高一数学必修4第一章三角函数单元测试 (3)
高一数学必修4 第一章 三角函数测试题
高一数学必修4 第一章 三角函数测试题[基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( ) A .①B .②C .③D .④ 3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( ) A .43-B .34-C .43D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角 6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在 二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________。
3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。
4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。
5.与02002-终边相同的最小正角是_______________。
三、解答题 1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根, 且παπ273<<,求ααsin cos +的值.2.已知2tan =x ,求xx xx sin cos sin cos -+的值。
(2021年整理)必修四第一章三角函数测试题(含答案)
(完整版)必修四第一章三角函数测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)必修四第一章三角函数测试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)必修四第一章三角函数测试题(含答案)的全部内容。
(完整版)必修四第一章三角函数测试题(含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)必修四第一章三角函数测试题(含答案) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)必修四第一章三角函数测试题(含答案)> 这篇文档的全部内容。
必修四第一章三角函數測試題班別姓名分數一、選擇題1.已知cos α=12,α∈(370°,520°),則α等於( )A.390°B.420°C.450°D.480°2.若sin x·tan x〈0,則角xの終邊位於( )A.第一、二象限B.第二、三象限 C.第二、四象限D.第三、四象限3.函數y=tan 错误!是()A.週期為2πの奇函數B.週期為错误!の奇函數C.週期為πの偶函數D.週期為2πの偶函數4.已知函數y=2sin(ωx+φ)(ω>0)在區間[0,2π]の圖象如圖,那麼ω等於()A.1 B.2 C.错误!D。
一高一数学必修4第一章三角函数单元测试
高一数学必修4第一章三角函数单元测试一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中 ,只有一项是符合题目要求的)1、下列命题中的正确命题是( D )A .终边相同的角相等B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .相等的角终边相同 2、将分针拨慢5分钟,则分钟转过的弧度数是 ( C )A .3π B .-3π C .6π D .-6π 3、=⎪⎭⎫⎝⎛-617sin π( B ) A .21 B .21-C .23 D .23-4、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( C )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位5、(2sin 30,2cos30),sin αα︒-︒如果角的终边过点则的值等于 ( D )A .21 B .21-C .23 D .23-6、化简1160-︒2sin 的结果是 ( B )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 7、如图,曲线对应的函数是 ( C ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8、函数)32sin(2π+=x y 的图象 ( B )( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称9、函数2cos 1y x =+的定义域是 ( D ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦10、ω为正实数,函数()x x f ωsin 2=在⎥⎦⎤⎢⎣⎡-4,3ππ上递增,则ω的范围是( ) A .⎥⎦⎤ ⎝⎛23,0B .(]2,0C .⎥⎦⎤⎝⎛724,0 D .[)+∞,2二、填空题:共5小题,把答案填在题中横线上.(25分)11、计算:=++⎪⎭⎫⎝⎛-6cos 334sin 23sin πππ . 12、设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .13、已知函数sin()y A x ωϕ=+(0,||A ϕπ><)的一段图象如下图所示,则函数的解析式为14、若α为第四象限的角,且34tan -=α,则=αsin .15、函数3sin cos 2++=x x y 的值域为 .三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤.16、(12分)(1)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒ (2)已知2sin sin 1θθ+=,求243cos cos 2sin 1θθθ+-+的值.(1) 原式22111(222=-+-+12=17、(12分)已知函数⎪⎭⎫⎝⎛+=62sin 3πx y . (1) 用五点法画出函数在一个周期上的简图;(2) 说明此函数的图象可以由x y sin =的图象经过怎样的变换得到的?18、(13分)已知()162sin 2++⎪⎭⎫⎝⎛+=a x x f π.()为常数a (1) 求()x f 的递增区间; (2) 若⎥⎦⎤⎢⎣⎡∈2,0πx 时,()x f 的最大值为4,求a 的值. (3) 求出使()x f 取最小值时x 的集合.19、(13分)已知函数()[]3,1,1tan 22-∈-+=x x x x f θ,其中⎪⎭⎫⎝⎛<2πθ. (1)当6πθ-=时,求函数()x f 的最大值与最小值;(2)求θ的取值范围,使()x f y =在区间[]3,1-上是单调函数.20、(13分)已知某海滨浴场的海浪高度y (米)是时间()单位:小时,240≤≤t t 的函数,记作()t f y =.经过长期观测, ()t f y =的曲线可近似地看成函数.cos B t A y +=ω(1) 根据以上数据,求出函数B t A y +=ωcos 的最小正周期T 、振幅A 及函数表达式;(2) 依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内上午8:00至晚上20:00之间,有多少时间可供冲浪爱好者开放?21、定义在R 上的函数()x f 既是偶函数又是周期函数,若()x f 的最小正周期是π,且当⎥⎦⎤⎢⎣⎡∈2,0πx 时,()x x f sin =.(1)求当[]0,π-∈x 时,()x f 的解析式;(2)画出函数()x f 在[]ππ,-上的简图,并求当()21≥x f 时,x 的取值范围.设()()⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛≥+-⎪⎭⎫ ⎝⎛<=211121sin x x f x x x f π,则=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛6741f f .。
最新新人教A版高中数学必修四 第一章三角函数测试题(含答案解析)
第二学期高一数学三月月考试卷(第一章三角函数)一、选择题.(每小题5分,共50分)1. ⎪⎭⎫⎝⎛-π 623sin 地值等于 A. 21 B. 21- C. 23 D. 23- 2. 下列角中终边与 330° 相同地角是 A. 30° B. - 30° C. 630° D . -630°3. 函数y =||x x sin sin +x x cos cos ||+||x x tan tan 地值域是 A. {1} B. {1,3} C. {- 1} D. {- 1,3}4. 如果 α α α α cos 5sin 3cos 2sin +-= - 5,那么tan α地值为 A.-2 B. 2 C. 1623D.-16235. 如果 sin α + cos α =43,那么 sin 3 α – cos 3α 地值为A. 2312825B. -2312825C. 2312825或-2312825D. 以上全错6. 若 a 为常数,且a >1,0≤x ≤2π,则函数f (x )= cos 2x + 2a sin x - 1地最大值为A. 12+aB. 12-aC. 12--aD. 2a7. 函数y = sin ⎪⎭⎫ ⎝⎛-x 2 4π地单调增区间是 A. ⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B. ⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈Z C. ⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈Z D. ⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z8. 若函数y = f (x )地图象上每一点地纵坐标保持不变,横坐标伸长到原来地2倍;再将整个图象沿x 轴向左平移2π个单位;沿y 轴向下平移1个单位,得到函数y =21sin x 地图象;则函数 y = f (x )是 A.y =12π2sin 21+⎪⎭⎫⎝⎛+xB. y =12π2sin 21+⎪⎭⎫ ⎝⎛-x C. y =14π2sin 21+⎪⎭⎫⎝⎛+xD. y =14π2sin 21+⎪⎭⎫ ⎝⎛-x 9. 如图是函数y = 2sin(ωx + φ),φ<2π地图象,那么A. ω = 1110,φ =6πB. ω = 1011,φ = -6πC. ω = 2,φ = 6π D. ω = 2,φ =10. 如果函数 f (x )是定义在(-3,3)上地奇函数,当0<x <3时,函数 f (x )地图象如图所示,那么不等式f (x )cos x <0地解集是A. 2π 3⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, B. 1 2π⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛, C.(- 3,- 1)∪(0,1)∪(1,3)D. 2π 3⎪⎭⎫⎝⎛--,∪(0,1)∪(1,3) (第9题)(第10题)二、填空题. (每小题5分,共30分) 11. 若(cos )cos3f x x =,那么(sin30)f ︒地值为 . 12. 若扇形地半径为R ,所对圆心角为α,扇形地周长为定值c ,则这个扇形地最大面积为___.13. 若 sin θ =53+-m m ,cos θ =524+-m m,则m =___. 14. 若 cos(75° + α)=31,其中α为第三象限角,则cos(105° - α)+ sin(α - 105°)= ___.15. 函数y = lg (sin x ) +216x -地定义域为 .16. 关于函数f (x )= 4 sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R),有下列命题:①函数 y = f (x )地表达式可改写为y = 4cos(2x - π6); ②函数 y = f (x )是以2π为最小正周期地周期函数;③函数 y = f (x )地图象关于点⎪⎭⎫ ⎝⎛-0 6π,对称;④函数y = f(x)地图象关于直线x = - π6对称.其中正确地是___.答题卷一、选择题.二、填空题.11、12、13、14、15、16、三、解答题.(共70分)17. (12分)已知角α是第三象限角,求:(1)角α是第几象限地角;(2)角2α终2边地位置.18.(16分)(1)已知角α地终边经过点P(4,- 3),求2sin α+ cos α地值;(2)已知角α地终边经过点P(4a,- 3a)(a≠0),求 2sin α+ cos α地值;(3)已知角α终边上一点P与x轴地距离和与y 轴地距离之比为3 : 4,求2sin α+ cos α地值.19. (12分)已知tan α,1是关于x地方程tanx2 - kx + k2 - 3 = 0地两实根,且3π<α<7π,求cos(3π+ α)- sin(π+ α)2地值.20. (14分)已知0≤x≤π,求函数y= cos2x2- 2a cos x地最大值M(a)与最小值m(a).21. (16分)某商品一年内出厂价格在6元地基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元. 该商品在商店内地销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试分别建立出厂价格、销售价格地模型,并分别求出函数解析式;(2)假设商店每月购进这种商品m 件,且当月销完,试写出该商品地月利润函数;(3) 求该商店月利润地最大值.参考答案一、选择题. 1. A【解析】⎪⎭⎫ ⎝⎛-π623sin =216πsin 2π2π623sin =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯+-. 2. B【解析】与 330° 终边相同地角为{α|α = 330° +k ∙ 360°,k ∈Z}.当 k = - 1时,α = - 30°.3. D【解析】将x 分为第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限四种情况分别讨论,可知值域为{- 1,3}.4. D【解析】∵ sin α - 2cos α = - 5(3sin α + 5cos α),∴ 16sin α = - 23cos α,∴ tan α = -1623.5. C【解析】由已知易得 sin α cos α = -327.∴ |sin 3 α - cos 3 α| = |(sin α- cos α)(sin 2α + cos 2α + sin α cos α)|=ααcos sin 21- ∙ |1 + sin α cosα| = 1282325. ∴ sin 3 α - cos 3α = ±1282325. 6. B【解析】f (x )= 1 - sin 2x + 2a sin x - 1= - sin 2x + 2a sin x .令sin x = t ,∴ t ∈[-1,1].∴ f (t )= - t 2+ 2at = -(t - a )2+ a 2,t ∈[-1,1].∴ 当t = 1时,函数 f (t )取最大值为2a - 1. 7. D【解析】∵ y = sin(4π- 2x )= - sin(2x -4π),∴ 2π+ 2k π ≤ 2x -4π≤23π+ 2k π, ∴ 83π+ k π ≤ x ≤87π+ k π. 8. B 9. C 10. B 二、填空题. 11. -1【解析】(sin30)f ︒=()1180cos 603cos 60cos -==⨯=οοοf12. 162c .【解析】设扇形面积为S ,弧长为l . ∴ S = 21lR = 21(c -2R )· R = -R 2+21cR .c - 2R >0, R >0,∵∴ 0<R <2c.当 R = 4c时,S max =162c .13. 0或8;【解析】sin 2θ +cos 2θ = 1, ∴ (m - 3)2+(4 - 2m )2=(m + 5)2,m = 0,或m = 8.14. 3122-.【解析】cos(105º - α)+ sin(α - 105º) = - cos(75º + α)- sin(α + 75º). ∵ 180º<α<270º,∴ 255º<α + 75º<345º.