⨯⨯=元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为( )A .购买A 类会员卡 B .购买B 类会员卡 C .购买C 类会员卡D .不购买会员卡12.(2022·北京房山·二模)如图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(),x h 两车之间的距离为()y km ,图中的折线表示y 与x 之间的函数关系,下列说法中错误的是( )A .甲乙两地相距1000kmB .点B 表示此时两车相遇C .慢车的速度为100/km hD .折线B C D --表示慢车先加速后减速最后到达甲地二、填空题13.(2022·北京昌平·二模)如图,在平面直角坐标系xOy 中,点A (1,0),B (0,2).将线段AB 绕点A 顺时针旋转90°得到线段AC ,则点C 的坐标为_____.14.(2022·北京房山·二模)某公司生产一种营养品,每日购进所需食材500千克,制成A ,B 两种包装的营养品,并恰好全部用完.信息如下表:已知生产的营养品当日全部售出.若A 包装的数量不少于B 包装的数量,则A 为__________包时,每日所获总售价最大,最大总售价为__________元.15.(2022·北京大兴·一模)在平面直角坐标系xOy 中,一次函数()10y kx k =+≠的图象经过点()2,3,则k 的值为______.16.(2022·北京石景山·一模)如图,某建筑公司有A (1,3),B (3,3),C (5,3)三个建筑工地,三个工地的水泥日用量分别为a 吨,b 吨,c 吨.有M (1,5),N (3,1)两个原料库供应水泥.使用一辆载重量大于(a +b +c )吨的运输车可沿图中虚线所示的道路运送水泥.为节约运输成本,公司要进行运输路线规划,使总的“吨千米数”(吨数×运输路程千米数)最小.若公司安排一辆装有(a +c )吨的运输车向A 和C 工地运送当日所需的水泥,且a >c ,为使总的“吨千米数”最小,则应从______原料库(填“M ”或“N ”)装运;若公司计划从N 原料库安排一辆装有(a +b +c )吨的运输车向A ,B ,C 三个工地运送当日所需的水泥,且a :b :c =3:2:1,为使总的“吨千米数”最小,写出向三个工地运送水泥的顺序______(按运送的先后顺序依次排列即可).17.(2022·北京师大附中模拟预测)如图是房山区行政规划图.如果周口店的坐标是(-2,1),阎村的坐标是(0,2),那么燕山的坐标是______________,窦店坐标是____________.18.(2022·北京市第七中学一模)在函数y+(x ﹣4)0中,自变量x 的取值范围是_____. 19.(2022·北京·东直门中学一模)为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图:根据图中提供的信息,下列关于成人患者使用该药物的说法中: ①首次服用该药物1单位约10分钟后,药物发挥疗效作用; ②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用; ③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒. 所有正确的说法是_____.20.(2022·北京昌平·模拟预测)函数32y x =+中,自变量x 的取值范围是_____.三、解答题21.(2022·北京·中考真题)在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.22.(2021·北京·中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到. (1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.23.(2020·北京·中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.24.(2022·北京顺义·一模)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象平行于直线12y x =,且经过点(2,2)A .(1)求这个一次函数的表达式;(2)当2x <时,对于x 的每一个值,一次函数(0)y kx b k =+≠的值大于一次函数1(0)y mx m =-≠的值,直接写出m 的取值范围.25.(2022·北京平谷·一模)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值小于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.26.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy 中,对于任意两点111(,)P x y 与222(,)P x y 的“非常距离”,给出如下定义:若1212x x y y --,则点P 1与点P 2的“非常距离”为12x x -;若1212x x y y -<-,则点P 1与点P 2的“非常距离”为12y y -.(1)已知点1(,0)2A -,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为4,直接写出点B 的坐标: ; ②求点A 与点B 的“非常距离”的最小值;(2)已知C 是直线122y x =+上的一个动点, ①若点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②若点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.27.(2022·北京西城·一模)在平面直角坐标系xOy 中,直线1:l y kx b =+与坐标轴分别交于(2,0)A ,(0,4)B 两点.将直线1l 在x 轴上方的部分沿x 轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线2:(4)(0)l y m x m =-≠分别交于点C ,D .(1)求k ,b 的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC ,CD ,DA 围成的区域(不含边界)为W . ①当m =1时,区域W 内有______个整点;②若区域W 内恰有3个整点,直接写出m 的取值范围.28.(2022·北京海淀·一模)在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象由函数12y x =的图象平移得到,且经过点()2,0-. (1)求这个一次函数的解析式;(2)当x >m 时,对于x 的每一个值,函数34y x =-的值大于一次函数y kx b =+的值,直接写出m 的取值范围.29.(2022·北京石景山·一模)在平面直角坐标系xOy 中,直线11:2l y x b =+与直线2:2l y x =交于点(),A m n . (1)当2m =时,求n ,b 的值;(2)过动点(),0P t 且垂直于x 轴的直线与1l ,2l 的交点分别是C ,D .当1t ≤时,点C 位于点D 上方,直接写出b 的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy 中,直线l 1:y =ax (a ≠0)过点A (﹣2,1),直线l 2:y =mx +n 过点B (﹣1,3). (1)求直线l 的解析式; (2)用含m 的代数式表示n ;(3)当x <2时,对于x 的每一个值,函数y =ax 的值小于函数y =mx +n 的值,求m 的取值范围.参考答案:1.A【分析】由图象可知:当y 最大时,x 为0,当x 最大时,y 为零,即y 随x 的增大而减小,再结合题意即可判定.【详解】解:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 随行驶时间x 的增大而减小,故①可以利用该图象表示;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 随放水时间x 的增大而减小,故②可以利用该图象表示;③设绳子的长为L ,一边长x ,则另一边长为12L x -,则矩形的面积为:21122y L x x x Lx ⎛⎫=-⋅=-+ ⎪⎝⎭,故③不可以利用该图象表示; 故可以利用该图象表示的有:①②, 故选:A .