数学建模入门知识
数学建模知识点
数学建模知识点
以下是 7 条关于数学建模知识点:
1. 什么是函数呀?就像汽车的速度和行驶距离的关系,你给它一个速度,它就能通过时间算出跑了多远,这就是函数在发挥作用。
比如咱们做成本和利润的分析,不就是找出那个能告诉我们怎么赚钱的函数嘛!
2. 线性规划可太重要啦!想象一下,你要安排很多事情,怎么才能让资源利用最大化呢?就像搭积木,得找个最稳最好的方式去摆。
比如说要安排生产任务,怎么分配人力和时间,才能达到最高效率呢!
3. 概率这东西很神奇哦!就好比抽奖,你永远不知道下一次会不会中,但可以算出大概的可能性。
像是判断明天会不会下雨的概率,难道不有趣吗?
4. 统计可真是个好帮手!它就像个细心的记录员,把各种数据整理得清清楚楚。
就像统计一个班级里同学们的成绩分布,这样不就能看出大家的学习情况啦?
5. 模型检验呀,那可不能马虎!这就像你买了个新东西,得试试它好不好用。
比如我们建了个预测销量的模型,得看看预测得准不准呀!
6. 微分方程也很有意思哟!就像研究事物变化的规律。
比如传染病的传播,通过微分方程就可以模拟它怎么扩散的。
哇,是不是很神奇?
7. 建模的思路那得清晰呀!不能乱了阵脚。
就像你要去一个陌生地方,得先规划好路线。
比如碰到一个实际问题,得想清楚从哪里开始,怎么一步一步解决,这就是好的思路的重要性!
我的观点结论是:数学建模知识点丰富有趣又实用,学会了能解决好多实际问题呢!。
零基础学会数学建模
数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
数学建模基础知识
数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。
它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。
在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。
一、概率与统计概率与统计是数学建模的基础。
概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。
在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。
1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。
离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。
在选择概率模型时,需要根据实际问题的特点进行合理选择。
1.2 统计方法统计方法用于从观测数据中推断总体的特征。
在数学建模中,经常需要根据样本数据对总体参数进行估计。
常用的统计方法包括点估计和区间估计。
点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。
另外,假设检验和方差分析也是数学建模中常用的统计方法。
二、线性代数线性代数是数学建模的重要工具之一。
它研究线性方程组的解法、向量空间与线性变换等概念。
在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。
线性代数还广泛应用于图论、网络分析等领域。
2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。
求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。
2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。
数学建模常用知识点总结
数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。
可以进行加法、减法和数乘运算。
1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。
1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。
1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。
1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。
1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。
1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。
1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。
1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。
1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。
1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。
1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。