又 cos(α + 75º)=31,∴ sin(α + 75º)= -232. ∴ 原式 =312223231-=+-.15. [- 4,- π)∪(0,π). 【解析】由已知得∴ x ∈[- 4,- π)∪(0,π).16. ①③.【解析】① f (x )= 4sin ⎪⎭⎫ ⎝⎛+3π2x = 4cos ⎪⎭⎫ ⎝⎛--3π22πx = 4cos ⎪⎭⎫ ⎝⎛+-6π2x = 4cos ⎪⎭⎫⎝⎛-6π2x . ② T =22π= π,最小正周期为π.③ ∵ 2x +3π= k π,当 k = 0时,x =6π-, ∴ 函数 f (x )关于点⎪⎭⎫⎝⎛-0 6π,对称. ④ 2x +3π= k π +2π,当 x = -6π时,k =21-,与 k ∈Z 矛盾.∴ ①③正确. 三、解答题.17.【解】(1)由2k π + π<α<2k π +23π,k ∈Z , 得k π +2π<2α<k π +43π,k ∈Z. 将整数 k 分奇数和偶数进行讨论,易得角2α为第二象限或第四象限地角.(2)由2k π + π<α<2k π +23π,k ∈Z ,得4k π + 2π<2α<4k π + 3π,k ∈Z. ∴ 2α终边位置可能在第一象限、第二象限或y 轴地非负半轴.18.【解】(1)∵ 22y x r +== 5,∴ sin α =53-=r y ,cos α =54=r x , ∴ 2sin α + cos α =525456-=+-. (2)∵ ay x r 522=+=,∴ 当 α>0时,∴ r = 5a ,sin α =5353-=-a a ,cos α =54∴ 2sin α + cos α =52-;当 a <0时,∴ r = -5a ,sin α =5353=--a a ,cos α = -54,∴ 2sin α + cos α =52.(3)当点P 在第一象限时, sin α =53,cos α =54,2sin α + cos α = 2;当点P 在第二象限时, sin α =53,cos α =54-,2sin α + cos α =52;当点P 在第三象限时,sin α =53-,cos α =54-,2sin α + cos α = - 2;当点P 在第四象限时,sin α =53-,cos α =54,2sin α + cos α =52-.19.【解】由已知得 tan α αtan 1= k 2- 3=1, ∴ k =±2.又 ∵ 3π<α<27π,∴ tan α>0,αtan 1>0. ∴ tan α +αtan 1= k = 2>0 (k = -2舍去), ∴ tan α =αtan 1= 1, ∴ sin α = cos α = -22,∴ cos(3π +α) - sin(π +α) = sin α - cos α = 0.20.【解】y = cos 2x - 2a cos x = (cos x -a )2- a 2,令 cos x = t ,∵ 0≤x ≤2π, ∴ t ∈[0,1].∴ 原函数可化为f (t ) = (t - a )2- a 2,t ∈[0,1].①当 a <0 时,M (a ) = f (1) = 1 – 2a ,m (a ) =f (0) = 0.②当 0≤a <21 时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (a ) = –a 2.③当 21≤a ≤1 时,M (a ) = f (0) = 0,m (a ) = f (a ) = –a 2.④当 a >1 时,M (a ) = f (0) = 0,m (a ) = f (1) = 1–2a .21. 【解】分别令厂价格、销售价格地函数解析式为 厂价格函数: ()11111sin b x A y ++=ϕω, 销售价格函数:()22222sin b x A y ++=ϕω, 由题意得:22281=-=A;226102=-=A,61=b;82=b()83721=-⨯=T ;()85922=-⨯=T482221111πππϖϖπ===⇒=T T ;482222222πππϖϖπ===⇒=T T∴64sin 211+⎪⎭⎫⎝⎛+=ϕπx y;84sin 222+⎪⎭⎫⎝⎛+=ϕπx y把x=3,y=8代入64sin 211+⎪⎭⎫⎝⎛+=ϕπx y得41πϕ-= 把x=5,y=10代入84sin 222+⎪⎭⎫ ⎝⎛+=ϕπx y 得432πϕ-=∴644sin 21+⎪⎭⎫ ⎝⎛-=ππx y;8434sin 22+⎪⎭⎫ ⎝⎛-=ππx y(2)、()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=•-=m x m m x m m y yy 644sin 28434sin 212ππππ=m x m 244sin 4+⎪⎭⎫⎝⎛--ππ (3)、当144sin -=⎪⎭⎫⎝⎛-ππx 时y 取到最大值,()mm m y 6214max=+-⨯-=。
数学:第一章《三角函数》测试(3)(北师大版必修4)
三角函数一、选择题.(每小题5分,共50分)1. ⎪⎭⎫⎝⎛-π 623sin 的值等于( )A.21B. 21- C. 23 D. 23-2. 下列角中终边与 330° 相同的角是( ) A. 30° B. - 30° C. 630° D. - 630°3. 函数y =||x x sin sin +x x cos cos ||+||x x tan tan 的值域是( )A. {1}B. {1,3}C. {- 1}D. {- 1,3}4. 如果 αα αα cos 5sin 3cos 2sin +-= - 5,那么tan α的值为( )A. -2B. 2C. 1623D. -16235. 如果 sin α + cos α =43,那么 sin 3 α – cos 3 α 的值为( )A. 2312825B. -2312825C. 2312825或-2312825D. 以上全错6. 若 a 为常数,且a >1,0≤x ≤2π,则函数f (x )= cos 2 x + 2a sin x - 1的最大值为( )A. 12+aB. 12-aC. 12--aD. 2a7. 函数y = sin ⎪⎭⎫⎝⎛-x 2 4π的单调增区间是( )A. ⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B. ⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈Z C. ⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈Z D. ⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z8. 若函数y = f (x )的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍;再将整个图象沿x 轴向左平移2π个单位;沿y 轴向下平移1个单位,得到函数y =21sin x 的图象;则函数 y = f (x )是( )A. y =12π2sin 21+⎪⎭⎫ ⎝⎛+x B. y =12π2sin 21+⎪⎭⎫ ⎝⎛-xC. y =14π2sin 21+⎪⎭⎫ ⎝⎛+xD. y =14π2sin 21+⎪⎭⎫ ⎝⎛-x9. 如图是函数y = 2sin (ωx + φ),φ<2π的图象,那么( )A. ω = 1110,φ =6πB. ω = 1011,φ = -6πC. ω = 2,φ = 6πD. ω = 2,φ = -6π(第9题)10. 如果函数 f (x )是定义在(-3,3)上的奇函数,当0<x <3时,函数 f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是( )A. 2π 3⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫⎝⎛,B. 1 2π⎪⎭⎫ ⎝⎛--,∪(0,1)∪ 3 2π⎪⎭⎫ ⎝⎛,C.(- 3,- 1)∪(0,1)∪(1,3)D. 2π 3⎪⎭⎫ ⎝⎛--,∪(0,1)∪(1,3)二、填空题. (每小题5分,共30分) 11. 若(cos )cos3f x x =,那么(sin30)f ︒的值为 .12. 若扇形的半径为R ,所对圆心角为α,扇形的周长为定值c ,则这个扇形的最大面积为___.13. 若 sin θ =53+-m m ,cos θ =524+-m m,则m =___.14. 若 cos (75° + α)=31,其中α为第三象限角,则cos (105° - α)+ sin (α - 105°)= ___.15. 函数y = lg (sin x ) +216x -的定义域为 .16. 关于函数f (x )= 4 sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R ),有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos (2x - π6 ); ②函数 y = f (x )是以2π为最小正周期的周期函数;③函数 y = f (x )的图象关于点⎪⎭⎫⎝⎛-0 6π,对称;④函数 y = f (x )的图象关于直线x = - π6 对称. 其中正确的是___.答题卷11、 12、13、 14、15、 16、(第10题)三、解答题.(共70分)17. (12分)已知角α是第三象限角,求:(1)角2α是第几象限的角;(2)角2α终边的位置.18.(16分)(1)已知角α的终边经过点P (4,- 3),求2sin α + cos α的值; (2)已知角α的终边经过点P (4a ,- 3a )(a ≠0),求 2sin α + cos α的值;(3)已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3 : 4,求2sin α + cos α的值.19. (12分)已知tan α,tan 1是关于x 的方程 x 2 - kx + k 2 - 3 = 0的两实根, 且3π<α<27π,求cos (3π + α)- sin (π + α)的值.20. (14分)已知0≤x ≤2π,求函数y = cos 2 x - 2a cos x 的最大值M (a )与最小值m (a ).21. (16分)某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元. 该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;(2)假设商店每月购进这种商品m 件,且当月销完,试写出该商品的月利润函数; (3) 求该商店月利润的最大值.参考答案一、选择题. 1. A【解析】⎪⎭⎫ ⎝⎛-π623sin =216πsin 2π2π623sin =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯+-.2. B【解析】与 330° 终边相同的角为{α|α = 330° + k ∙ 360°,k ∈Z }. 当 k = - 1时,α = - 30°. 3. D【解析】将x 分为第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限四种情况分别讨论,可知值域为{- 1,3}. 4. D【解析】∵ sin α - 2cos α = - 5(3sin α + 5cos α),∴ 16sin α = - 23cos α,∴ tan α = -1623.5. C【解析】由已知易得 sin α cos α = -327.∴ |sin 3 α - cos 3α| = |(sin α- cos α)(sin 2 α + cos 2 α + sin α cos α)|=ααcos sin 21- ∙ |1 + sin α cos α| = 1282325.∴ sin 3 α - cos 3 α = ±1282325. 6. B【解析】f (x )= 1 - sin 2 x + 2a sin x - 1= - sin 2 x + 2a sin x . 令sin x = t ,∴ t ∈[-1,1].∴ f (t )= - t 2 + 2at = -(t - a )2 + a 2,t ∈[-1,1]. ∴ 当t = 1时,函数 f (t )取最大值为2a - 1. 7. D【解析】∵ y = sin (4π- 2x )= - sin (2x -4π),∴ 2π+ 2k π ≤ 2x -4π≤23π+ 2k π,∴ 83π+ k π ≤ x ≤87π+ k π.8. B 9. C 10. B二、填空题. 11. -1【解析】(sin30)f ︒=()1180cos 603cos 60cos -==⨯=f12. 162c .【解析】设扇形面积为S ,弧长为l .∴ S = 21lR = 21(c -2R )· R = -R 2 +21cR . c - 2R >0, R >0, ∵∴ 0<R <2c .当 R = 4c 时,S max =162c .13. 0或8;【解析】sin 2 θ +cos 2 θ = 1,∴ (m - 3)2 +(4 - 2m )2 =(m + 5)2, m = 0,或m = 8.14.3122-. 【解析】cos (105º - α)+ sin (α - 105º) = - cos (75º + α)- sin (α + 75º).∵ 180º<α<270º,∴ 255º<α + 75º<345º.又 cos (α + 75º)=31,∴ sin (α + 75º)= -232. ∴ 原式 =312223231-=+-. 15. [- 4,- π)∪(0,π).【解析】由已知得∴ x ∈[- 4,- π)∪(0,π). 16. ①③.【解析】① f (x )= 4sin ⎪⎭⎫ ⎝⎛+3π2x = 4cos ⎪⎭⎫ ⎝⎛--3π22πx= 4cos ⎪⎭⎫ ⎝⎛+-6π2x= 4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π= π,最小正周期为π.③ ∵ 2x +3π= k π,当 k = 0时,x =6π-,∴ 函数 f (x )关于点⎪⎭⎫⎝⎛-0 6π,对称. ④ 2x +3π= k π +2π,当 x = -6π时,k =21-,与 k ∈Z 矛盾.∴ ①③正确. 三、解答题.17.【解】(1)由2k π + π<α<2k π +23π,k ∈Z ,得k π +2π<2α<k π +43π,k ∈Z .将整数 k 分奇数和偶数进行讨论,易得角2α为第二象限或第四象限的角.(2)由2k π + π<α<2k π +23π,k ∈Z , 得4k π + 2π<2α<4k π + 3π,k ∈Z .∴ 2α终边位置可能在第一象限、第二象限或y 轴的非负半轴.18.【解】(1)∵ 22y x r += = 5,sin x >0 2k π<x <2k π + π, 16 - x 2≥0, -4≤x ≤4.∴∴ sin α =53-=r y ,cos α =54=r x ,∴ 2sin α + cos α =525456-=+-.(2)∵ a y x r 522=+=, ∴ 当 α>0时,∴ r = 5a ,sin α =5353-=-a a ,cos α =54∴ 2sin α + cos α =52-; 当 a <0时,∴ r = -5a ,sin α =5353=--a a ,cos α = -54, ∴ 2sin α + cos α =52. (3)当点P 在第一象限时, sin α =53,cos α =54,2sin α + cos α = 2; 当点P 在第二象限时, sin α =53,cos α =54-,2sin α + cos α =52;当点P 在第三象限时,sin α =53-,cos α =54-,2sin α + cos α = - 2;当点P 在第四象限时,sin α =53-,cos α =54,2sin α + cos α =52-.19.【解】由已知得 tan α αtan 1= k 2 - 3=1,∴ k =±2.又 ∵ 3π<α<27π,∴ tan α>0,αtan 1>0.∴ tan α +αtan 1= k = 2>0 (k = -2舍去),∴ tan α =αtan 1= 1,∴ sin α = cos α = -22, ∴ cos (3π +α) - sin (π +α) = sin α - cos α = 0.20.【解】y = cos 2 x - 2a cos x = (cos x -a )2 - a 2, 令 cos x = t ,∵ 0≤x ≤2π,∴ t ∈[0,1].∴ 原函数可化为f (t ) = (t - a )2 - a 2,t ∈[0,1].①当 a <0 时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (0) = 0.②当 0≤a <21时,M (a ) = f (1) = 1 – 2a ,m (a ) = f (a ) = –a 2.③当 21≤a ≤1 时,M (a ) = f (0) = 0,m (a ) = f (a ) = –a 2.④当 a >1 时,M (a ) = f (0) = 0,m (a ) = f (1) = 1–2a . 21. 【解】分别令厂价格、销售价格的函数解析式为厂价格函数: ()11111s i nb x A y ++=ϕω, 销售价格函数:()22222sin b x A y ++=ϕω,由题意得:22281=-=A ;226102=-=A ,61=b ;82=b ()83721=-⨯=T ;()85922=-⨯=T482221111πππϖϖπ===⇒=T T ;482222222πππϖϖπ===⇒=T T∴64sin 211+⎪⎭⎫⎝⎛+=ϕπx y ;84sin 222+⎪⎭⎫ ⎝⎛+=ϕπx y把x=3,y=8代入64sin 211+⎪⎭⎫⎝⎛+=ϕπx y 得41πϕ-=把x=5,y=10代入84sin 222+⎪⎭⎫⎝⎛+=ϕπx y 得432πϕ-=∴644sin 21+⎪⎭⎫ ⎝⎛-=ππx y ;8434sin 22+⎪⎭⎫ ⎝⎛-=ππx y(2)、()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-=∙-=m x m m x m m y y y 644s i n 28434s i n 212ππππ =m x m 244sin 4+⎪⎭⎫⎝⎛--ππ(3)、当144sin -=⎪⎭⎫ ⎝⎛-ππx 时y 取到最大值,()m m m y 6214max =+-⨯-=。
