2.2等差数列(第三课时)

合集下载

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

人教版高中数学必修五第二章2.2.1等差数列的概念与通项公式【教案】

2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。

②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。

③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。

二、教学重点:研究等差数列的概念以及通项公式的推导。

教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。

四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。

由复习引入,通过数学知识的内部提出问题。

知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。

人教B版数学必修五:2.2《等差数列》学案(含答案解析)

人教B版数学必修五:2.2《等差数列》学案(含答案解析)

§2.2 等差数列1.等差数列的判定(1)a n -a n -1=d (n ≥2,d 为常数)⇔{a n }是公差为d 的等差数列; (2)2a n =a n -1+a n +1 (n ≥2)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数)⇔{a n }是公差为k 的等差数列(n ≥1);(4)S n =An 2+Bn (A ,B 为常数)⇔{a n }是公差为2A 的等差数列(n ≥1).例如:已知等差数列{a n }的前n 项和S n =(n -1)2+λ,则λ的值是________. 解析 S n =(n -1)2+λ=n 2-2n +(1+λ), ∵{a n }是等差数列,∴1+λ=0,λ=-1. 答案 -12.等差数列的通项公式将a n =a 1+(n -1)d 可整理为a n =dn +(a 1-d ),它是关于n 的一次函数(d ≠0)或常函数(d =0),它的图象是一条射线上的一群横坐标为正整数的孤立的点,公差d 是该射线所在直线的斜率.例如:等差数列{a n }中,若a n =m ,a m =n (m ≠n ),则a m +n =______. 解析 由点(n ,a n ),(m ,a m ),(m +n ,a m +n )三点共线, ∴a m +n -a n (m +n )-n =a m -a n m -n .即a m +n -m m =n -m m -n=-1,易得a m +n =0. 答案 03.等差数列的前n 项和公式(1)将公式S n =na 1+n (n -1)2d 变形可得S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .故当d ≠0时,等差数列前n 项和公式是关于n 的二次函数,它的图象是抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的一群孤立点.(2)S n n =d2n +⎝⎛⎭⎫a 1-d 2是关于n 的一次函数(d ≠0)或常函数(d =0). 当涉及等差数列前n 项和S n 的计算问题时,有时设S n =An 2+Bn 的形式更简便快捷. 例如:等差数列{a n }中,若S p =q ,S q =p (p ≠q ),则S p +q =__________. 解析 设S n =An 2+Bn ,则⎩⎪⎨⎪⎧S p =Ap 2+Bp =q (1)S q =Aq 2+Bq =p (2) 由(1)-(2)得Ap 2+Bp -Aq 2-Bq =q -p , ∴A (p 2-q 2)+B (p -q )=q -p , ∵p ≠q ,∴A (p +q )+B =-1. ∵S p +q =A (p +q )2+B (p +q ) =[A (p +q )+B ]·(p +q ) =-(p +q ). 答案 -(p +q ) 4.等差数列的性质(1)若数列{a n }和{b n }均是等差数列,则{ma n +kb n }仍为等差数列,其中m 、k 均为常数. (2)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .(3)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d (d 是原数列公差).(4)若{a n }与{b n }均为等差数列,且前n 项和分别为S n 与S ′n ,则a m b m =S 2m -1S ′2m -1.(5)等差数列{a n }中,奇数项的和记作S 奇,偶数项的和记作S 偶,则S n =S 奇+S 偶.当n 为偶数时:S 偶-S 奇=n2d ;当n 为奇数时:S 奇-S 偶=a 中,S 奇=n +12a 中,S 偶=n -12a 中,S 奇S 偶=n +1n -1.(其中a 中是等差数列的中间一项)例如:已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是________.解析 S 偶-S 奇=n2d =5d ,∴5d =30-15=15,∴d =3.答案 35.等差数列前n 项和的最值求等差数列前n 项和的最值的常用方法: (1)通项法当a 1>0,d <0时,数列{a n }只有前面有限项为非负数,从某项开始所有项均为负数,因此,S n 有最大值,当n 满足不等式组⎩⎪⎨⎪⎧ a n ≥0a n +1<0时,S n 取到这个最大值;当a 1<0,d >0时,数列{a n }只有前面有限项为非正数,从某项开始所有项均为正数,因此,S n 有最小值,当n 满足不等式组⎩⎪⎨⎪⎧a n ≤0a n +1>0时,S n 取到这一最小值.(2)二次函数法由于S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,n ∈N *是关于n 的二次函数式,故可转化为求二次函数的最值问题,但要注意数列的特殊性n ∈N *.例如:{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009·a 2 010<0,则使前n 项和S n 最大时,n 的值是________;使前n 项和S n >0成立时,n 的最大值是________.答案 2 009 4 018一、等差数列的判断方法方法链接:判定等差数列的常用方法: (1)定义法:a n +1-a n =d (常数)(n ∈N *);(2)通项公式法:a n =kn +b (k ,b 为常数) (n ∈N *); (3)中项公式法:2a n +1=a n +a n +2 (n ∈N *);(4)前n 项和法:S n =An 2+Bn (A 、B 为常数),n ∈N *.例1 数列{a n }的前n 项和S n 满足:S n =n (a 1+a n )2,判断{a n }是否为等差数列?并证明你的结论.解 {a n }是等差数列,证明如下:因为a n =S n -S n -1=n (a 1+a n )2-(n -1)(a 1+a n -1)2(n ≥2),所以a n +1=(n +1)(a 1+a n +1)2-n (a 1+a n )2,所以a n +1-a n =12[(n +1)(a 1+a n +1)-2n (a 1+a n )+(n -1)(a 1+a n -1)]=12[(n +1)a n +1-2na n +(n -1)a n -1] (n ≥2), 即(n -1)(a n +1-2a n +a n -1)=0,所以a n +1+a n -1=2a n (n ≥2), 所以数列{a n }为等差数列.二、等差数列中基本量的运算方法链接:在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个基本量,利用通项公式与前n 项和公式,求出a 1和d ,等差数列就确定了.例2 在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8;(2)已知前3项和为12,前3项积为48,且d >0,求a 1; (3)已知前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 解 (1)∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧a 1+5d =105a 1+10d =5. 解方程组得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16,S 8=8×(a 1+a 8)2=44.(2)设数列的前三项分别为a -d ,a ,a +d ,依题意有: ⎩⎪⎨⎪⎧(a -d )+a +(a +d )=12(a -d )·a ·(a +d )=48, ∴⎩⎪⎨⎪⎧a =4a (a 2-d 2)=48, ∴⎩⎪⎨⎪⎧a =4d =±2. ∵d >0,∴d =2,a -d =2.∴a 1=2. (3)设公差为d ,则由题意得⎩⎪⎨⎪⎧a +3a =8,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2,d =2,k =50或k =-51(舍去).因此,a =2,k =50.三、等差数列的性质及运用方法链接:等差数列有一些重要的性质,例如: (1)若m +n =p +q ,则a m +a n =a p +a q ; (2)若m +n =2p ,则a m +a n =2a p ;(3)若{a n }是等差数列,则S k ,S 2k -S k ,S 3k -S 2k 也成等差数列.(其S k 为前k 项和)(4)若等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a n b n =S 2n -1T 2n -1.熟练运用这些性质,可以提高解题速度,获得事半功倍的功效.例3 (1)设等差数列{a n }的前n 项和为S n ,若S 9=72,求a 2+a 4+a 9的值; (2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,求证:①a n b n =S 2n -1T 2n -1;②a n b m =2m -12n -1·S 2n -1T 2m -1.(1)解 由S 9=9(a 1+a 9)2=72,∴a 1+a 9=16,∴a 1+a 9=2a 5=16,∴a 5=8,∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.(2)证明 ①a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(a 1+a 2n -1)2n -12(b 1+b 2n -1)2n -12=S 2n -1T 2n -1.②a n b m =2a n 2b m =a 1+a 2n -1b 1+b 2m -1=(a 1+a 2n -1)2n -12·2m -12(b 1+b 2m -1)2m -12·2n -12=2m -12n -1·S 2n -1T 2m -1.四、等差数列前n 项和的最值 方法链接:等差数列前n 项和最值问题除了用二次函数求解外,还可用下面的方法讨论:若d >0,a 1<0,S n 有最小值,需⎩⎪⎨⎪⎧a n ≤0,a n +1≥0;若a 1>0,d <0,S n 有最大值,需⎩⎪⎨⎪⎧a n ≥0,a n +1≤0.n 取正整数.