1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。
二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。
2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。
2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。
数学建模基础
数学建模基础
数学建模是指利用数学方法和技巧对实际问题进行抽象和
描述,并通过建立数学模型来研究问题的方法。
数学建模
基础主要包括以下几个方面:
1. 数学知识:数学建模需要掌握一定的数学知识,包括数
学分析、线性代数、概率论与数理统计、微分方程等。
这
些数学知识可以帮助建模者理清问题的结构和逻辑关系,
从而构建合理的数学模型。
2. 数据分析能力:数学建模过程中需要处理和分析大量的
实际数据,包括收集数据、整理数据、统计分析数据等。
因此,建模者需要具备一定的数据分析能力,如数据挖掘、统计分析等。
3. 系统思维能力:数学建模需要从整体上把握问题的本质
和复杂性,涉及到系统思维能力。
建模者需要能够将问题
拆解成多个子问题,并对它们进行分类、分析和优化,最
终求解整个问题。
4. 编程能力:在数学建模中,常常需要使用计算机编程来实现数学模型的求解。
因此,建模者需要具备一定的编程能力,如使用MATLAB、Python等编程语言进行算法实现和数据处理。
5. 创新能力:数学建模是解决实际问题的方法,需要建模者拥有一定的创新能力。
建模者需要能够运用已有的数学理论和方法,创造性地将其应用于实际问题,并提出新的解决方案。
综上所述,数学建模基础包括数学知识、数据分析能力、系统思维能力、编程能力和创新能力等方面。
这些基础能力是进行有效数学建模的必备条件。
数学建模入门知识
2008 数码相机定位
2009
制动器试验台的 控制方法分析
眼科病床的合理 安排
2010年上海世博 会影响力的定量 评估 交巡警服务平台 的设置与调度
卫星和飞船的跟 踪测控
输油管的布置 企业退休职工养 老金制度的改革
储油罐的变位识 2010 别与罐容表标定 2011 城市表层土壤重 金属污染分析
2012 葡萄酒的评价
1.4 数学建模的意义
•在一般工程技术领域数学建模仍然大有用武之地; •在高新技术领域数学建模几乎是必不可少的工具; •进入一些数学的新领域,为数学建模开辟了新处女地: 诸如经济、生态、人口、地质等领域。
Chap2 数模竞赛简介
01 数模竞赛的来源 05 数模竞赛的概况 02 数模竞赛的流程 06 数模竞赛的赛题 数模竞赛的知识储备 03 数模竞赛与优研 07 (西电) 04 数模竞赛类别 08 数模竞赛的素质要求
3.2 数学建模的论文撰写
0. 摘要
• • • • a. 模型的数学归类(在数学上属于什么类型) b. 建模的思想(思路) c. 算法思想(求解思路) d. 建模特点(模型优点,建模思想或方法,算法特点,结果 检验,灵敏度分析,模型检验…….) • e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法;符合打印文章 格式; 校对:务必认真。
刊登于次年“数学的实践与认识” 第1期
3.获得高水平学科竞赛奖的学生 满足以下条件之一即可: (1)ACM/ICPC国际大学生程序设计竞赛亚 洲区分站赛银奖及以上获得者; (2)全国大学生电子设计竞赛省级一等奖及 以上获得者; (3)全国大学生电子设计竞赛嵌入式系统专 题邀请赛、信息安全专题邀请赛和模拟电子 系统专题邀请赛国家二等奖及以上获得者; (4)全国大学生工程训练综合能力竞赛国家 二等奖及以上获得者; (5)美国大学生数学建模竞赛一等奖及以上 获得者;全国大学生数学建模竞赛国家一等 奖获奖学生;全国大学生数学建模竞赛国家 二等奖获奖学生且同时获得美国大学生数学 建模竞赛国际二等奖以上奖项1项;全国大学 生数学竞赛全国最高奖项获奖学生; (6)全国大学生“挑战杯”科技作品竞赛一 等奖前三名,二等奖前二名;全国大学生 “挑战杯”创业大赛一、二等奖第一名获奖 学生。
数学建模入门
数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。
随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。
本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。
一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。
只有准确定义问题,才能制定合理的建模方法。
2. 收集信息:在开始建模之前,需要收集相关的信息和数据。
这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。
3. 建立模型:建立模型是数学建模的核心步骤。
根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。
4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。
通过数值计算、优化算法等方法,得到问题的解析结果或近似解。