高中数学必修四第一章《三角函数》单元测试卷及答案
高中数学必修四第一章《三角函数》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.化简sin600︒的值是( )A .0.5B .0.5-CD . 2.若sin cos 0x x ⋅<,则角x 的终边位于( ) A .第一、二象限 B .第二、三象限 C .第二、四象限D .第三、四象限3.函数tan 2xy =是( )A .周期为2π的奇函数B .周期为2π的奇函数 C .周期为π的偶函数D .周期为2π的偶函数4.已知4tan 53α⎛⎫--π=- ⎪⎝⎭,则tan 3απ⎛⎫+ ⎪⎝⎭的值为( )A .-5B .5C .±5D .不确定5.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2C .12 D .136.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .2π-B .2k π-2π(k ∈Z) C .k π(k ∈Z)D .k π+π2(k ∈Z)7.若sin cos 2sin cos θθθθ+=-,则sin cos θθ的值是( )A .310-B .310 C .3±10D .348.将函数y =sin x 的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin 210x π⎛⎫- ⎪⎝⎭B .y =sin 25x π⎛⎫- ⎪⎝⎭C .y =sin 1210x π⎛⎫- ⎪⎝⎭D .y =sin 1220x π⎛⎫- ⎪⎝⎭9.将函数y =sin(x -θ)的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线x =4π,则θ的一个可能取值是( ) A .512π B .-512π C .1112πD .-1112π10.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )11.在同一平面直角坐标系中,函数y =cos 322x π⎛⎫+ ⎪⎝⎭(x ∈[0,2π])的图象和直线y =12的交点个数是( ) A .0 B .1C .2D .412.设a =sin 57π,b =cos 27π,c =tan 27π,则( ) A .a <b <c B .a <c <b C .b <c <a D .b <a <c二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果cos α=15,且α是第四象限的角,那么cos 2απ⎛⎫+ ⎪⎝⎭=________.14.设定义在区间0,2π⎛⎫⎪⎝⎭上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________. 15.函数y =A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.16.给出下列命题:(1)函数y =sin|x |不是周期函数; (2)函数y =tan x 在定义域内为增函数; (3)函数y =|cos2x +12|的最小正周期为2π; (4)函数y =4sin 32x ⎛π⎫ ⎪⎝⎭+,x ∈R 的一个对称中心为,06π⎛⎫- ⎪⎝⎭.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知α是第三象限角,()()()()3sin cos tan 22tan sin f ααααααππ⎛⎫⎛⎫-+π- ⎪ ⎪⎝⎭⎝⎭--π-π-=. (1)化简f (α);(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求f (α)的值.18.(12分)已知4sin 2cos 3sin 5cos θθθθ-+=611,求下列各式的值.(1)2225cos sin 2sin cos 3cos θθθθθ+-; (2)1-4sin θcos θ+2cos 2θ.19.(12分)已知sin α+cos α=15.求:(1)sin α-cos α;(2)sin 3α+cos 3α.20.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.21.(12分)函数y =A sin(ωx +φ)(A >0,ω>0,0≤φ≤2π)在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π,y min =-3. (1)求出此函数的解析式; (2)求该函数的单调递增区间;(3)是否存在实数m ,满足不等式A sin(φ)>A sin(φ)?若存在,求出m 的范围(或值),若不存在,请说明理由.22.(12分)已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t ),下表是某日各时的浪高数据:(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】D【解析】sin 600sin 60︒=-︒=D . 2.【答案】C 3.【答案】B 4.【答案】A 5.【答案】B【解析】由图象知2T =2π,T =π,∴2πω=π,ω=2.故选B .6.【答案】D【解析】若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0, ∴φ=k π+π2,(k ∈Z).故选D .7.【答案】B 【解析】∵sin cos tan 12sin cos tan 1θθθθθθ++==--,∴tan θ=3.∴sin θcos θ=22sin cos sin cos θθθθ+=2tan tan 1θθ+=310.故选B . 8.【答案】C【解析】函数y =sin x 向右平移10π个单位长度,y =sin 10x π⎛⎫- ⎪⎝⎭横坐标伸长到原来的2倍,纵坐标不变,得y =sin 1210x π⎛⎫- ⎪⎝⎭.故选C .9.【答案】A【解析】将y =sin(x -θ)向右平移3π个单位长度得到的解析式为y =sin 3x θ⎡π⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=sin 3x θπ⎛⎫-- ⎪⎝⎭.其对称轴是x =4π,则4π-3π-θ=k π+2π(k ∈Z)∴θ=-k π-712π(k ∈Z).当k =-1时,θ=512π.故选A .10.【答案】D【解析】图A 中函数的最大值小于2,故0<a <1,而其周期大于2π.故A 中图象可以是函数f (x )的图象.图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象.当a =0时,f (x )=1,此时对应C 中图象,对于D 可以看出其最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.故选D . 11.【答案】C【解析】函数y =cos 322x π⎛⎫+ ⎪⎝⎭=sin 2x ,x ∈[0,2π],图象如图所示,直线y =12与该图象有两个交点.故选C .12.【答案】D 【解析】∵a =sin57π=sin 57π⎛⎫π- ⎪⎝⎭=sin 27π.27π-4π=828π-287π>0.∴4π<27π<2π.又α∈,42ππ⎛⎫⎪⎝⎭时,sin α>cos α.∴a =sin 27π>cos 27π=b . 又α∈0,2π⎛⎫⎪⎝⎭时,sin α<tan α.∴c =tan 27π>sin 27π=a .∴c >a .∴c >a >b .故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【解析】∵α是第四象限的角且cos α=15.∴sin α,∴cos 2α⎛⎫ ⎪⎝π⎭+=-sin α.14.【答案】23【解析】由6cos 5tan y xy x =⎧⎨=⎩消去y 得6cos x =5tan x .整理得6cos 2x =5sin x ,6sin 2x +5sin x -6=0,(3sin x -2)(2sin x +3)=0, 所以sin x =23或sin x =-32(舍去).点P 2的纵坐标y 2=23,所以|P 1P 2|=23. 15.【答案】3【解析】由函数y =A sin(ωx +φ)的图象可知:2T =(-3π)-(-23π)=3π,∴T =23π. ∵T =2ωπ=23π,∴ω=3. 16.【答案】(1)(4)【解析】本题考查三角函数的图象与性质.(1)由于函数y =sin|x |是偶函数,作出y 轴右侧的图象,再关于y 轴对称即得左侧图象,观察图象可知没有周期性出现,即不是周期函数;(2)错,正切函数在定义域内不单调,整个图象具有周期性,因此不单调;(3)由周期函数的定义1cos 2()22f x x f x π⎛⎫=≠⎭+ ⎪⎝+,∴2π不是函数的周期;(4)由于06f π⎛⎫= ⎪⎝⎭,故根据对称中心的意义可知,06π⎛⎫- ⎪⎝⎭是函数的一个对称中心,故只有(1)(4)是正确的.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)见解析;(2. 【解析】(1)()()()()3sin cos tan 22tan sin f ααααααππ⎛⎫⎛⎫-+π- ⎪ ⎪⎝⎭⎝⎭--π-π-=()()sin sin tan 2tan sin αααααπ⎛⎫--- ⎪⎝⎭=- cos sin tan tan si c s n o αααααα=-=-.(2)∵3cos 2α⎛⎫-π ⎪⎝⎭=3cos 2α⎛⎫π- ⎪⎝⎭=-sin α=15.∴sin α=-15.∵α是第三象限角,∴cos α.∴f (α)=-cos α. 18.【答案】(1)1;(2)-15.【解析】由已知4sin 2cos 3sin 5cos θθθθ-+=611,∴4tan 23tan 5θθ-+=611.解得:tan θ=2.(1)原式=25tan 2tan 3θθ+-=55=1. (2)原式222222sin 4sin cos 3cos sin 4sin cos 3cos sin cos θθθθθθθθθθ=-+++=-22tan 4tan 31tan θθθ-+=+=-15. 19.【答案】(1)±75;(2)37125.【解析】(1)由sin α+cos α=15,得2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±75. (2)sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α),由(1)知sin αcos α=-1225且sin α+cos α=15,∴sin 3α+cos 3α=15×12125⎛⎫+ ⎪⎝⎭=37125. 20.【答案】(1)f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭;(2)见解析.【解析】(1)由图象知A =2.f (x )的最小正周期T =4×5126ππ⎛⎫- ⎪⎝⎭=π, 故ω=2T π=2.将点,26π⎛⎫ ⎪⎝⎭代入f (x )的解析式得sin 3ϕπ⎛⎫+ ⎪⎝⎭=1,又|φ|<2π,∴φ=6π,故函数f (x )的解析式为f (x )=2sin 26x π⎛⎫+ ⎪⎝⎭.(2)变换过程如下: y =2sin x 图象向左平移6π个单位得y =2sin 6x π⎛⎫+ ⎪⎝⎭,又所有点的横坐标缩短为原来的12且纵坐标不变得y =2sin 26x π⎛⎫+ ⎪⎝⎭.21.【答案】(1)y =3sin 13510x π⎛⎫+ ⎪⎝⎭;(2)[]104,10Z ()k k k π-ππ+∈π;(3)存在,见解析. 【解析】(1)由题意得A =3,12T =5π⇒T =10π,∴ω=2T π=15.∴y =3sin 15x ϕ⎛⎫+ ⎪⎝⎭, 由于点(π,3)在此函数图象上,则有3sin 5ϕπ⎛⎫+ ⎪⎝⎭=3,∵0≤φ≤2π,∴φ=2π-5π=310π.∴y =3sin 13510x π⎛⎫+ ⎪⎝⎭.(2)当2k π-2π≤15x +310π≤2k π+2π时,即10k π-4π≤x ≤10k π+π时, 原函数单调递增.∴原函数的单调递增区间为[]104,10Z ()k k k π-ππ+∈π. (3)m 满足2223040m m m ⎧-++≥⎪⎨-+≥⎪⎩,解得-1≤m ≤2.∵-m 2+2m +3=-(m -1)2+4≤4,∴,同理.由(2)知函数在[-4π,π]上递增,若有:A sin(φ)>A sin(+φ),m >12成立即可,所以存在m ∈(12,2],使A sin(φ)>A sin(φ)成立. 22.【答案】(1)12,12,1cos 126y t π=+;(2)上午9∶00至下午3∶00. 【解析】(1)由表中数据知周期T =12,∴ω=2T π=212π=6π,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴1cos 126y t π=+.(2)由题知,当y >1时才可对冲浪者开放,∴1cos 126t π+>1,∴cos 6t π>0,∴2k π-2π<6πt <2k π+2π,即12k -3<t <12k +3.①∵0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24. ∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1等于( )A .B .23 C . D .21 2.已知点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭落在角θ的终边上,且[)0,2θ∈π,则θ的值为( )A .4πB .43π C .45π D .47π 3.已知3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,则cos α的值是( ) A .45±B .45C .45-D .354.已知sin 24()5απ-=,32α⎛⎫∈π,2π ⎪⎝⎭,则sin cos sin cos αααα+-等于( )A .17B .17-C .7-D .75.已知函数()(2)sin f x x ϕ+=的图象关于直线8x π=对称,则ϕ可能取值是( ) A .2π B .4π-C .4π D .43π 6.