【点睛】本题考查了函数图象与函数的关系,采用数形结合的思想是解决本题的关键. 2.B【分析】设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案. 【详解】解:设水面高度为,hcm 注水时间为t 分钟, 则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系, 故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键. 3.B【分析】从表格可看出,摄氏温标每增加10°C ,华氏温标增加18°F ,即摄氏温标 (℃) 与华氏温标(°F )成一次函数关系.【详解】解:从表格可看出,摄氏温标每增加10°C ,华氏温标增加18°F ,即摄氏温标 (℃) 与华氏温标(°F )成一次函数关系. 故选:B .【点睛】此题主要考查了一次函数,根据已知得出y 与x 的函数关系式是解题的关键. 4.B【分析】根据题意,设y 与x 的关系式为y =kx +b ,从表格中任选两组值代入求解,求出关系式,再把其他值代入验证正确,即可得出答案.【详解】解:设y 与x 的关系式为y =kx +b ,把x =0,y =100,x =1,y =80代入,得10080b kx b =⎧⎨=+⎩,解得:20100k b =-⎧⎨=⎩, ∴y =-20x +100,把x =2代入,y =-20×2+100=60,把x =2.5代入,y =-20×2.5+100=50,符合题意,∴y 与x 满足的函数关系是一次函数关系,故选:B .【点睛】本题考查函数关系,掌握列表法表示函数关系是解题的关键.5.B【分析】根据记录表由待定系数法就可以求出y 与x 的函数表达式.【详解】解:根据记录表知,每3 min 钟,观光船与码头的距离缩短75m ,∴y 与x 的函数表达式为一次函数关系,设y 与x 的函数表达式为y =kx +b ,由记录表得:6753600b k b =⎧⎨+=⎩, 解得:25675k b =-⎧⎨=⎩. ∴y 与x 的函数表达式为y =-25x +675.当y =150时,150=-25x +675,解得x =21,∴从开始计时到观光船与码头的距离为150m 时,所用时间为21min ,故选:B .【点睛】本题考查了一次函数的应用,在解答时利用待定系数法求出一次函数解析式是关键.6.C【分析】根据图象可知,物体的形状为首先大然后变小.故注水过程的水的高度是先慢后快.【详解】解:相比较而言,注满下面圆柱体,用时较多,高度增加较慢且是匀速增长;注满上面圆柱体,用时较少,高度增加较快,也是匀速增长,所以选项C 的图像符合此图.故选:C .【点睛】本题考查函数的图象,解题的关键是理解题意,灵活运用所学知识解决问题.7.B【分析】根据注水开始一段时间内,当大容器中书面高度小于h 时,小水杯中无水进入,此时小水杯水面的高度h 为0cm ;当大容器中书面高度大于h 时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到h ;然后小水杯水面的高度一直保持在h 不再发生变化,对各选项进行判断即可.【详解】解:由题意知,当大容器中书面高度小于h 时,小水杯水面的高度h 为0cm ;当大容器中书面高度大于h 时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到h ;然后小水杯水面的高度一直保持在h 不再发生变化;故选:B .【点睛】本题考查了一次函数的应用,函数的图象.解题的关键在于理解题意,抽象出一次函数.8.C【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确.【详解】解:由图可知,甲比乙晚两小时出发,故①正确;甲的速度为:120÷(6-2)=120÷4=30km /h ,乙的速度为:120÷8=15km /h ,故②正确;乙出发4小时后,甲在乙的前面,故③正确;设甲行驶的路程y 与x 的函数关系式为y =kx +b ,206120k b k b +=⎧⎨+=⎩,得3060k b =⎧⎨=-⎩, 即甲行驶的路程y 与x 的函数关系式为y =30x -60,故④错误;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.B【分析】根据函数图像和已知条件逐个进行分析和探讨其是否正确.【详解】(1)由图像可看出,2x =以后的一分钟,两组距离在逐渐减小,说明“函数组”在2x =开始停下来进行一分钟打卡,所以当2x =时,“函数组”恰好到达B 点,故(1)正确,不符合题意;(2)在第2分钟到第3分钟这一分钟内,“函数组”打卡,“方程组”一分钟走了200米,所以“方程组”的速度为200米/分钟,在第3分钟到第4分钟这一分钟内,“方程组”打卡,“函数组”一分钟走了150米,所以“函数组”的速度为150米/分钟,故(2)正确,不符合题意;(3)、由图可看出,“方程组”开始出发时,相隔了300米,所以“函数组”走了300米,“方程组”才出发,所以间隔2分钟,故(3)不正确,符合题意;(4)、M点开始,距离在慢慢减小,说明“方程组”打卡结束,去追“函数组”,所以(4)正确,不符合题意;⨯=(米),“方程组”(5)“方程组”从开始出发,经过了3分钟到达了B点,所以AB距离为:3200600打开结束从M点开始到达C,也用了3分钟,所以BC距离为600米,故(5)不正确,符合题意.故只有(3)(5)不正确,所以有两个.故选B.【点睛】本题考查了一次函数的图像和意义,行程问题,结合题意理解函数图像的意义,以及理解图像上转折点的实际意义是解题的关键.10.A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A.【详解】解:要想路线最短,就只应向右及向下走,故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.11.C【分析】设一年内在该便利店买咖啡的次数为x次,消费的钱数为y元,根据题意得:列出3类会员卡用含x的关系表示消费的费用y,再确定y的范围,进行比较即可解答.⨯⨯【详解】设一年内在该便利店买咖啡的次数为x次,消费的钱数为y元,根据题意得:y A=40+0.9210⨯⨯x=80+16x,y C=130+15x⨯=130+15x,x=40+18x,y B=80+0.8210当75≤x≤85时,1390≤y A≤1570;1280≤y B≤1440;1255≤y C≤1405;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.【点睛】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.12.D【分析】根据题意,AB段表示两车逐渐相遇,到点B处两车相遇,BC段表示两车相遇后各自继续向前运动,点C处快车到达乙处,CD段表示慢车继续向前行驶,点D处慢车到达甲处.【详解】由图形得,甲乙两地相距1000km,A正确慢车共行驶了10h,速度为100km/h,C正确根据分析,点B 处表示两车相遇,B 正确折线B-C-D 表示的是两车运动的状态,而非速度变化,D 错误故选:D【点睛】本题考查一次函数图像与行程问题,解题关键是将函数图像中每一条线段与实际情况的一一匹配上.13.(3,1)【分析】过点C 作CH ⊥x 轴于点H .证明△AOB ≌△CHA (AAS ),推出OA =CH =1,OB =AH =2,可得结论.【详解】解:过点C 作CH ⊥x 轴于点H .∵A (1,0),B (0,2),∴OA =1,OB =2,∵∠AOB =∠AHC =∠BAC =90°,∴∠BAO +∠CAH =90°,∠CAH +∠ACH =90°,∴∠BAO =∠ACH ,在△AOB 和∠CHA 中,AOB CHA BAO ACH AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△CHA (AAS ),∴OA =CH =1,OB =AH =2,∴OH =OA +AH =1+2=3,∴C (3,1),故答案为:(3,1).