例4 (1)首项为正数的等差数列,前n 项和为S n ,且S 3=S 11,问n 为何值时,S n 最大?(2)等差数列{a n }中,a 1=-60,a 17=-12,求{|a n |}的前30项和及前n 项和.解 (1)设首项为a 1,公差为d ,则由题意知,d <0,点P (n ,S n )在抛物线y =d2x 2+⎝⎛⎭⎫a 1-d 2x 上,其对称轴方程为x =7(由S 11=S 3知),故(7,S 7)是抛物线的顶点,∴n =7时,S n 最大.(2)设公差为d ,则由a 1+16d =a 17,得d =3>0,因此a n =3n -63.点Q (n ,a n )在增函数y =3x -63的图象上.令y =0则得x =21,故当n ≥22时,a n >0;当1≤n ≤21且n ∈N *时,a n ≤0, 于是|a 1|+|a 2|+…+|a 30|=-a 1-a 2-…-a 21+a 22+a 23+…+a 30 =a 1+a 2+…+a 30-2(a 1+a 2+…+a 21) =765.记T n =|a 1|+|a 2|+…+|a n |, 则由上面的求解过程知: 当1≤n ≤21,n ∈N *时, T n =|a 1|+|a 2|+…+|a n | =-a 1-a 2-…-a n =(123-3n )n 2=-32n 2+1232n .当n >21,n ∈N *时,T n =|a 1|+|a 2|+…+|a 20|+|a 21|+…+|a n | =-(a 1+a 2+…+a 21)+a 22+a 23+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 21) =32n 2-1232n +1 260. ∴数列{|a n |}的前n 项和T n=⎩⎨⎧-32n 2+1232n (1≤n ≤21,n ∈N *),32n 2-1232n +1 260 (n >21,n ∈N *).五、关于等差数列的探索性问题方法链接:对于与等差数列有关的探索性问题,先由前三项成等差数列确定参数后,再利用定义验证或证明所得结论.例5 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N *). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)∵a 1=5,∴a 2=2a 1+22-1=13, a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列.则a 1+λ2,a 2+λ22,a 3+λ23成等差数列,∴2×a 2+λ22=a 1+λ2+a 3+λ23,∴13+λ2=5+λ2+33+λ8.解得λ=-1.当λ=-1时,⎝ ⎛⎭⎪⎫a n +1-12n +1-⎝⎛⎭⎫a n -12n=12n +1[(a n +1-1)-2(a n -1)] =12n +1(a n +1-2a n +1) =12n +1[(2a n +2n +1-1)-2a n +1] =12n +1×2n +1=1. 综上可知,存在实数λ=-1,使得数列⎩⎨⎧⎭⎬⎫a n +λ2为等差数列,且首项是2,公差是1.六、关于等差数列的创新型问题方法链接:关于等差数列的创新型试题,常以图表、数阵、新定义等形式出现.解决此类问题时通过对图表的观察、分析、提炼,挖掘出题目蕴含的有用信息,利用所学等差数列的有关知识加以解决.ij(1)写出a 45的值;(2)写出a ij 的计算公式.解 (1)通过观察“等差数阵”发现:第一行的首项为4,公差为3;第二行首项为7,公差为5.归纳总结出:第一列(每行的首项)是以4为首项,3为公差的等差数列,即3i +1,各行的公差是以3为首项,2为公差的等差数列,即2i +1.所以a 45在第4行,首项应为13,公差为9,进而得出a 45=49.(2)该“等差数阵”的第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1); 第二行是首项为7,公差为5的等差数列: a 2j =7+5(j -1); ……第i 行是首项为4+3(i -1),公差为2i +1的等差数列, 因此,a ij =4+3(i -1)+(2i +1)(j -1)=2ij +i +j =i (2j +1)+j .1.审题不细心,忽略细节而致错例1 首项为-24的等差数列,从第10项起开始为正数,求公差d 的取值范围.[错解] a 10=a 1+9d =-24+9d >0,∴d >83.[点拨] 忽略了“开始”一词的含义,题目强调了第10项是该等差数列中的第一个正项,应有a 9≤0.[正解] 设a n =-24+(n -1)d , 由⎩⎪⎨⎪⎧a 9=-24+(9-1)d ≤0a 10=-24+(10-1)d >0, 解不等式得:83<d ≤3.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败.2.忽略公式的基本特征而致错例2 已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且对一切正整数n 都有S n T n =5n +32n +7,试求a 9b 9的值. [错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0, 则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k , b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k ,所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点.[正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k ,b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k=41k ,所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,是关于n 的二次函数式,且常数项为零,当d =0时,S n =na 1,但是本题不属于这种情况(否则S n T n =na 1nb 1=a 1b 1与S nT n=5n +32n +7矛盾). 3.对数列的特点考虑不周全而致错例3 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.[错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130.∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 由a 1=20,S 10=S 15,解得公差d =-53.∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0, ∵a 11+a 15=a 12+a 14=2a 13=0,∴a 13=0. ∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数, 而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=130.4.忽略题目中的隐含条件而致错例4 一个凸n 边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n 边形的边数.[错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°.另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得:n 2-25n +144=0. 所以n =9或n =16.即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15°×5°=195°>180°应该舍掉.[正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180解得:n =9或n =16.当n =9时,最大内角为120°+8°×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例 一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 分析 本题可从基本方法入手,先求a 1,d ,再求前110项之和,为了简化计算,也可利用等差数列前n 项和的性质.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110. 故此数列的前110项之和为-110. 方法二 设S n =an 2+bn . ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.方法三 设等差数列的首项为a 1,公差为d ,则⎩⎨⎧S p =pa 1+p (p -1)2d =q , ①(p ≠q )S q=qa 1+q (q -1)2d =p . ②①-②得(p -q )a 1+(p -q )(p +q -1)2d=-(p -q ). 又p ≠q ,∴a 1+p +q -12d =-1,∴S p +q =(p +q )a 1+(p +q )(p +q -1)2d=(p +q )(-1), ∴S 110=-110.方法四 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100 成等差数列,设其公差为D .前10项的和10S 10+10×92·D =S 100=10,解得D =-22,∴S 110-S 100=S 10+(11-1)D =100+10×(-22)=-120. ∴S 110=-120+S 100=-110.方法五 ∵S 100-S 10=a 11+a 12+…+a 100 =90(a 11+a 100)2=90(a 1+a 110)2.又S 100-S 10=10-100=-90,∴a 1+a 110=-2.∴S 110=110(a 1+a 110)2=-110.1.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则 ⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d , 解得⎩⎪⎨⎪⎧a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).2.设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25得a 22-a 25=a 24-a 23,由性质得-3d (a 4+a 3)=d (a 4+a 3),因为d ≠0 所以a 4+a 3=0,即2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7,S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数. 又由(1)知a m +2为奇数,所以a m+2=2m-3=±1,即m=1,2.经检验,符合题意的正整数只有m=2.赏析试题考查了等差数列的有关知识,起点较低,落点较高,难度控制得恰到好处.第(2)问要求考生有一定的分析问题解决问题的能力.。

