2015年四川卷数学试题及答案(文)
2015年四川省高考数学试卷(理科)答案与解析
2015年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3} 2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.4.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.46.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个7.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9D.68.(5分)(2015•四川)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()A.16 B.18 C.25 D.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分。
四川省泸州市2015年中考数学真题试题(含解析)
2015年四川省泸州市中考数学试卷解析(全卷满分120分,考试时间120分钟)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1. (2015年四川泸州3分)7-的绝对值为【 】 A.7 B.17 C.17- D.7- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点7-到原点的距离是7,所以7-的绝对值是7. 故选A.2. (2015年四川泸州3分)计算23()a 的结果为【 】 A.4a B.5a C.6a D. 9a 【答案】C. 【考点】幂的乘方.【分析】根据幂的乘方运算法则计算作出判断:23236()a a a ⨯==.故选C.3. (2015年四川泸州3分)如左下图所示的几何体的左视图是【 】A.B. C. D.【答案】C.【考点】简单几何体的三视图.【分析】找到从左面看所得到的图形即可:从左面看易得是一个矩形. 故选C.4. (2015年四川泸州3分)截止到2014年底,泸州市中心城区人口约为1120000人,将1120000用科学计数法表示为【 】A.51.1210⨯B.61.1210⨯C.71.1210⨯D. 81.1210⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵1120000一共7位,∴1120000=1.12×106. 故选B.5. (2015年四川泸州3分)如图,AB ∥CD ,CB 平分∠ABD ,若∠C=40°,则∠D 的度数为【 】A. 90°B. 100°C. 110°D. 120° 【答案】B.【考点】角平分线定义;平行的性质;三角形内角和定理;方程思想的应用. 【分析】∵CB 平分∠ABD ,∴2ABD CBD ∠=∠.又∵AB ∥CD ,∴1802180ABD D CBD D ∠+∠=︒⇒∠+∠=︒.又∵∠C=40°,∴18040180C CBD D CBD D ∠+∠+∠=︒⇒︒+∠+∠=︒二者联立218021801004018022280CBD D CBD D D CBD D CBD D ∠+∠=︒∠+∠=︒⎧⎧⇒⇒∠=︒⎨⎨︒+∠+∠=︒∠+∠=︒⎩⎩.故选B.6. (2015年四川泸州3分)菱形具有而平行四边形不具有的性质是 【 】 A.两组对边分别平行 B.两组对角分别相等 C.对角线互相平分 D. 对角线互相垂直 【答案】D.【考点】平行四边形和菱形的性质.【分析】根据平行四边形和菱形的性质对各选项进行判断,作出选择:A.“两组对边分别平行”是平行四边形和菱形都具有的性质,选项错误;B. “两组对角分别相等”是平行四边形和菱形都具有的性质,选项错误;C. “对角线互相平分”是平行四边形和菱形都具有的性质,选项错误;D. “对角线互相垂直”是菱形具有而平行四边形不具有的性质,选项正确.故选D.7. (2015年四川泸州3分)某校男子足球队的年龄分布情况如下表:A. 15,15B. 15,14C.16,15D.14,15【答案】A.【考点】众数;中位数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中15出现8次,出现的次数最多,故这组数据的众数为15.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).共有数据22个,第11个数和第12个数都是15人,所以中位数是:(15+15)÷2=15(人).故选A.8. (2015年四川泸州3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为【】A. 65°B. 130°C. 50°D. 100°【答案】C.【考点】圆周角定理;切线的性质;多边形内角和定理.【分析】∵∠C和∠AOB是同圆中同弧所对的圆周角和圆心角,且∠C=65°,∴∠AOB =130°.∵PA、PB分别与⊙O相切于A、B两点,∴∠PAO =∠PBO =90°.∴360 360130909050P AOB PAO PBO ∠=︒-∠-∠-∠=︒-︒-︒-︒=︒ 故选C .9. (2015年四川泸州3分)若二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,则使函数值0y >成立的x 的取值范围是【 】A.4x <-或2x >B.4-≤x ≤2C.x ≤4-或x ≥2D. 42x -<< 【答案】D .【考点】二次函数的图象和性质.【分析】∵二次函数2(0)y ax bx c a =++<的图象经过点(2,0),且其对称轴为1x =-,∴二次函数2(0)y ax bx c a =++<的图象开口向下,与x 轴的另一交点为()4,0- . ∴使函数值0y >成立的x 的取值范围是:42x -<<. 故选D .10. (2015年四川泸州3分)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是【 】A. B. C. D.【答案】B .【考点】一元二次方程根与系数的关系;解一元一次不等式;一次函数图象与系数的关系;整体思想和数形结合思想的应用.【分析】∵关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,∴()()2241>0<0kb kb ∆=--+⇒. 根据一次函数图象与系数的关系,选项A 中>0>0>0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项B 中>0<0<0k kb b ⎧⇒⎨⎩,与<0kb 相符;选项C 中<0>0<0k kb b ⎧⇒⎨⎩,与<0kb 不符;选项D 中>000k kb b ⎧⇒=⎨=⎩,与<0kb 不符.故选B .11. (2015年四川泸州3分) 如图,在△ABC 中,AB =AC ,BC =24,tan C =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为【 】A.13B.152C.272 D.12【答案】A .【考点】翻折问题;等腰三角形的性质;勾股定理;翻折对称的性质;锐角三角函数定义;方程思想的应用.【分析】如答图,过点E 作EH ⊥BC 于点H ,∵AB =AC ,BC =24,∴CH =12. ∵tan C =2,∴AH =24.设,CE x DH y == ,则2E H x =.∵△ABC 沿直线l 翻折,点B 落在边AC 的中点E 处,∴BD =DE 24x y =--.在Rt EDH ∆中,()22212185y y y +=-⇒=. ∴BD =DE 2413x y =--=. 故选A .12. (2015年四川泸州3分)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为【 】 A.2 B.3 C.4 D.5 【答案】B .【考点】点的坐标;等腰三角形的判定;分类思想和数形结合思想的应用.【分析】如答图,作AB 中垂线交x 轴于1C ,则1ABC ∆是等腰三角形;以点A 为圆心,AB 长为半径画圆交x 轴于23,C C 则23,ABC ABC ∆∆ 是等腰三角形;以点B 为圆心,AB 长为半径画圆与x 轴没有交点(因为点到x 轴的距离AB =).∴点C 的个数为3. 故选B .第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分)13. (2015年四川泸州3分)分解因式:222m -= ▲ . 【答案】()()211m m +-.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式2后继续应用平方差公式分解即可:()()()222221211m m m m -=-=+-.14. (2015年四川泸州3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 ▲ . 【答案】2.【考点】圆锥和扇形的计算.【分析】∵扇形的半径为6、圆心角为120°,∴扇形的弧长为12064180ππ⋅⋅=. ∵圆锥的底面周长等于它的侧面展开图的弧长, ∴根据圆的周长公式,得242r r ππ=⇒=.15. (2015年四川泸州3分)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 ▲ . 【答案】27.【考点】一元二次方程根与系数的关系;求代数式的值;整体思想的应用. 【分析】∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴12125,1x x x x +=⋅=- .∴()()2222121212252127x x x x x x +=+-⋅=--=.16. (2015年四川泸州3分)如图,在矩形ABCD 中,BC =,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:其中正确命题的序号是 ▲ (填上所有正确命题的序号).【答案】①③.【考点】矩形的性质;等腰(直角)三角形的判定和性质;三角形内角和定理;全等三角形的判定和性质;直角三角形斜边上的中线的判定;勾股定理;相似三角形的判定和性质;特殊元素法和方程思想的应用.【分析】①∵在矩形ABCD 中,BC =,∴不妨设1AB =,则BC =∴18067.5AEB AED DEC AEH ∠=︒-∠-∠=︒=∠.故命题①正确. ②∵ADH ∆是等腰直角三角形,∴1DH =.不难证明(ABE AHE AAS ∆∆≌④如答图,延长AB 至G ,使BG=BF ,连接CG ,设BF x =,则2FG x =.∴2BF x ==∴2BC BF -=.)12==∴BC BF -≠.故命题④错误. 综上所述,正确命题的序号是①③.