【点睛】本题考查坐标与图形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14. 400 22800【分析】设A 包装的数量为x 包,B 包装数量为y 包,总售价为W 元,根据题意列出y 与x 的关系和W与x 的函数关系式,利用一次函数的性质求解即可.【详解】解:设A 包装的数量为x 包,B 包装数量为y 包,总售价为W 元,根据题意,得:0.25500x y x y +=⎧⎨≥⎩, ∴y =-4x +2000,由x ≥-4x +2000得:x ≥400,∴W =45x +12y =45x +12(-4x +2000)=-3x +24000,∵-3<0,∴W 随x 的增大而减小,∴当x =400时,W 最大,最大为-3×400+24000=22800(元),故答案为:400,22800.【点睛】本题考查一次函数的实际应用、一元一次不等式的实际应用,解答的关键是根据题意,正确列出一次函数关系式,会利用一次函数性质解决问题.15.1【分析】把()2,3代入函数解析式()10y kx k =+≠,得到关于k 的一元一次方程,求解即可.【详解】解:把()2,3代入函数解析式()10y kx k =+≠,可得321k =+,解得1k =,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象上的点都会满足其解析式.16. M N -B -A -C【分析】根据题意列式,利用整式的加减运算,分类求解即可.【详解】解:∵MA +AC <NA +AC ,∴若公司安排一辆装有(a +c )吨的运输车向A 和C 工地运送当日所需的水泥,且a >c ,为使总的“吨千米数”最小,则应从M 料库装运;∵N (3,1),A (1,3),B (3,3),C (5,3),∴NA =NC NB =AB =BC =2,∵a :b :c =3:2:1,∴a =3c ,b =2c ,当按N -A -B -C 运输时:×6c +2×3c +2c c ≈24.97c ;按N-B-A-C运输时:2×6c +2×4c+(2+2)c=24c;按N-B-C-A运输时:2×6c +2×4c+(2+2) ×3c=32c;∵24c<24.97c<32c,∴按N-B-A-C运输时,总的“吨千米数”最小,故答案为:M;N-B-A-C.【点睛】本题考查了坐标与图形,整式加减运算的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(-2,3)(0,0)【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【详解】解:如图所示:燕山的坐标是(-2,3),窦店坐标是(0,0).故答案为:(-2,3),(0,0).【点睛】本题主要考查了坐标确定位置,正确得出原点位置是解题关键.18.x>3且x≠4.【分析】结合二次根式的被开方数为非负数,分式的分母不能为零,零的零次幂没有意义等知识点求解自变量取值范围.(x﹣4)0有意义,【详解】解:要使函数y则x﹣3>0且x﹣4≠0,解得x>3且x≠4,故答案为:x>3且x≠4.【点睛】本题主要考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.19.①②【分析】根据该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间时,药物在人体内发挥疗效作用,通过观察图象的变化情况即可判断① ②正确,③ 错误.【详解】解:∵该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间时,药物在人体内发挥疗效作用,∴观察图象的变化情况可知:① 首次服用该药物1单位约10分钟后,达到最低有效浓度,药物开始发挥疗效作用,所以① 正确;② 每间隔4小时服用该药物1单位,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间,可以使药物持续发挥治疗作用,所以② 正确;③ 每次服用该药物1单位,两次服药间隔小于2.5小时,会发生药物中毒,所以③ 错误.故答案为:① ②.【点睛】本题考查了函数图象的应用,解决本题的关键是利用数形结合思想.20.2x ≠【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【详解】解:根据题意得x +2≠0,解得x ≠-2,故答案为x ≠-221.(1)112y x =+,()0,1A (2)1n ≥【分析】(1)利用待定系数法即可求得函数解析式,当0x =时,求出y 即可求解.(2)根据题意112x n x +>+结合0x >解出不等式即可求解. (1)解:将(4,3),(2,0)-代入函数解析式得, 3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩, ∴函数的解析式为:112y x =+, 当0x =时,得1y =,∴点A 的坐标为(0,1).(2)由题意得,112x n x +>+,即22x n >-, 又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关键.22.(1)112y x =-;(2)112m ≤≤ 【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:1m =,然后结合函数图象可进行求解.【详解】解:(1)由一次函数()0y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到可得:一次函数的解析式为112y x =-; (2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:()12212m -=⨯--,解得:1m =, 函数图象如图所示:∴当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于一次函数y kx b =+的值时,根据一次函数的k 表示直线的倾斜程度可得当12m =时,符合题意,当12m <时,则函数()0y mx m =≠与一次函数y kx b =+的交点在第一象限,此时就不符合题意, 综上所述:112m ≤≤. 【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 23.(1)1y x =+;(2)2m ≥【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到,∴1k =,将点(1,2)代入y x b =+可得1b =,∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∴当12x m >>,时,(0)y mx m =≠都大于1y x =+,又∵1x >,∴m 可取值2,即2m =,∴m 的取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 24.(1)112y x =+(2)1322m ≤≤ 【分析】(1)根据一次函数图象平移时k 不变可知12k =,再把点A (2,2)代入求出b 的值,进而可得出结论. (2)由函数解析式1(0)y mx m =-≠可知其经过点(0,-1),由题意可得临界值为当2x =,两条直线都过点A (2,2),将点A (2,2)代入到一次函数1(0)y mx m =-≠,可求出m 的值,结合函数图象的性质即可得出m 的取值范围.(1)解:∵一次函数y kx b =+(0)k ≠ 的图象与函数12y x =的图象平行, ∴12k =, ∵一次函数12y x b =+的图象过点A (2,2), ∴1222b =⨯+, ∴1b =,∴这个一次函数的表达式为112y x =+; (2)对于一次函数1(0)y mx m =-≠,当0x =时,有1y =-,可知其经过点(0,-1).当2x <时,对于x 的每一个值,一次函数(0)y kx b k =+≠的值大于一次函数1(0)y mx m =-≠的值,即一次函数(0)y kx b k =+≠图象在函数1(0)y mx m =-≠的图像上方,由下图可知:临界值为当2x =时,两条直线都过点A (2,2),将点A (2,2)代入到函数1y mx =-中,可得 221m =-,解得32m =,。

