概率论与数理统计教程(茆诗松)第5章
(概率论与数理统计 茆诗松) 第5章 统计量及其分布
均匀分布,分布列为
x0 1 2
p 1/3 1/3 1/3
现从中抽取容量为3的样本,其一切可能取值有 33=27种, (表5.3.6)
x0 1 2
p 1/3 1/3 1/3
P(x(1)=0) = ?
ቤተ መጻሕፍቲ ባይዱ
可给出的 x(1) , x(2), x(3) 分布列如下 :
n
(x x ) 0. i i1
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,
(xi x)2最小,其中c为任意给定常数。
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本,
x 为样本均值。
(1) 若总体分布为N(, 2),则
是将样本观测值由小到大排列后得到的第 i 个 观测值。
其中, x(1)=minx1, x2,…, xn称为该样本的最小次序统计量, 称 x(n)=maxx1,x2,…,xn为该样本的最大次序统计量。
在一个样本中,x1, x2,…,xn 是独立同分布的,而 次序统计量 x(1), x(2),…, x(n) 则既不独立,分布也 不相同,看下例。
则
p R ( r ) 0 1 r n ( n 1 ) [ ( y r ) y ] n 2 d y n ( n 1 ) r n 2 ( 1 r )
这正是参数为(n1, 2)的贝塔分布。
5.3.6 样本分位数与样本中位数
样本中位数也是一个很常见的统计量,它也是 次序统计量的函数,通常如下定义:
在n
不大时,常用
s2
1 n n1i1
(xi
x)2
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.
1091 1572 775 1044 738
3. 假若某地区 30 名 2000 年某专业毕业生实习期满后的月薪数据如下: 909 1086 1120 999 1320 1071 1081 1130 1336 967 825 914 992 1232 950 1203 1025 1096 808 1224 871 1164 971 950 866 (1)构造该批数据的频率分布表(分 6 组) ; (2)画出直方图. 解: (1)最大观测值为 1572,最小观测值为 738,则组距为 d =
样本的分布为 p ( x1 , x2 , L , xn ) = λ eλ x1 ⋅ λ eλ x2 L λ eλ xn = λ n e
茆诗松《概率论与数理统计教程》课后习题
茆诗松《概率论与数理统计教程》课后习题本书是详解研究生入学考试指定考研参考书目为茆诗松《概率论与数理统计教程》的配套题库,每章包括以下四部分:第一部分为考研真题及详解。
本部分按教材章节从历年考研真题中挑选具有代表性的部分,并对其进行了详细的解答。
所选考研真题既注重对基础知识的掌握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学员不遗漏任何一个重要知识点。
第二部分为课后习题及详解。
本部分对茆诗松编写的《概率论与数理统计教程》(第2版)教材每一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。
课后习题答案经过多次修改,质量上乘,特别适合应试作答和临考冲刺。
第三部分为章节题库及详解。
本部分严格按照茆诗松编写的《概率论与数理统计教程》(第2版)教材内容进行编写,每一章都精心挑选经典常见考题,并予以详细解答。
熟练掌握本书考题的解答,有助于学员理解和掌握有关概念、原理,并提高解题能力。
第四部分为模拟试题及详解。
参照茆诗松编写的《概率论与数理统计教程》(第2版)教材,根据历年考研真题的命题规律及热门考点精心编写了两套考前模拟试题,并提供详尽的解答。
通过模拟试题的练习,学员既可以用来检测学习该考试科目的效果,又可以用来评估对自己的应试能力。
本书提供电子书及打印版,方便对照复习。
目录第一部分考研真题第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第二部分课后习题第1章随机事件与概率第2章随机变量及其分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第三部分章节题库第1章随机事件与概率第2章随机变量与分布第3章多维随机变量及其分布第4章大数定律与中心极限定理第5章统计量及其分布第6章参数估计第7章假设检验第8章方差分析与回归分析第四部分模拟试题茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(一)茆诗松《概率论与数理统计教程》(第2版)配套模拟试题及详解(二)。
概率论与数理统计(茆诗松)课后第五章习题参考答案
第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。
茆诗松概率论与数理统计第五章教案
因 E (Xi2 ) = Var (Xi ) + [E (Xi )]2 = Var (X ) + [E (X )]2,
E ( X 2 ) = Var( X ) + [ E ( X )]2 =
常用的统计量有样本均值、样本方差等. 5.3.2 样本均值及其抽样分布
为了反映总体期望 E (X ),由大数定律知平均值稳定于数学期望.定义
X=
x1 + x 2 + L + x n 1 n = ∑ Xi , n n i =1
称为样本均值,因此用样本均值 X 反映总体期望 E (X ). 在分组样本场合,以 m i 表示第 i 组的组中值,f i 为第 i 组的频数,记
解:因总体 X 概率函数为 p ( x) =
e − λ ,x = 1, 2, …, x! 故样本 (X1, X2, …, X n) 的联合概率函数为
n n
λx
p ( x1 , x 2 , L , x n ) = ∏ p ( x i ) = ∏
i =1 i =1
λ
xi
xi !