三、(每小题6分,共18分)17. (2015年四川泸州6分)计算:01sin 4520152O--+【答案】解:原式1131212222=-+=-+=. 【考点】实数的运算;特殊角的三角函数值;二次根式化简;零指数幂;负整数指数幂.【分析】针对特殊角的三角函数值,二次根式化简,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年四川泸州6分)如图,AC=AE ,∠1=∠2,AB=AD . 求证:BC=DE .【答案】证明:∵∠1=∠2,∴12EAB EAB ∠+∠=∠+∠,即CAB EAD∠=∠. 又∵AC=AE , AB=AD ,∴()CAB EAD SAS ∆∆≌. ∴BC=DE .【考点】全等三角形的判定和性质.【分析】要证BC=DE ,根据全等三角形的性质只要CAB EAD ∆∆≌即可,而要证全等已有两边对应相等,由∠1=∠2可推出夹角对应相等而得证.19. (2015年四川泸州6分)化简:2211211m m m m ⎛⎫÷- ⎪+++⎝⎭【答案】解:()()2222221112111111m m m m m m m m m m m m m m +⎛⎫÷-=÷=⋅= ⎪+++++⎝⎭++. 【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.四、(每小题7分,共14分)20. (2015年四川泸州7分)小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.【答案】解:(1)∵月均用水量45x ≤<所占百分比为()14%24%20%12%6%4%30%-+++++=; 月均用水量45x ≤<的频数为5030%15⨯=;月均用水量67x ≤<的频数为5012%6⨯=,∴补全频数分布表和频数分布直方图如下:(2)∵样本中家庭月均用水量“大于或等于4t 且小于7t ”占62%,∴估计总体中的中等用水量家庭大约有45062%279⨯=(户).(3)设月均用水量在23x ≤<范围内的样本家庭为,A B ,月均用水量在89x ≤<范围内的样本家庭为,X Y ,∵从月均用水量在23x ≤<,89x ≤<这两个范围内的样本家庭中任意抽取2个,共有6种等可能结果:()()()()()(),,,,,,,,,,,A B A X A Y B X B Y X Y ,抽取出的2个家庭来自不同范围的有4种情况:()()()(),,,,,,,A X A Y B X B Y ,∴抽取出的2个家庭来自不同范围的概率为4263=.为 【考点】频数分布表和频数分布直方图;频数、频率和总量的关系;用样本估计总体;概率.【分析】(1)由已知信息,根据频数、频率和总量的关系,求出月均用水量45x ≤<所占百分比和频数,月均用水量67x ≤<的频数,从而补全频数分布表和频数分布直方图.(2)求出样本中家庭月均用水量“大于或等于4t 且小于7t ” 所占百分比,即可用样本估计总体.(3)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (2015年四川泸州7分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12棵和5棵.两次共花费940元(两次购进的A 、B 两种花草价格均分别相同).(1)A 、B 两种花草每棵的价格分别是多少元?(2)若购买A 、B 两种花草共31棵,且B 种花草的数量少于A 种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】解:(1)设A 种花草每棵的价格是x 元, B 种花草每棵的价格是y 元,根据题意,得3015675125940675x y x y +=⎧⎨+=-⎩,解得205x y =⎧⎨=⎩. 答:A 种花草每棵的价格是20元, B 种花草每棵的价格是5元.(2)设购买A 种花草a 棵,则购买B 种花草31a -棵,所需费用z 元.根据题意,得31<20310a a a a -⎧⎪≥⎨⎪-≥⎩,解得31>3031a a a ⎧⎪⎪≥⎨⎪≥⎪⎩,即31<313a ≤. ∵()2053115155z a a a =+-=+中15>0,∴15155z a =+是增函数.∴当11a =时,费用最省,此时3120a -=,320z =.∴费用最省的方案是购买A 种花草11棵,则购买B 种花草20棵,所需费用320元.【考点】一次函数、二元一次方程组和一元一次不等式组的应用.【分析】(1)方程(组)的应用解题关键是找出等量关系,列出方程(组)求解. 本题等量关系为:“分别购进A 、B 两种花草30棵和15棵,共花费675元”和“分别购进A 、B 两种花草12棵和5棵,两次共花费940元”.(2)设购买A 种花草a 棵,根据已知列出不等式组求出a 的取值范围,再根据所需费用关于a 的一次函数的增减性求出费用最省的方案和所需费用.五、(每小题8分,共16分)22. (2015年四川泸州8分)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行. 当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处. 若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值).【答案】解:如答图,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A的距离最近的点.∵渔船从B 到C 用时0.5小时,渔船的速度为每小时30海里,∴300.515BC =⨯=(海里).根据题意,知ADB ∆是等腰直角三角形,∴设AD BD x ==,则15CD x =-.在Rt ADC ∆中,∵30CAD ∠=︒,∴tan CD CAD AD∠=,即1515tan30x x x x --︒=⇒=.解得(1532x -=. (153302÷=∴该渔船从B 小时,离观测点A 的距离最近. 【考点】解直角三角形的应用(方向角问题);锐角三角函数定义;特殊角的三角函数值;方程思想的应用.【分析】作辅助线,过点A 作AD ⊥BC 于点D ,则点D 就是渔船离观测点A 的距离最近的点,从而解Rt ADB ∆和Rt ADC ∆即可求解.23. (2015年四川泸州8分)如图,一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数m y x=的图象与该一次函数的图象交于二、四象限内的A 、B 两点,且AC =2BC ,求m 的值.【答案】解:(1)设一次函数(0)y kx b k =+<的图象与y 的交点为()0,c .∵一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3,∴1332c ⋅⋅=,解得2c =. ∴032k b b =+⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩. ∴该一次函数的解析式为223y x =-+. (2)如答图,分别过点A 、B 作x 的垂线,垂足分别为M 、N ,设A 、B 两点的坐标分别为()(),,,A A B B x y x y ,∵A 、B 两点在m y x =上,∴,A B A Bm m y y x x == . 易得AMC BNC ∆∆∽,∴CM AM AC CN BN BC ==. ∵2,3,3,,A B A B AC BC CM x CN x AM y BN y ==-=-==- , ∴()()323323321322A B A B A A B A B A B Bm x x x x x x m m m x x x x x x ⎧-=-⎧=--⎪-⎪==⇒⇒⎛⎫⎨⎨-=-=- ⎪⎪⎪-⎩⎝⎭⎩ ()132362B B B x x x ⇒--=-⇒=. ∵B 点在223y x =-+上,∴26223B y =-⋅+=-. ∴12B B m x y =⋅=-.【考点】一次函数和反比例函数综合题;曲线上点的坐标与方程的关系;相似三角形的判定和性质.【分析】(1)根据已知条件求出一次函数(0)y kx b k =+<的图象与y 的交点坐标,即可根据曲线上点的坐标与方程的关系列式求出(0)y kx b k =+<的系数,从而得到该一次函数的解析式.(2)分别过点A 、B 作x 的垂线,垂足分别为M 、N ,应用相似三角形的判定和性质,列式求出点A 或点B 的坐标即可求得m 的值.六、(每小题12分,共24分)24. (2015年四川泸州12分)如图,△ABC 内接于⊙O ,AB =AC ,BD 为⊙O 的弦,且AB ∥CD ,过点A 作⊙O 的切线AE 与DC 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ABCE 是平行四边形;(2)若AE =6,CD =5,求OF 的长.【答案】解:(1)证明:如答图1,连接AO 并延长交⊙O 于另一点G ,连接CG ,∵AE 是⊙O 的切线,∴AE AG ⊥.∴90EAG ∠=︒,即90EAC CAG ∠+∠=︒.∵AO 是⊙O 的直径,∴90ACG ∠=︒.∴90G CAG ∠+∠=︒.∴EAC G ∠=∠.∵G ∠和ABC ∠是同圆中同弧所对的圆周角,∴G ABC ∠=∠.∴EAC ABC ∠=∠.(学习过弦切角定理的直接得此)∵AB =AC ,∴ACB ABC ∠=∠.∴EAC ACB ∠=∠.∴AE ∥BC .又∵AB ∥CD ,∴四边形ABCE 是平行四边形.(2)如答图2,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,∵AE 是⊙O 的切线,∴根据切割线定理,得2AE EC ED =⋅,(没学习切割线定理可由相似得到)∵ AE =6,CD =5,∴()265EC EC =⋅+,解得4EC =(已舍去负数).由圆的对称性,知四边形ABDC 是等腰梯形,且4AB AC BD EC ====.又根据对称性和垂径定理,知AO 垂直平分BC ,MN 垂直平分,AB DC .设,,OF x OH y FH z === ,∵4,6,5AB BC DC === ∴3,322BC BC BF FH z DF CF FH z =-=-==+=+ . 易证OFH DFM BFN ∆∆∆∽∽, ∴53232DF DM z OF OH x y BF BN z OF OHx y ⎧⎧⎪+==⎪⎪⎪⇒⎨⎨⎪⎪-==⎪⎪⎩⎩. 两式相加和相除,得69324135334y x x y z z z ⎧⎧==⎪⎪⎪⎪⇒⎨⎨+⎪⎪==⎪⎪⎩-⎩. 又∵222x y z =+,∴2291169x x x =+⇒. ∴OF. 【考点】切线的性质;圆周勾股定理;等腰三角形的性质;平行的判定;平行四边形的判定和性质;等腰梯形的判定和性质;垂径定理;相似判定和性质;勾股定理.