人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)

人教版数学八年级下册:第十九章  一次函数   专题练习(附答案)

第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。

一次函数应用及方案选择问题(含阶梯计费问题)

一次函数应用及方案选择问题(含阶梯计费问题)

(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。

(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。

中考数学 精讲篇 压轴题重难点突破二 分析、判断函数图象题

中考数学 精讲篇 压轴题重难点突破二 分析、判断函数图象题
(D)
11.已知抛物线
y=x2+2x-m-2

x
轴没有交点,则函数
m y=x的大致
图象是
( C)
k (2021·荆门)在同一平面直角坐标系中,函数 y=kx-k 与 y=|x|(k
≠0)的大致图象是
( B)
A.①②
B.②③
C.②④
D.③④
【思路点拨】根据 k 的取值范围,分别讨论 k>0 和 k<0 时的情况,然后 根据一次函数和反比例函数图象的特点选择正确答案.
同一坐标系中不同函数图象的分析与判断 (1)若题目中未给出任何一个函数的图象,则要根据题目中给出的条件, 判断函数图象所在象限,再分情况讨论函数解析式中未知系数与 0 的大 小,或根据已知条件得出函数解析式中未知系数的值或取值范围; (2)若题目中明确给出一个函数的图象,则根据函数图象及函数图象上的 点得出函数解析式中未知系数的取值范围,进而可判断出所求函数的大 致图象;
1.一段笔直的公路 AC 长 20 千米,途中有一处休息点 B,AB 长 15 千米, 甲、乙两名长跑爱好者同时从点 A 出发,甲以 15 千米/时的速度匀速跑 至点 B,原地休息半小时后,再以 10 千米/时的速度匀速跑至终点 C;乙 以 12 千米/时的速度匀速跑至终点 C,下列选项中
能正确反映甲、乙两人出发后 2 小时内运动路程 y(千米)与时间 x(小时) 函数关系的图象是
5.(2021·通辽)如图,在矩形 ABCD 中,AB=4,BC=3,动点 P,Q 同时
从点 A 出发,点 P 沿 A→B→C 的路径运动,点 Q 沿 A→D→C
的路径运动,点 P,Q 的运动速度相同,当点 P 到达点 C 时,
点 Q 也随之停止运动,连接 PQ.设点 P 的运动路程为 x,PQ2

