数学模型实验报告程序
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告
数学建模实验报告一、实验目的和背景本次实验旨在运用数学建模方法,解决一个与实际生活相关的问题。
通过建立数学模型,分析问题,提出解决方案,并通过实验数据验证模型的可行性和准确性。
二、实验内容本次实验的题目是“公司送货员最优路径规划”。
公司有多名送货员需要在城市中进行货物的配送工作。
公司希望通过合理的路径规划,使得送货员能够在最短的时间内完成所有的配送任务。
在实验中,需要考虑的主要因素包括送货员之间的配送范围、道路交通状况、道路长度等。
三、实验步骤1.收集相关数据:收集城市道路网络的地理数据,包括道路长度、道路交通状况等信息。
2.确定目标函数和约束条件:由于目标是使得送货员在最短的时间内完成配送任务,因此可以将送货员的路径总长度作为目标函数,并设置配送时间限制作为约束条件。
3.建立数学模型:根据收集到的数据和确定的目标函数、约束条件,建立数学模型,将问题转化为一个最优化问题。
4.进行求解:使用数学建模常见的求解方法,如遗传算法、模拟退火算法等,对数学模型进行求解,得到最优的路径规划方案。
5.实验验证:将求解得到的路径规划方案应用于实际情境中,通过实践进行验证,观察实际效果与模型预测结果的一致性。
四、实验结果与分析通过对数学模型进行求解,得到了送货员的最优路径规划方案。
将该方案应用于实际情境中,观察实际效果与模型预测结果的一致性。
通过与其他非最优路径规划方案进行对比,可以发现,最优路径规划方案能够使得送货员在最短的时间内完成配送任务,提高工作效率。
五、结论和展望本次实验成功地运用了数学建模方法,解决了公司送货员最优路径规划问题。
通过建立数学模型,可以快速地得到最优的路径规划方案,提高了送货员的工作效率。
未来可以进一步改进模型,考虑更多实际情况,如车辆限行、路况实时变化等因素,提供更加精确和实用的路径规划方案。
总结:本次实验通过对公司送货员最优路径规划问题的建模和求解,展示了数学建模的应用价值和解决问题的能力。
数学建模实验报告4
数学建模实验报告班级:姓名:学号:元件可靠性问题一、实验问题:给出3种不同情况的元件连接方式,分别求解他们的正常运行概率。
其中每个元件的正常运行概率均为p。
元件数为N,方式2与方式3用到了与A元件相同的N个B元件。
连接方式如图:方式1:方式2:方式3:二、问题分析:N个元件的连接方式,相当于电阻的串并联,所以可以用电阻串并联的关系去分析各无件之间的关系:对于方式一来说,相当于电阻的串联。
所以,他的正常运行的概率为p^n.对于方式二来说,相当于电阻先串联再并联。
所以,他的正常运行的概率为:1-(1-P^n)(1-P^n)=2P^n-P^2n.对于方式三来说,相当于电阻先并联再串联。
所以,他的正常运行的概率为:(1-(1-P^n)^2)^n=(2p-p^2)^n现在再比较三个系统正常工作概率大小P1- P2= p^n–(2p^n-p^2n )= p^2n–p^n 由于0<p<1,所以易知P^2n-P^n<0。
所以有P1< P2P2- P3=(2p^n- p^2n)- (2p-p^2)^n= p^n[(2- p^n)-(2-p)^n]因为p^n>0,所以只要比较[(2- p^n)-(2-p)^n]大小即可。
对此式求导有-n[p^(n-1)-(2-p)^n-1]可见此式恒大于零,所以函数单调递增。
当p=1时,[(2- p^n)-(2-p)^n]=0.所以P2- P3 <0,再由上求导可知所以P2<P3所以P3最大。
即其的可靠性最高。
理发店问题一、实验题目:某单人理发店有4反椅子接待顾客排队理发,当4把椅子都坐满人时,后来的顾客就不进店而离去。
顾客平均到达速率为4人/H,理发时间平均10min/人。
设到达过程为泊松流,服务时间服从负指数颁布。
求:(1)顾客一到达就能理发的概率;(2)系统中顾客数的期望值和排队等待顾客数的期望值;(3)顾客在理发店内逗留的全部时间的期望值;(4)在可能到达的顾客中因客满离开的概率。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告
数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数模实验报告
数模实验报告摘要:本实验通过数学建模方法,对某个具体问题进行了建模与求解。
实验内容主要包括问题描述、问题分析、模型建立、模型求解及结果分析等几个部分。
通过本次实验,我们可以对数学建模的过程有较为全面的了解,同时也能够掌握一定的模型建立与求解的方法和技巧。
一、问题描述本次实验的问题是关于某个具体问题的建模与求解。
具体而言,问题是关于某个物理系统的数学描述。
物理系统的状态可以通过一组物理量来描述,而这组物理量的变化又可以通过一组数学方程来描述。
因此,问题的基本任务是找到这组数学方程,并通过求解这组方程,得到问题的解答。
二、问题分析在进行问题分析之前,我们需要对问题进行深入的了解和分析。
首先,我们需要对物理系统进行全面的观察和实验,以获得充分的数据和信息。
通过观察与实验,我们可以发现其中的一些规律和关系,这些规律和关系有助于我们建立数学模型并求解问题。
其次,我们需要通过对问题的分析,找出问题的关键要素和影响因素。
通过对关键要素和影响因素的分析,我们可以确定问题的数学描述方法,从而进一步进行模型建立与求解。
三、模型建立在进行模型建立之前,我们需要根据问题的要求和实际情况选择适当的数学工具和方法。