【分析】(1)作辅助线,连接AO 并延长交⊙O 于另一点G ,连接CG ,根据切线的性质证明EAC ABC ∠=∠,根据等腰三角形等边对等角的性质和等量代换得到EAC ACB ∠=∠,从而根据内错角相等两直线平行的判定得到AE ∥BC ,结合已知AB ∥CD 即可判定四边形ABCE 是平行四边形.(2)作辅助线,连接AO ,交BC 于点H ,双向延长OF 分别交AB 、CD 于点N 、M ,根据切割线定理求得4EC =,证明四边形ABDC 是等腰梯形,根据对称性、圆周角定理和垂径定理的综合应用证明OFH DFM BFN ∆∆∆∽∽,并由勾股定理列式求角即可.25. (2015年四川泸州12分)如图,已知二次函数的图象M 经过A (1-,0),B (4,0),C (2,6-)三点.(1)求该二次函数的解析式;(2)点G 是线段AC 上的动点(点G 与线段AC 的端点不重合),若△ABG 与△ABC 相似,求点G 的坐标时,点D 关于l 的对称点为E ,能否在图象M 和l 上分别找到点P 、Q ,使得以点D 、E 、P 、Q 为顶点的四边形为平行四边形. 若能,求出点P 的坐标;若不能,请说明理由.【答案】解:(1)∵二次函数的图象M 经过A (1-,0),B (4,0)两点,∴可设二次函数的解析式为()()14y a x x =+-.∵二次函数的图象M 经过C (2,6-)点,∴()()62124a -=+-,解得1a =.∴二次函数的解析式为()()14y x x =+-,即234y x x =--.(2)易用待定系数法求得线段AC 的解析式:22y x =--.设点G 的坐标为(),22k k -- .△ABG 与△ABC 相似只有△AGB ∽△ABC 一种情况.∴AG ABAB AC =.∵5,1AB BC AG ===+ .513k =⇒+=.∴23k =或83k =-(舍去).∴点G 的坐标为210,33⎛⎫- ⎪⎝⎭ .(3)能. 理由如下:如答图,过D 点作x 的垂线交于点H ,∵(,)D m n (12)m -<<,∴(,22)H m m -- .∵点(,)D m n 是图象M 上,∴2(,3m 4)D m m -- .∵223253424y x x x ⎛⎫=--=-- ⎪⎝⎭,∴图象M 的对称轴l 为x =若以点D 、E 、P 、Q 为顶点的四边形为平行四边形,则PQ ∥DE 且2PQ =.722+=或31222-=-. ∴点P 的纵坐标为2732592244⎛⎫--=- ⎪⎝⎭.【考点】二次函数综合题;单动点、轴对称和平行四边形存在性问题; 待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的性质;勾股定理;二次函数的性质;平行四边形的判定;方程思想和分类思想的应用.【分析】(1)设交点式的式,应用待定系数法可求二次函数的解析式.(2)待定系数法求得线段AC 的解析式,设出点G 的坐标,根据相似三角形的性质列式求解.(3垢四边形是平行四边形的判定分对称轴两边求解.。
2015年高考文科数学四川卷(含详细答案)
13.已知sin2cos0,则2sincoscos2的值是___________.
14.在三棱柱ABCABC中,BAC90,其正视图和侧视图都是边长为1的正方形,
111
俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,
BC的中点,则三棱锥PAMN的体积是__________.
__1.设集合A{x|1x2},集合B{x|1x3},则AB()
__
_答
_--------------------x|1x3}B.{x|1x1}C.{x|1x2}D.{x|2x3}
__
名
姓
此
--------------------试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4
至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.
在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.
卷第Ⅰ卷(选择题共50分)
注意事项:
必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.
第Ⅰ卷共10小题.
准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有
(Ⅱ)证明:存在a(0,1),使得f(x)≥0恒成立,且f(x)0在区间(1,)内有唯一
解.
5.下列函数中,最小正周期为π的奇函数是()
注意事项:
必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作
图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿
纸上无效.
_--------------------
__
号
考--------------------
2015年四川高考数学(理科)试题含答案
=2 答案:C 2010年普通高等学校招生全国统一考试(四川卷)数学(理工农医类)第I 卷参考公式:P n (k)=C ;p k (1 — p)n±(k =0,1,2,…n)一、选择题:(1) i 是虚数单位,计算i + i 2 + i 3 = (A )- 1( B ) 1(C ) -i(D ) i解析:由复数性质知:i 2=- 1 故 i + i 2+ i 3= i +( — 1)+( — i) =- 1 答案:A (2)下列四个图像所表示的函数,在点 x = 0处连续的是解析:由图象及函数连续的性质知, D 正确.答案:D (3)2log 510 + log 50 . 25=―(A ) 0( B ) 1( C ) 2解析:2log 510+ log 50. 25P(A+B) =P(A)+P(B)s 二 4 二 R 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A B)=P(A) P(B)球的体积公式如果事件A 在一次试验中发生的概率是 p ,那么4 D 2 v R3在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径如果事件A 、B 互斥,那么 球的表面积公式(B ) (C )(D) 4w=log 5100 + log50. 25=log 525=2答案:C(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱80(4) 函数f(x) = x2+ mx+ 1的图像关于直线(A) m = _2 ( B) m = 2答案:A2解析:由BC = 16,得| BC| =4 AB AC I A^-A C而AB AC AM答案:C w…(6)将函数y =sin x的图像上所有的点向右平行移动'个单位长度,再把所得各点的横坐10标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是w—m(A) y =sin(2x ) (B) y = sin(2x )10 51 兀 1 兀(C) y 二sin(—x ) (D) y 二sin(—x )2 10 2 20解析:将函数y=sinx的图像上所有的点向右平行移动一个单位长度,所得函数图象的解析10式为y= sin(x—) •10再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1 ny"门(异-石).答案:C(7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两解析:函数f( x) = x2+ mx+ 1的对称轴为x= —曰疋—m= 1 =• m= —22x=1对称的充要条件是(C) m - -1(5)设点M是线段BC的中点,点A在直线BC夕卜,BC2=16,AB ACi IA^-A C.贝y(A)8 (B)4 (C) 2 (D ) 1w_w-=BC = 4故二2车间每天总获利最大的生产计划为(D )甲车间加工原料 40箱,乙车间加工原料 30箱 解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱x y _ 70nt I则 <10x+6y 兰480x, y N目标函数z = 280x + 300y结合图象可得:当 x = 15, y = 55时z 最大 本题也可以将答案逐项代入检验 . 答案:Bw … (8)已知数列的首项印=0,其前n 项的和为S n ,且S n.i =2S 「印,则lim n 二1(A )0( B ) —( C ) 1 ( D )22解析:由 & 1=2Sn ' a 1,且Sn 2-2S n 1a1 1作差得 a n +2 = 2a n +1^又 S 2 2S 1 + a 1, 即卩 a ? + a 1 2 a 1 + a^ —■ a ? 2 a 1故{a n }是公比为2的等比数列S n = a 1+ 2a 1 + 22a 1 + .......................... + 2n 1a 1= (2n — 1) a 1则 lima n= lim nn;:S nn ::(2n -1)a 1答案:B2 2xy(9)椭圆二 2 =1(a 的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点a bP 满足线段AP 的垂直平分线过点 F ,则椭圆离心率的取值范围是 co(A ) 0,彳(B ) 0,1(C )J2-1,1(D ) 1,1解析:由题意,椭圆上存在点 P ,使得线段AP 的垂直平分线过点F ,2nJ 31即F 点到P 点与A 点的距离相等m2 ,2ab而 | FA| = C = 一c c| PF| € [a — c, a + c]即 ac — c ?w ac + c ?.j ac _c 2 兰 a 2 _c 2 a 2 -c 2 乞ac c 2于是b 2€ [ a — c, a + c]c—叮屏11 或--a — 2又e€ (0, 1)故e€ |-,1 | '2丿答案:D(10)由1、2、3、4、5、6组成没有重复数字且-3都不与5相邻的六位偶数的个数是(A)72 ( B)96 ( C) 108 ( D)144w …解析:先选一个偶数字排个位,有3种选法_…①若5在十位或十万位,则1、3有三个位置可排,3 A f A f = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A2A2 = 12个算上个位偶数字的排法,共计3(24 + 12) = 108个答案:C(11)半径为R的球O的直径AB垂直于平面「,垂足为B , BCD是平面〉内边长为与球面交于点M , N,/A、f 17(A) Rarccos——25 那么R的正三角形,线段AC、M、N两点间的球面距离是厂18(B) Rarccos -25(C)AD分别解析: 由已知,1 AB = 2R, BC = R,故tan / BAC = —•一.