若点sin cos ,t ()an P ααα-在第一象限,则在[)0,2π内α的取值范围是( )A .35,,244πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭UB .5,,424πππ⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭UC .353,,2442ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭UD .3,,244ππ3π⎛⎫⎛⎫π ⎪ ⎪⎝⎭⎝⎭U7.已知a 是实数,则函数()1sin f x a ax +=的图象不可能是( )π⎛⎫=-⎪⎝⎭的图象,可以将函数cos2y x=的图象()8.为了得到函数sin26y xA .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度 9.电流强度I (安)随时间t (秒)变化的函数()sin 0,0,02I A x A ωϕωϕπ⎛⎫=+>><< ⎪⎝⎭的图象如右图所示,则当1100t =秒时,电流强度是( )A .5A -B .5AC .D .10A10.已知函数())2sin 0(y x ωθθ=+<<π为偶函数,其图象与直线2y =的某两个交点横坐标为1x 、2x ,若21x x -的最小值为π,则( ) A .2ω=,2θπ= B .12ω=,2θπ= C .12ω=,4θπ=D .2ω=,4θπ=11.设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移34π个单位后与原图象重合,则ω的最小值是( ) A .23B .43C .32D .312.如果函数(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( )A .6πB .4π C .3π D .2π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知一扇形的弧所对的圆心角为54︒,半径20 cm r =,则扇形的周长为_______. 14.方程1sin 4x x π=的解的个数是________. 15.已知函数()2sin()f x x ωϕ+=的图象如图所示,则712f π⎛⎫= ⎪⎝⎭________.16.已知函数sin 3xy π=在区间[]0,t 上至少取得2次最大值,则正整数t 的最小值是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)求函数234sin 4cos y x x =--的最大值和最小值,并写出函数取最值时对应的x 的值.18.(12分)已知函数cos 233y a x π⎛⎫=++ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的最大值为4,求实数a 的值.19.(12分)如右图所示,函数()2cos 0,02y x x ωθωθπ⎛⎫=+∈>≤≤ ⎪⎝⎭R,的图象与y 轴交于点(,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点,02A π⎛⎫⎪⎝⎭,点P 是该函数图象上一点,点00(,)Q x y 是PA 的中点,当0y 0,2x π⎡⎤∈π⎢⎥⎣⎦时,求0x 的值.20.(12分)已知α是第三象限角,()()()()()()sin cos 2tan tan sin f ααααααπ-⋅π-⋅--π=-⋅-π-.(1)化简()f α;(2)若31cos 25α⎛⎫-π= ⎪⎝⎭,求()f α的值;(3)若1860α=-︒,求()f α的值.21.(12分)在已知函数()sin()f x A x ωϕ+=,x ∈R 0,002A ωϕπ⎛⎫>><< ⎪⎝⎭其中,的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.22.(12分)已知函数()sin()f x A x ωϕ+=0002A ϕωπ⎛⎫>><< ⎪⎝⎭且,的部分图象,如图所示.(1)求函数()f x 的解析式;(2)若方程()=f x a 在50,3π⎛⎫⎪⎝⎭上有两个不同的实根,试求a 的取值范围.答 案一、选择题 1.【答案】Bsin120=︒,故选B . 2.【答案】D【解析】点33sin ,cos 44P ⎛⎫ππ ⎪⎝⎭即P ⎝⎭;它落在角θ的终边上,且[)0,2θ∈π, ∴4θ=7π,故选D . 3.【答案】C【解析】∵3tan 4α=,3,2α⎛⎫∈ππ ⎪⎝⎭,∴cos 45α==-,故选C . 4.【答案】A【解析】4sin 2sin ()5αα=-π-=,∴sin 45α=-.又32α⎛⎫∈π,2π ⎪⎝⎭,∴cos 35α=. ∴sin cos 1sin cos 7αααα+=-,故选A .5.【答案】C【解析】检验sin 84f ϕππ⎛⎫= ⎪⎝+⎭⎛⎫⎪⎝⎭是否取到最值即可.故选C .6.【答案】B【解析】sin cos 0αα->且tan 0α>,∴,42αππ⎛⎫∈ ⎪⎝⎭或5,4απ⎛⎫∈π ⎪⎝⎭.故选B .7.【答案】D【解析】当0a =时()1f x =,C 符合,当01a <<时2T >π,且最小值为正数,A 符合, 当1a >时2T <π,B 符合. 排除A 、B 、C ,故选D . 8.【答案】B【解析】sin 2cos 2cos 2cos 2cos 2626333y x x x x x π⎡ππ⎤2π2ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=--=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选B . 9.【答案】A【解析】由图象知10A =,4112300300100T =-=, ∴150T =,∴2100Tωπ==π.∴()10sin I t ϕ=100π+. ∵1,10300⎛⎫⎪⎝⎭为五点中的第二个点,∴11003002ϕππ⨯+=.∴6ϕπ=.∴10sin 6I t π⎛⎫=100π+ ⎪⎝⎭,当1100t =秒时, 5 A I =-,故选A . 10.【答案】A【解析】∵()2sin y x ωθ=+为偶函数,∴2θπ=. ∵图象与直线2y =的某两个交点横坐标为1x 、2x , 21min x x -=π,即min T =π,∴2ωπ=π,2ω=,故选A .11.【答案】C【解析】由函数向右平移34π个单位后与原图象重合,得34π是此函数周期的整数倍. 又0ω>,∴243k ωπ⋅=π,∴()32k k ω=∈Z ,∴min 32ω=.故选C . 12.【答案】A【解析】∵(3cos 2)y x ϕ=+的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,即43cos 203ϕπ⎛⎫⨯+= ⎪⎝⎭,∴,32k k ϕ8ππ+=+π∈Z . ∴136k ϕπ=-+π,∴当2k =时,ϕ有最小值6π.故选A .二、填空题13.【答案】640cm () π+【解析】∵圆心角35410απ=︒=,∴6l r α=⋅=π. ∴周长为640cm () π+. 14.【答案】7【解析】在同一坐标系中作出sin y x =π与14y x =的图象, 观察易知两函数图象有7个交点,所以方程有7个解. 15.【答案】0【解析】方法一,由图可知,54432T ππ=-=π,即3T 2π=, ∴3Tω2π==.∴(32sin )y x ϕ+=, 将,04π⎛⎫ ⎪⎝⎭代入上式sin 04ϕ3π⎛⎫⎪⎝⎭=+. ∴4k ϕ3π+=π,k ∈Z ,则4k ϕ3π=π-. ∴2sin 447012f k 7π3ππ⎛⎛⎫== ⎫+π- ⎪⎪⎝⎭⎝⎭.方法二,由图可知,54432T ππ=-=π,即3T 2π=, 又由正弦图象性质可知,若()0002T f x f x ⎛⎫= ⎪⎝⎭=+,∴7012434f f f ππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 16.【答案】8 【解析】6T =,则54T t ≤,∴152t ≥,∴min 8t =. 三、解答题17.【答案】见解析. 【解析】222134sin 4cos 4sin 4sin 14sin 22y x x x x x ⎛⎫=--=--=-- ⎪⎝⎭, 令sin t x =,则11t -≤≤, ∴()2142112y t t ⎛⎫=---≤≤ ⎪⎝⎭. ∴当12t =,即26x k π=+π或()26x k k 5π=+π∈Z 时,min 2y =-; 当1t =-,即()22x k k 3π=+π∈Z 时,max 7y =. 18.【答案】2或1-.【解析】∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ∴11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭. 当0a >,1cos 232x π⎛⎫+= ⎪⎝⎭时,y 取得最大值132a +, ∴1342a +=,∴2a =. 当0a <,cos 213x π⎛⎫+=- ⎪⎝⎭时,y 取得最大值3a -+, ∴34a -+=,∴1a =-,综上可知,实数a 的值为2或1-.19.【答案】(1)6π,2;(2)023x π=或43π.【解析】(1)将0x =,y =()2cos y x ωθ=+中,得cos θ=, 因为02θπ≤≤,所以6θπ=. 由已知T =π,且0ω>,得222T ωππ===π. (2)因为点,02A π⎛⎫ ⎪⎝⎭,00(,)Q x y 是PA 的中点,0y =P 的坐标为022x π⎛- ⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,且02x π≤≤π,所以056c 4os x ⎛⎫ ⎪⎝⎭π-=,且056646x 7ππ19π-≤≤, 从而得05664x π11π-=,或05664x π13π-=,即023x π=,或04x 3π=.20.【答案】(1)cos α;(2)(3)12. 【解析】(1)()()()()()()sin cos 2tan sin cos tan cos tan sin tan sin f ααααααααααααπ-⋅π-⋅--π-⋅⋅===-⋅-π--⋅. (2)∵33cos cos sin 22ααα⎛⎫⎛⎫-π=π-=- ⎪ ⎪⎝⎭⎝⎭, 又31cos 25α⎛⎫-π= ⎪⎝⎭,∴1sin 5α=-. 又α是第三象限角,∴cos α=,∴()f α=. (3)()()()11860cos 1860cos1860cos 536060cos60()2f f α︒︒=︒=⨯︒+=︒=-︒==-. 21.【答案】(1)()sin 226f x x π⎛⎫+ ⎝=⎪⎭;(2)[]1,2-. 【解析】(1)由最低点为2,23M π⎛⎫- ⎪⎝⎭得2A =. 由x 轴上相邻两个交点之间的距离为2π,得T 2=π2,即T =π, ∴222T ωππ===π. 由点2,23M π⎛⎫- ⎪⎝⎭在图象上得3sin 2222ϕπ⎛⎫ ⎝+⨯=-⎪⎭, 即sin 13ϕ4π⎛⎫=- ⎪⎝⎭+,故()223k k ϕπ+=π-4π∈Z , ∴()1126k k ϕπ=π-∈Z .又0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴6ϕπ=, 故()sin 226f x x π⎛⎫+ ⎝=⎪⎭. (2)∵,122x ππ⎡⎤∈⎢⎥⎣⎦,∴,2636x ππ7π⎡⎤+∈⎢⎥⎣⎦, 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当626x π7π+=,即2x π=时,()f x 取得最小值1-, 故()f x 的值域为[]1,2-.22.【答案】(1)()sin 3f x x π+=⎛⎫ ⎪⎝⎭;(2)() 1,0a ⎫∈-⎪⎪⎝⎭U . 【解析】(1)由图象易知函数()f x 的周期为724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,1A =, 所以1ω=.方法一,由图可知此函数的图象是由sin y x =的图象向左平移3π个单位得到的, 故3ϕπ=,所以函数解析式为()sin 3f x x π+=⎛⎫ ⎪⎝⎭. 方法二,由图象知()f x 过点,03π⎛⎫- ⎪⎝⎭,则sin 03ϕπ⎛⎫-+= ⎪⎝⎭, ∴3k ϕπ-+=π,k ∈Z . ∴3k ϕπ=π+,k ∈Z , 又∵0,2ϕπ⎛⎫∈ ⎪⎝⎭,∴3ϕπ=, ∴()sin 3f x x π+=⎛⎫ ⎪⎝⎭. (2)方程()=f x a 在50,3π⎛⎫ ⎪⎝⎭上有两个不同的实根等价于()y f x =与y a =的图象在50,3π⎛⎫ ⎪⎝⎭上有两个交点,在图中作y a =的图象,如图为函数()sin 3f x x π+=⎛⎫ ⎪⎝⎭在50,3π⎛⎫ ⎪⎝⎭上的图象,当0x =时,()f x 53x π=时,()0f x =,由图中可以看出有两个交点时,() 1,0a ⎫∈-⎪⎪⎝⎭U .。
(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
必修4第一章三角函数单元基础测试题及答案[3]
(直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改)的全部内容。
三角函数数学试卷一、 选择题1、600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-2、),3(y P 为α终边上一点,53cos =α,则=αtan ( ))(A 43-)(B 34 )(C 43± )(D 34±3、已知cos θ=cos30°,则θ等于( )A. 30° B 。
k ·360°+30°(k ∈Z)C. k ·360°±30°(k ∈Z)D. k ·180°+30°(k ∈Z ) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限( ) 5、函数的递增区间是( )6、函数)62sin(5π+=x y 图象的一条对称轴方程是( ) )(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x7、函数的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为( )8、函数|x tan |)x (f =的周期为( )9、锐角α,β满足41sin sin -=-βα,43cos cos =-βα,则=-)cos(βα( ) A.1611-B.85C.85-D 。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
高一数学必修4第一章三角函数单元测试
高一数学必修4第一章三角函数单元测试一、选择题:1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是( )A .3π B .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .32-B .32C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8、化简1160-︒2sin 的结果是 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称11、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数 12、函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 2απαπ=<<,求sin cos αα-的值.20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+参考答案1. B2. C3. D4. A5. A6.C7.C8.B9.B 10. B 11.D 12.D 13. ),0(π 14.x x cos 2sin - 15.2116.23-17.原式22111222=-+-+12= 18.3tan 2απαπ=<<且sin 0,cos 0αα∴<<,由22sin sin cos 1αααα⎧=⎪⎨+=⎪⎩得sin 21cos 2αα⎧=-⎪⎪⎨⎪=-⎪⎩sin cos αα∴-=20。