一次函数中的注水问题

一次函数中的注水问题

1.如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图2所示.(1)写出函数图象中点A 、点B 的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.2.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中水的深度与注水时间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是 ;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)3.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式;(2)求注水多长时间甲、乙两个蓄水池水的深度相同;(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.甲槽 乙槽 图1 y (厘米) 19 14 12 2 O 4 6 B C D A E x (分钟) B A 图1 图2 20 O 18 90 t (s) h (cm)图20 O 6210t/sh/cmO 91045t 2t/s h/cm 图19 O h/cm t/s t 121106图18图17 图16 4.图①为深50cm 的圆柱形容器,底部放一个长方形的铁块,现在以一定的速度往容器中注水,图②为容器上层到水面的距离随时间变化的图象.请回答下列问题:(1)求长方体的高度为多少厘米?(2)求该容器注满水的时间为多少?(3)求长方体的体积是此容器的容积的几分之几?(4)当内部容器是一个厚度不计,且不会被水浮起的量杯,如果先向量杯外部的长方体内注水,那么注满量器需要多长时间?(可拓展:给圆柱形容器的底面积值,可求注水速度和长方体体块的底面积)5.将右图所示的长方体石块(a > b > c )放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图13-1 ~ 图13-3所示.在这三种情况下,水槽内的水深h cm 与注水时间 t s 的函数关系如图13-4 ~ 图13-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高= cm ;石块的长a = cm ;宽b = cm ;高c = cm ;(3)求图13-5中直线CD 的函数关系式;(4)求圆柱形水槽的底面积S .6.将一块 a (cm)× b (cm )×c (cm) (a <b <c )的长方体铁块(如图16所示)放入一长方体水槽(如图17所示)内,铁块与水槽四壁不接触. 现向水槽内匀速注水,直至注满水槽为止。

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点09 一次函数的应用一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。

简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。

在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。

一、一次函数图象信息类问题二、利用一次函数进行方案设计与决策三、一次函数与几何的结合问题考向一:一次函数图象信息类问题一.一次函数图象与性质的应用解题要点:1.明确题目中图象的横、纵坐标表示的意义;2.理解并能准确应用图象中的拐点的意义;3.理解函数图象的变化趋势、倾斜程度各表示什么意义;二.分段函数图象问题解题要点:1.读懂每段图象的意义,从图象中获取信息,2.注意图象中的一些特殊点的实际意义;1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )A.张老师家离超市1.5kmB.张老师在书店停留了30minC.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.张老师从书店到家的平均速度是10km/h3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:①A,B两村相距12km;②小明每小时比小红多骑行8km;③出发1.5h后两人相遇;④图中a=1.65.其中正确的是( )A.②④B.①③④C.①②③D.①②③④4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,求出y1,y2关于x的函数关系式.(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.考向二:利用一次函数进行方案设计与决策一次函数与方程(组)、不等式的实际应用解题要点:1.利用图象交点的意义及图象关系将实际问题转化为一次函数问题2.在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围3.利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。

2020中考数学 专题练习:一次函数的应用(含答案)

2020中考数学 专题练习:一次函数的应用(含答案)
式;
(2)如果狮山公园铺设广场砖的面积为1600m2 ,那么公园应选择哪个工程队施工更合算?
y元
48000 28000
0 500 1000 图 12
x m2
6.绿谷商场“家电下乡 ”指定 型号冰箱、彩电的进价和售价如下表所示:
类别
冰箱
彩电
进价(元/台)
2 320
1 900
售价(元/台)
2 420
S(km) 8

4· B

·0
A
2 t(h)
3.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽 车从甲地出发 x(h) 时,汽车与甲地的距离为 y(km),y 与 x 的函数关系如图所示. 根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中 y 与 x 之间的函数表达式; (3)求这辆汽车从甲地出发 4h 时与甲地的距离.
②哪种进货方案商场获得利润最大(利润=售价 进价),最大利润是多少?
7.星期天 8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,
y(立方米)
一位工作人员以每车 20 立方米的加气量,依次给在加气站排队等候的若干 10 000 8 000
辆车加气.储气罐中的储气量 y (立方米)与时间 x (小时)的函数关系
如图所示. (1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?
2 000 0 0.5 10.5 x(小时)
(2)当 x ≥ 0.5 时,求储气罐中的储气量 y (立方米)与时间 x (小时)
的函数解析式; (3)请你判断,正在排队等候的第 18 辆车能否在当天 10:30 之前加完气?请说明理由.