e −λ =
λ i =1
∑ xi e − nλ .
i =1 i =1
(3) E ( X ) = E ( X ) , Var( X ) =
1 1 Var( X ) ,当 n 较大时, X ~ & N ( E ( X ), Var( X )) ; n n
(4)线性性质:若 Yi = aX i + b ,则 Y = aX + b . 证: (1) ∑ ( X i − X ) = ∑ X i − nX = ∑ X i − n ⋅
X=
定理
概率论与数理统计教程(茆诗松)
2004年7月第1版2008年4月第10次印刷第一章随机事件与概率1.1 随机事件及其运算1.1.1 随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验.1.1.2 样本空间随机现象的一切可能基本结果组成的集合称为样本空间,记为,其中表示基本结果,又称为样本点.样本点是今后抽样的最基本单元.1.1.3 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件.1.1.4 随机变量用来表示随机现象结果的变量称为随机变量.1.1.7 事件域定义1.1.1 设为一样本空间,为的某些子集所组成的集合类.如果满足:(1);(2)若,则对立事件;(3)若,则可列并.则称为一个事件域,又称为代数.在概率论中,又称为可测空间.1.2 概率的定义及其确定方法1.2.1 概率的公理化定义定义1.2.1设为一样本空间,为的某些子集所组成的一个事件域.若对任一事件,定义在上的一个实值函数满足:(1)非负性公理若,则;(2)正则性公理;(3)可列可加性公理若互不相容,有则称为事件的概率,称三元素为概率空间.第二章随机变量及其分布2.1 随机变量及其分布2.1.1 随机变量的概念定义2.1.1 定义在样本空间上的实值函数称为随机变量.2.1.2 随机变量的分布函数定义2.1.2 设是一个随机变量,对任意实数,称为随机变量的分布函数.且称服从,记为.2.1.4 连续随机变量的概率密度函数定义2.1.4 设随机变量的分布函数为,如果存在实数轴上的一个非负可积函数,使得对任意实数有则称为连续随机变量,称为的概率密度函数,简称为密度函数.密度函数的基本性质(1)非负性;(2)正则性.第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.1.1 多维随机变量定义3.1.1 如果定义在同一个样本空间上的个随机变量,则称为维(或元)随机变量或随机向量.3.1.2 联合分布函数定义3.1.2 对任意的个实数,则个事件同时发生的概率称为维随机变量的联合分布函数.3.4 多维随机变量的特征数3.4.5 随机向量的数学期望与协方差阵定义3.4.3 记维随机向量为,若其每个分量的数学期望都存在,则称为维随机向量的数学期望向量,简称为的数学期望,而称为该随机向量的方差—协方差阵,简称协方差阵,记为.例3.4.12(元正态分布) 设维随机变量的协方差阵为,数学期望向量为.又记,则由密度函数定义的分布称为元正态分布,记为.第四章大数定律与中心极限定理4.1 特征函数4.1.1 特征函数的定义定义4.1.1 设是一个随机变量,称为的特征函数.设是随机变量的密度函数,则4.2 大数定律4.2.1伯努利大数定律定理 4.2.1(伯努利大数定律) 设为重伯努利试验中事件发生的次数,为每次试验中出现的概率,则对任意的,有4.2.2 常用的几个大数定律4.3 随机变量序列的两种收敛性4.3.1 依概率收敛定义4.3.1(依概率收敛) 设为一随机变量序列,为一随机变量,如果对任意的,有则称依概率收敛于,记作.4.4 中心极限定理4.4.2 独立同分布下的中心极限定理定理 4.4.1(林德贝格—勒维中心极限定理) 设是独立同分布的随机变量序列,且.记则对任意实数有第五章统计量及其分布第六章参数估计第七章假设检验第八章方差分析与回归分析。
数理统计(茆诗松版)第五章课件
• 自由度为1的 t 分布就是标准柯西分布, 它的均值不存在; • n>1时, t 分布的数学期望存在且为0; • n>2时,t 分布的方差存在,且为n/(n−2); • 当自由度较大 (如n≥30) 时, t 分布可以用 正态分布 N(0,1)近似。
21 February 2012
第五章 统计量及其分布
21 February 2012
5.5.2 因子分解定理
其中g(t,θ )是通过统计量 T 的取值而依赖于样本 的。
例1 :设 X ~ B ( n , p ); ( X 1 ,
, X m )是来自 X 的样本,
参数 p ( 0 < p < 1 )未知
X的分布律为: P{X = x} = Cnx p x (1 − p ) n − x , x = 0,1,
P ( x1 ,…, xn ) = ∏θ xi
i =1
n
θ −1
=θ
n
∏x
i =1
n
θ −1
i
,
0 < xi < 1; i = 1,…, n
112
例4 :
设总体 X 服从 [ θ 1, θ 2 ] 上的均匀分布, 其中 θ 1 , θ 2 未知,X 1 , X 2 , ..., X n )是 从该总体 (