(好题)高中数学必修四第一章《三角函数》测试(包含答案解析)(3)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 3.已知点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,则ϕ=( ) A .6π B .3π C .23π D .56π 4.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 ②函数()y f x =的图象关于直线512x π=-对称③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④7.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .48.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A B C D 9.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .5916910.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .111.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 14.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.15.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________. 16.已知cos 6απ⎛⎫-=⎪⎝⎭,则54cos sin 63ππαα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值为_____. 17.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________. 18.函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后与函数()f x 的图象重合,则下列结论正确的是______.①()f x 的一个周期为2π-; ②()f x 的图象关于712x π=-对称; ③76x π=是()f x 的一个零点; ④()f x 在5,1212ππ⎛⎫- ⎪⎝⎭单调递减; 19.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.20.已知函数()y f x =是R 上的偶函数,当0x ≥时,()424,,n 04x x f x x x ππππ⎛⎫-> ⎪⎝⎭⎛⎫≤⎧⎪⎪=≤ ⎪⎝⎭,关于x 的方程()()f x m m R =∈有且仅有四个不同的实数根,若α是四个根中的最大根,则sin()2πα+=____.三、解答题21.已知函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的部分图象如图所示.(1)求()f x 的解析式;(2)若将函数()f x 的图象上各点的横坐标缩短到原来的一半,然后再向左平移12π个单位长度,得到()g x 的图象,求函数()g x 的单调递增区间. 22.已知函数21()sin 3sin cos 2f x x x x =++. (1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)若关于x 的方程()2()1()0f x m f x m -++=在区间0,2π⎡⎤⎢⎥⎣⎦上恰有三个不同的实根,求实数m 的取值范围.23.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.24.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.25.已知函数()sin 2sin 2233f x x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, (1)求函数()f x 的最小正周期; (2)当π[0,]2x ∈时,(i )求函数()f x 的单调递减区间;(ii )求函数()f x 的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量x 的值.26.设函数()3sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,且以23π为最小正周期. (1)求函数()f x 的单调递减区间; (2)当,32x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.3.B解析:B 【分析】 先由点,024A π⎛⎫⎪⎝⎭在函数()()()cos 0,0f x x ωϕωϕπ=+><<的图象上,直线6x π=是函数()f x 图象的一条对称轴,求出ω的范围,再由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出φ.【详解】 由题意得:62484T πππ-=≥, 得1248ππω⨯≤,所以ω4≥. 又()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,所以3662T πππ-=≤,得1226ππω⨯≥,所以ω6≤ 所以ω=4或5或6.当ω=4时, ()()cos 4f x x ϕ=+,有cos 402424460f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩解得3πϕ=.当ω=5时, ()()cos 4f x x ϕ=+,有cos 502424560f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.当ω=6时, ()()cos 4f x x ϕ=+,有cos 602424660f k ππϕπϕπϕπ⎧⎛⎫⎛⎫=⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⨯+=⎨⎪<<⎪⎪⎩无解.综上: 3πϕ=.故选:B 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.4.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭, 对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.A解析:A 【分析】根据()f x 的图象及三角函数图像和性质,解得函数()f x 的解析式,得到()2sin(2)3f x x π=+,再结合三角函数的图像和性质逐一判定即可.【详解】由函数的图象可得2A =,周期4312T πππ⎛⎫=⨯-= ⎪⎝⎭所以222T ππωπ===, 当12x π=时函数取得最大值,即2sin 221212f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭, 所以22()122k k ππϕπ⨯+=+∈Z ,则23k πϕπ=+,又||2ϕπ<,得 3πϕ=,故函数()2sin(2)3f x x π=+,对于①,当6x π=-时,()2sin(2())0663f πππ-=⨯-+=,正确;对于②,当512x π=-时,()2sin 551212(2())23f πππ=⨯+-=--,正确; 对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.7.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确. 故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.8.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.9.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.10.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称. 又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 11.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.12.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.二、填空题13.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.14.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭ 【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.15.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=-⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.16.0【分析】由已知利用三角函数的诱导公式分别求得与的值则答案可求【详解】解:∵∴∴故答案为:0【点睛】本题主要考查三角函数的化简求值考查诱导公式的应用属于基础题解析:0 【分析】由已知利用三角函数的诱导公式分别求得5cos()6πα+与4sin()3πα+的值,则答案可求. 【详解】解:∵cos()6πα-=∴5cos()cos[()]66ππαπα+=--cos()6πα=--=,4sin()sin()33ππαα+=-+sin ()26ππα⎡⎤=---=⎢⎥⎣⎦cos()6πα--=,∴54cos()sin()63ππαα+-+(0==, 故答案为:0. 【点睛】本题主要考查三角函数的化简求值,考查诱导公式的应用,属于基础题.17.【分析】根据图象变换求出解析式再结合正弦函数的性质建立不等式即可求出的取值范围【详解】将函数图像上所有点向左平移个单位得到的图象再将横坐标变为原来的倍纵坐标不变得函数在上有且仅有一条对称轴和一个对称解析:35,22⎛⎤ ⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围. 【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+⎪⎝⎭, 函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x ,3242,解得3522. 故答案为:35,22⎛⎤⎥⎝⎦.【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题.18.①②③【分析】先由图像的平移变换推导出的解析式再分析函数的周期零点对称性单调性判断是否正确【详解】解:函数的图象向右平移个单位后与函数的图象重合的一个周期为故①正确;的对称轴满足:当时的图象关于对称解析:①②③ 【分析】先由图像的平移变换推导出()f x 的解析式,再分析函数的周期、零点、对称性、单调性,判断是否正确. 【详解】 解:函数sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移π3个单位后与函数()f x 的图象重合, ()sin 2sin 2333f x x x πππ⎡⎤⎛⎫⎛⎫∴=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()f x ∴的一个周期为2π-,故①正确; ()y f x =的对称轴满足:232x k ππ-=π+,k Z ∈, ∴当2k =-时,()y f x =的图象关于7πx 12=-对称,故②正确; 由()sin 203f x x π⎛⎫=-= ⎪⎝⎭,23x k ππ-=得26k x ππ=+, 76x π∴=是()f x 的一个零点,故③正确; 当5,1212x ππ⎛⎫∈-⎪⎝⎭时,2,322x πππ⎛⎫-∈- ⎪⎝⎭, ()f x ∴在5,1212ππ⎛⎫- ⎪⎝⎭上单调递增,故④错误.故答案为:①②③. 【点睛】本题考查命题真假的判断,考查三角函数的平移变换、三角函数的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.19.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π【分析】利用任意性与存在性原命题可转化为()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()212f α⎛⎫∈- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=,即()12,,22f k k β⎛⎫=∈ ⎪⎪⎝⎭有且仅有一个解, 作函数图像()y f β=与直线12,,22y k k ⎛=∈ ⎝⎭,当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.20.【分析】作出函数的图像结合图像可得即从而可得四个不同的实数根进而可得代入即可求解【详解】当时函数在区间和上是增函数在区间上是减函数的极大值为极小值为作出函数当时的图像如图函数函数是R 上的偶函数当时的 解析:22-【分析】作出函数()y f x =的图像,结合图像可得1m =,即1y =,从而可得四个不同的实数根,进而可得34πα=,代入即可求解. 【详解】当0x ≥时,函数在区间0,4π⎡⎫⎪⎢⎣⎭和,2π⎡⎫+∞⎪⎢⎣⎭上是增函数,在区间,42ππ⎡⎫⎪⎢⎣⎭上是减函数,()f x 的极大值为24f π⎛⎫= ⎪⎝⎭极小值为02f ⎛⎫=⎪⎝⎭π, 作出函数当0x ≥时的图像如图, 函数函数()y f x =是R 上的偶函数,∴当0x <时()y f x =的图像与当0x ≥时的图像关于y 轴对称,故函数x ∈R 的图像如图所示,将()()f x m m R =∈进行平移,可得当1m =时, 两图像有且仅有四个不同的实数根, 令1y =,可得12,44x x ππ=-=,334x π=-,434x π=, 所以34πα=, 32sin()cos cos 242ππαα∴+===-故答案为:2【点睛】本题考查了三角函数的图像以及根据方程根的个数求参数值、特殊角的三角函数值,考查了数形结合的思想,属于中档题.三、解答题21.(1)1()sin(2)26f x x π=-;(2),,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【分析】(1)由有图像,根据最大值求A ,利用周期求ω,利用最高点的坐标求φ; (2)根据图像变换求出()g x 的解析式,然后求正弦型函数的单调区间. 【详解】(1)根据函数的图象得:1,42312A T πππ⎛⎫==-= ⎪⎝⎭,故=2ω, 将1,32π⎛⎫⎪⎝⎭代入函数的关系式,整理得22()32k k Z ππϕπ+=+∈,由于0||2πϕ<<,所以6πϕ=-.故1()sin(2)26f x x π=-. (2)1()sin(2)26f x x π=-,将函数()f x 的图象上各点的横坐标缩短到原来的一半得 1sin(4)26y x π=-,再向左平移12π个单位长度,得到1()sin 4()2126g x x ππ⎡⎤=+-⎢⎥⎣⎦1()sin(4)26g x x π=+.令242,262k x k k Z ππππ-≤+≤π+∈, 整理得,26212k k x k Z ππππ-≤≤+∈, 所以函数的单调递增区间为:,,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .(3)求y =Asin (ωx +φ)+B 的单调区间通常用“同增异减”.22.(1)1,22⎡⎤⎢⎥⎣⎦;(2)322m ≤<.【分析】(1)先化简函数得()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的图象和性质求解;(2)转化得到sin 216x m π⎛⎫-=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上恰有两个不同的实数根,再利用数形结合分析求解. 【详解】 (1)解:1cos 231()sin 2sin 21226x f x x x π-⎛⎫=++=-+ ⎪⎝⎭. ∵0,2x π⎡⎤∈⎢⎥⎣⎦,∴52666x πππ-≤-≤, ∴1sin 21226x π⎛⎫≤-+≤ ⎪⎝⎭,∴()f x 的值域是1,22⎡⎤⎢⎥⎣⎦. (2)∵2()(1)()0f x m f x m -++=,∴(()1)(())0f x f x m --=, ∴()1f x =或()f x m =, 即sin 206x π⎛⎫-= ⎪⎝⎭或sin 216x m π⎛⎫-=- ⎪⎝⎭, 当sin 206x π⎛⎫-= ⎪⎝⎭时,因为52666x πππ-≤-≤,所以20,612x x ππ-=∴=. 