一次函数之调水问题

一次函数之调水问题

问题4:如果设其他水量(例如从 水库调 问题 :如果设其他水量(例如从B水库调 往乙地的水量) 万吨, 往乙地的水量)为x万吨,能得到同样的最 万吨 佳方案吗? 佳方案吗?
活动五:课堂小结 活动五:
解决含有多个变量的问题时, 解决含有多个变量的问题时,可以分析这些变量间的 关系,选取其中某个变量作为自变量, 关系,选取其中某个变量作为自变量,然后根据问题 中的条件寻求可以反映实际问题的函数.
活动四:合作交流 活动四:
库往甲地调水X万吨 解:设从A库往甲地调水 万吨,总调运量为 设从 库往甲地调水 万吨,总调运量为Y. 则从A库往乙地调水 库往乙地调水( 则从 库往乙地调水(14-X)万吨,从B库往甲地调水 )万吨, 库往甲地调水 万吨, 库往乙地调水[13-(14-X)]万吨。 万吨。 (15-X)万吨,从B库往乙地调水 万吨 库往乙地调水 万吨
活动二:引入新课 活动二:
两水库向甲、 从A、B两水库向甲、乙两地调水 其中甲地需水 、 两水库向甲 乙两地调水,其中甲地需水 15万吨 乙地需水 万吨 、B两水库各可调出 万吨,乙地需水 万吨,A、 两水库各可调出 万吨 乙地需水13万吨 万吨.从 地到甲地 千米,到乙地 千米; 地到甲地50千米 到乙地30千米 水14万吨 从A地到甲地 千米 到乙地 千米 万吨 地到甲地60千米 到乙地45千米 从B地到甲地 千米 到乙地 千米 设计一个调 地到甲地 千米,到乙地 千米.设计一个调 运方案使水的调运量(单位 万吨·千米 单位: 千米)尽可能 运方案使水的调运量 单位:万吨 千米 尽可能 小. A 甲 B
活动七:课后作业 活动七:
课本139页第 题 页第12题 课本 页第
( ≦ ≦ ) Y=50X+30(14-X)+60(15-X)+45[13-(14-X)]=5X+1275 1≦x≦14)

一次函数注水问题

一次函数注水问题

2.将一块a×b×c的长方体铁块(如图1所示,其中a<b<c,单位:cm)放入一长方体(如图2所示)水槽中,并以速度v(单位:cm3/s)匀速向水槽注水,直至注满为止.已知b为8cm,水槽的底面积为180cm2.若将铁块b×c面放至水槽的底面,则注水全过程中水槽的水深y(cm)与注水时间t(s)的函数图象如图3所示(水槽各面的厚度忽略不计).(1)水槽的深度为 cm,a= cm;(2)注水速度v及c的值;(3)将铁块的a×b面、a×c面放至水槽的底面,试分别求注水全过程中水槽的水深y(cm)与注水时间t(s)的函数关系及t的取值范围,并画出图象(不用列表).3.如图1,一长方体水槽内固定一个小长方体物体,该物体的底面积是水槽底面积的1/4 ,现以速度v (单位:cm3/s)均匀地沿水槽内壁向容器,直至注满水槽为止,如图2所示.(1)在过程中,水槽中水面恰与长方体齐平用了 s,水槽的高度为 cm;(2)若小长方体的底面积为a(cm2),求的速度v.(用含a的式子表示);(3)若水槽内固定的长方体为一无盖的容器(小长方体的尺寸不变,质量,体积忽略不计),开口向上,请在图3画出水槽中水面上升的高度h(cm)与时间t(s)之间的函数关系图象.4.如图,有一个底面积为15cm×12cm的长方体容器A,和一个棱长为6cm×5cm×10cm的长方体铁块B.(1)若将铁块B的6cm×10cm面放到容器A的底面上往A中,过程中A中水面高度y(cm)与时间x(s)的函数图象如图①所示.①容器A的高度是 cm.②求(1)中速度v(cm/s )和图①中的t的值(2)若将铁块B的6cm×5cm面和5cm×10cm面分别放入容器A底面,以同样速度向容器,请在图②、图③中画出水面水面高度y(cm)与时间x(s)的函数关系大致图象.5.将一块a(cm)×b(cm)×c(cm)(a<b<c)的长方体铁块(如图1所示)放入一长方体水槽(如图2所示)内,铁块与水槽四壁不接触.现向水槽内匀速,直至注满水槽为止.因为铁块在水槽内有三种不同的放置方式,所以水槽内的水深h (cm)与时间t (s)的函数关系用图象法来反映其全过程有三个不同的图象,如图3、4、5所示(说明:三次速度相同).(1)根据图象填空①水槽的深度是 cm,a= ,b= ;②t1与t2的大小关系是t1 t2,并求出t1、t2的值;(2)求水槽内的底面积和速度;(3)求c的值.6.将一块a (cm )×b(cm)×12(cm)(a<b<12)的长方体铁块(如图1)放入一圆柱形水槽(如图2)内,铁块与水槽侧壁不接触.现向水槽内匀速,直至注满水槽为止.在安放的过程中发现只有2种方式可以将铁块全部浸没水槽内.对这2种放法探究后发现,可用图象法(如图3、4所示)来反映水槽内的水深h(cm)与时间t(s)的函数关系.(2次速度相同).(1)根据图象填空:水槽的深度为 cm,a= cm,b= cm,t2= s;(2)当24s,试计算图4方式中铁块露出水面的高度是多少?(3)求圆柱形水槽的底面积?7.如图1是甲、乙两个圆柱形水槽的轴截而示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米>与时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与时间之间的关系,线段DE表示槽中水的深度与时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是(2)多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)8.如图1,M是边长为4的正方形AD边的中点,动点P自A点起,由A⇒B⇒C⇒D匀速运动,直线MP扫过正方形所形成的面积为Y,点P运动的路程为X,请解答下列问题:(1)当x=1时,求y的值;(2)就下列各种情况,求y与x之间的函数关系式:①0≤x≤4;②4<x≤8 ③8<x≤12;(3)在给出的直角坐标系(图2)中,画出(2)中函数的图象.9.(2012•鄂州)某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件.已知每件服装的收入和所需工时如下表:服装名称西服休闲服衬衣工时/件收入(百元)/件 3 2 1设每周制作西服x件,休闲服y件,衬衣z件.(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z.(2)求y与x之间的函数关系式.(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?。