故样本的联合概率函数为 m
,n
P( x1,…, xm ) = ∏C p (1 − p)
i =1 xi n xi
m m
n− xi
nm−∑xi ∑xi xi = (∏Cn ) p i=1 (1− p) i=1 , m i =1
xi = 0,1, , n; i = 1, , m
110
(概率论与数理统计茆诗松)第5章统计量及其分布
统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。
性
构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域
概率论与数理统计 华东师大茆诗松版 第五章 2014
华东师范大学
第五章 统计量及其分布
第13页
例5.1.5 设有一批产品共N个,需要进行抽样检 验以了解其不合格品率p。现从中采取不放回 抽样抽出2个产品,这时,第二次抽到不合格 品的概率依赖于第一次抽到的是否是不合格 品,如果第一次抽到不合格品,则 P(x2 = 1 | x1 = 1) = (Np1)/(N1) 而若第一次抽到的是合格品,则第二次抽到不合 格品的概率为 P(x2 = 1 | x1 = 0) = (Np)(N1)
27 May 2014
华东师范大学
第五章 统计量及其分布
第19页
更深刻的结果也是存在的,这就是格里纹科定理。
定理5.2.1(格里纹科定理) 设x1,x2,…,xn是取自 总体分布函数为F(x)的样本, Fn(x) 是其经验分 布函数,当n时,有 PsupFn(x) F(x)0 = 1 格里纹科定理表明:当n 相当大时,经验分布函 数是总体分布函数F(x)的一个良好的近似。 经典的统计学中一切统计推断都以样本为依据, 其理由就在于此。
E( x )=, Var( x )=2 /n, E(s2) =2
27 May 2014
华东师范大学
第五章 统计量及其分布
第28页
5.3.4 样本矩及其函数
样本均值和样本方差的更一般的推广是样本 矩,这是一类常见的统计量。
定义5.3.4 ak = (xik)/n 称为样本 k 阶原点矩, 特别,样本一阶原点矩就是样本均值。 bk = (xi x)k/n 称为样本k阶中心矩。 特别,样本二阶中心矩就是样本方差。
第8页
例5.1.4 考察某厂生产的某种电子元件的 寿命,选了100只进行寿命试验,得到 如下数据:
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<-="X" )103010(<-<-="X" 709.010<="" bdsfid="71" p="" x="">1.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<-="X" )2010020(<-<-="X" 8<="" bdsfid="77" p="" x="">7205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<="">解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<-<-="X" )<="" bdsfid="88" p="" x="">414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(?->?-=X P )2251020020000(>?-=X P 由独立同分布的中心极限定理,1020020000?-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>?-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--??-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--??-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<="" bdsfid="123" p="">()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--?-≤?-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=XP )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(?->?-=T P )91.03010300(>?-≈T P ,由独立同分布的中心极限定理,3010300?-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>?-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计教程(茆诗松)第5章
3 (167,177] 172 5 0.25 85
4 (177,187] 182 2 0.10
95
5 (187,197] 192 1 0.05
100
合计
20 1