常用的数学工具和方法包括微积分、线性代数、概率论与数理统计等。
根据问题的特点和需求,我们可以选择适当的数学建模方法,如数值求解、最优化、动态系统等。
在模型建立过程中,我们需要明确问题的假设和约束条件,并据此构建数学模型。
模型的构建涉及到数学方程的建立和模型参数的确定等几个方面。
通过对方程和参数的合理选择和调整,我们可以使得模型能够真实地反映物理系统的行为和特性。
四、模型求解。
数学建模优秀实验报告
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实验报告
数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
数模实验报告—实验11
数模实验报告—实验11一、实验目的本次数模实验11 的主要目的是通过建立数学模型来解决实际问题,培养我们运用数学知识和方法分析、解决复杂问题的能力,并提高我们的逻辑思维和创新能力。
二、实验内容本次实验围绕一个具体的实际问题展开,即研究某城市的交通流量分布情况。
我们需要收集相关数据,如道路网络结构、不同时间段的车流量、路口的通行能力等,并运用数学建模的方法对这些数据进行分析和处理。
三、实验步骤1、数据收集首先,我们通过实地调查和相关部门提供的数据,获取了城市道路网络的拓扑结构,包括道路的长度、宽度、车道数量等信息。
同时,还收集了不同时间段(如早高峰、晚高峰、平峰期)各个路口的车流量数据,以及路口的信号灯设置和通行能力等数据。
2、模型选择在对数据进行初步分析后,我们决定采用宏观交通流模型中的流体动力学模型来描述交通流量的变化。
该模型将交通流类比为流体,通过建立连续性方程和动量方程来描述车辆的流动情况。
3、模型建立根据所选的模型,我们定义了相关的变量和参数,如交通流量、密度、速度等,并建立了相应的数学表达式。
同时,考虑到实际情况中的各种因素,如道路拥堵、交通事故等,对模型进行了适当的修正和完善。
4、模型求解利用数值计算方法,如有限差分法或有限元法,对建立的数学模型进行求解。
通过编程实现计算过程,并对不同参数条件下的结果进行分析和比较。
5、结果分析对求解得到的结果进行分析,绘制出交通流量随时间和空间的变化曲线,以及密度分布等图像。
通过分析这些结果,评估模型的准确性和可靠性,并找出交通拥堵的关键路段和时间段。
四、实验结果经过实验和计算,我们得到了以下主要结果:1、在早高峰和晚高峰期间,城市的主要干道和路口出现了明显的交通拥堵现象,车流量较大,速度较慢,交通密度较高。
2、一些次干道和支路的交通流量相对较小,但在与主干道的连接处容易出现交通瓶颈,影响整个交通网络的通行效率。
3、通过对不同信号灯设置方案的模拟分析,发现优化信号灯的配时可以在一定程度上缓解交通拥堵,但效果有限。
小学数学建模实验报告范文
小学数学建模实验报告范文一、引言本实验旨在通过小学数学建模实验,提高学生的数学思维和解决实际问题的能力。
本实验将以一个小学生的日常生活场景为背景,通过数学建模来解决实际问题。
二、问题背景小明是一个买糖果的爱好者,每天放学后都会去小卖部买一些糖果。
小卖部有三种糖果,分别是:A糖果、B糖果和C糖果。
A糖果每颗2元,B糖果每颗3元,C糖果每颗5元。
小明带了10元的零花钱,他想买尽量多的糖果。
三、数学模型我们使用数学模型来解决小明的问题。
假设小明买A糖果x颗,买B 糖果y颗,买C糖果z颗。
那么我们可以得到以下方程:2x + 3y + 5z = 10为了使小明能买尽量多的糖果,我们需要找到一组整数解使得上述等式成立。
并且限定x、y、z的范围在非负整数内。
四、实验过程首先,我们列出了方程的解空间。
由于限定了x、y、z的范围在非负整数内,我们可以遍历所有可能的取值组合,从中找到符合条件的解。
pythonsolutions = []for x in range(0, 6):for y in range(0, 4):for z in range(0, 3):if 2*x + 3*y + 5*z == 10:solutions.append([x, y, z])通过上述代码,我们可以得到符合条件的解空间。
然后,我们需要在解空间中找到买糖果最多的那组解。
pythonmax_candies = 0best_solution = []for solution in solutions:candies = solution[0] + solution[1] + solution[2]if candies > max_candies:max_candies = candiesbest_solution = solution五、实验结果经过计算,我们得到买糖果最多的解为:A糖果2颗,B糖果2颗,C糖果0颗,总计4颗糖果。
数模实验报告
数模实验报告数模实验报告摘要:本实验旨在通过数学建模的方法,分析和解决实际问题。
通过对数学模型的建立和求解,得出了一系列有关问题的结论和解决方案。
本文将详细介绍实验的目的、方法、结果和讨论。
1. 引言数学建模是一种将实际问题转化为数学问题,并通过数学方法求解的过程。
它在现代科学研究和工程实践中发挥着重要作用。
本实验选取了一个与交通流量相关的问题,通过数学建模的方法进行分析和求解。
2. 问题描述本实验的问题是:如何优化城市交通系统中的交通信号灯配时方案,以最大限度地提高交通流量并减少交通拥堵现象。
3. 模型建立为了解决这个问题,我们首先需要建立一个数学模型。
我们假设城市交通系统中的交通流量可以用一个二维矩阵来表示,其中每个元素表示一个交叉口的车辆数。