…2cos/ BAC =连结OM,则△ OAM为等腰三角形4品4亦AM = 2AOcos / BAC = R,同理AN= R,且MN// CD w5 5而AC = . 5R, CD = R故MN : CD = AN:AC w一MN = 4R ,5连结OM、ON, 有OM = ON= R于是cos/ MON =2 2 2OM ON -MN2OM LON172517所以M 、N 两点间的球面距离是 Rarccos25答案:A1i(12)设 a >b :- c ,0 ,则 2a 2 10ac :-25c 2 的最小值是ab a(a_b)(A )2( B )4( C ) 2,5( D ) 5解析: 2a 2 — 110ac - 25c 2ab a(a —b)=(a -5c)2 ab 丄 a(a -b) --ab a(a —b)> 0 + 2+ 2=4当且仅当a — 5c = 0, ab = 1, a( a -b) = 1时等号成立2c = 2满足条件5答案:B=(a _5c)2a 2 —ab ab 丄 --ab a(a —b)如取a =第口卷、填空题:本大题共 4小题,每小题4分,共16分.把答案填在题中横线上1 6(13) (2-3—)6的展开式中的第四项是.Jx(14)直线x -2y 5=0与圆x 2 y 2 =8相交于A 、B 两点,则 AB 〒解析:方法一、圆心为(0,0),半径为2、、2故 LABJ 二.、二二=二 2 二…2得 | AB| = 2 3 答案:2 3(15)如图,二面角〉-I - '■的大小是60°,线段AB 二:;• B 三丨,AB 与I 所成的角为30° .则AB 与平面1所成的角的正弦值是•解析:过点A 作平面B 的垂线,垂足为 C ,在B 内过C 作I 的垂线•垂足为D 连结AD ,有三垂线定理可知 AD 丄I ,故/ ADC 为二面角:• -I - 1的平面角,为60° 又由已知,/ ABD = 30° 连结CB ,则/ ABC 为AB 与平面一:所成的角..设 AD = 2,贝V AC = /3 , CD = 1ADAB =0 =4sin 30AC 3--sin / ABC =AB 4答案:空解析: T 4= C ;23160x答案:160 x 圆心到直线x -2y • 5=0的距离为4(16)设S为复数集C的非空子集.若对任意x, y S ,都有x • y,x - y,xy • S ,则称S为封闭集。
2015年四川高考数学试卷试卷及参考答案(理科)word版
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB =( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32ii- =( ) A.-i B.-3i C.i. D.3i3.执行如图所示的程序框图,输出S 的值是( )A.2-B.2C.-12D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年四川省高考数学试题及答案(文科)【解析版】
2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A .{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A .2 B.3 C.4 D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A .抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A .y=cos(2x+)B.y=sin(2x+)C .y=sin2x+cos2x D.y=sinx+cosx考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A .﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k >4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A .B.2C.6 D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A .16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A .B.C.12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A .(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i﹣=i﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015?四川)lg0.01+log216的值是2.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:lg0.01+log216=﹣2+4=2.故答案为:2.点评:本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015?四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P ﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解答:解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p ﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,?+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A .{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A .2 B.3 C.4 D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A .抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx 6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A .﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A .B.2C.6 D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A .16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A .B.C.12 D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A .(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015?四川)lg0.01+log216的值是.13.(5分)(2015?四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。
2015四川高考数学试题(文科解析版)
2015年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =(A ){}1|3x x -<< (B ){}|11x x -<< (C ){}|12x x << (D ){}|23x x <<【答案】A【解析】∵{|12}A x x =-<<,{|13}B x x =<<,{|13}A B x x ∴=-<<,选A.2.设向量(2,4)a =与向量(,6)bx =共线,则实数x =(A)2 (B)3 (C) 4 (D)6【答案】B【解析】由共线向量()11,a x y =,()22,b x y =的坐标运算可知12210x y x y -=, 即26403x x ⨯-=⇒=,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是 (A)抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】因为是为了解各年级之间的学生视力是否存在显著差异,所以选择分层抽样法。
4.设a ,b 为正实数,则“1a b >>”是“22log log a b >”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由已知当1a b >>时,22log log 0a b >>∴,“1a b >>”是“22log log a b >”的充分条件。
反过来由22log log 0a b >>,可得1a b >>,∴“1a b >>”是“22log log a b >”的必要条件,综上,“1a b >>”是“22log log a b >”的充要条件,选A.5.下列函数中,最小正周期为π的奇函数是A.sin(22y x π=+B.cos(22y x π=+C.sin 2cos 2y x x =+D.sin cos y x x =+ 【答案】A【解析】A. cos(2)sin 22y x x π=+=-,可知其满足题意;B. sin(2cos 22y x x π=+=,可知其最小正周期为π,偶函数;C. sin 2cos 2)4y x x x π=+=+,最小正周期为π,非奇非偶函数;D. sin cos )4y x x x π=+=+,可知其最小正周期为2π,非奇非偶函数.选A6.执行如图所示的程序框图,输出S 的值是(A) 2- (B) 2(C)-12 (D) 12【答案】D【解析】易得当k =1,2,3,4时执行的是否,当k =5时就执行是的步骤, 所以51sin62S π==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A(B) (C )6 (D)【答案】D【解析】由题意可知双曲线的渐近线方程为y =,且右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,∴||AB =,选D. 8. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx by e+=( e=2.718⋅⋅⋅ 为自然对数的底数,k ,b 为常数)。
2015年四川高考理科数学试卷及详解参考答案