5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。
如果模型与实际情况有出入,需要对模型进行修正和完善。
6. 结果分析:分析模型的结果,得出对问题的解释和结论。
根据结果进行决策,提出相应的对策和建议。
二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。
包括概率分布、假设检验、回归分析等技术。
2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。
常见的最优化算法包括线性规划、整数规划、动态规划等。
3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。
通过建立微分方程模型,可以预测系统的未来发展趋势。
4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。
通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。
5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。
通过图论和网络模型,可以分析复杂系统的结构和性质。
数学建模方法知识点总结
数学建模方法知识点总结一、问题分析和建模1.问题分析数学建模的第一步是对实际问题进行分析和理解。
这包括确定问题的背景和范围,理解问题的关键要素,分析问题的复杂程度和不确定性,并确定问题的数学建模的可行性和必要性。
在问题分析阶段,需要充分调研、分析和理解现实世界中的问题,并准确把握问题的本质和特点,为建模和求解奠定基础。
2.建模的基本步骤建模的基本步骤包括确定问题的数学模型的类型,选择合适的数学模型,建立数学模型,进行模型的分析和求解,验证模型的有效性和适用性。
在建模的过程中,需要充分考虑问题的实际背景和要求,选择合适的数学工具和方法,保证模型的准确性和实用性。
3.模型假设在建立数学模型时,需要明确模型的假设,包括输入变量和输出变量,模型的非线性程度,问题的约束条件等。
模型假设的准确性和合理性对于模型的可靠性和有效性至关重要。
二、数学建模的数学方法1.微积分微积分是数学建模中最基本和最常用的工具之一,包括导数、积分、微分方程等。
在建立数学模型和求解问题时,常常涉及到对函数的求导和积分,微分方程的建立和求解等。
2.线性代数线性代数是数学建模中重要的数学工具,包括矩阵和向量的理论和方法,线性方程组的求解,特征值和特征向量的计算等。
在建模和求解问题时,常常需要用到线性代数的知识和方法。
3.概率论与统计学概率论和统计学是数学建模中涉及到的另一个重要领域,包括概率分布,随机变量,样本统计量,假设检验等。
在建立数学模型和分析问题时,需要考虑问题的不确定性和随机性,因此概率论和统计学的知识和方法非常重要。
4.优化方法优化方法是数学建模中用于求解最优化问题的重要工具,包括线性规划、非线性规划、整数规划等。
在建模和求解问题时,常常需要考虑优化问题,选择合适的优化方法进行求解。
5.离散数学与图论离散数学和图论是数学建模中用于处理离散结构和关系的重要工具,包括图的表示和遍历,图的匹配和覆盖,图的着色和路径等。
在建模和求解问题时,常常需要用到离散数学和图论的知识和方法。
数学建模知识点总结
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
初中数学建模知识点
初中数学建模知识点1.变量和函数:了解变量和函数的概念,学会用变量和函数来描述和分析问题,从而构建数学模型。
2.图形与数据的表示与分析:学习使用图表和数据来表示和分析问题。
常见的图表包括折线图、柱状图、饼图等,用于展示数据的分布、变化和比较。
3.数据统计与概率:学习如何收集和整理数据,了解常用的统计方法,如平均数、中位数、众数等。
概率是指根据已知信息,对事件发生的可能性进行估计和计算。
4.几何与图形:学习几何图形的性质、分类和测量方法,如直角三角形、平行四边形、圆等,以及面积、周长、体积等概念。
同时,还需要学习如何将几何图形应用到实际问题中,如计算房屋的面积、建筑物的体积等。
5.代数方程与不等式:学习解一元一次方程、一元二次方程和简单的不等式,掌握解方程和不等式的方法和技巧。
同时,还需要学习如何将实际问题转化为代数方程或不等式,并解决它们。
6.线性关系与函数:学习线性函数和一些常见的非线性函数,如二次函数、指数函数和对数函数等。
掌握函数的特性、图像和性质,学会将实际问题转化为函数的描述和应用。
7.最优化问题:学习如何寻找最优解,如最大值、最小值等。
学习使用函数模型和约束条件来描述最优化问题,并运用数学方法求解这些问题。
8.抽象建模与推理:学习如何抽象具体问题,建立抽象模型,并运用推理方法解决问题。
学习逻辑推理、思维导图等工具,将繁杂的问题简化,分解,找到解决问题的思路和方法。
9.数学工具的应用:学习如何使用数学工具解决实际问题,如计算器、电脑软件、数学仿真等。
同时,还需要学习正确使用数学工具,合理选择工具,并对结果进行合理的解读和分析。
10.数学建模的思维方法:学习数学建模的思维方法和策略,如拆解问题、归纳和演绎法等。
培养分析问题、提炼问题、解决问题的能力,还要培养创新思维,培养独立思考和解决问题的能力。