人教版高中数学必修五 2.2 等差数列

人教版高中数学必修五 2.2 等差数列
(2)符号语言:an+1-an=d(d 为常数,n∈N*).
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.

等差数列的性质(52张PPT)课件

等差数列的性质(52张PPT)课件

第二章 2.2 第2课时
系列丛书
[点评] 本题考查等差数列的两个基本性质.解题时应 注意题中所给各项的关系,注意第(2)题应有两组结果.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
变式训练 1 (1)设{an}为等差数列,若 a3+a4+a5+a6 +a7=450,求 a2+a8;
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
课堂 互 动 探 究
例 练 结 合 ········································· 素 能 提 升
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
典例导悟
类型一 等差数列的性质及应用 [例 1] 已知等差数列{an}, (1)若 a2+a3+a25+a26=48,求 a14; (2)若 a2+a3+a4+a5=34,a2a5=52,求公差 d.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
联立解得 a2=4,a5=13,或 a2=13,a5=4. 当 a2=4,a5=13 时,d=a55--a22=3; 当 a2=13,a5=4 时,d=a55--a22=-3. ∴公差 d 为 3 或-3.
人教A版·数学·必修5
进入导航
(2)在等差数列{an}中,a3+a5+a7+a9+a11=100,求 3a9 -a13 的值.
人教A版·数学·必修5
进入导航
第二章 2.2 第2课时
系列丛书
解:(1)a3+a7=a4+a6=2a5=a2+a8, ∴a3+a4+a5+a6+a7=5a5=450. ∴a5=90,∴a2+a8=2a5=180. (2)由a3+a5+a7+a9+a11=5a7=100得a7=20. ∴3a9-a13=3(a7+2d)-(a7+6d)=2a7=40.

数列知识点总结及例题讲解

数列知识点总结及例题讲解

人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。

是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。

与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。

2.2等差数列共3课时 - 副本

2.2等差数列共3课时 - 副本
- 即:an+1 an = d (n∈N*)
说明:此公式是判断、证明一个数列是否为等 差数列的主要依据.
1、判定下列数列是否是等差数列? 如果是,请说明公差?
√(1)4 ,5,6,7,8,…; d=1 >0,递增数列 √(2)1,1,1,1 ,1,…; d=0 =0,常数列 √(3)5,3,1,-1,-3,…; d=-2<0,递减数列
基础练习
(则1)a1在2的等值差是数( 列A{)an}中,a7+ a9=16,a4=1,
A.15 B.30 C.31 D.40
(2)在等差数列{an}中,a4+a16=20,a10= 10 .
等差数列的性质
(一):数列an为等差数列,且m n p q
am an ap aq .反之不成立.
特别2n p q 2an ap aq.
(二):数列an,bn为等差数列,k、m R,则:
1.数列an k仍为等差数列 2.数列k an仍为等差数列 3.数列kan mbn仍为等差数列
(三):等差数列{an}中,若k,m N *,则
a k , a k m , a k 2 m L 组成公差为 md 的等差数列
从第二项起每一项与它前一项的差都等于-10
1、等差数列的定义
如果一个数列从第2项起,每一项与其前一项 的差等于同一个常数,那么这个数列就叫做等差数 列,这个常数叫做等差数列的公差,公差通常用字 母d表示。 (1)指出定义中的关键词: 从第2项起 每一项与其前一项的差 等于同一个常数
⑵由定义得等差数列的递推公式:
A ab 2
an
an1
an1 2
自主学习、小组讨论(3min)
▪ 阅读课本第37页“思考”下方的内容,同 桌相互讨论,尝试推导“等差数列的通项 公式”,并把补全第38页方框内容。

人教A版高中数学必修五2.2《等差数列》课件

人教A版高中数学必修五2.2《等差数列》课件


13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/ 8/3202 1/8/320 21/8/3 2021/8/ 38/3/2 021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021 年8月3 日星期 二2021/ 8/3202 1/8/320 21/8/3

15、最具挑战性的挑战莫过于提升自 我。。2 021年8 月2021 /8/320 21/8/32 021/8/ 38/3/20 21
a1,an,n,d 知三求一
例2 、在等差数列{an}中 ,已知a6=12 ,a18=36 ,
求{an}的通项公式 解:由题意可得 a1+5d=12
a1+17d=36 ∴ d = 2 ,a1 =2
∴ an = 2+(n-1) ×2 = 2n
求通项公式的关键:
求基本量a1和d
方程思想
等差数列的通项公式为:
通项公式应用
例1(1)求等差数列7,4,1,-2,…的第100项; (2)判断-401是不是等差数列 –5,-9 ,-13…
的项?如果是,是第几项,如果不是,说明理由。
变式:《九章算术•均输章》——等差数列问题 今有金箠(chui),长五尺。斩本一尺,重四斤; 斩末一尺,重二斤。问次一尺各重几何。
a2=a1+d, a3=a2+d = (a1+d) + d = a1+ 2d
a4=a3+d=(a1+2d)+d=a1+3d

归纳: an=a1+(n-1)d
当n=1时,上式也成立。
观察归纳
已知等差数列{an}的首项是a1,公差是d

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)

人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.