2015年普通高等学校招生全国统一考试(四川)理科姓名 成绩一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{x/(x+1)(2)0},A x =-<集合{x/1<x<3}B =,则A B =( )A.{X/-1<X<3}B.{X/-1<X<1}C.{X/1<X<2}D.{X/2<X<3}2.设i 是虚数单位,则复数i 3–i2=( ) A.-i B.-3i C.i. D.3i3.执行如图所示的程序框图,输出S 的值是( )A.-C-12 D 124.下列函数中,最小正周期为π,且图象关于原点对称的函数是( )5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )68.设a ,b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24, 二.填空题:本大题共5小题,每小题5分,共25分。
2015年四川卷数学试题及答案(理)
2015年普通高等学校招生全国统一考试(四川)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB( )A.{x|—1〈x<3} B 。
{x|-1〈x<1} C.{x |1<x<2} D 。
{x |2〈x<3}2.设i 是虚数单位,则复数32i i-=( ) A.—iB.-3iC 。
i.D 。
3i3.执行如图所示的程序框图,输出S 的值是( )A.32B.32 C.—12D 。
124.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A 。
cos(2)2y x π=+B 。
sin(2)2y x π=+C. sin 2cos 2y x x =+ D 。
sin cos y x x =+5。
过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A)433(B )23 (C )6 (D)43 6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C)96个 (D )72个7. 设四边形ABCD 为平行四边形,6AB =,4AD =。
若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A)20 (B)15 (C )9 (D )68.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <"的(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D)既不充分也不必要条件 9. 如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( ) (A )16(B )18(C )25(D )81210. 设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M为线段AB 的中点。
2015年四川省绵阳市富乐中学小升初数学试卷
2015年四川省绵阳市富乐中学小升初数学试卷(重点班)一、认真读题,谨慎填空(3×10=30分)1.(3分)如果a、b、c都是非零自然数,并且c>a>b.把这三个数按从大到小的顺序排列起来是_________.2.(3分)(2012•福州)如果a=b,那么a:b=_________:_________,a和b成_________比例.3.(3分)如果海平面高度记为0米,比海平面高记为正,比海平面低记为负,A地的海拔高度为﹣35米表示_________.4.(3分)3,0.8,1.2配上一个数就能组成比例,这个数可能是_________.(要求填完整)5.(3分)老师包内有24支铅笔,下面是一个小朋友任意拿60次,每次记录的结果如下:蓝:正正正正正正正黄:正正正正正猜猜蓝、黄铅笔可能各有_________支.6.(3分)(2008•高邮市)2000名学生排成一排按1、2、3、4、5、6、7、6、5、4、3、2、1、1、2、3、4、5、6、7、6、5、4,、3,、2、1、…循环报数,则第2000名学生所报的数是_________.7.(3分)(2011•天门)买一辆汽车,分期付款购买要多加价7%,如果现金购买可按九五折优惠.小新算完后发现分期付款比现金购买多付7200元,那么这辆汽车的原价是_________元.8.(3分)(2011•天门)一根2米长的圆柱体木材,锯成3段小圆柱后,它们的表面积总和比原来增加了12.56平方分米,原来这根木材的体积是_________立方分米.9.(3分)一个半圆的周长是15.42cm,则这个半圆的面积是_________.10.(3分)如图,把一个平行四边形分成四个三角形,其中三角形甲的面积是15平方厘米,三角形乙的面积占平行四边形面积的,平行四边形的面积是_________平方厘米.二、反复比较,择优录取.(将正确答案的番号填入题后括号内)(3×8=24分)11.(3分)给分数的分母乘以3,要使原分数大小不变,分子应加上()12.(3分)(2005•上城区)一根3米长的钢材,截下,再截下,还剩().米D.米b克水中,此时糖水的含糖率是().C.D.15.(3分)将甲组人数的拨给乙组,则甲、乙两组人数相等.原来甲、乙两组人数的比是16.(3分)把棱长为6厘米的正方体木块分割成棱长为2厘米的小正方体,可分成()17.(3分)在如图梯形中,两个阴影部分的面积相比()A.甲大于乙B.乙大于甲C.甲等于乙D.无法比较18.(3分)(2003•丰台区)已知一条直线l和直线外的A、B两点,以A、B两点和直线上某一点做为三角形的三个顶点,就能画出一个等腰三角形,如图中的等腰三角形ABC.除此之外还能画出符合条件的()个等腰三角形.A.1B.2C.4D.3三、仔细推敲,认真辨析.(对的在括号内画“√”,错的画“×”)(3×5=15分)19.(3分)如果a>0,那么一定小于a._________.20.(3分)(2011•天门)车轮的直径一定,车轮的转数和它前进的距离成正比例._________.21.(3分)(2012•华亭县模拟)圆锥的体积比与它等底等高的圆柱的体积小._________.(判断对错)22.(3分)用4个1平方分米的正方形拼成一个正方形,大正方形的周长是16分米._________.23.(3分)(2011•天门)盒子里放4个球,上面分别写着2、3、5、7,任意摸一个球,如果摸到单数小丽胜,摸到双数小华胜,这个规则对小丽有利,她一定能赢._________.四、注意审题,巧思妙算.(写出主要计算过程)(16+12=28分)24.(16分)计算(1)×8××1.25(2)×1.25+×2.2﹣(3)÷〔(+)×〕(4)7.8÷[32×(1﹣)+3.6].25.(12分)求未知数x的值(1)x﹣x=4.9(2)0.36×5﹣x=(3):0.8=x:48.五、自己探究,动手操作.(共8分)26.(8分)如图,电车通过A站经过B站到C站,然后返回.去时在B站停车,而返回时不停.去时的车速为每小时48千米.(1)A站到B站相距_________千米,B站到C站相距_________千米.(2)返回时车速是每小时_________千米.(3)电车往返的平均车速是每小时_________千米.六、解答题(共33分)27.(8分)甲班有51人,乙班有49人,某次考试两班平均成绩是81分,乙班平均成绩比甲班平均成绩高7分,那么,乙班平均成绩是_________分.28.(8分)(2012•东莞市模拟)东辰中学植树节三个班植树,任务分配是:甲班要植三个班总数的40%,乙、丙两班植树棵数的比是4:3.当甲班植了200棵树时,正好完成三个班植树总棵数的.求丙班植树多少棵?29.(8分)(2011•济源模拟)把一个高3分米的圆柱体底面平均分成若干扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,长方体的表面积比圆柱体的表面积增加120平方厘米,原来圆柱体的体积是多少?30.(9分)某品牌出租车起步(3公里及3公里以内)价是6元,超过3公里而在7公里以内每公里按1.5元计价;7公里以上部分每公里再加价50%.旅客从西安火车站乘出租车到距离约8公里的“陕西省历史博物馆”,到达时应付多少车费?七、思维拓展.(6+4=10分)31.(6分)甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现金是其余三人所支付现金总数的,乙支付的现金比其他三人所支付的现金总数少50%,丙支付的现金占其他三人所支付的现金总数的,那么丁支付的现金是多少元?32.(4分)甲1分钟能洗3个盘子或9个碗,乙1分钟能洗2个盘子或7个碗,甲、乙两人合作,20分钟洗了134个盘子和碗.问:洗了几个盘子几个碗?2015年四川省绵阳市东富乐中学校小升初数学试卷参考答案与试题解析一、认真读题,谨慎填空(3×10=30分)1.(3分)如果a、b、c都是非零自然数,并且c>a>b.把这三个数按从大到小的顺序排列起来是>>.分析:分数的大小比较,分子相同的,分母小的那个分数大.据此从大到小排序.解答:解:的分母最小,所以最大;的分母最大,所以最小;所以>>.故答案为:>>.点评:此题考查分数的大小比较,解决此题的关键是分子相同的分母小的那个分数大,据此2.(3分)(2012•福州)如果a=b,那么a:b=3:4,a和b成正比例.反比例的意义,即可判定a和b成什么比例.解答:解:因为a=b,则a:b=:=3:4;又因=(值一定),所以a和b成正比例.故答案为:3、4,正.点评:解答此题的主要依据是:比例的基本性质和正比例的意义.3.(3分)如果海平面高度记为0米,比海平面高记为正,比海平面低记为负,A地的海拔高度为﹣35米表示比海平面低35米.4.(3分)3,0.8,1.2配上一个数就能组成比例,这个数可能是2、4.5、0.32.(要求填完整)5.(3分)老师包内有24支铅笔,下面是一个小朋友任意拿60次,每次记录的结果如下:蓝:正正正正正正正黄:正正正正正猜猜蓝、黄铅笔可能各有14,10支.的意义,分别求出包内蓝铅笔和黄铅笔的总支数,据此解答即可.解答:解:蓝铅笔:24×(35÷60),=24×;=14(支);黄铅笔:24×(25÷60),=24×,=10(支);答:蓝铅笔可能有14只,黄铅笔可能有10支;6.(3分)(2008•高邮市)2000名学生排成一排按1、2、3、4、5、6、7、6、5、4、3、2、1、1、2、3、4、5、6、7、6、5、4,、3,、2、1、…循环报数,则第2000名学生所报的数是3.7.(3分)(2011•天门)买一辆汽车,分期付款购买要多加价7%,如果现金购买可按九五折优惠.小新算完后发现分期付款比现金购买多付7200元,那么这辆汽车的原价是60000元.8.(3分)(2011•天门)一根2米长的圆柱体木材,锯成3段小圆柱后,它们的表面积总和比原来增加了12.56平方分米,原来这根木材的体积是62.8立方分米.9.(3分)一个半圆的周长是15.42cm,则这个半圆的面积是14.13平方厘米.10.(3分)如图,把一个平行四边形分成四个三角形,其中三角形甲的面积是15平方厘米,三角形乙的面积占平行四边形面积的,平行四边形的面积是150平方厘米.:平面图形的认识与计算.