以上是初中数学建模的一些重要知识点,通过学习和掌握这些知识点,能够更好地应用数学知识解决实际问题,提高数学建模的能力。
数学建模入门知识共25页
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
数学建模入门知识
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
数学建模基础知识
数学建模基础知识一、数学基础数学建模是使用数学语言描述实际问题并建立模型的过程。
因此,掌握一定的数学基础知识是进行数学建模的关键。
这包括高等数学、线性代数、概率论与数理统计等学科的基础知识。
1. 高数学是数学建模的基础,主要包括极限、微积分、级数、微分方程等知识。
这些知识在模型构建和数值计算中有着广泛的应用。
2. 线性代数是研究线性方程组的科学,它提供了解决多变量问题的基本工具。
在模型构建和数据处理中,线性代数可以帮助我们理解和操作空间向量、矩阵等重要概念。
3. 概率论与数理统计是研究随机现象的数学科学。
在数据处理和问题解决中,概率论与数理统计的知识可以帮助我们理解和分析不确定性,从而更好地解决问题。
二、模型构建模型构建是数学建模的核心,它包括以下步骤:1. 问题分析:对实际问题进行深入分析,明确问题的主要矛盾和次要矛盾,找到问题的核心。
2. 模型假设:根据问题分析的结果,提出合理的假设,为模型构建提供基础。
3. 模型建立:根据假设,使用数学语言描述实际问题,建立数学模型。
4. 模型验证:将建立的模型用于实际问题,进行数据分析和预测,验证模型的准确性和可靠性。
三、数值计算数值计算是数学建模中不可或缺的一部分,它包括以下步骤:1. 算法设计:根据问题的特点,设计合适的算法,以实现模型的数值计算。
2. 编程实现:使用适当的编程语言实现算法,进行数值计算。
常用的编程语言包括Python、C++、Java等。
3. 结果分析:对计算结果进行分析和解释,为问题解决提供依据。
四、数据处理数据处理是数学建模中非常重要的一环,它包括以下步骤:1. 数据收集:根据实际问题的需要,收集相关的数据。
这可能包括历史数据、调查数据、实验数据等。
2. 数据清洗:对收集到的数据进行清洗和处理,去除无效和错误的数据,确保数据的准确性和完整性。
3. 数据转换:将清洗后的数据进行转换,使其更符合建模需要。
这可能包括数据的缩放、标准化、归一化等操作。
数学建模知识大全
问题—给定一批数据点(输入变量与输出变量的数据),需确定满足特定要求的曲线或曲面
插值问题—要求所求曲线(面)通过所给所有数据点
数据拟合—不要求曲线(面)通过所有数据点,而是要求它反映对象整体的变化趋势
数据拟合
一元函数拟合
·多项式拟合
·非线性函数拟合
多元函数拟合(回归分析)
MATLAB实现
函数的确定
插值方法
一维插值的定义—已知n个节点,求任意点处的函数值。
分段线性插值
多项式插值
样条插值
y=interp1(x0,y0,x,'method')
二维插值—节点为网格节点
z=interp2(x0,y0,z0,x,y,'method')
·逐步回归分析
逐步回归分析—从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程
当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉
引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步
对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量
图的匹配问题
人员分派问题:n个工作人员去做件n份工作,每人适合做其中一件或几件,问能否每人都有一份适合的工作?如果不能,最多几人可以有适合的工作?(匈牙利算法)
遍历性问题
中国邮递员问题—邮递员发送邮件时,要从邮局出发,经过他投递范围内的每条街道至少一次,然后返回邮局,但邮递员希望选择一条行程最短的路线
时间序列建模的基本步骤
1 数据的预处理:数据的剔取及提取趋势项
2 取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型
数学建模入门篇
数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。
从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。
(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。
简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。
3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。
下面列举一些影响力和认可度较大的比赛。
1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。
2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。
在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。
竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。
赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。
数学建模按算法法分类知识点梳理
数学建模按算法法分类知识点梳理一、线性规划算法相关知识点。
1. 基本概念。
- 线性规划问题是在一组线性约束条件下,求线性目标函数的最优值问题。
例如,目标函数z = ax+by(a、b为常数),约束条件可能是mx + ny≤slant c、px+qy≥slant d等形式的线性不等式组(m、n、p、q、c、d为常数)。
- 可行解:满足所有约束条件的解(x,y)称为可行解,所有可行解构成的集合称为可行域。
2. 求解方法。
- 单纯形法:这是求解线性规划问题的经典算法。
它从可行域的一个顶点(基本可行解)开始,沿着可行域的边界移动到另一个顶点,使得目标函数值不断优化,直到找到最优解。
在人教版教材中,会详细介绍单纯形表的构造和迭代步骤。
- 对偶理论:每一个线性规划问题都有一个与之对应的对偶问题。
原问题与对偶问题之间存在着许多重要的关系,例如对偶定理(若原问题有最优解,则对偶问题也有最优解,且目标函数值相等)。
利用对偶理论可以简化线性规划问题的求解,或者从不同角度分析问题的性质。
3. 在数学建模中的应用示例。
- 生产计划安排问题:某工厂生产两种产品A和B,生产A产品每单位需要m_1小时的劳动力和n_1单位的原材料,生产B产品每单位需要m_2小时的劳动力和n_2单位的原材料。
已知劳动力总工时为T小时,原材料总量为S单位,A产品单位利润为p_1,B产品单位利润为p_2。
求如何安排生产A和B的数量,使得利润最大。
可以设x为A产品的产量,y为B产品的产量,建立线性规划模型求解。
二、非线性规划算法相关知识点。
- 非线性规划问题是目标函数或约束条件中至少有一个是非线性函数的规划问题。
例如目标函数z = f(x,y),其中f(x,y)是一个非线性函数,如f(x,y)=x^2+y^2+xy,约束条件可能也包含非线性函数,如g(x,y)=x^3+y^3- 1≤slant0。
2. 求解方法。
- 梯度下降法:对于无约束的非线性规划问题,梯度下降法是一种常用的迭代算法。
建模相关知识点总结
建模相关知识点总结建模的基本知识点主要包括建模的基本概念、建模的基本流程、建模的方法与技术、建模的应用等几个方面。
一、建模的基本概念1. 模型:模型是对现实世界的抽象和近似描述,它是对事物特性和规律的简化模拟,并通过数学方法对其进行分析和研究。
模型可以是数学方程、图表、图像、计算机模拟等形式。
2. 建模:建模是指根据某一现象或事物的特点、规律和属性,抽象出一种模型,并对其进行分析、计算和研究的过程。
3. 系统:系统是指由多个互相联系、相互影响的部分组成的整体。
建模的对象通常是一个系统,建模的目的是对系统进行描述、分析和预测。
4. 变量:变量是指描述事物特性和规律的符号或数值。
在数学模型中,变量是研究对象的属性或特征,它们的变化会导致系统状态的变化。
二、建模的基本流程建模的基本流程主要包括确定建模对象和目的、选择合适的模型、收集数据和参数、建立和求解模型、验证和调整模型、应用和推广模型等步骤。
建模的基本流程是根据具体问题或研究需求确定的,不同的问题可能会有不同的建模流程。
1. 确定建模对象和目的:首先需要明确建模的对象是什么,建模的目的是什么。
例如,是要描述一个物理系统的动力学行为,还是要预测一个经济模型的发展趋势。
2. 选择合适的模型:在确定建模对象和目的后,需要根据问题的特点和需求选择合适的模型。
模型可以是连续或离散的,可以是确定性的或随机的。
3. 收集数据和参数:在建立模型之前,需要收集相关的数据和参数,这些数据和参数是构建模型的基础。
一般情况下,通过实验、观察、调查等方式获取数据和参数。
4. 建立和求解模型:在收集数据和参数之后,需要建立数学模型,并通过数学方法对模型进行求解。
建立模型通常是根据实际问题的特点和规律进行抽象和简化,求解模型通常是通过数学分析、数值计算或计算机仿真等方法进行。
5. 验证和调整模型:在建立和求解模型之后,需要对模型进行验证和调整,确保模型的可靠性和准确性。
验证和调整模型通常是通过对模型的输出结果与实际观测或实验数据进行比较,对模型进行修正和完善。
数学建模知识点总结
数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。
数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。
1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。
在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。
1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。
例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。
1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。
二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。