所以sin 216x m π⎛⎫-=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上恰有两个不同的实数根,由图像可知1112m ≤-<得322m ≤<.【点睛】方法点睛:函数的零点问题常用的方法有:(1)方程法;(2)图象法(直接画出函数()f x 的图象分析求解);(3)方程+图象法(令()=0f x 得到()()g x h x =,再分析(),()g x h x 的图象得解).23.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析.【分析】 (1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案;(2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=-⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论.【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭由222,Z 262k x k k πππππ-≤+≤+∈,解得:,Z 36k x k k ππππ-≤≤+∈, 所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 即sin 26y x π⎛⎫=-⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍, 得()sin 46g x x π⎛⎫=- ⎪⎝⎭, 因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦, 则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤ 【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.24.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦.【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---,22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦,则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦.【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).25.(1)最小正周期为π;(2)(i )ππ[,]122;(ii )当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【分析】(1)利用和差公式展开合并,再利用辅助角公式计算可得()2sin (2+)3f x x π=,可得最小正周期为π;(2)(i )通过换元法令π23t x =+,求出sin y t =的范围,然后再根据sin y t =的单调递减区间求解即可;(ii )根据函数单调性求得最大值,然后计算端点值,比较大小之后可得函数的最小值. 【详解】 解:(1)πππ()=sin(2+)sin(2)2=sin 22=2sin(2+)333f x x x x x x x +-.2π==π2T ,∴()f x 的最小正周期为π. (2)(i )π[0,]2x ∈,∴ππ4π2[,]333t x =+∈,sin y t =,π4π[,]33t ∈的单调递减区间是π4π[,]23t ∈,且由ππ4π2233x ≤+≤,得ππ122x ≤≤, 所以函数()f x 的单调递减区间为ππ[,]122. (ii )由(i )知,()f x 在ππ[,]122上单调递减,在π[0,]12上单调递增.且π(0)=2sin 3f =ππ()=2sin 2122f =,π4π()=2sin 23f =所以,当π=12x 时,()f x 取最大值为2;当π=2x 时,()f x 取最小值为 【点睛】思路点睛:(1)关于三角函数解析式化简问题,首先利用和差公式或者诱导公式展开合并化为同角,然后再利用降幂公式进行降次,最后需要运用辅助角公式进行合一化简运算;(2)三角函数的单调区间以及最值求解,需要利用整体法计算,可通过换元利用sin y t =的单调区间以及最值求解.26.(1)225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)3,⎡-⎢⎣⎦.【分析】(1)根据()f x 的最小正周期求解出ω的值,再采用整体替换的方法结合正弦函数的单调递减区间的公式求解出()f x 的单调递减区间;(2)先求解出t x ωϕ=+的范围,然后根据3sin y t =的单调性求解出()f x 的最值,从而()f x 的值域可求. 【详解】 (1)因为2T πω=,所以22323Tππωπ===,所以()3sin 34f x x π⎛⎫=+ ⎪⎝⎭, 令3232,242k x k k Z πππππ+≤+≤+∈,所以225,312312k x k k Z ππππ+≤≤+∈,所以()f x 的单调递减区间为:225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)因为()3sin 34f x x π⎛⎫=+⎪⎝⎭且,32x ππ⎡⎤∈⎢⎥⎣⎦,所以令573,444t x πππ⎡⎤=+∈⎢⎥⎣⎦, 又因为3sin y t =在5342ππ⎡⎫⎪⎢⎣⎭,上单调递减,在37,24ππ⎛⎤⎥⎝⎦上单调递增, 所以()min 33sin 32f x π==-,此时512x π=,又57sinsin 44ππ==()max53sin 4f x π==,此时3x π=或2π,所以()f x 的值域为:3,2⎡--⎢⎣⎦. 【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下:(1)先确定t x ωϕ=+这个整体的范围; (2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.。
(易错题)高中数学必修四第一章《三角函数》测试(包含答案解析)(3)
一、选择题1.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A .,63ππ⎛⎫⎪⎝⎭ B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦ 2.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,则下列结论正确的是( )A .3x π=-是()f x 图像的一条对称轴B .()f x 图像的对称中心为22,0,3k k Z ππ⎛⎫+∈⎪⎝⎭ C .()1f x ≥的解集为44,4,3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ D .()f x 的单调递减区间为282,2,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 3.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 4.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π5.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数3tan lg3tan xy x +=-是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是aπD .函数cos(sin )y x =是奇函数6.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 7.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C8.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6π C .3π D .18π 9.函数1cos y x x=+的图象可能是( ) A . B .C .D .10.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度11.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+ ⎪⎝⎭B .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭C .()2sin 23g x x π⎛⎫=+⎪⎝⎭D .()2sin 3g x x π⎛⎫=+⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 14.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又()20f =,则不等式sin ()0x f x ⋅>,[,]x ππ∈-的解集为_________.15.函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,则ω的范围__________.16.已知定义在R 上的奇函数()f x 满足()()20f x f x -+=,且当(]0,1x ∈时,()21log f x x=,若函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点,则实数m 的取值范围是__________.17.已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.18.设函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象关于直线23x π=对称,它的周期为π,则下列说法正确是________(填写序号)①()f x 的图象过点30,2⎛⎫⎪⎝⎭;②()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; ③()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭; ④将()f x 的图象向右平移ϕ个单位长度得到函数2sin 2y x =的图象. 19.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.20.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.三、解答题21.已知函数()2cos 2cos 1(0)212212212x x x f x ωπωπωπω⎛⎫⎛⎫⎛⎫=++-++>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭图象上相邻的两个最高点之间的距离为π. (1)求()f x 的单调增区间;(2)是否存在两个不同的实数1x ,20,2x π⎡⎤∈⎢⎥⎣⎦,使得点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,若存在,请求出实数a 的取值范围;若不存在,请说明理由.22.已知()()πsin 0,0,02f x A x A ωϕωϕ⎛⎫=+>><<⎪⎝⎭的部分图象如图所示,5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点,π12-是函数()f x 的一个零点.(1)求函数()f x 的解析式; (2)当113636⎡⎤∈-⎢⎥⎣⎦,ππx 时,求函数()f x 的值域. 23.函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间,并求()f x 取最小值时的自变量x 的集合.24.已知函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭,函数12y f x π⎛⎫=- ⎪⎝⎭为奇函数. (1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位,然后将所得的图象上各点的横坐标缩小到原来的12倍(纵坐标不变),得到函数()y g x =的图象,证明:当0,4x π⎡⎤∈⎢⎥⎣⎦时,22()()10g x g x --≤.25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 26.摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢的往上转,可以从高处俯瞰四周的景色(如图1).某摩天轮的最高点距离地面的高度为90米,最低点距离地面10米,摩天轮上均匀设置了36个座舱(如图2).开启后摩天轮按逆时针方向匀速转动,游客在座舱离地面最近时的位置进入座舱,摩天轮转完一周后在相同的位置离开座舱.摩天轮转一周需要30分钟,当游客甲坐上摩天轮的座舱开始计时.(1)经过t 分钟后游客甲距离地面的高度为h 米,试将h 表示为时间t 的函数; (2)问:游客甲坐上摩天轮后多长时间,距离地面的高度恰好为30米?(3)若游客乙在游客甲之后进入座舱,且中间相隔5个座舱,在摩天轮转动一周的过程中,记两人距离地面的高度差为h 米,求h 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+, 当,64x ππ⎛⎫∈-⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.2.C解析:C 【分析】结合五点作图法和函数图像可求得函数解析式,采用代入检验法可依次判断各个选项得到结果. 【详解】()10sin 2f ϕ==且2πϕ<,6πϕ∴=,又882sin 233f ππωϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,由五点作图法可得:83362πππω+=,解得:12ω=, ()12sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,当3x π=-时,1026x π+=,,03π⎛⎫∴- ⎪⎝⎭是()f x 的对称中心,A 错误; 对于B ,当223x k ππ=+时,1262x k πππ+=+,223x k ππ∴=+是()f x 的对称轴,B 错误;对于C ,由()1f x ≥得:1in 2612s x π⎛⎫ ⎪⎭≥+⎝,15226266k x k πππππ∴+≤+≤+, 解得:4344k x k πππ≤+≤,C 正确;对于D ,当282,233x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,13,2622x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 当1k =时,135,2622x πππ⎡⎤+∈⎢⎥⎣⎦,不是()f x 的单调递减区间,D 错误. 故选:C. 【点睛】方法点睛:本题考查正弦型函数()sin y A ωx φ=+的性质的判断,解决此类问题常用的方法有:(1)代入检验法:将所给单调区间、对称轴或对称中心代入x ωϕ+,确定x ωϕ+的值或范围,根据x ωϕ+是否为正弦函数对应的单调区间、对称轴或对称中心来确定正误; (2)整体对应法:根据五点作图法基本原理,将x ωϕ+整体对应正弦函数的单调区间、对称轴或对称中心,从而求得()sin y A ωx φ=+的单调区间、对称轴或对称中心.3.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.4.C解析:C【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 5.