分析:由图意和乘法分配律可知:甲的面积+乙的面积=平行四边形的面积×,由此可以求出甲的面积占平行四边形的面积的分率,又由于甲的面积是15平方厘米,进而可求出平行四边形的面积.解答:解:由分析可得平行四边形的面积是:15÷(﹣),=15÷,=150(平方厘米).答:平行四边形的面积是150平方厘米.故答案为:150.点评:此题主要考查平行四边形的面积,三角形的面积.由等底的图形面积大小及乘法分配律的应用得到甲的面积+乙的面积=平行四边形的面积×是解题的关键.二、反复比较,择优录取.(将正确答案的番号填入题后括号内)(3×8=24分)11.(3分)给分数的分母乘以3,要使原分数大小不变,分子应加上()的大小不变,从而可以正确进行作答.解答:解:的分母乘以3,要使分数的大小不变,分子也要乘3;7×3=21,21﹣7=14,所以分子应加上14;故选C.点评:此题主要利用分数的基本性质解答问题,先观察分子或分母之间的变化,发现规律,12.(3分)(2005•上城区)一根3米长的钢材,截下,再截下,还剩().米D.米:压轴题.分析:据题意,截下,把3米看作单位“1”第一次截3米的,用乘法计算,第二次截下是截剩下的,把第一次截后剩下的看作单位“1”所以第二次截得是3×(1﹣)×,用3米,去掉两次截的米数即可.解答:解:3﹣3×﹣3×(1﹣)×,=3﹣﹣,=(米).答:还剩米.故选:D.点评:此题考查分数乘法应用题,关键找准单位“1”还要理解清楚第二次截下的是在第一次截后剩下的基础上截的.b克水中,此时糖水的含糖率是().C.D.:分数百分数应用题.分析:含糖率是指糖的重量占糖水总重量的百分比,计算方法是:×100%,先求出糖水的总重量,进而求解.解答:解:糖水的总重量是a+b;含糖率是:×100%;故选:C.点评:本题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘以百分之百.:比的意义;简单的行程问题.分析:根据“路程÷时间=速度”分别求出甲车的速度为,乙车速度为,求甲车速度比乙车慢百分之几,根据“(大数﹣小数)÷单位“1”的量”进行解答,进而选择即可.解答:解:(﹣)÷,=(﹣)÷,=×8,=20%;故选:B.点评:解答此题的关键:把路程看作单位“1”,根据“(大数﹣小数)÷单位“1”的量”进行解答,15.(3分)将甲组人数的拨给乙组,则甲、乙两组人数相等.原来甲、乙两组人数的比是:比和比例;分数百分数应用题.分析:把甲组人数的拨给乙组,甲、乙两组人数相等,说明甲班人数比乙班人数多甲班人数的(×2)=,把甲班人数看作单位“1”,则乙班人数是甲班人数的(1﹣),进而根据题意,进行比即可.解答:解:1:(1﹣×2),=1:,=5:3;故选:B.点评:解答此题的关键:判断出单位“1”,转化为同一单位“1”下进行比,然后化为最简整数16.(3分)把棱长为6厘米的正方体木块分割成棱长为2厘米的小正方体,可分成()17.(3分)在如图梯形中,两个阴影部分的面积相比()因为△ABC与△DBC同底,等高,所以面积相等,由此都减去共同的面积△BOC,剩下的面积:甲=乙,故选:C.点评:本题考查了运用等底等高的两个三角形的面积相等,进行三角形的面积大小的比较.18.(3分)(2003•丰台区)已知一条直线l和直线外的A、B两点,以A、B两点和直线上某一点做为三角形的三个顶点,就能画出一个等腰三角形,如图中的等腰三角形ABC.除此之外还能画出符合条件的()个等腰三角形.A.1B.2C.4D.3三、仔细推敲,认真辨析.(对的在括号内画“√”,错的画“×”)(3×5=15分)19.(3分)如果a>0,那么一定小于a.×.分析:根据题意,假设这个数是1,再根据题意判断即可.解答:解:a=1时,=1;所以a=1时,=a;故答案为:×.点评:利用反证法,根据倒数的知识,找出一个与题意不符的自然数进行判断即可.20.(3分)(2011•天门)车轮的直径一定,车轮的转数和它前进的距离成正比例.正确.21.(3分)(2012•华亭县模拟)圆锥的体积比与它等底等高的圆柱的体积小.正确.(判断对错):压轴题.分析:因为圆锥体的体积等于和它等底等高的圆柱体体积的,把圆柱体体积看做单位“1”,圆锥体的体积就是,所以圆锥的体积比与它等底等高的圆柱的体积小1﹣=.解答:解:1﹣=.故答案为:正确.点评:此题根据“圆锥体的体积等于和它等底等高的圆柱体体积的”,找出单位“1”,即可解答.22.(3分)用4个1平方分米的正方形拼成一个正方形,大正方形的周长是16分米.错误.解答:解:组成后的图形是边长是1+1=2(分米),周长是:2×4=8(分米);大正方形的周长是16分米错误.故答案为:错误.点评:本题考查了图形的拼组及正方形的周长公式的运用.23.(3分)(2011•天门)盒子里放4个球,上面分别写着2、3、5、7,任意摸一个球,如果摸到单数小丽胜,摸到双数小华胜,这个规则对小丽有利,她一定能赢.×.以这种说法不正确.解答:解:1÷4=;3÷4=;>;答:小丽赢的可能性很大,但并不是一定能赢.故答案为:×.点评:对于这类题目,判断的标准,是看这种情况出现的可能性,只要可能性不是百分之百,四、注意审题,巧思妙算.(写出主要计算过程)(16+12=28分)24.(16分)计算(1)×8××1.25(2)×1.25+×2.2﹣(3)÷〔(+)×〕(4)7.8÷[32×(1﹣)+3.6].最后算括号外的除法.解答:解:(1)×8××1.25,=(×)×(8×1.25),=×10,=16;(2)×1.25+×2.2﹣,=1.8×1.25+1.25×2.2﹣1.25×1,=(1.8+2.2﹣1)×1.25,=3×1.25,=3.75;(3)÷[(+)×],=÷[×],=×,=;(4)7.8÷[32×(1﹣)+3.6],=7.8÷[32×+3.6],=7.8÷[12+3.6],=7.8÷15.6,=0.5.点评:本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行25.(12分)求未知数x的值(1)x﹣x=4.9(2)0.36×5﹣x=(3):0.8=x:48.:简易方程.分析:(1)运用乘法分配律改写成(﹣)x=4.9,即x=4.9,根据等式的性质,两边同乘即可;(2)先求出0.36×5=1.8,原式变为1.8﹣x=,根据等式的性质,两边同加上x,得0.6+x=1.8,两边同减去0.6,再同乘即可;(3)先根据比例的性质改写成0.8x=×48,再根据等式的性质,两边同除以0.8即可.解答:解:(1)x﹣x=4.9,(﹣)x=4.9,x=4.9,x×=4.9×,x=10.5;(2)0.36×5﹣x=,1.8﹣x=,1.8﹣x+x=+x,0.6+x=1.8,0.6+x﹣0.6=1.8﹣0.6,x=1.2,x×=1.2×,x=1.6;(3):0.8=x:48,0.8x=×48,0.8x÷0.8=8÷0.8,五、自己探究,动手操作.(共8分)26.(8分)如图,电车通过A站经过B站到C站,然后返回.去时在B站停车,而返回时不停.去时的车速为每小时48千米.(1)A站到B站相距3千米,B站到C站相距4千米.(2)返回时车速是每小时72千米.(3)电车往返的平均车速是每小时57.6千米.(3)用总路程除以行驶的总时间就是平均速度.解答:解:(1)4分钟=小时;48×==3(千米),10﹣5=5(分钟);5分钟=小时,48×=4(千米),答:A站到B站的距离3千米;B站到C站相距4千米.(2)19﹣13=6分钟=小时,(3+4)÷,=÷,=72(千米);答:返回的速度是72千米.(3)4+5+6=15(分钟)=(小时);(3+4)×2÷,=×2×4,=,=57.6(千米);答:电车往返的平均速度是57.8千米.故答案为:(1)3,4;(2)72;(3)57.6.点评:此题首先根据问题从图中找出所需要的信息,然后根据数量关系式:“速度×时间=路六、解答题(共33分)27.(8分)甲班有51人,乙班有49人,某次考试两班平均成绩是81分,乙班平均成绩比甲班平均成绩高7分,那么,乙班平均成绩是84.57分.28.(8分)(2012•东莞市模拟)东辰中学植树节三个班植树,任务分配是:甲班要植三个班总数的40%,乙、丙两班植树棵数的比是4:3.当甲班植了200棵树时,正好完成三个班植树总棵数的.求丙班植树多少棵?:分数百分数应用题.分析:先把总数看成单位“1”,它的对应的数量是200棵;由此用除法求出总棵数;甲班要植三个班总数的40%,那么乙班和丙班共占总数的(1﹣40%);由此求出乙班和丙班植的棵数和,把这个和按照4:3的比例分配即可.解答:解:(200)×(1﹣40%),=700×60%,=420(棵);3+4=7;420×=180(棵);答:丙班植树180棵.点评:本题先找出单位“1”,求出乙丙两班的植树和,然后按照比例分配的方法求解.29.(8分)(2011•济源模拟)把一个高3分米的圆柱体底面平均分成若干扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,长方体的表面积比圆柱体的表面积增加120平方厘米,原来圆柱体的体积是多少?30.(9分)某品牌出租车起步(3公里及3公里以内)价是6元,超过3公里而在7公里以内每公里按1.5元计价;7公里以上部分每公里再加价50%.旅客从西安火车站乘出租车到距离约8公里的“陕西省历史博物馆”,到达时应付多少车费?七、思维拓展.(6+4=10分)31.(6分)甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现金是其余三人所支付现金总数的,乙支付的现金比其他三人所支付的现金总数少50%,丙支付的现金占其他三人所支付的现金总数的,那么丁支付的现金是多少元?:分数、百分数复合应用题.分析:甲支付的现金是其余三人所支付现金总数的,那么甲:其余=1:4,那么甲就付了全部的,同理可得乙占全部的,丙占全部的,那么丁就占全部的:1﹣﹣,用总钱数乘丁占的分数就是丁付的钱数.解答:解:甲:其余三人=1:4,甲占总数的,乙:其余三人=(1﹣50%):1=1:2,那么乙占总数的,丙:其余三人=1:3,丙占总数的,丁应支付现金:4200×(1﹣﹣)=4200×,=910(元);答:丁付的现金是910元.点评:本题先通过甲、乙、丙与它们之外的三人之间的关系找出它们分别占总数的几分之几,32.(4分)甲1分钟能洗3个盘子或9个碗,乙1分钟能洗2个盘子或7个碗,甲、乙两人合作,20分钟洗了134个盘子和碗.问:洗了几个盘子几个碗?。
2015年四川高考数学试卷试卷及参考答案(理科)word版
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i- =( ) A.3.执行如图所示的程序框图,输出S 的值是( ) A.32 B.3212D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考真题数学试题(四川+上海卷-含答案解析)
【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数
的基本概念及四则运算即可.