人教版高中数学必修⑤2.2《等差数列》教学设计

人教版高中数学必修⑤2.2《等差数列》教学设计

课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。

2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。

并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。

3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。

教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。

教学难点:1.概括通项公式推导过程中体现出的数学思想方法。

2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。

等差数列的推理与证明

等差数列的推理与证明

等差数列的推理与证明一、等差数列的定义与性质1.1 等差数列的定义:等差数列是一个数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

1.2 等差数列的性质:(1)等差数列的任意两项之差等于它们下标之差乘以公差;(2)等差数列的任意一项都可以用它的首项和公差表示;(3)等差数列的前n项和可以表示为首项与末项的平均值乘以项数。

二、等差数列的通项公式2.1 等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示数列的第n项,a1表示数列的首项,d表示数列的公差,n表示项数。

三、等差数列的证明方法3.1 数学归纳法:(1)证明等差数列的通项公式成立,首先验证n=1时公式成立;(2)假设n=k时公式成立,证明n=k+1时公式也成立。

3.2 反证法:(1)假设等差数列的某一项不满足通项公式,即存在一项an不满足an = a1 + (n - 1)d;(2)通过推导得出矛盾,从而证明假设不成立,即等差数列的每一项都满足通项公式。

四、等差数列的推理与应用4.1 等差数列的推理:根据等差数列的性质,可以推理出数列的任意一项都可以用首项和公差表示,以及前n项和的计算公式。

4.2 等差数列的应用:(1)解决实际问题:例如计算等差数列的前n项和,求等差数列中的某一项等;(2)其他数学问题的解决:例如求等差数列的极限、求等差数列的通项公式的反函数等。

五、等差数列的综合考察5.1 考察等差数列的性质与通项公式的运用;5.2 考察等差数列的推理与证明方法的应用;5.3 考察等差数列在前n项和、极限等方面的综合运用。

总结:等差数列是数学中的一种基本数列,通过学习等差数列的定义、性质、通项公式以及推理与证明方法,可以更好地理解和运用等差数列解决实际问题。

在教学过程中,要注重培养学生的逻辑思维能力,提高他们对等差数列概念的理解和运用能力。

习题及方法:1.习题:已知等差数列的首项为2,公差为3,求该数列的第10项。

2.2.2-等差数列的性质ppt课件

2.2.2-等差数列的性质ppt课件

故数列的通项公式为an=21-2n.
解法二:a8-a5=5-11=3d⇒d=-2,
a5=a1+4d⇒a1=19,
故an=21-2n.

点评:等差数列{an}的通项公式an=a1+(n-1)d
目 链
中共含有四个变数,即a1,d,n,an.如果知道了其中 接
任意三个数,就可以求出第四个数,这种可行性与求

(2)已知数列{an}为等差数列,且an=3n+2,则数列{3an}的第n 项为:_____9_n_+__6_____.
基础
梳理 5.(1)等差数列{an}的等间隔项组成的数列为__等__差__数__列____.
(2)已知{an}为等差数列,且其公差为d,则{a2n-1}是 ___等__差__数__列_,其公差为:__2_d___.

6.(1)若{an}为等差数列,{bn}为等差数列,且cn=an+bn,dn
目 链
=an-bn,则___{c_n_}_与__{d_n_}_也__为__等_差__数__列______.

(2)已知数列{an}与{bn}为等差数列,an=2n-1,bn=3n+2, 则an+bn=__5_n_+__1__,为__等__差_数__列____,an-bn=_-__n_-__3__,为等差 数列.
(2)在等差数列{an}中,an=2n-1,则a3+a5= __1_4___,a2+a6=___1_4__,可知a3+a5___=___a2+a6.
基础
梳理
3.(1)设{an}为等差数列,若m+n=p+q,则 _______________a_m_+_a_n_=__a_p_+__a_q ____________________________.

高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案

高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案

等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。

人教a版必修5学案:2.2等差数列(含答案)

人教a版必修5学案:2.2等差数列(含答案)