一次函数 进出问题

一次函数 进出问题

4、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时 刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水, 接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水 量是两个常数,容器内的水量y(单位:升)与时间x(单位:分) 之间的部分关系.那么,从关闭进水管起 8 分钟该容器内的水恰 好放完.
1.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购 票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不 断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每 个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时 间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定 每人只购一张票). (1)求a的值. (2)求售票到第60分钟时,售票听排队等候购票的旅客人数. (3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到 站的旅客随到随购,至少需要同时开放几个售票窗口?
5、一个有进水管与出水管的容器,单位时间内进出的水量都是一定的.设从某 时刻开始的4分内只进水不出水,在随后的8分内既进水又出水,容器内的水量y (升)与时间x(分)之间的关系如图所示,试求: (1)只进水不出水时,y与x的函数关系式; (2)在第4分钟和第12分钟之间的函数图像上有一点M(10,27.5)请说明M点 的坐标的实际意义;
Q (万m3) 600 500 400 B D C
a
A
O
20
ห้องสมุดไป่ตู้40
80
t (h)
13、(本小题满分8分) 有甲乙两个均装有进水管和出水管的容器,初始时,两容器同时开进水管,甲容 器到8分钟时,关闭进水管打开出水管;到16分钟时,又打开了进水管,此时既 进水又出水,到28分钟时,同时关闭两容器的进水管。两容器每分钟进水量与出 水量均为常数,容器的水量y(升)与时间 (分)之间的函数关系如图所示,解答下列 问题: (1)甲容器的进水管每分钟进水_______升,出水管每分钟出水_____升. (2)求乙容器内的水量y与时间的函数关系式. (3)求从初始时刻到两容器最后一次水量相等时所需的时间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图2所示.(1)写出函数图象中点A 、点B 的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.2.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 槽中水的深度与注水时间的关系,线段DE 表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是 ;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)3.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式;(2)求注水多长时间甲、乙两个蓄水池水的深度相同;(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.甲槽 乙槽 图1 y (厘米) 19 14 12 2 O 4 6 B C D A E x (分钟) B A 图1 图2 20 O 18 90 t (s) h (cm)图20 O 6210t/sh/cmO 91045t 2t/s h/cm 图19 O h/cm t/s t 121106图18图17 图16 4.图①为深50cm 的圆柱形容器,底部放一个长方形的铁块,现在以一定的速度往容器中注水,图②为容器上层到水面的距离随时间变化的图象.请回答下列问题:(1)求长方体的高度为多少厘米?(2)求该容器注满水的时间为多少?(3)求长方体的体积是此容器的容积的几分之几?(4)当内部容器是一个厚度不计,且不会被水浮起的量杯,如果先向量杯外部的长方体内注水,那么注满量器需要多长时间?(可拓展:给圆柱形容器的底面积值,可求注水速度和长方体体块的底面积)5.将右图所示的长方体石块(a > b > c )放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图13-1 ~ 图13-3所示.在这三种情况下,水槽内的水深h cm 与注水时间 t s 的函数关系如图13-4 ~ 图13-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高= cm ;石块的长a = cm ;宽b = cm ;高c = cm ;(3)求图13-5中直线CD 的函数关系式;(4)求圆柱形水槽的底面积S .6.将一块 a (cm)× b (cm )×c (cm) (a <b <c )的长方体铁块(如图16所示)放入一长方体水槽(如图17所示)内,铁块与水槽四壁不接触. 现向水槽内匀速注水,直至注满水槽为止。

因为铁块在水槽内有三种不同的放置方式,所以,水槽内的水深h (cm)与注水时间 t (s)的函数关系用图像法来反映其全过程有三个不同的图像(如图18、19、20所示)(三次注水速度相同)。