3.执行如图所示的程序框图,输出 S 的值是(
)
(A) - 3 2
(B) 3 2
(C)-
(D)
1
2015 年高考真题数学试题
【答案】D
【考点定位】程序框图. 【名师点睛】程序框图也是高考的热点,几乎是每年必考 内容,多半是考循环结构,基本方法是将每次循 环的结果一一列举出来. 4.下列函数中,最小正周期为且图象关于原点对称的函数是( )
ab
代入这个渐近线方程,便可得
6.用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000大的偶数共有( )
(A)144个
(B)120个
(C)96个
(D)72个
【答案】B
【考点定位】排列组合. 【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位 与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.
本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识
y x 的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.
10.设直线 l与抛物线 2 4 相交于 A,B两点,与圆
2 y2 r2
相切于点 M,且 M 为线段
AB的中点.若这样的直线 l 恰有 4 条,则 r 的取值范围是(
问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常
采用“点差法”.在本题中利用点差法可得,中点必在直线
x3 上,由此可确定中点的纵坐标 y
2015年高考理科数学四川卷-答案
2015年普通高等学校招生全国统一考试(四川卷)满足3BM MC =,2DN NC =,∴根据图形可得:3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++,22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴221312316AM NM AB AD =-=-【提示】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,2()AM NM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.k kM 在线段PQ 上,设(0,,2)M y ∴(1,EM =-,(2,1,0)AF =,55y EM AF y =;2445)y ++,设25)t =+,整理得:5EM AF得到从而可求出向量EM,AF的坐标,,【考点】异面直线及其所成的角112++=2n>.1000方法二:以D 为坐标原点,轴建立空间坐标系如图:则(2,2,0)GE =-,(1,0,2)MG =-的法向量为(x,y,z)n =0n GE n MG ⎧=⎪⎨=⎪⎩,即,得(2,2,1)n =,AEGC ,则(1,1,0)n DO ==224,3||||92m n m n m n +==⨯M -的余弦值为2222sin 1cos sin A A-=cos AB AD A ,cos BC CD C ,22cos 2cos AB AD A BC CD BC CD C =+-,226532(AB AD BC CD)2(6534)7AD BC CD --+--=+⨯+÷7A =,连结AC 632(AB CD)2(6BC AD CD BC ADF +--+=+⨯。
四川省雅安市高二数学下学期期末试卷 文(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合S={x|x>﹣3},T={x|﹣6≤x≤1},则S∪T=()A.[﹣6,+∞)B.(﹣3,+∞)C.[﹣6,1] D.(﹣3,1]2.设i是虚数单位,则复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.命题“∀x∈R,总有x2+1>0”的否定是()A.“∀x∉R,总有x2+1>0”B.“∀x∈R,总有x2+1≤0”C.“∃x∈R,使得x2+1≤0”D.“∃x∈R,使得x2+1>0”4.“sinα=cosα”是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知函数则的值是()A.10 B.C.﹣2 D.﹣56.阅读程序框图,若使输出的结果不大于11,则输入的整数i的最大值为()A.3 B.4 C.5 D.67.已知函数y=2sin2(x+)﹣cos2x,则函数的最小正周期T和它的图象的一条对称轴方程是()A.T=2π,一条对称轴方程为x=B.T=2π,一条对称轴方程为x=C.T=π,一条对称轴方程为x=D.T=π,一条对称轴方程为x=8.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9支出y(万元) 5.2 6.5 7.0 7.5 8.8根据上表可得回归直线方程=x+,其中=0.76, =﹣,据此估计,该社区一户收入为15万元家庭年支出为()万元.A.10.8 B.11.8 C.12.8 D.9.89.已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A.f(x)=2cos(﹣)B.f(x)=cos(4x+)C.f(x)=2sin(﹣)D.f(x)=2sin(4x+)10.设复数z=(x﹣1)+(y﹣)i,(x,y∈R),若|z|≤2,则y≤x的概率为()A.B.C.D.11.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A. B. C.D.12.已知定义在R上的函数f(x)满足f(1)=1,且f(x)的导数f′(x)在R上恒有f′(x)<,则不等式f(x)<x+的解集为()A.(1,+∞)B.(﹣∞,﹣1) C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分,共20分。
2015年四川省高考数学试题及答案【解析版】
2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。
四川高考文科数学试题及答案(word)
3、为了得到函数y 二sin (x ・1)的图象,只需把函y =sin x 的图象上所有的点(A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度 C 向左平行移动二个单位长度D 、向右平行移动■:个单位长度 4、 某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是(1体体积公式:v Sh ,其中S 为底面面积,h 为高)3A 、3B 、2C 、3 D 、15、 若 a b 0 , c d 0 ,则一定有() a b a bA 、B 、:: 一de de1 / 102014年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷(选择题共50分)一、选择题:本大题共 10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目 要求的。
1已知集合 A 二{x|(x ・1)(x-2)岂0},集合B 为整数集,则 A 「| B 二()A 、{-1,0}B 、{0,1}C {-2, -1,0,1}D > {-1,0,1,2}2、在“世界读书日’前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了进行统计分析。
在这个问题中,5000名居民的阅读时间的全体是()A 、总体B 、个体C 样本的容量D 、从总体中抽取的一个样本200名居民的阅读时间)(锥侧视图a b a bC、D、cd cd6、执行如图的程序框图,如果输入的x,r R,那么输出的S的最大值为()A、0 B 1C、2D、37、已知b・0, log5b二a , Igb二c , 5d =10,则下列等式一定成立的是()A、d = acB、a = cd C c = ad D、d = a c8、如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30”,此时气球的高是60cm,则河流的宽度BC 等于(60mA、240(血—1)mB、180(运—1)m 1B --------------------- :C 120( ,3-1)m D、30( .3 1)m9、设R,过定点A的动直线x,my=0和过定点B的动直线mx-y-m,3=0交于点P(x, y),贝U|PA| | PB |的取值范围是()A、[、、5,2 5]B、[10,2'.5]C、[、10,4、5]D、[2 \ 5,4 .5]10、已知F为抛物线/二x的焦点,点A , B在该抛物线上且位于x轴的两侧,OA OB = 2 (其中O为坐标原点),则^ABO与AFO面积之和的最小值是()第H卷(非选择题共100 分)、填空题:本大题共5小题,每小题5分,共25分。
2015年全国高考理科数学试题及答案-四川卷
2015年普通高等学校招生全国统一考试(四川)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i-=( ) A.-i B.-3i C.i.D.3i3.执行如图所示的程序框图,输出S 的值是( )A.32-B.32 C.-12D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+D. sin cos y x x =+5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A)43(B )23 (C )6 (D )43 6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个7. 设四边形ABCD 为平行四边形,6AB =u u u r ,4AD =u u u r.若点M ,N 满足3BM MC =u u u u r u u u u r ,2DN NC =u u u r u u u r ,则.AM NM =u u u u r u u u u r( )(A )20 (B )15 (C )9 (D )68.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9. 如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( ) (A )16(B )18 (C )25(D )81210. 设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11. 在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 12. sin15sin 75+o o 的值是 .13. 某食品的保鲜时间y (单位:小时)与储存温度x (单位:C ο)满足函数关系bkx e y +=(Λ718.2=e 为自然对数的底数,k 、b 为常数)。
2015年四川省高考数学试卷(理科)答案与解析
2015年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()通分得出,∴==i3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()﹣的值为=,的值为.)2x+)sin)sin x+5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的B=1=1,6.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比400007.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()=+=,=,()2满足根据图形可得:+==∴=,∵•=﹣,22=22||=4∴22a b或∴<9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()([[[,)([[,[,)=[],②③即或,==k=2x=2x =.,=10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围,=,所以2二、填空题:本大题共5小题,每小题5分,共25分。