2.2 等差数列自主学习知识梳理1.等差数列的定义一般地,如果一个数列从第________项起,每一项与它的前一项的差都等于________常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的________,通常用字母________表示.2.等差中项如果A =a +b 2,那么A 叫做a 与b 的____________. 3.等差数列的单调性等差数列的公差________时,数列为递增数列;________时,数列为递减数列;________时,数列为常数列.4.等差数列的通项公式a n =________________,当d =0时,a n =________,a n 是关于n 的________函数;当d ≠0时,a n =____________,a n 是关于n 的________函数,点(n ,a n )分布在一条以______为斜率的直线上,是这条直线上的一列________的点.5.等差数列的性质(1)若{a n }是等差数列,且k +l =m +n (k 、l 、m 、n ∈N *),则____________.(2)若{a n }是等差数列且公差为d ,则{a 2n }也是________,公差为________.(3)若{a n }是等差数列且公差为d ,则{a 2n -1+a 2n }也是____________,公差为________.自主探究如果等差数列{a n }的首项是a 1,公差是d ,你能用两种方法求其通项吗?对点讲练知识点一 等差数列的通项公式例1 若{a n }是等差数列,a 15=8,a 60=20,求a 75.总结方法一:先求出a1,d,然后求a75;方法二:应用通项公式的变形公式a n=a m +(n-m)d求解.变式训练1在等差数列{a n}中,已知a m=n,a n=m,求a m+n的值.知识点二等差数列的性质例2已知等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.总结要求通项公式,需要求出首项a1和公差d,由a1+a4+a7=15,a2a4a6=45直接求解很困难,我们可以换个思路,利用等差数列的性质,注意到a1+a7=a2+a6=2a4问题就简单了.变式训练2成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.知识点三等差数列的判断例3 已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2. (1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.总结 判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.变式训练3 若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.1.证明数列{a n }为等差数列的方法(1)定义法:a n +1-a n =d (d 为常数,n ≥1)⇔{a n }为等差数列或a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2⇔{a n }是等差数列.(3)通项法:a n =pn +q (p 、q ∈R )⇔{a n }是等差数列,只要说明a n 为n 的一次函数,就可下结论说{a n }是等差数列.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .课时作业一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( )A .24B .22C .20D .-82.已知等差数列{a n }中,a 2=-9,a 3a 2=-23,则a n 为( ) A .14n +3 B .16n -4 C .15n -39 D .15n +83.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)4.等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( )A .45B .75C .180D .3005.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值为( )A .49B .50C .51D .52题 号 1 2 3 4 5 答 案 二、填空题 6.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差分别为d 1和d 2,则d 1d 2的值为______. 7.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=______. 8.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.三、解答题9.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.10.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?请说明理由.(2)若a m 、a t (m 、t ∈N *)是数列{a n }中的项,则2a m +3a t 是数列{a n }中的项吗?并说明你的理由.§2.2 等差数列知识梳理1.2 同一个 公差 d2.等差中项3.d>0 d<0 d =04.a 1+(n -1)d a 1 常数 dn +(a 1-d) 一次 d 孤立5.(1)a k +a l =a m +a n (2)等差数列 2d(3)等差数列 4d自主探究解 第一种方法:根据等差数列的定义,可以得到a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,….所以a 2=a 1+d ,a 3=a 2+d =(a 1+d)+d =a 1+2d ,a 4=a 3+d =(a 1+2d)+d =a 1+3d ,…由此得出:a n =a 1+(n -1)d.第二种方法:由等差数列的定义知,a n -a n -1=d(n ≥2),所以 ⎭⎪⎬⎪⎫a 2-a 1=d a 3-a 2=d a 4-a 3=d ⋮a n -a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d.对点讲练例1 解 设{a n }的公差为d.方法一 由题意知⎩⎪⎨⎪⎧a 15=a 1+14d =8,a 60=a 1+59d =20, 解得⎩⎨⎧ a 1=6415,d =415.所以a 75=a 1+74d =6415+74×415=24. 方法二 因为a 60=a 15+(60-15)d ,所以d =a 60-a 1560-15=20-860-15=415, 所以a 75=a 60+(75-60)d =20+15×415=24. 变式训练1 解 方法一 设公差为d ,则d =a m -a n m -n =n -m m -n=-1, 从而a m +n =a m +(m +n -m)d =n +n·(-1)=0.方法二 设等差数列的通项公式为a n =an +b(a ,b 为常数),则⎩⎪⎨⎪⎧ a m =am +b =n ,a n=an +b =m , 得a =-1,b =m +n.所以a m +n =a(m +n)+b =0.例2 解 因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,所以a 4=5.又因为a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d)(a 4+2d)=9,(5-2d)(5+2d)=9,解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3;若d =-2,a n =a 4+(n -4)d =13-2n.变式训练2 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得 ⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40∴⎩⎪⎨⎪⎧ 4a =26,a 2-d 2=40. 解得⎩⎨⎧ a =132,d =32或⎩⎨⎧ a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.例3 (1)证明 ∵a n =4-4a n -1(n ≥2), ∴a n +1=4-4a n (n ∈N *). ∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2 =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12. ∴b n +1-b n =12,n ∈N *. ∴{b n }是首项为12,公差为12的等差数列. (2)解 b 1=1a 1-2=12,d =12. ∴b n =b 1+(n -1)d =12+12(n -1)=n 2. ∴1a n -2=n 2,∴a n =2+2n . 变式训练3 证明 ∵1b +c ,1c +a ,1a +b是等差数列, ∴1b +c +1a +b =2c +a. ∴(a +b )(c +a )+(b +c )(c +a )=2(a +b )(b +c )∴(c +a )(a +c +2b )=2(a +b )(b +c )∴2ac +2ab +2bc +a 2+c 2=2ab +2ac +2bc +2b 2∴a 2+c 2=2b 2,∴a 2,b 2,c 2成等差数列.课时作业1.A [设等差数列{a n }公差为d .∵a 1+3a 8+a 15=120,∴5a 8=120,∴a 8=24,∴2a 9-a 10=2(a 8+d )-(a 8+2d )=a 8=24.]2.C [∵a 2=-9,a 3a 2=-23, ∴a 3=-23×(-9)=6,∴d =a 3-a 2=15, ∴a n =a 2+(n -2)d =-9+(n -2)×15=15n -39.]3.D [由⎩⎪⎨⎪⎧ a 2·a 4=12,a 2+a 4=8,d <0⇒⎩⎪⎨⎪⎧ a 2=6,a 4=2⇒⎩⎪⎨⎪⎧a 1=8,d =-2, 所以a n =a 1+(n -1)d ,即a n =8+(n -1)(-2),得a n =-2n +10.]4.C [方法一 设{a n }首项为a 1,公差为d ,则a 3+a 4+a 5+a 6+a 7=a 1+2d +a 1+3d +a 1+4d +a 1+5d +a 1+6d =5a 1+20d , 即5a 1+20d =450,a 1+4d =90,∴a 2+a 8=a 1+d +a 1+7d =2a 1+8d =180.方法二 ∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,∴a 3+a 4+a 5+a 6+a 7=52(a 2+a 8)=450, ∴a 2+a 8=180.]5.D [∵2a n +1=2a n +1,∴a n +1-a n =12. 故数列{a n }是首项为2,公差为12的等差数列. ∴a 101=a 1+100d =2+100×12=52.] 6.43解析 ∵n -m =3d 1,∴d 1=13(n -m ). 又∵n -m =4d 2,∴d 2=14(n -m ). ∴d 1d 2=13(n -m )14(n -m )=43. 7.125解析 1a 6-1a 4=14-16=2d ,即d =124. 所以1a 10=1a 6+4d =14+16=512,所以a 10=125. 8.12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d . 则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74, ∴n =14×74=716,m =34×54=1516或n =1516,m =716, ∴|m -n |=12. 9.解 设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d )=(a 21+11a 1d +24d 2)-(a 21+11da 1+30d 2)=-6d 2<0,所以a 4a 9<a 6a 7.10.解 (1)依题意有a 1=3,d =7-3=4,∴a n =3+4(n -1)=4n -1.设a n =4n -1=135,得n =34,∴135是数列{a n }的第34项.由于4m +19=4(m +5)-1,且m ∈N *,∴4m +19是数列{a n }的第m +5项.(2)∵a m 、a t 是数列{a n }中的项,∴a m =4m -1,a t =4t -1.∴2a m +3a t =2(4m -1)+3(4t -1)=4(2m +3t -1)-1.∵2m +3t -1∈N *,∴2a m +3a t 是数列{a n }中的第2m +3t -1项.。

人教版高中数学必修五《数列》2.2等差数列(3)

人教版高中数学必修五《数列》2.2等差数列(3)

变式、已知5个数成等差数列,它们的和为25,它们 的平方和为165,求这5个数。
2012年3月28日星期三
2012年3月28日星期三
2012年3月28日星期三
等差数列
概念
定义 公差 通项公式1通项式通项公式2 通项公式3
性质
性质1 性质2 性质3 性质4
等差数列的单调性 等差数列的图象
等差中项
§2.2 列
等差数
第三课时
2012年3月28日星期三
1、等差数列的第三通项公式
等差数列的图像
等差数列的单调性
2012年3月28日星期三
2、等差数列的性质2
3、等差数列的性质3
2012年3月28日星期三
探究:
这个结论推广可以得到什么样的结论呢? 结论:
2012年3月28日星期三
例2、成等差数列的四个数之和为26,第二个数和第 三个数之积为40,求这四个数。 点评:
2012年3月28日星期三
绿色通道
2012年3月28日星期三