微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。
在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。
2.2 线性代数线性代数是数学建模的另一个基础。
线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。
2.3 概率论与统计学概率论与统计学是数学建模的重要工具。
概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。
在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。
3.1 最优化方法最优化方法是数学建模常用的方法之一。
最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。
数学建模知识点
数学建模知识点数学建模是指利用数学方法和技术对实际问题进行描述、分析和求解的过程。
在现实生活中,我们面临的问题往往是复杂的,数学建模的目的就是通过数学模型对这些问题进行抽象和分析,并找到合适的解决方法。
而要进行有效的数学建模,我们需要掌握一些基本的数学知识点。
本文将介绍数学建模中常用的几个重要知识点。
一、线性规划线性规划是数学建模中最常用的方法之一。
它的基本思想是在一组线性约束条件下,寻找一个线性目标函数的最优值。
线性规划可以用来解决资源分配、生产计划、运输问题等。
在线性规划中,我们需要掌握线性代数的相关知识,例如矩阵运算、向量空间等。
二、微积分微积分是数学建模中另一个重要的工具。
微积分主要包括导数、积分和微分方程等内容。
在数学建模中,常常需要对实际问题进行建模和分析,利用微积分的方法来求解最优值、极值点等。
同时,微积分还可以用来描述和分析变化率、速度、加速度等概念,对于模拟实际问题的变化过程有着重要的作用。
三、概率论与统计学概率论与统计学是数学建模中的另一个重要分支。
概率论研究的是随机事件的性质和规律,统计学则利用样本数据对总体进行推断和决策。
在数学建模中,概率论和统计学常常用于描述和分析实际问题的不确定性和随机性。
例如,通过概率模型可以对风险进行评估,通过统计方法可以对实验数据进行处理和分析。
四、图论图论是研究图和网络的一门学科,也是数学建模中常用的工具之一。
在数学建模中,我们经常需要用图来表示问题中的对象和关系,通过图论可以分析和求解一些与图相关的问题。
例如,利用图论可以解决路径规划、网络流量优化等实际问题。
五、数值计算方法数值计算方法是数学建模中的一种重要工具,用于对无法解析求解的问题进行数值逼近。
数值计算方法主要包括数值微分、数值积分、差分法和数值优化等。
在数学建模中,我们通常需要使用计算机进行模拟和求解,数值计算方法能够帮助我们高效地进行数值计算和近似求解。
总结:数学建模作为一种综合运用数学知识解决实际问题的方法,包括线性规划、微积分、概率论与统计学、图论和数值计算方法等重要的知识点。
数学建模基础入门
数学建模基础入门数学建模是一门应用数学领域的学科,它将数学方法和技巧应用于解决实际问题。
在现代科学和工程中,数学建模起着至关重要的作用。
本文将为您介绍数学建模的基本概念和入门知识。
一、引言数学建模是一种基于数学模型来描述和解决实际问题的过程。
它结合了数学理论和实际问题,通过建立合适的数学模型来分析和预测实际系统的行为。
数学建模的目标是通过理论分析和计算求解,得出对实际问题的认识和解决方案。
二、数学建模的基本步骤数学建模的过程可以分为以下几个基本步骤:1. 审题与问题分析:首先需要仔细审题,理解问题的背景和要求。
在问题分析阶段,需要明确问题的目标、所涉及的因素以及问题的约束条件。
2. 建立数学模型:在问题分析的基础上,需要选择合适的数学方法和技巧建立数学模型。
数学模型是对实际问题的抽象和描述,它可以是代数方程、微分方程、概率模型等形式。
3. 模型求解:根据建立的数学模型,采用适当的数值计算方法或者符号计算方法,对模型进行求解。
这一步骤需要运用数学知识和计算工具,得出模型的解析解或近似解。
4. 模型验证与分析:在获得数学模型的解之后,需要对解的合理性进行验证。
通过与实际数据的对比或者数值模拟的方法,验证模型的准确性和可靠性。
同时,对模型的敏感性分析和稳定性分析也是重要的一步。
5. 结果的解释与应用:根据模型求解得到的结果,进行结果的解释和分析。
将模型的结果与实际问题联系起来,给出合理的解释和应用建议。
在实际问题中,模型的结果通常会有多种解释和应用方式,需要综合考虑各种因素来得出最优解决方案。
三、常用的数学方法和技巧数学建模涉及的数学方法和技巧非常丰富,下面列举一些常用的方法和技巧:1. 最优化方法:最优化方法用于求解最大值或最小值问题,常见的最优化方法包括线性规划、整数规划、非线性规划等。
2. 概率统计方法:概率统计方法用于处理不确定性和随机性问题,包括概率分布、假设检验、回归分析等。
3. 微分方程方法:微分方程方法用于研究变化和动态系统,可以用来描述物理、化学、生物等领域的问题。
数学建模入门基本知识
数学建模入门基本知识数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
益尽可能大,总体风
险尽可能小.