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数3tan ()3tan x f x x +=-3tan 03tan xx+>-得3tan 3x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,3tan 3tan ()()3tan 3tan x xf x f x x x-+-==-=-+-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.6.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫= ⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+=⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.7.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.8.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.9.C解析:C 【分析】利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x -=-+=+-()f x =,是偶函数,排除BD , 11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭,∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.11.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭, 故选:B12.B解析:B【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.二、填空题13.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.14.【分析】设先分析出的奇偶性然后分类讨论在上的取值情况最后根据的奇偶性求解出在上的解集【详解】设因为为奇函数为偶函数所以且定义域为关于原点对称所以为奇函数因为在上单调递增且当时所以当时所以当时所以当时 解析:()()2,02,π-【分析】设()()sin g x x f x =⋅,先分析出()g x 的奇偶性,然后分类讨论()g x 在[]0,π上的取值情况,最后根据()g x 的奇偶性求解出()0g x >在[],ππ-上的解集. 【详解】设()()sin g x x f x =⋅,因为sin y x =为奇函数,()f x 为偶函数,所以()()()()()sin sin g x x f x x f x g x -=-⋅-=-⋅=-,且定义域为R 关于原点对称,所以()g x 为奇函数,因为()f x 在()0,∞+上单调递增,且()20f =, 当0x =时,sin 0x =,所以sin ()0x f x ⋅=,当()0,2x ∈时,()sin 0,0x f x ><,所以sin ()0x f x ⋅<, 当2x =时,()20f =,所以sin ()0x f x ⋅=,当()2,x π∈时,()sin 0,0x f x >>,所以sin ()0x f x ⋅>,所以当[]0,x π∈时,若()0g x >,则()2,x π∈,又因为()g x 为奇函数,且[],x ππ∈-,根据对称性可知:若()0g x >,则()()2,02,x π∈-,故答案为:()()2,02,π-.【点睛】方法点睛:已知()f x 的单调性和奇偶性,求解不等式()()00f x ><在指定区间上的解集的常用方法:(1)分类讨论法:根据临界值采用分类讨论的方法将区间分成几段,分别考虑每一段上()f x 的正负,由此求解出不等式的解集;(2)数形结合法:根据题意作出()f x 的草图,根据图象直接写出不等式()()00f x ><的解集.15.【分析】根据函数在区间上有50个最大值由第50个和第51个最大值满足求解【详解】因为函数在区间上有50个最大值第一个最大值为:第二个最大值为:第三个最大值为:…第50个最大值为:第51个最大值为:所解析:589601,120120ππ⎡⎫⎪⎢⎣⎭【分析】根据函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值,由第50个和第51个最大值满足49220502232ππππωπ+⨯≤+<+⨯求解.【详解】因为函数()2sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间[0,20]上有50个最大值, 第一个最大值为: 32x ππω+=,第二个最大值为: 232x ππωπ+=+, 第三个最大值为: 432x ππωπ+=+,…第50个最大值为: 49232x ππωπ+=+⨯, 第51个最大值为: 50232x ππωπ+=+⨯,所以 49220502232ππππωπ+⨯≤+<+⨯,解得49512010120πππωπ+≤<+, 综上:ω的范围是589601,120120ππ⎡⎫⎪⎢⎣⎭. 故答案为:589601,120120ππ⎡⎫⎪⎢⎣⎭【点睛】易错点点睛:本题容易忽视第50个和第51个最大值要满足49220502232ππππωπ+⨯≤+<+⨯.16.【分析】根据条件易得函数是关于对称以2为周期的奇函数再根据时在同一坐标系中作出函数的图象利用数形结合法求解【详解】因为是奇函数且所以即函数是关于对称以2为周期的奇函数又时在同一坐标系中作出函数的图象解析:742⎡⎫⎪⎢⎣⎭, 【分析】根据条件,易得函数()f x 是关于()1,0对称,以2为周期的奇函数,再根据(]0,1x ∈时,()21log f x x=,在同一坐标系中作出函数()y f x =,()sin y x π=的图象,利用数形结合法求解. 【详解】因为()f x 是奇函数,且()()20f x f x -+=,所以()()2f x f x -=-,即函数()f x 是关于()1,0对称,以2为周期的奇函数, 又(]0,1x ∈时,()21log f x x=, 在同一坐标系中作出函数()y f x =,()sin y x π=的图象如图所示:因为函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点, 所以函数()y f x =,()sin y x π=在区间[]1,m -上有且仅有10个交点,由图知:实数m 的取值范围是742⎡⎫⎪⎢⎣⎭,, 故答案为:742⎡⎫⎪⎢⎣⎭,【点睛】方法点睛:函数零点求参数范围问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则构造两个函数,将问题转化为两个函数图象的交点问题求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.17.【分析】根据三角函数性质列方程求出得到进而得到利用换元法即可求出的值域【详解】根据三角函数性质的最大值为最小值为解得则函数则函数令则令由得所以的值域为故答案为:【点睛】关键点睛:解题关键在于求出后利解析:7,12⎡⎤-⎢⎥⎣⎦【分析】根据三角函数性质,列方程求出,a b ,得到()cos 2f x x =+, 进而得到22cos 2cos 3(2)2()y x f x f x x =-=--,利用换元法, 即可求出(2)2()([,]3y f x f x x ππ=-∈的值域【详解】根据三角函数性质,()cos (0)f x a x b a =+>的最大值为3a b +=,最小值为1b a -=,解得2,1b a ==,则函数()cos 2f x x =+,则函数(2)2()cos 222cos 4y f x f x x x =-=+--cos22cos 2x x =--22cos 2cos 3x x =--,3x ππ≤≤,令cos t x =,则112t -≤≤, 令2()223g t t t =--,由112t -≤≤得,7(),12g t ⎡⎤∈-⎢⎥⎣⎦, 所以,(2)2()([,]3y f x f x x ππ=-∈的值域为7,12⎡⎤-⎢⎥⎣⎦故答案为:7,12⎡⎤-⎢⎥⎣⎦【点睛】关键点睛:解题关键在于求出()cos 2f x x =+后,利用换元法得出2()223g t t t =--,112t -≤≤,进而求出()g t 的范围,即可求出所求函数的值域,难度属于中档题 18.③【分析】先根据对称轴及最小正周期求得函数的解析式再结合正弦函数的图象与性质判断点是否在函数图象上求得函数的单调区间及对称中心判断选项由平移变换求得变化后的解析式并对比即可【详解】函数的最小正周期是解析:③ 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式.再结合正弦函数的图象与性质,判断点是否在函数图象上,求得函数的单调区间及对称中心判断选项,由平移变换求得变化后的解析式并对比即可. 【详解】函数()()2sin 0,0,2f x x πωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭的最小正周期是π,所以22πωπ==,则()()2sin 2f x x ϕ=+,又()()2sin 2f x x ϕ=+图象关于直线23x π=对称, 所以对称轴为2,2x k k Z πϕπ+=+∈,代入可得22,32k k Z ππϕπ⨯+=+∈,解得5,6k k Z πϕπ=-+∈, 因为0,2πϕ⎛⎫∈ ⎪⎝⎭,所以当1k =时, 6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对于①,当0x =时,()02sin 16f π==,()f x 的图象不过点30,2⎛⎫⎪⎝⎭,所以①不正确;对于②,()2sin 26f x x π⎛⎫=+⎪⎝⎭的单调递减区间为3222,262k x k k Z πππππ+≤+≤+∈,解得2,63k x k k Z ππππ+≤≤+∈, 当0k =时,263x ππ≤≤,又因为126ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以②错误;对于③,()2sin 26f x x π⎛⎫=+⎪⎝⎭的对称中心为2,6x k k Z ππ+=∈,解得,122k x k Z ππ=-+∈,当1k =时,512x π=,所以5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心,所以③正确;对于④,将()2sin 26f x x π⎛⎫=+⎪⎝⎭向右平移6π个单位长度,可得2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以不能得到2sin 2y x =的图象,所以④错误.综上可知,正确的为③. 故答案为: ③. 【点睛】本题考查了三角函数解析式的求法,正弦函数的图像与性质的综合应用,属于中档题. 19.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π 【分析】 利用任意性与存在性原命题可转化为()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()21,22f α⎛⎫∈-- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=,即()12,2f k k β⎛=∈ ⎝⎭有且仅有一个解,作函数图像()y fβ=与直线12,,22y k k ⎛=∈ ⎝⎭, 当两个图像只有一个交点时,由图可知,344m ππ<≤,故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.20.【分析】利用二倍角公式可得由函数的最大值可求出由相邻两条对称轴间的距离可求出周期再利用周期公式可求出将点代入解析式可求出从而可得函数的解析式即可求出的值【详解】因为函数的最大值为所以所以由函数相邻两 解析:3【分析】利用二倍角公式可得()cos(22)122A Af x ωx φ=+++,由函数的最大值可求出A ,由相邻两条对称轴间的距离可求出周期,再利用周期公式可求出ω,将点(0,2)代入解析式可求出ϕ,从而可得函数的解析式,即可求出(1)(2)f f +的值. 【详解】21cos(22)()cos ()11cos(22)1222ωx φA Af x A ωx φA ωx φ++=++=⋅+=+++,因为函数()f x 的最大值为3,所以1322A A++=,所以2A =, 由函数()f x 相邻两条对称轴间的距离为2,可得周期4T =,所以222T ππω==,所以4πω=, 所以()cos(2)22πf x x φ=++,又()f x 的图象与y 轴的交点坐标为(0,2),所以cos 222ϕ+=,所以cos20ϕ=,又02πϕ<<,所以=4πϕ,所以()cos()2sin 2222πππf x x x =++=-+,所以(1)(2)sin 2sin 2120232πf f π+=-+-+=-+-+=.故答案为:3 【点睛】本题主要考查求三角函数的图象与性质,二倍角的余弦公式,诱导公式,属于中档题.三、解答题21.(1)单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)存在,).【分析】(1)先对函数化简得()2sin f x x ω=,由函数图像上相邻的两个最高点之间的距离为π,可得函数的周期为π,从而由周期公式可得2ω=,则()2sin 2f x x =,由22222k x k ππππ-+≤≤+,可求得()f x 的单调增区间;(2)由题意得点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,所以2sin 22x x a =,由此可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin 3θ=,2cos 3θ=,只要函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点即可 【详解】(1)函数()2cos 2cos 1212212212x x x f x ωπωπωπ⎛⎫⎛⎫⎛⎫=++-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2sin 2sin 6666x x x x ππππωωωω⎛⎫⎛⎫⎛⎫=+-+=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由题意,最小正周期T π=,即2||T ππω==, 因为0>ω,所以2ω=,即有()2sin 2f x x =, 令22222k x k ππππ-+≤≤+,解得44k x k ππππ-+≤≤+,从而得()f x 的单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(2)由题意,点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,有:22sin 22x a x π⎛⎫-+= ⎪⎝⎭,即方程2sin 22x x a =,即方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin θ=,2cos 3θ=,θ为锐角当0,42x πθ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递增,且当0x =时,sin(2)sin()sin 3x θθθ-=-=-=-; 当42x πθ=+时,sin(2)sin12x πθ-==,所以13y -≤≤, 当,422x πθπ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递减,且当2x π=时,sin(2)sin()sin x θπθθ-=-==所以13y ≤≤, 所以要使方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解,即函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,13a≤<3a <; 综上所述,在0,2π⎡⎤⎢⎥⎣⎦上存在两个不同的实数1x ,2x 满足条件,此时a 的取值范围是).