高二数学人教A版必修5教学教案2-2等差数列(3)

高二数学人教A版必修5教学教案2-2等差数列(3)

普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。

等差数列的前n项和公式(第3课时)课件-高二下学期数学人教A版(2019)选择性必修第二册

等差数列的前n项和公式(第3课时)课件-高二下学期数学人教A版(2019)选择性必修第二册

【讲评】 本例中,由于“每一圈比前一圈多 9 块”,因此每一圈的石板块 数便组成了等差数列,而这 9 圈石板总数,便是该数列的前 9 项的和.因此,一 个实际问题可建立等差数列的模型的必要条件是:是离散型的变量问题,且变量 的相邻两个值的差是一个常数.
课后巩固
1.在小于 100 的自然数中,所有被 7 除余 2 的数之和为( B )
(3)由(2)知,当 n≤17 时,an≥0;当 n≥18 时,an<0. 所以当 n≤17 时,Sn′=b1+b2+…+bn =|a1|+|a2|+…+|an| =a1+a2+…+an=Sn=33n-n2. 当 n≥18 时, Sn′=|a1|+|a2|+…+|a17|+|a18|+…+|an| =a1+a2+…+a17-(a18+a19+…+an) =S17-(Sn-S17)=2S17-Sn=n2-33n+544. 故 Sn′=3n32-n-33nn2(+n5≤441(7)n≥,18).
推.”这首歌诀的大意是:“一位老公公有九个儿子,九个儿子从大到小排列,
相邻两人的年龄差三岁,并且儿子们的年龄之和为 207 岁,请问大儿子多少岁,
其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第 n 个儿子的年龄
为 an,则 a3=( B ) A.17
B.29
C.23
D.35
解析 依题意{an}为等差数列,且 d=-3, S9=9(a12+a9)=9a5=207,∴a5=23, ∴a3=a5-2d=29.故选 B.
方法二:由 an+1=2 Sn+1,得(an+1-1)2=4Sn, 当 n≥2 时,(an-1)2=4Sn-1, ∴(an+1-1)2-(an-1)2=4(Sn-Sn-1)=4an. ∴an+12-an2-2an+1-2an=0,即(an+1+an)(an+1-an-2)=0. ∵an>0,∴an+1-an=2(n≥2). ∴{an}从第 2 项开始是以 a2=3 为首项,2 为公差的等差数列, ∴an=3+2(n-2)=2n-1(n≥2), 又 a1=1 满足上式,∴an=2n-1.

第3课时 等差数列的性质

第3课时 等差数列的性质

知识梳理
1.下标性质:在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*), 则am+an= ap+aq . 2.特别地,若m+n=2p(m,n,p∈N*),则有am+an= 2ap . 注意点:(1)推广:若m+n+p=x+y+z,则am+an+ap=ax+ay+az; (2)该性质要求下标的和相等,且左右两侧项数相同;(3)在有穷等差数 列中,与首末两项等距离的两项之和都相等,即a1+an=a2+an-1=….
例1 有两个等差数列2,6,10,…,190和2,8,14,…,200,由这两个等
差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的
项数为
A.15
√B.16
C.17
D.18
解析 易知,第一个数列的公差为4,第二个数列的公差为6,
故新数列的公差为具有相同首项的两个数列公差的最小公倍数,其公
学习目标
1.能根据等差数列的定义推出等差数列的常用性质. 2.能运用等差数列的性质简化计算.
导语
同学们,前面我们学习了等差数列的概念,明白了等差数列是 一种特殊的函数,在学习过程中,我们发现了一个非常有意思 的事情,比如说an=n,这是一个正整数列,如果我们把其中的 偶数拿出来,即2,4,6,8,10…容易发现这也是一个等差数列,同 样,如果我们把所有的奇数拿出来,也能构成一个新的数列, 今天我们就具体研究等差数列中有哪些性质.
1234
3.在等差数列{an}中,a3+a7=4,则必有
A.a5=4
√C.a5=2
B.a6=4 D.a6=2
解析 因为a3+a7=2a5=4,所以a5=2.
1a2+a4,a8=-3,则a20的值是_-__1_5__. 解析 ∵数列{an}是等差数列,∴a1+a5=a2+a4, 又a1=a2+a4,∴a5=0, ∴d=a88- -a55=-33=-1,故 a20=a5+15d=-15.

2.2等差数列 3

2.2等差数列 3

3.在等差数列{an}中,公差为0.5,且 85 a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=____.
4.(2006年广东卷)已知等差数列共有10项,其中奇数项 之和15,偶数项之和为30,则其公差是( C ) A.5 B.4 C. 3 D.2
【结论】在等差数列{an}中: (1)当项数为2n时,S偶-S奇=nd; (2)当项数为2n-1时,则S奇-S偶=an,S2n-1= (2n-1)an
【题型3】等差数列的前n项和的最值
例4 已知等差数列{an}的前n项和为Sn,a1=24, 且S17 = S10,问数列{an}的前多少项之和最大,并 求此最大值。 练习:等差数列{an}中,a1>0,且3a8 = 5a13,则 Sn中最大的是( C ) (A) S10 (B) S11 (C) S20 (D) S21
推广式:
an am ( n m )d
一、知识要点 1、等差数列的定义: an1 an d ( n N *)
an an1 d (n N *, n 2)
2、等差数列的通项公式:
an a1 ( n 1)d
3、等差中项
an am ( n m )d
【题型2】等差数列的判定
练习:(1)已知数列 { a n } 是等差数列,bn= 3an + 4, 判断数列 { bn } 是否是等差数列。
(2) 在数列{an}中,a1=3,且对任意大于1的正整数n,
3n2 点( an , an1 )在直线x y 3 0上,则an ___
相关结论见备考指南P122
an am ( n m )d

3.备课资料(2.2.2 等差数列通项公式)

3.备课资料(2.2.2 等差数列通项公式)