18 April 2021
华东师范大学
第五章 统计量及其分布
第23页
5.2.3 样本数据的图形显示
一、直方图
直方图是频数分布的图形表示,它的横坐标表 示所关心变量的取值区间,纵坐标有三种表示 方法:频数,频率,最准确的是频率/组距,它 可使得诸长条矩形面积和为1。凡此三种直方图 的差别仅在于纵轴刻度的选择,直方图本身并 无变化。
它样品的取值 -- x1, x2, …, xn 相互独立。
18 April 2021
华东师范大学
第五章 统计量及其分布
第15页
用简单随机抽样方法得到的样本称为 简单随机样本,也简称样本。
于是,样本 x1, x2, …, xn 可以看成是 独立同分布( iid ) 的随机变量, 其共同分布即为总体分布。
总体 = {该厂生产的全部合格品与不合格品} = {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该 总体可由一个二点分布表示:
X01 P 1p p
18 April 2021
华东师范大学
第五章 统计量及其分布
第7页
比如:两个生产同类产品的工厂的产品的总体 分布:
X
0
1
p
0.983
简单起见,无论是样本还是其观测值,样本一般 均用 x1, x2,… xn 表示,应能从上下文中加以区别。
18 April 2021
华东师范大学
第五章 统计量及其分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师范大学
第五章 统计量及其分布
第19页
其经验分布函数为
Fn(x) =
0,
0.2, 0.4, 0.8, 1,
x < 344 344 x < 347 347 x < 351 351 x < 355 x 355
由伯努里大数定律: 只要 n 相当大,Fn(x)依概率收敛于F(x) 。
18 April 2021
设总体X具有分布函数F(x), x1, x2, …, xn 为取自该总体的容量为n的样本, 则样本联合分布函数为
n
F ( x , ..., x ) F ( x ).
1
n
i
i 1
18 April 2021
华东师范大学
第五章 统计量及其分布
第16页
§5.2 样本数据的整理与显示
5.2.1 经验分布函数
华东师范大学
第五章 统计量及其分布
第20页
5.2.2 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最 常用方法之一是给出其频数分布表或频率分布表。
例5.2.2 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下
160
196 164 148 170
它样品的取值 -- x1, x2, …, xn 相互独立。
18 April 2021
华东师范大学
第五章 统计量及其分布
第15页
用简单随机抽样方法得到的样本称为 简单随机样本,也简称样本。
于是,样本 x1, x2, …, xn 可以看成是 独立同分布( iid ) 的随机变量, 其共同分布即为总体分布。
0.017
X
0
1
p
0.915
0.085
18 April 2021
华东师范大学
第五章 统计量及其分布
第8页
5.1.2 样本
样本、样本量
样本具有两重性
• 一方面,由于样本是从总体中随机抽取的,抽 取前无法预知它们的数值,因此,样本是随机 变量,用大写字母 X1, X2, …, Xn 表示;
• 另一方面,样本在抽取以后经观测就有确定的 观测值,因此,样本又是一组数值。此时用小 写字母 x1, x2, …, xn 表示是恰当的。
18 April 2021
华东师范大学
第五章 统计量及其分布
第24页
§5.3 统计量及其分布
5.3.1 统计量与抽样分布
当人们需要从样本获得对总体各种参数的认识 时,最好的方法是构造样本的函数,不同的函 数反映总体的不同特征。
定义5.3.1 设 x1, x2, …, xn 为取自某总体的样 本,若样本函数T = T(x1, x2, …, xn)中不含有任 何未知参数。则称T为统计量。统计量的分布 称为抽样分布。
175
178 166 181 162
161
168 166 162 172
156
170 157 162 154
18 April 2021
华东师范大学
第五章 统计量及其分布
第21页
对这20个数据(样本)进行整理,具体步骤如下:
(1) 对样本进行分组:作为一般性的原则,组数通 常在5~20个,对容量较小的样本;
总体 = {该厂生产的全部合格品与不合格品} = {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该 总体可由一个二点分布表示:
X01 P 1p p
18 April 2021
华东师范大学
第五章 统计量及其分布
第7页
比如:两个生产同类产品的工厂的产品的总体 分布:
X
0
1
p
0.983
简单起见,无论是样本还是其观测值,样本一般 均用 x1, x2,… xn 表示,应能从上下文中加以区别。
18 April 2021
华东师范大学
第五章 统计量及其分布
第9页