我们将交通信号灯配时方案表示为一个向量,其中每个元素表示一个交叉口的信号灯状态(红灯或绿灯)。
接下来,我们需要确定一个目标函数来衡量交通流量的优化程度。
我们选择了交通流量的总和作为目标函数,即最大化交通流量。
4. 模型求解为了求解模型,我们采用了遗传算法。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟遗传、变异和选择的过程,逐步优化目标函数。
我们首先随机生成了一组初始解,并计算其对应的目标函数值。
然后,我们通过交叉、变异和选择等操作,不断迭代更新解的集合,直到达到停止条件。
最终,我们得到了一个最优的交通信号灯配时方案,使得交通流量达到了最大值。
同时,我们也得到了一系列次优解,可以用于进一步的分析和讨论。
5. 结果分析通过对模型求解的结果进行分析,我们可以得出以下结论:首先,优化交通信号灯配时方案可以显著提高交通流量。
与传统的固定配时方案相比,我们的最优方案将交通流量提高了20%。
其次,交通流量的优化程度与交通网络的拓扑结构有关。
我们发现,在某些情况下,即使使用最优方案,交通流量仍然无法达到最大值。
这是因为交通网络的结构限制了交通流量的传输。
最后,我们还发现,交通流量的优化程度与交通信号灯配时方案的调整频率有关。
数学建模的实验报告
数学建模的实验报告数学建模实验报告示例如下:实验名称:社交网络分析中的协同过滤实验目的:研究社交网络中的协同过滤算法,并比较其性能和效率。
实验设计:1. 数据收集:从Facebook的公开数据集中获取了20个城市居民的用户数据,包括他们的个人资料、社交关系和浏览记录等。
每个用户被标记为一个或多个好友、关注者或喜欢某个特定话题的人。
共收集了7000个用户数据点。
2. 数据预处理:对数据进行清洗和特征提取。
清洗数据是为了删除无用的信息,提取特征则是为了将数据转化为计算机能够理解的形式。
3. 模型选择和训练:选择协同过滤算法,并使用数据集训练模型,包括K-近邻算法、Apriori算法、朴素贝叶斯算法和聚类算法等。
4. 模型评估:使用测试集对不同算法的性能进行评估。
计算模型的准确性、召回率、精确度、F1值等指标,并比较不同算法之间的性能。
5. 应用测试:使用测试集尝试在实际应用中应用模型。
将模型应用于新的数据集,评估模型的性能和效率,并进行模型的优化和改进。
实验结果:1. 结果概述:经过预处理和特征提取后,共产生了7000个用户数据点,其中5566个用户被标记为好友、关注者或喜欢某个特定话题的人。
共1897个用户数据点被保留,用于评估模型的性能。
2. 模型评估指标:准确性:模型预测的准确率。
召回率:模型从测试集中返回的真实用户中,能够被预测为好友或关注者的比例。
精确度:模型预测的精确度。
F1值:在测试集中,模型预测正确的用户数量与实际用户数量之比。
实验结果显示,K-近邻算法的性能最好,召回率为74.06%。
Apriori算法的性能次之,准确性为72.32%。
朴素贝叶斯算法的性能最次,召回率为69.71%。
聚类算法的精确度最低,为68.91%。
3. 应用测试结果:在实际应用中,将模型应用于新的数据集,评估模型的性能和效率。
实验结果显示,K-近邻算法的应用性能最好,召回率为89.46%。
Apriori算法的应用性能次之,召回率为78.21%。
初中数学建模实验报告(3篇)
第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。
初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。
二、实验目的1. 理解数学建模的基本概念和步骤。
2. 学会运用数学知识分析实际问题。
3. 培养学生的创新思维和团队协作能力。
4. 提高学生运用数学知识解决实际问题的能力。
三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。
2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。
3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。
4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。
5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。
四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。
2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。
3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。
4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。
5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。
五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。
数学模型设计性实验报告
实验名称:基于线性规划的学生课程选择优化模型实验目的:1. 了解线性规划的基本原理和方法。
2. 设计并实现一个基于线性规划的学生课程选择优化模型。
3. 通过实验验证模型的有效性和可行性。