基本假设
1.投资数额M相当大; 2.投资越分散总的风险越小; 3.总体风险用所投资项目Si中最大的风险来度量;
4.n种资产Si之间相互独立; 5.在投资期间,ri, pi, qi 为定值,不受意外因素影响;
6.净收益和总体风险只受 ri,pi,qi 影响,不受其他因素干扰.
940 1110 1280 1510 1550 1550 1350 1400 1400 1230 1020 850
880 1050 1200 1430 1600 1600 1450 900 1300 1040 830 780
800 950 1080 1300 1600 1550 1200 1100 700 900 800 720
使用软件
• MATLAB • MATHEMATICA • MAPLE • LINGO • SPSS • SAS •R
答卷结构和内容 摘要 正文
问题的提出 问题的分析 模型的假设 模型的建立 模型的求解及结果 模型、结果的分析及检验
参考文献 必要的计算机程序
如何写好数学建模论文 西北工业大学 叶正麟
1400 1430 1450 1480 1500 1500 1500 1390 1320 1130 970 800
1410 1440 1470 1500 1550 1200 1200 1500 1450 1250 1020 850
960 1140 1320 1550 1600 1100 1100 1500 1420 1280 1050 870
章 1 2 3
论文的拓扑结构 节 条 1.1 1.2.1 1.2 1.2.2 1.3 1.2.3
图1.1 图1.2 表1.1 表1.2
问题的分析 模型的假设 模型的建立 模型的求解及结果 结果的分析及检验
[1]姜启源. 数学模型. 第3版 [M]. 北京: 高等教育出版社, 2003. [2]曹炬, 周济. 矩形件排样优化的一种近似算法[J]. 计算机辅助设计 与图形学学报. 1995, 7 (3): 190~195.
•
风险度
收益
x0
x1
x2
x3
x4
0.0060 0.2019 0.0000 0.2400 0.4000 0.1091 0.2212
例2. 逢山开路(CUMCM94A).
要在一山区修建公路, 首先测得一些地点的高程, 数据见图 ( 平面区域
0≤x≤5600, 0≤y≤4800, 表中数据为坐标点的海拔高程, 单位:米 ). 数据显示: 在 y =3200 处有一东西走向的山峰; 从坐标 (2400,2400) 到 (4800,0) 有一西
数据插值结果
针对“逢山开路”例题中的山区地貌数据,将原间隔400米的网 格加密为间隔50米的网格作三次样条插值,画出带有等高线的 地貌图,并标示出x, y, z 坐标轴。
4800 4400 4000 3600 3200 2800 2400 2000 1600 1200 800 400 0 y/x 1350 1370 1380 1420 1430 950 910 880 830 740 650 510 370 0 1370 1390 1410 1430 1450 1190 1090 1060 980 880 760 620 470 1390 1410 1430 1450 1460 1370 1270 1230 1180 1080 880 730 550 1400 1430 1450 1480 1500 1500 1500 1390 1320 1130 970 800 600 1410 1440 1470 1500 1550 1200 1200 1500 1450 1250 1020 850 670 960 1140 1320 1550 1600 1100 1100 1500 1420 1280 1050 870 690 940 1110 1280 1510 1550 1550 1350 1400 1400 1230 1020 850 670 880 1050 1200 1430 1600 1600 1450 900 1300 1040 830 780 620 800 950 1080 1300 1600 1550 1200 1100 700 900 800 720 580 690 820 940 1200 1600 1380 1150 1060 900 500 700 650 450 570 690 780 980 1550 1070 1010 950 850 700 300 500 400 430 540 620 850 1500 900 880 870 840 780 500 200 300 290 380 460 750 1500 1050 1000 900 380 750 550 300 100 210 300 370 550 1550 1150 1050 930 780 650 480 350 150 150 210 350 500 1550 1200 1100 950 750 550 350 320 250