【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,解题的关键是把点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,转化为点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,从而可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,再转化为函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,属于中档题 22.(1)()2sin 34x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,2-. 【分析】(1)由图知最大值可以求A 的值,由35412122T πππ⎛⎫=--= ⎪⎝⎭及2Tπω=可以求出ω的值,由()5332122k k Z ππϕπ⨯+=+∈结合02πϕ<<可以求出ϕ的值,进而可得()f x 的解析式; (2)由113636ππx -≤≤求出34x π+的范围,再由正弦函数的性质即可求解. 【详解】(1)由图知:2A =,35412122T πππ⎛⎫=--= ⎪⎝⎭,解得:23T π=,所以22323Tππωπ===,可得()()2sin 3f x x ϕ=+, 因为5,212⎫⎛- ⎪⎝⎭πM 是函数()f x 图象上的一个最低点, 所以()5332122k k Z ππϕπ⨯+=+∈, 当0k =时,4πϕ=,所以()2sin 34x f x π⎛⎫=+⎪⎝⎭, (2)因为113636ππx -≤≤,所以π7π3646x π≤+≤, 所以1sin 3124x π⎛⎫-≤+≤ ⎪⎝⎭,12sin 324x π⎛⎫-≤+≤ ⎪⎝⎭所以函数()f x 的值域[]1,2-. 【点睛】关键点点睛:本题解题的关键点是由三角函数额的周期求出ω得值,再由三角函数的谷点求出ϕ得值.23.(1)()22sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【分析】(1)先求出2A =,根据图形得出周期,可求出2ω=,再代入,06π⎛⎫⎪⎝⎭可求出ϕ;(2)令2222,232k x k k Z πππππ-+≤+≤+∈可求出增区间,当2322,32x k k Z πππ+=+∈时可得最小值. 【详解】(1)由图可知,2A =,46124T πππ⎛⎫=--= ⎪⎝⎭,即T π=,22πωπ∴==, 则()()2sin 2f x x ϕ=+,2sin 2066f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即,3k k Z πϕπ+=∈,则,3k k Z πϕπ=-∈,0πϕ<<,23πϕ∴=, ()22sin 23f x x π⎛⎫∴=+⎪⎝⎭; (2)令2222,232k x k k Z πππππ-+≤+≤+∈,解得27,121ππππ-+≤≤-+∈k x k k Z , 故()f x 的单调递增区间为7,,1212ππππ⎡⎤-+-+∈⎢⎥⎣⎦k k k Z ,当2322,32x k k Z πππ+=+∈,即25,1ππ=+∈x k k Z 时,()f x 取得最小值为2-, 此时x 的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 24.(1),(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)证明见解析.【分析】 (1)根据sin 2126f x x ππϕ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数可得6π=ϕ,则()sin 26f x x π⎛⎫=+ ⎪⎝⎭,再由222,Z 262k x k k πππππ-≤+≤+∈可得答案;(2)根据三角函数图象的变换规律可得()sin 46g x x π⎛⎫=-⎪⎝⎭,由0,4x π⎡⎤∈⎢⎥⎣⎦,求出1(),12g x ⎡⎤=-⎢⎥⎣⎦,进而可得结论.【详解】(1)由题意知:sin 2126y f x x ππϕ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭为奇函数 所以()6k k Z πϕπ-=∈,(Z)6k k πϕπ=+∈因为02πϕ<<,所以0k =,6π=ϕ 所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭由222,Z 262k x k k πππππ-≤+≤+∈,解得:,Z 36k x k k ππππ-≤≤+∈, 所以()f x 的单调递增区间为,(Z)36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)由题知:将()y f x =的图象向右平移6π个单位得sin 266y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 即sin 26y x π⎛⎫=- ⎪⎝⎭,再将图象上各点的横坐标缩小到原来的12倍,得()sin 46g x x π⎛⎫=- ⎪⎝⎭, 因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以54,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 因此1()sin 4,162g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦,则2()10g x +≥且()10g x -≤,所以22()()1[2()1][()1]0g x g x g x g x --=+-≤ 【点睛】方法点睛:函数sin()y A x ωϕ=+()0,0A ω>>的单调区间的求法:,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间;2222k x k πππωϕπ-+≤+≤+求得增区间.25.(1)()2sin 24f x x π⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x 值域为⎡⎤⎣⎦. 【分析】(1)利用最高点与最低点坐标可求出A 和周期T ,由2T πω=可求得ω的值,再将点,28M π⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x 的解析式; (2)解不等式222242k x k πππππ-≤+≤+,k Z ∈,可得()f x 的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域. 【详解】(1)因为()f x 图象上相邻两个最高点和最低点分别为,28π⎛⎫ ⎪⎝⎭,5,28π⎛⎫- ⎪⎝⎭所以2A =,52882T πππ=-=,则T π=, 又2||T πω=,0>ω,所以2ω=,()2sin(2)f x x ϕ=+, 又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.(2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.26.(1)()5040cos()15th t π=-;(2)5t =分钟或25t =分钟;(3)h 最大值为40米.【分析】(1)由题意可知高度h 与时间t 的关系符合()sin()h t A t B ωϕ=++,根据已知求出,,,A B ωϕ的值,写出解析式即可.(2)设()30h t =,解方程求出(0,30)t ∈即为距离地面的高度恰好为30米的时间. (3)有题意列出游客甲、游客乙距离地面的高度解析式分别为12(),()h t h t ,利用三角函数有12|()()|h t h t -的最大值为所求h 的最大值. 【详解】(1)由题意,设()sin()h t A t B ωϕ=++,得:9010A B A B +=⎧⎨-+=⎩,解得40,50A B ==,又当0t =时,(0)40sin 5010h ϕ=+=, ∴22k πϕπ=-,不妨令0k =有2πϕ=-,而230T πω==得15πω=,∴()5040cos()15th t π=-,(2)由题意有()5040cos()3015th t π=-=,即1cos()152tπ=, ∴153tππ=或5153tππ=,得5t =或25t =. (3)若游客甲高度解析式为1()5040cos()15th t π=-,则游客乙高度解析式为2()5040cos()153t h t ππ=--,∴12cos()cos()1515|()()|40|cos()cos()|40||40|cos()|1531522153ttt tt h t h t πππππππ-=--=-=+∴令153t πππ+=,解得10t =,此时12|()()|h t h t -的最大值为40米.【点睛】关键点点睛:根据实际问题构建三角函数模型,进而由题设求对应高度的时间,以及应用三角恒等变换求两游客的高度差最大值.。
高一数学必修4第一章三角函数单元测试
高一数学必修4第一章三角函数单元测试班级 姓名 座号 评分一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2B 2C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位 7、函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图象如图所示,则函数表达( )A .)48sin(4π+π-=x yB .)48sin(4π-π=x yC .)48sin(4π-π-=x yD .)48sin(4π+π=x y8 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数12、函数y = ( )A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 .14、.已知sin 4πα⎛⎫+= ⎪⎝⎭,则3sin 4πα⎛⎫- ⎪⎝⎭值为 15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 2απαπ=<<,求sin cos αα-的值.19、(本小题满分12分)已知关于x 的方程)2210x x m -+=的两根为sin θ和cos θ:(12分)(1)求1sin cos 2sin cos 1sin cos θθθθθθ+++++的值;(2)求m 的值.20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+21、(10分)21()tan 2tan 5f t x a x =++求函数在[,]42x ππ∈时的值域(其中a 为常数)22、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位; ④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修4第一章三角函数单元测试
班级 姓名 座号 评分
一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分)
1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )
A .B=A ∩C
B .B ∪C=
C C .A C
D .A=B=C
2、将分针拨慢5分钟,则分钟转过的弧度数是
( ) A .3
π B .-3π C .6π D .-6π 3、已知
sin 2cos 5,tan 3sin 5cos αα
ααα-=-+那么的值为 ( ) A .-2 B .2 C .2316 D .-2316
4、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( )
A .在x 轴上
B .在直线y x =上
C .在y 轴上
D .在直线y x =或y x =-上
5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )
A .2
B 2
C .1
2 D . 12-
6、要得到)42sin(3π+
=x y 的图象只需将y=3sin2x 的图象 ( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8
π个单位 7、函数sin()(0,,)2
y A x x R πωϕωϕ=+><∈的部分图象如图所示,则函数表达( )
A .)48sin(4π+π-=x y
B .)4
8sin(4π-π=x y C .)48sin(4π-π-=x y D .)4
8sin(4π+π=x y
8 ( )
A .cos160︒
B .cos160-︒
C .cos160±︒
D .cos160±︒
9、A 为三角形ABC 的一个内角,若12sin cos 25
A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π
+=x y 的图象
( ) A .关于原点对称 B .关于点(-
6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11、函数sin(),2y x x R π=+
∈是 ( ) A .[,]22
ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数
12、函数y = ( )
A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦
B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣
⎦ C .22,2()33k k k Z ππππ++∈⎡⎤
⎢⎥⎣⎦ D .222,2()33k k k Z ππππ-+∈⎡
⎤⎢⎥⎣⎦
二、填空题:共4小题,把答案填在题中横线上.(20分)
13、已知απβαππβαπ2,3
,34则-<-<-<+<的取值范围是 .
14、.已知sin 4πα⎛⎫+= ⎪⎝⎭,则3sin 4πα⎛⎫- ⎪⎝⎭值为 15、函数])3
2,6[)(8cos(πππ∈-
=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤.
17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒
18、(8分)已知3tan 2απαπ=
<<,求sin cos αα-的值.
19、(本小题满分12分)已知关于x 的方程)2210x x m -
+=的两根为sin θ和cos θ:(12分) (1)求1sin cos 2sin cos 1sin cos θθθθθθ
+++++的值; (2)求m 的值.
20、(10分)已知α是第三角限的角,化简
ααααsin 1sin 1sin 1sin 1+---+
21、(10分)21()tan 2tan 5f t x a x =++求函数在[
,]42
x ππ∈时的值域(其中a 为常数)
22、(8分)给出下列6种图像变换方法: ①图像上所有点的纵坐标不变,横坐标缩短到原来的2
1; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍; ③图像向右平移
3
π个单位; ④图像向左平移3
π个单位; ⑤图像向右平移3
2π个单位; ⑥图像向左平移32π个单位。
(1)请用上述变换将函数y = sinx 的图像变换到函数y = sin (
2x +3π)的图像. (2)用五点法做出y = sin (2x +3
π)的简图
参考答案
1. B
2. C
3. D
4. A
5. A
6.C
7.C
8.B
9.B 10. B 11.D 12.D 13. ),0(π 14.x x cos 2sin - 15.21 16.2
3- 17
.原式221()11(222=-+-+12
= 18
.3tan 2απαπ=
<< 且 sin 0,cos 0αα∴<<
,由22sin sin cos 1αααα⎧=⎪⎨+=⎪⎩
得sin 1
cos 2
αα⎧=⎪⎪⎨⎪=-⎪
⎩sin cos αα∴-= 19.设需x 秒上升100cm .则
π
π15,100502460=∴=⨯⨯⨯x x (秒) 20。
–2tan α
21.2tan 2tan 5y x a x =++22(tan )5x a a =+-+ [,]42x ππ∈ tan [1,]x ∴∈+∞∴ 当1a ≤-时,25y a ≥-+,此时tan x a =- ∴ 当1a >-时,25y a ≥+,此时tan 1x =
22.④②或②⑥。