例5.1.4 设有一个有20个数组成的总体, 先从该总体不放回抽取容量为5的样本, 记录后,放回,再抽第二个样本,这里一 共抽4个样本。
641, 635, 640, 637, 642, 638, 645, 643, 639, 640
这是一个容量为10的样本的观测值,(体会抽样作用) 对应的总体为该厂生产的瓶装啤酒的净含量。
这样的样本称为完全样本。
18 April 2021
华东师范大学
第五章 统计量及其分布
第12页
例5.1.4 考察某厂生产的某种电子元件的 寿命,选了100只进行寿命试验,得到 如下数据:
会有多有少,所以用概率分布描述和归纳这堆数
是合理的,于是总体就是一个分布。而其数量指
标就是服从这个分布的随机变量,这堆数就是这
个随机变量可能的取值。所以“从总体抽样”与
“从某分布抽样”是同一个意思。
18 April 2021
华东师范大学
第五章 统计量及其分布
第6页
例5.1.1 考察某厂的产品质量,以0记合格品,以1记 不合格品,则
10.8
样本4 12 9 10 10 11
10.4
18 April 2021
华东师范大学
第五章 统计量及其分布
第11页
例5.1.3 啤酒厂生产的瓶装啤酒规定净含量为640 克。由于随机性,事实上不可能使得所有的啤酒 净含量均为640克。现从某厂生产的啤酒中随机 抽取10瓶测定其净含量,得到如下结果:
第18页
例5.2.1 某食品厂生产听装饮料,现从生产线上 随机抽取5听饮料,称得其净重(单位:克) 351 347 355 344 351
这是一个容量为5的样本,经排序可得有序样本:
x(1)= 344, x(2)= 347, x(3)= 351, x(4)= 351, x(5)= 355
18 April 2021
18 April 2021
华东师范大学
第五章 统计量及其分布
第3页
例。 某公司要采购一批产品,每件产品不是
合格的就是不合格的。该批产品的不合格率是
p,由此,若从该批产品中中随机抽取一件,设
X为其产品的不合格数,显然X的分布是两点
分布,但p是未知的,而p决定了该批il 2021
华东师范大学
第五章 统计量及其分布
第25页
5.3.2 样本均值及其抽样分布
定义5.3.2 设 x1, x2, …, xn为取自某总体的样本,
其算术平均值称为样本均值,一般用 表示x,
即
x= (x1+…+xn)/n
思考:在分组样本场合,样本均值如何计算? 二者结果相同吗?
18 April 2021
们就会对p提出一些问题:
1,
p的大小如何?
2,p
大概落到什么范围?
3,
能否认为p满足设定要求?(p≤0.05)
18 April 2021
华东师范大学
第五章 统计量及其分布
第4页
§5.1 总体与个体
总体的三层含义:
• 研究对象的全体; • 数据; • 分布
18 April 2021
华东师范大学
第五章 统计量及其分布
(2) 确定每组组距:近似公式为 组距d = (最大观测值 最小观测值)/组数;
(3) 确定每组组限: 各组区间端点为 a0, a1=a0+d, a2=a0+2d, …, ak=a0+kd,
形成如下的分组区间
(a0 , a1] , (a1, a2], …, (ak-1 , ak]
其中a0 略小于最小观测值, ak 略大于最大观测值.
18 April 2021
华东师范大学
第五章 统计量及其分布
第14页
样本的要求:简单随机样本
要使得推断可靠,对样本就有要求,使样本能很 好地代表总体。通常有如下两个要求:
➢ 随机性: 总体中每一个个体都有同等机会
被选入样本 -- xi 与总体X有相同的分布。
➢ 独立性: 样本中每一样品的取值不影响其
18 April 2021
华东师范大学
第五章 统计量及其分布
第13页
表5.1.2 100只元件的寿命数据
寿命范围 ( 0 24] (24 48] (48 72] (72 96] (96 120] (120 144] (144 168] (168 192]
元件数 4 8 6 5 3 4 5 4
寿命范围 (192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 184]
元件数 6 3 3 5 5 3 5 1
寿命范围 (384 408] (408 432] (432 456] (456 480] (480 504] (504 528] (528 552]
>552
元件数 4 4 1 2 2 3 1 13
表5.1.2中的样本观测值没有具体的数值, 只有一个范围,这样的样本称为分组样本。
3 (167,177] 172 5 0.25 85
4 (177,187] 182 2 0.10
95
5 (187,197] 192 1 0.05
100
合计
20 1
18 April 2021
华东师范大学
第五章 统计量及其分布
第23页
5.2.3 样本数据的图形显示
一、直方图
直方图是频数分布的图形表示,它的横坐标表 示所关心变量的取值区间,纵坐标有三种表示 方法:频数,频率,最准确的是频率/组距,它 可使得诸长条矩形面积和为1。凡此三种直方图 的差别仅在于纵轴刻度的选择,直方图本身并 无变化。