备课资料 一、备用例题【例1】 梯子最高一级宽33 cm ,最低一级宽为110 cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.解:设{a n }表示梯子自上而下各级宽度所成的等差数列,由已知条件,可知a 1=33,a 12=110,n =12,所以a 12=a 1+(12-1)d ,即得110=33+11d ,解之,得d =7. 因此a 2=33+7=40,a 3=40+7=47,a 4=54,a 5=61,a 6=68,a 7=75,a 8=82,a 9=89,a 10=96,a 11=103.答:梯子中间各级的宽度从上到下依次是40 cm ,47cm ,54 cm ,61 cm ,68 cm ,75 cm ,82 cm ,89 cm ,96 cm ,103 cm.【例2】 已知c b a 1,1,1成等差数列,求证:a c b +,b a c +,c b a +也成等差数列. 证明:因为a 1,b 1,c 1成等差数列,所以c a b 112+=,化简得2a c=b (a +c),所以有 acc a ac ac c a c a b ac ab a c bc c b a a c b 2222222)(++=+++=+++=+++ =bc a c a b c a ac c a +•=++=+22)()()(22. 因而,a c b +,ba c +cb a +也成等差数列. 【例3】 设数列{a n }、{b n }都是等差数列,且a 1=35,b 1=75,a 2+b 2=100,求数列{a n +b n }的第37项的值.分析:由数列{a n }、{b n }都是等差数列,可得{a n +b n }是等差数列,故可求出数列{a n +b n }的公差和通项.解:设数列{a n }、{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2为常数,所以可得{a n +b n }是等差数列.设其公差为d ,则公差d =(a 2+b 2)-(a 1+b 1)=100-(35+75)=-10.因而a 37+b 37=110-10×(37-1)=-250.所以数列{a n +b n }的第37项的值为-250.点拨:若一个数列未告诉我们是等差数列时,应先由定义法判定它是等差数列后,方可使用通项公式a n =a 1+(n -1)d .但对客观试题则可以直接运用某些重要结论,直接判定数列是否为等差数列.【例4】 在美国广为流传的一道数学题目是“老板给你两个加工资的方案:一是每年年末加1 000美元;二是每半年结束时加300美元,请你选择一种加薪方式”.一般不擅长数学的人,很容易选择前者,因为一年加一千美元总比两个半年共加600美元要多.其实,由于加工资是累计的时间稍长,往往会发现第二种方案更有利.例如:在第二年的年末,依第一种方案共可以加得1 000+2 000=3 000美元;而第二种方案共可以加得300+600+900+1 200=3 000美元,但到了第三年,第一方案共可加得6 000美元,第二方案则共加得6 300美元,显然多于第一种方案.第四年后会更多.因此,你若会在该公司干三年以上,则应选择第二方案. 根据以上材料,解答下列问题:(1)如果在该公司干十年,问选择第二种方案比选择第一种方案多加薪多少美元?(2)如果第二方案中的每半年加300美元改为每半年加a 美元.问a 取何值时,总是选择第二种方案比选择第一种方案多加薪?答案:(1)在该公司干10年,选择第二种方案比选项择第一种方案多加薪8 000美元.(2)当a 大于31000时,总是第二方案加薪多于第一种方案. 【例5】 意大利的匹萨饼店的伙计们喜欢将饼切成形状各异的一块一块.他们发现,每一种确定的刀数,都可以有一个最多的块数.例如,切一刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块……问切n 刀,最多可切出几块?(要求学生发挥自己的聪明才智,课外认真思考,分清每一种确定的刀数,都可以有一个最多的块数,可先从少量的几刀去得出一些数据,再对数据加以分析,让学生学会归纳与总结,并能勇于联想、探索)答案:121212++n n .二、阅读材料一个古老的数学课题等差数列是一个古老的数学课题.一个数列从第二项起,后项减去前项所得的差是一个相等的常数,则称此数列为等差数列.在数学发展的早期已有许多人研究过数列这一课题,特别是等差数列.例如早在公元前2700年以前埃及数学的《莱因特纸草书》中,就记载着相关的问题.在巴比伦晚期的《泥板文书》中,也有按级递减分物的等差数列问题.其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目.现知第八兄弟分得6两,问相邻两兄弟相差多少?在我国公元五世纪写成的《张丘建算经》中,透过五个具体例子,分别给出了求公差、总和、项数的一般步骤.比如书中第23题(用现代语叙述):(1)有一女子不善织布,逐日所织布按数递减,已知第一日织5尺,最后一日织1尺,共织了30日,问共织布多少?这是一个已知首项(a 1)、末项(a n ),以及项数(n )求总数(S n )的问题,对此,原书提出的解法是:总数等于首项加末项除2,乘以项数.它相当于现今代数里的求和公式:S n =(a 1+a n )·2n .印度数学家婆罗摩笈多在公元7世纪也得出了这个公式,并给出了求末项公式:a n =a 1+(n -1)d .(2)有一女子善于织布,逐日所织布按同数递增,已知第一日织5尺,经一月共织39丈,问每日比前一日增织多少?这是一个已知首项(a 1),总数(S n )以及项数(n ),求公差(d )的问题,对此原书给出的解法是.1221--=n a nS d n 等价于现在的求和公式:2)1(21d n a n S n -+=. 书中第1题:今有某人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增分给.给完后把这些人所得的钱全部收回,再平均分配,结果每人得100元,问人数多少?这是一个已知首项(a 1),公差(d )以及n 项的平均数(m),求项数(n )的问题,对此原书给出的解法是dd a m n +-=)(21. 我国自张邱建之后,对等差数列的计算日趋重视,特别是在天文学和堆栈求积等问题的推动下,从对一般的等差数列的研究发展成为对高阶等差数列的研究.在北宋沈括(1031~1095)的《梦溪笔谈》中,“垛积术”就是第一个关于高级等差数列的求积法.垛积术即“有限差分法”,我国古代用于天文历算和计算垛积.垛积术也就是高阶等差级数求和.我国古代,对于一般等差数列和等比数列,很早就有了初步的研究成果.《九章算术》中已经提出求等差数列各项以及已知首项、末项和项数求公差的问题,并用比例方法来解决.公元5世纪末的《张邱建算经》给出了等差数列求和公式: S=21n (a +1)与求公差的公式:)22(11a nS n d --=. 南宋数学家杨辉,丰富和发展了沈括的成果,提出了诸如S=12+22+32+…+n 2=6n (n +1)(2n +1), S=1+3+6+10+…+2)1(+n n =61 n (n +1)(n +2) 之类的垛积公式.北宋科学家沈括的长方台形垛积(如图)的求和公式:)(6]2()2[6a c n bc d a d b n S -++++=. 元朝数学家朱世杰在《四元玉鉴》和《算学启蒙》中得到一系列重要的高阶等差数列求和公式.朱世杰的垛积根差术,全面地推进了宋元数学家在这方面的研究工作.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)在等差数列{an}中a1-a5+a9-a13+a17=117, 则a3+a15=( 117 )
2013年9月10日星期二