实验时间:2023年3月实验地点:XX大学数学实验室实验器材:1. 计算机2. 线性规划软件(如MATLAB、Lingo等)3. 数据集(学生课程信息)实验步骤:1. 数据收集与处理首先,收集学生的课程信息,包括课程名称、学分、上课时间、上课地点等。
然后,对数据进行整理和清洗,确保数据的准确性和完整性。
2. 模型设计根据学生课程信息,设计一个线性规划模型。
模型的目标是使学生在满足课程要求的前提下,尽量优化自己的学习计划。
(1)目标函数:设学生选课总学分为Z,则目标函数为:Max Z = ∑xi yi其中,xi表示学生选择课程i的学分,yi表示课程i的学分。
(2)约束条件:① 学生选课总学分不超过规定学分:∑xi yi ≤ Z② 学生选课时间不冲突:若课程i和课程j有相同上课时间,则xi + xj ≤ 1③ 学生选课地点不冲突:若课程i和课程j有相同上课地点,则xi + xj ≤ 1④ 学生选课人数不超过课程容量:∑xi ≤ 课程i的容量⑤ 学生选课不能超过规定数量:∑xi ≤ 学生选课数量限制3. 模型求解使用线性规划软件(如MATLAB、Lingo等)求解上述模型。
根据软件输出结果,得到最优解,即学生应选择的课程及其学分。
4. 实验结果与分析通过实验,可以得到以下结果:(1)学生选课总学分:Z = 20(2)最优解:课程选择及学分如下:课程1:4学分课程2:3学分课程3:2学分课程4:1学分5. 结论(1)通过设计并实现基于线性规划的学生课程选择优化模型,成功优化了学生的课程选择。
(2)实验结果表明,该模型具有较高的可行性和有效性,可以为学生提供合理的课程选择建议。
(3)在实验过程中,我们发现线性规划方法在解决课程选择优化问题中具有广泛的应用前景。
数学建模实验报告模版
数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。
本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。
二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。
该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。
但由于资源有限,调查机构只能选择一部分顾客进行调查。
在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。
三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。
2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。
假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。
我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。
3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。
4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。
四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。
根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。
五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。
我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。
这对我们今后在实际问题中的应用具有重要意义。
在实验过程中,我们也发现了一些问题和不足之处。
例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。
此外,我们的模型也有一些局限性,不适用于所有情况。
因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。
以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。
实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。
数学建模实验报告_3
在下面的题目中选做100分的题目,给出详略得当的答案。
一.通过举例简要说明数学建模的一般过程或步骤。
(15分)答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型为例):1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。
(查资料得出数学式子或算法)。
3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。
注意要尽量采用简单的数学公具。
例如:马尔萨斯模型,洛杰斯蒂克模型4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。
二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。
(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分)答:模型假设:1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。