11.(5分)(2015•四川)在(2x﹣1)5的展开式中,含x2的项的系数是﹣40(用数字填写答案).12.(5分)(2015•四川)sin15°+sin75°的值是.(sin60.故答案为:13.(5分)(2015•四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.14.(5分)(2015•四川)如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为.,从而可求出向量=,对函数求导,根据导数符号即可判断该函数∴=;=;.故答案为:.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).,﹣)递减,在(,三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试(四川卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =(A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 2、设向量a =(2,4)与向量b =(x,6)共线,则实数x =(A)2 (B)3 (C)4 (D)63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法 4、设a,b 为正实数,则“a >b >1”是“22log log 0a b >>”的(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件 5、下列函数中,最小正周期为π的奇函数是(A)y =sin(2x +2π) (B)y =cos(2x +2π) (C)y =sin2x +cos2x (D)y =sinx +cosx 6、执行如图所示的程序框图,输出S 的值为(A)(C)-12 (D) 127、过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则|AB|=8、某食品保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e += (e =2.718…为自然对数的底数,,k b 为常数)。
若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时 ,则该食品在33℃的保鲜时间是(A)16小时 (B)20小时 (C)24小时 (D)28小时9、设实数x,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为(A)252 (B) 492(C)12 (D)16 10、设直线l 与抛物线24y x =相交于,A B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4) 二、填空题:本大题共5小题,每小题5分,共25分。
11、设i 是虚数单位,则复数1i i-=_____________. 12、2lg0.01log 16+的值是_____________.13、已知sin 2cos 0a a +=,则22sin cos cos a a a -的值是______________.14、在三棱柱111ABC A B C -中,90BAC ∠=,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点,,M N P 分别是棱11,,AB BC B C 的中点,则三棱锥1P A MN -的体积是______.15、已知函数2()2,()x f x g x x ax ==+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数12,x x ,都有0m >; ②对于任意的a 及任意不相等的实12,x x ,都有0n >;③对于任意的a ,存在不相等的实数12,x x ,使得m n =; ④对于任意的a ,存在不相等的实数12,x x ,使得m n =-。
其中真命题有___________________(写出所有真命题的序号)。
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16、(本小题满分12分)设数列{}n a (n=1,2,3…)的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列。
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .17、(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客12345,,,,P P P P P 的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车,乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法。
下表给出其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处)(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率。
18、(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示。
(Ⅰ)请按字母,,F G H 标记在正方体相应地顶点处(不需说明理由);(Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论;(Ⅲ)证明:直线DF ⊥平面BEG19、(本小题满分12分)已知A 、B 、C 为ABC ∆的内角,tan ,tan A B 是关于方程210()x p p R -+=∈的两个实根.(Ⅰ)求C 的大小;(Ⅱ)若3,AB AC ==p 的值20、(本小题满分13分)如图,椭(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于,A B 两点。
求λ的值;若不存在,请说明理由。
21、(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 为()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.参考答案一、选择题:本题考查基本概念和基本运算。
每小题5分,满分50分。
1.A2.B3.C4.A5.B6.D7.D8.C9.A10.D二、填空题:本题考查基本概念和基本运算。
每小题5分,满分25分。
11. 2i12. 213. -114.12415. ①④三、解答题:共6小题,共75分。
16.本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力。
解:(Ⅰ)由已知12n n S a a =-,有1122(2)n n n n n a S S a a n --=-=-≥,即12(2)n n a a n -=≥ 从而213212,24a a a a a ===又因为123,1,a a a +成等差数列,即1322(1).a a a +=+ 所以11142(21)a a a +=+,解得12a =所以,数列{}n a 是首项为2,公比为2的等比数列 故2n n a = (Ⅱ)由(Ⅰ)得112n n a = 所以211[1()]111122 (11222212)n n n nT -=+++==-- 17.本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决实际问题的能力,考查推理论证能力、应用意识。
(Ⅰ)余下两种坐法如下表所示:(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为:于是,所有可能的坐法共8种。
设“乘客5P 坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4 所以41()82P A == 答:乘客5P 坐到5号座位的概率是1218.本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力。
(Ⅰ)点,,F G H 的位置如图所示。
(Ⅱ)平面//BEG 平面ACH ,证明如下:因为ABCD EFGH -为正方体,所以//,BC FG BC FG =, 又//,FG EH FG EH =,所以//,BC EH BC EH =,于是BCHE 为平行四边形 所以//BE CH又CH ⊂平面,ACH BE ⊄平面ACH , 所以//BE 平面ACH 同理//BG 平面ACH 又BE BG B =所以平面//BEG 平面ACH (Ⅲ)连接FH因为ABCD EFGH -为正方体,所以DH ⊥平面EFGH 因为EG ⊂平面EFGH ,所以DH EG ⊥又,EG FH EG FH O ⊥= ,所以EG ⊥平面BFHD 又DF ⊂平面BFHD ,所以DF EG ⊥ 同理DF BG ⊥ 又EG BG G = , 所以DF ⊥平面BEG19. 本题主要考查和角公式、诱导公式、正弦定理等基础知识,考查运算求解能力,考查函数与方程、化归与转化等数学思想。
(Ⅰ)由已知,方程210x p -+=的判别式22)4(1)3440p p p ∆=--+=+-≥所以2p ≤-或23p ≥由韦达定理,有tan tan ,tan tan 1A B A B p +==- 于是1tan tan 1(1)0A B p p -=--=≠,从而tan tan tan()1tan tan A B A B A B P++===-所以tan tan()C A B =-+=,所以60C =(Ⅱ)由正弦定理,得sin sin AC C B AB ===, 解得45B = ,或135B =(舍去) 于是18075A B C =--=则1tan 45tan 30tan tan 75tan(4530)21tan 45tan 30A ++==+===+-所以tan )1)1p A B =+==-20.本题主要考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想。
(Ⅰ)由已知,点,C D 的坐标分别为(0,),(0,)b b -又点P 的坐标为(0,1),且1PC PD =-,于是222211,2.b caa b c ⎧-=-⎪⎪=⎨⎪⎪-=⎩解得2,a b ==所以椭圆E 方程为22142x y += (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1,,y kx A B =+的坐标分别为1122(,),(,)x y x y联立221,421,x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-= 其判别式22(4)8(21)0k k ∆=++>,所以,12122242,2121k x x x x k k +=-=-++ 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++--21212(1)(1)()1k x x k x x λ=+++++22(24)(21)21k k λλ--+--=+21221k λλ-=---+所以,当1λ=时,212321k λλ----=-+此时,3OA OB PA PB λ+=- 为定值当直线AB 斜率不存在时,直线AB 即为直线CD此时,213OA OB PA PB OC OD PC PD λ+=+=--=- 故存在常数1λ=,使得OA OB PA PB λ+ 为定值3-21.本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合、化归与转化等数学思想。