也是 性质3.若数列{an}为等差数列,公差为d,则{kan}____等 差数列,公差为_____.(k是常数) kd 性质4.若数列{an}是等差数列,公差为d,设c,k为常数, d 则{an+k} 也是 ____等差数列,公差为______; cd 也是 则{c· n+k}____等差数列,公差为______. a 性质5. 若数列{an}与{bn}都为等差数列,公差分别为d1,d2, 也是 d1+d2 则{an+bn}_____等差数列,公差为_____; 也是 d1-d2 则{an-bn}_____等差数列,公差为_____, pd1+qd2 也是 {pan+qbn}_____等差数列,公差为_______.(p,q为常数)
a7,a14,a21,……是等差数列 首项为a7,公差为7d
取出的是所有k倍数的项呢?
ak,a2k,a3k,……是等差数列
首项为ak,公差为kd
2013年9月10日星期二
已知一个等差数列的首项为a1,公差为d
a1,a2,a3,……an
(4)数列a1+a2,a3+a4,a5+a6,……是等差数列吗 公差是多少?
推论: 在等差数列中,与首末两项距离相等的两项和, 等于首末两项的和,即
a1 an a2 an1 a3 an2 ak ank 1
2013年9月10日星期二
判断: (1)a a a a √ 3 5 1 7
注意:等式两 √ (3)a 1 a 5 a 6 a 2 a 3 a 7 边作和的项数 必须一样多 √ (4)a 3 a 4 a 5 3a 4
f (2007 )的值。
解: 2 f (n 1) 2 f (n) 1
f (n 1) f (n) 1 2
1 f (n)是首项为2,公差为 的等差数列 2 1 3 即f (n) n 2 2 1 3 f (2007 ) 2007 1005 2 2
2013年9月10日星期二
4.d的计算方法
a n a1 an am (1)d a n a n1 ( 2)d (3)d n 1 nm
5.判断等差数列的方法:
(1)定义法:an an1 d (常数)( n 1) {an }为等差数列
(2)递推法(中项公式法): 2an 1 an an 2 (常数)( n 1) {an }为等差数列
× (2)a 1 a 4 a 6 a 3 a 8
可推广到三项, 四项等
× (5)a 3 a 4 a 5 4a 3
2013年9月10日星期二
例2 .在等差数列{an}中,a6=19 ,a15=46,求a4+a17的值. 练习.在等差数列{an}中, (1)已知 a6+a9+a12+a15=20,求:a1+a20 10 (2)已知 a3+a11=10,求:a6+a7+a8 15 (3)已知 a2+a14=10,能求出a16吗? 不能
a1+a2,a3+a4,a5+a6,……是等差数列,公差为2d 数列a1+a2+a3,a2+a3+a4,a3+a4+a5……是 等差数列吗?公差是多少? a1+a2+a3,a2+a3+a4,a3+a4+a5……是等差数列, 公差为3d。
2013年9月10日星期二
例1: 等差数列中,a1 a 4 a 7 19,
2013年9月10日星期二
4. 在等差数列{an}中
(1) 已知 a6+a9+a12+a15=40,求a1+a20
(2)已知 a3+a11=20,求 a6+a7+a8
5.等差数列{an },满足a3 a7 12, a4 a6 4,
求数列通项公式.
6. 在等差数列中,a15 33, a25 66, 求a35的值.
(1)将前m项去掉,其余各项组成的数列是等差数 列吗?如果是,他的首项与公差分别是多少?
am+1,am+2,……an是等差数列 首项为am+1,公差为d,项数为n-m
2013年9月10日星期二
已知一个等差数列的首项为a1,公差为d a1,a2,a3,……an
(2)取出数列中的所有奇数项,组成一个数列,是等 差数列吗?如果是,他的首项与公差分别是多少?
a - 2d , a - d , a, a + d , a + 2d
2013年9月10日星期二
(2)若有四个数成等差数列,则可设为
公差为2d
(3)若有五个数成等差数列,则可设为
公差为d
7.等差数列的性质
性质1
若l , m, n成等差数列,则al , am , an也成等差数列 若al , am , an成等差数列,则l , m, n也成等差数列
a101=154
d= -1, ap+q =0
2013年9月10日星期二
思考:已知数列{an }是等差数列, 则数列{bn }为等差数列的是( A、bn an C、bn an
2
D)
B、bn an D、bn 1- an
2013年9月10日星期二
练 习
已知
2 f ( n) 1 f (1) 2, f (n 1) (n N *,求 ) 2
2013年9月10日星期二
例3:等差数列{a n }和{b n }中,a1 34, b1 66, a 98 85, b 98 15, 求a 2008 b 2008
2013年9月10日星期二
例4(1)已知等差数列{an}中,
a3 +a15=30,求a9, a7+a11
(2)已知等差数列{an}中,a3 +a4+a5 +a6 +a7=150,求a2+a8的值
(3)一次函数法:an为n的一次函数 {an }为等差数列
年9月10日星期二
课后作业: 1. 已知三个数成等差数列并且数列是递增的,
它们的和为18,平方和为116,求这三个数.
2. 已知四个数成等差数列,四个数的和为16,
且四数的平方和为 ,求这四个数. 144
3. (1)等差数列a1 5, 第10项大于23,求公差d的范围. 1 (2)已知{ }是等差数列,且a1 6, a6 4, 求a10 . an
al , am , an成等差数列 2am al an
2a1 m 1d a1 l 1d a1 n 1d
2m l n l , m, n成等差数列
2013年9月10日星期二
已知一个等差数列的首项为a1,公差为d a1,a2,a3,……an
2013年9月10日星期二
必修5
第三课时
2013年9月10日星期二
一.复习回顾:
1.等差数列的定义
an - an-1=d(d是常数)
2.等差数列的单调性
当d=0时, {an}为常数列; 当d>0时, {an}为递增数列; 当d<0时, {an}为递减数列;
3.等差数列的通项公式
an a1 (n 1)d
,n N *
2013年9月10日星期二
4.等差数列的函数特性
an f n dn a1 d
等差数列 一次函数
公差d是一次函数的斜率
由an a1 n 1d , an a1 得d n 1
斜率公式
2013年9月10日星期二
5.等差中项
若a,A,b成等差数列,则A叫做a与b的等差中项
a 2 a 5 a 8 13, 求a 3 a 6 a 9
2013年9月10日星期二
性质2:设 m,n, p,q N *若 m n p q, 则
a m a n a p aq .
证明:设首项为 a1 ,则 am an a1 (m 1)d a1 (n 1)d 2a1 (m n 2)d
a p aq a1 ( p 1)d a1 (q 1)d 2a1 ( p q 2)d
注意:逆命题是不一定成立的 ;
m n p q a m a n a p aq
特别地,p=q时,即 若m n 2 p, 则有am an 2a p
2013年9月10日星期二
五、小结
1.定义:an-an-1=d (n≥2)或 an+1-an=d (n∈N*) 2. 通项公式 an =a1+(n-1)d
an=am+(n-m)d
3. 等差数列的性质
{an}为等差数列 an+1- an=d an+1=an+d an= a1+(n-1) d 2an 1 an an 2 an= kn + b(k、b为常数)
ab a, A, b之间的关系 2 A a b A 2 6.等差数列通项公式的推广:
an = am + (n-m)d.
an am d nm
斜率公式
2013年9月10日星期二
设项技巧:
(1)若有三个数成等差数列,则可设为
公差为d
a - d , a, a + d
a - 3d , a - d , a + d , a + 3d
a1,a3,a5,……是等差数列 首项为a1,公差为2d
相关文档
最新文档