(1) 根据图像填空(i) 水槽的深度是____________cm ,a=____________,b=____________;(ii) t 1与t 2的大小关系是t 1____________t 2.(2) 求水槽内底面积、注水速度及c 、t 1、t 2的值.A B 图① 图②C y /升 t /分 y C y A 2 10 8 6 4 O 20120 100 80 60 407.如图①,A 、B 、C 三个容积相同的容器之间有阀门连接.从某一时刻开始,打开A 容器阀门,以4升/分的速度向B 容器内注水5分钟,然后关闭,接着打开B 阀门,以10升/分的速度向C 容器内注水5分钟,然后关闭.设A 、B 、C 三个容器的水量分别为y A 、y B 、y C (单位:升),时间为t (单位:分).开始时,B 容器内有水50升.y A 、y C 与t 的函数图象如图②所示.请在0≤t ≤10的范围内解答下列问题:(1)求t =3时,y B 的值. (2)求y B 与t 的函数关系式,并在图②中画出其图象. (3)求y A ∶y B ∶y C =2∶3∶4时t 的值.8.因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3) 与时间t (h) 之间的函数关系.求:(1)线段BC 的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?9.因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.10.已知:甲、乙两个蓄水池的容积相同.甲池有一个注水管P ,乙池有两个注水管M 、N .如图12,AB 表示甲池开放P ,甲池中的注水量V/m 3与注水时间t/s 之间函数关系的图象;折线OCD 表示乙池先单独开放M 注水一段时间,然后再开放N (此时M 、N 同时开放),乙池中的注水量V/m 3与注水时间t/s 之间函数关系的图象.请你根据图象所提供的信息,解答下列问题:(1)甲池中注水前的水量为 m 3,水管P 的注水速度为 m 3/s ;(2)OC 所在直线的解析式为 ,CD 所在直线的解析式为 ; (3)若使得甲、乙两池同时注满,什么时刻开放N 恰好能满足要求?请说明理由104832C B A O y x 图1211.如图1,均匀地向一个由三个等高圆柱组合成的容器中注水(圆柱底面半径从小到大分别是a cm ,b cm ,c cm ),最后把容器注满.在注水过程中,水面高度h (cm )随时间t(s)的变化规律如图2所示.(1)这个容器的形状是图1中 ,容器深度为 cm.(2)若a=5cm ,求注水速度v (单位:cm 3/s )及b ,c 的值( 取3)(3)求注水全过程中容器的水深h(cm)与注水时间t (s )的函数解析式.(4)画出图中向另两个容器注水时水面高度h 随时间t 变化的图像(不用列表)12.一个污水处理池,有甲、乙、丙三个水管,每个水管只能流进污水或流出净水.如图,是污水处理池存水量y (t )与净水时间x (h )之间的函数图像,其中A 、B 段只有甲、乙工作,BC 段只有甲、丙工作,CD 段只有乙、丙工作.(1)AB 、BC 、CD 段图像所表示的实际意义是什么?(2)求40min 时该污水处理池的存水量.(3)甲、乙、丙三个水管哪个是进水管?哪个是出水管?三个水管的水流量各是多少?13.某仓库有甲、乙、丙三辆运输车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,图12是从早晨上班开始库存增加辆y (吨)与时间x (小时)的函数图象,其中OA 段只有甲、丙车工作,AB 段只有乙、丙车工作,BC 段只有甲、乙车工作.(1)从早晨上班开始,仓库库存增加2吨,需要几小时?(2)问甲、乙、丙三辆车谁是进货车,谁是出货车?(3)若甲、乙、丙三辆车同时工作,一天工作8小时,仓库的库存量有什么变化?图2 t (分) 10 12 14 2 4 6 8 20 50 30 O 40 10 h (cm) 左侧 右侧 50cm 20cm 60cm 图1 y/升x/分04015414.如图1,在一长方体水槽内部直立有一隔板,在隔板左右两侧各有一个排水装置,当相应一侧的水排完,排水口即自动关闭.该容器上方有一注水装置,当容器内水面降至隔板高度时,进水口自动注水,注满容器后自动关闭.并且每单位时间内进出的水量都是一定的.左右两个排水口分别单独开放时的时间与相应一侧水面高度如图2所示.请回答下列问题:⑴隔板的高度为 cm ,左侧排水口每分钟排水 cm 3,右侧排水口每分钟排水 cm 3;⑵当水面下降到隔板高度后,求出左侧或右侧排水口一侧水面高度h 与其单独开放时的时间t 的函数解析式;(只需求出一个解析式即可,不要求写出取值范围)⑶求出进水口每分钟注水多少立方厘米以及隔板到水槽左右两侧的距离 .15.如图甲,长方体水槽内内部有一个隔板,现有注水量不同的A 、B 两个水龙头以每分钟一定量的水注入水槽中,这时的注水时间与水面上升高度之间的函数关系图象如图乙所示,(折线OCDE 为水槽左侧水面升高图象,折线OFDE 为水槽右侧水面升高图象),请结合图中所给信息解答下列问题:(1)写出隔板的高度及注满水槽的时间写出隔板的高度及注满水槽的时间;(2)求隔板到水槽左侧的距离及两个水龙头每分钟的注水量.16.游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y(m 3)与时间t (min )之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y (m 3)与时间t (min )的函数解析式;(2)问:排水、清洗、灌水各花多少时间?17.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,①求排水时y 与x 之间的关系式.②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.。

相关文档
最新文档