290 380 460 750 1500 1050 1000 900 380 750 550 300
210 300 370 550 1550 1150 1050 930 780 650 480 350
150 210 350 500 1550 1200 1100 950 750 550 350 320
470 550 600
670 690
670 620 580
450 400 300
100 150 250
400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600
工程种类 工程成本(元/米) 坡度限制
一般路段 300 < 0.125
/v_show/id_XMzA0OTI5ODQ=.html
科技论文的文章构成
(国家标准GB7713-87) 前置部分 题目(Title) 作者(Author) 摘要(Abstract) 关键词(Key Word) 主体部分 引言(Introduction) 正文(Main Body) 结论(Conclusion) 参考文献(Reference) 附 录
• 叶其孝:大学生数学建模竞赛辅导教材(1,2,3,4,5), 湖南教育出版社 软件,清华大学出版社. • 薛毅、陈立萍:统计建模与 R软件,清华大学出版社. • 数学的实践与认识(月刊)1996~2001 • 工程数学学报(双月刊) 2002~
0 y/x
1350 1370 1380 1420 1430 950 910 880 830 740 650 510
370 0
1370 1390 1410 1430 1450 1190 1090 1060 980 880 760 620
1390 1410 1430 1450 1460 1370 1270 1230 1180 1080 880 730
例1. 投资的收益与风险(CUMCM98A).
市场上有 n 种资产(股票、债券、…) Si (i=1,2,…,n). 某公司有一笔相当大的资金(数额为 M )可作一个时期的投资. 该公司的评估和预测:投资 Si 的平均收益率 ri , 风险损失率 qi .
投资越分散, 总体风险越低. 总体风险可用所投资的 Si 中最大
全线总长:l =5375+72+5884+220.7=11551.7 m; 全线总成本 c =161.2+14.4+176.5+33.1=385.2 万元.
4)不修隧道:lR-M =7572 m, cR-M =227万元; 与修隧道比较:cR-M =c2+c道=176.5+33.1=209.6万元。
的一个风险来度量. 购买 Si 的交易费率 pi , 且购买量不超过 ui 时按购买 ui 计算. 同期银行存款利率 r0 (取 5%) ,无交易费用无风险. 给该公司设计一种投 资组合方案,使净收
Si S1 S2 S3 S4 ri(%) 28 21 23 25 qi(%) pi(%) 2.5 1.0 1.5 2.0 5.5 4.5 2.6 6.5 ui(元) 103 198 52 40
桥梁 2000 = 0
隧 < 0.100
道
1500(长度 300米) ;3000(长度 300米)
基本假设
1)地势面是连续、光滑的,即高度的变化连续,不考虑 悬崖、峭壁; 2)公路为一几何线,即不考虑公路的宽度,不计拐弯处 的半径要求; 3)不考虑地质结构对修路、架桥、修隧道的影响。
记 山脚S(0,800),居民点R(4000,2000),矿区M(2000,4000)
北东南走向的山谷; 在 (2000, 2800) 附近有一山口湖, 其最高水位略高于
1350 米, 雨季在山谷中形成一溪流. 经调查知, 雨量最大时溪流水面宽度 w 与 (溪流最深处的) x 坐标的关系可近似表示为
x 2400 w( x) 5 , (2400 x 4000 ) 2
在上述假设下,问题简化为求联结S,R,M的最小成本路 线。
模型结果
1)桥址:B1 (2960, 1800), 高程 z1=860 m, B2 (3000, 1860), 高程 z2=860 m, 满足=0; 桥长: l桥=72 m ,成本: c桥=14.4 万元; 2)隧道址:D1 (4400, 3080), 高程 z1=1320 m, D2 (4400, 3300), 高程 z2=1337.5 m, 满足 <0.1; 隧道长: l道=220.7 m , 成本: c道=33.1 万元; 3)公路 :(S-B1) (R-D1) (B 2-R ) 长:l1=5375 m, 成本:c1=161.2 万元; (D 2-M) 长:l2=5884 m, 成本:c2=176.5 万元;