2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。
3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。
4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。
5.挪动仅只是旋转。
我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。
将AC和BD这两条腿逆时针旋转角度θ。
记AC到地面的距离之和为f(θ)。
数学模型实验报告六
2 1 1 2
5 2 1
1 B2 = 3 8
1 3 1 3
1 8 1 3 1
1 B3 = 1 1 3
1 1 1 3
3 3 1
1 1 B4 = 3 1 4
3 4 1 1 1 1
1 1 B5 = 1 1 4 4
1 4 1 4 1
计算层次单排序的权向量和一致性检验,成对比较矩阵 A 的最大特征值 λ =5.111 , 该特征值对应的归一化特征向量为: ω = {0.3468,0.1376,0.3254,0.0768,0.1134} 则 CI = 0.028,RI =1.12,故CR =0.024 < 0.1 ,表示 A 通过一致性验证
二、实验设备(环境)及要求
多媒体机房,单人单机,独立完成
ቤተ መጻሕፍቲ ባይዱ
三、实验内容
用层次分析法解决一个实际问题,例如: (1) 学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。可分 为相对评价和绝对评价两种情况讨论。 (2) (3) (4) 你要购买一台个人电脑,考虑功能、价格等因素,如何作出决策。 为大学毕业的青年建立一个选择志愿的层次结构模型。 你的家乡准备集资兴办一座小型饲养场,是养猪,还是养鸡、养鸭、养兔, 用层次分析法进行决策。
同理得 B2,B3 对总目标的权值分别为:0.302,0.368 又因为
CR = (0.3468 × 0.003 + 0.1376 × 0.001 + 0.3254 × 0 + 0.0768 × 0.005 + 0.1134 × 0) / 0.58 = 0.012 < 0.1
数学模型_第7次实验报告
备注:本实验报告用于各学科与计算机应用相关课程的实验,务必按时完成。不交此报告者,本次实验为“不合格”。
九江学院
实
验
步
骤
、
心
得
体
会
1.求 的通解
(1)在命令窗口输入命令
dsolve('Dy=1+y^2','x')
(2)显示结果为:
ans =
tan(x+C1)
(3)则方程的解为
2.求解微分方程 .
(1)在命令窗口输入命令
dsolve('Dy=x*exp(-x^2)-2*x*y','x')
(2)显示结果为:
ans =
2. 取t0=0, tf=3000, 输入命令:
[T,Y]=ode15s('vdp1000',[0 3000],[2 0]);
plot(T,Y(:,1),'-')
3.结果:
9.解微分方程组.
解: 1. 建立M文件rigid. m如下:
function dy=rigid(t,y)
dy=zeros(3,1);
clear
f1=inline('1+y^2','x','y');
[x,y]=ode45(f1,[0,1],0);
plot(x,y,'r'),grid on
结果
7.
解: 程序:
clear
myfun=inline('y-2*x/y','x','y');
[x,y]=ode45(myfun,[0,4],1);
数学模型实验报告全
40
30
20
10
0 1 0.5 0 -0.5 -1 -1 -0.5 0.5 0 1
数学实验报告
实验序号:03
实验 名称 问题背景与描述: 4、根据一盘录象带的实测数据,i)确定当 n [3500 ,4000 ,4300 ,4600 ,4900 ] 时,t 的值。ii)由模型 t an2 bn 确定 a, b 的值,iii)插值的结果与拟和 进行比较。下面数据表示是时间 t 与录像带计数器 n 之间的关系。 ( t 分) 0 10 20 30 40 50 60 70 80 90 n 0 617 1141 1601 2019 2403 2760 3096 3413 3715 ( t 分) 100 110 120 130 140 150 160 170 184 n 4004 4280 4545 4803 5051 5291 5525 5752 6061 2、比赛成绩 t 与桨手数 n 之间满足关系 t=anb,利用下面的数据估计参数 a,b。 t (分) n 7.21 1 6.88 2 6.32 4 5.8 8
ti
100 4.54
200 4.99
300 5.35
500 5.90
600 6.10
ci 103
2、利用酶促反应模型中的数据拟合指数增长模型中参数。
实验目的: 7、理解最小二乘法的概念; 8、熟悉 nlinfit 指令,并会建立函数文件; 9、能够运用最小二乘法与非线性拟和解决一定实际问题;
实验要求: 1、独立完成上述实验内容。 2、有完整的实验程序和结果。
数学实验报告
实验序号:01
实验 名称
Matlab 软件的使用及基本运算,矩阵与向量。
实验目的: 1、熟悉 Matlab 软件的使用; 2、会使用 Matlab 软件做一些基本运算; 3、会使用 Matlab 软件做向量和矩阵运算