基于DSP的电力系统电压测量装置设计
基于DSP的电力电量参数测量系统
量 鲁 l : ×% = 0 0
T= H D
=X . 、i / ̄ t
电量 参 数的 计算 方 法 , 开发 了基 于DS 芯 并 P 片 为 核 心 的 电 力 电量 测 量 装 置 , 电能 质 为 量 的 分 析 提 供 了一 种 有 效 工具 。
P =U R ‰+ i l Q U H I =U I U{ l+ n l
n 次谐波的视在功率为: = + √
1 电力 电量参数 的计算
1.1 利用递 推傅 立叶 级数计 算 电流和 电压 的 有 效 值 利用 傅立 叶变换 , 周期 采样 点为N 每 时 的 离 散 采 样 系统 , 第 一 个 采样 周 期 内 在 的r 谐 波 的 实 部和 虚 部为 : 1 次
% பைடு நூலகம்t 等 =喜c2 善s2 oI = i1 nt
电流或电压的有效值为 :
D = D + D
式 中, N为每 个周 期采 样 点个 数 ; i 第 d为 i 离散 采 样 点 ; 为欲 分 析 的 谐波 次 数 。 个 n 将采 样 窗 口移 动n 1 采样 点 , m个 一 个 第 周期 的各 次 谐波 虚部 与 实部 的计 算公 式 为 :
随 着 我 国 电力 工 业 的 迅 猛 发 展 , 网 电 上 非 线性 负载 的 日益 增 多 , 致线 路 电压 、 导 电流 经 常 出现 非 正 弦 状 态 , 而 造 成 电 网 从 式 中, D 分 别为基 波和n D、 次谐波 幅值 。 谐 波 “ 染 ” 其 主 要 危 害有 : 污 , 谐波 会 造 成输 总谐 波 畸 变( HD) T 反映 总 的谐 波 含量 : 电线 路故 障 , 变 电设 备 损 坏 , 使 例如 使 线 路 f 土 和 配 电变 压 器 过 热 、 载 等 ; 波影 响 用 电 过 谐 1 / — 设 备 , 如 谐波 对 电机 除 增加 附 加 损 耗 外 , 例 还 会 产生 附 加 谐 波转 矩 、 械振 动 等 ; 机 谐波 1 3 功率及 谐波 功率 的计算 . 会使 测 量 仪 表 附加 谐 波 误 差 ; 波 会对 通 谐 电压 U( ) 电流In n n和 ( ) 次谐 波 分 量的 有 信 线 路造 成 干 扰 。 在这 种 形 势 下 , 种 标 准 各 效值为 : 和规范对于谐 波的有关规定也越来越 多, U ={ U 、 + I=3 , I U 、 + l 各种 各 样 的 具 有 谐 波 功 能的 测 量 仪 表也 应 n 次谐 波 的 有功 功率 和 无 功功 率 为 : 运 而 生 。 文 介 绍 了 一种 快 速 准 确 的 电 力 本
基于DSP控制的宿营车电源系统设计
P WM 引脚 送 出低 电平 时 ,经 过 7 L C 7 D 芯 片 4 V 0A 变 为 低 电平 .再 经 过 两 个 50Q 的 电阻 电平 仍 为 1 低 电平 。 时 N沟 道 MO F T导通 , U 此 SE O T与 O D之 间形 成 漏 极 电 流 . 即脉 冲 变 压 器 的 次 级触 发 电流 。
央处 理器 , 用增 量式 P 控制 算法 调 节开 关器件 的移相 角 , 好地 实现 了使整 流侧 电压稳 定 的功 能 , 运 I 很 并且用
户端交 流输 出侧 的电压波 形正 弦度较 好 , 波形 的总体谐 波畸变 率也 小。 两块 D P并行 处理 , 大增强 了系统 的 S 大
可扩展 性与 稳定性 。 关键 词 : 电源系 统 ;数字信 号处理 器 ;外 围硬件 电路
XI AO Ke ,YANG e g , C F n 2 HEN P n —o g , O igs n UYANG n —i Ho g l n
( . u a nvrt , n n4 0 8 ,C ia 1H nn U i s y Hu a 10 2 hn ) ei
Ab t a t A d sg o o e rd c n e td p w r s se o o mi r a a e n DS s p t fr r T e p rp - sr c : e i n fr p w r g - o n ce o e y tm f d r t y c r b s d o P i u wad.h e h i o o i e a ad r i u t e i n a d t e i tr rt t n o s w r i g p n i l r ie a d g n r lc nr lc a ta l r h r wae cr i d sg n h ne p ea i fi o k n r c pe a e gv n. n e e a o to h r s wel l c s o t i a ot a e ag r h f ma n c n r lb a d i r f n y e . le p ce u ci n , u h a tb l i g t e v l g s s f r o t ms o i o to o r s b e y a a z d Al x e td f n t s s c s sa i z ot e w l i il l o in h a o e t ir s e ,s wel r aie i h y t m h o e T 3 0 2 1 s i P a d i c e n a I ag rt m s f r ci e i s i l e z d wh l t e s se c o s MS 2 F 8 2 a t C U n n r me t lP l o h a f d l e s i i tae y f r p a e s i . u h r r , a mo i itrin r t f t e w v f r f AC s e s s o t x e ln t sr tg h s h f F  ̄ e mo h r nc d s t ae o h a eo s o t e o o m o i s i h wn wi e c l t d h e sn s i a ef r a c . a allp o e sn f t P ma e g o c l bl y a l a t t bl y i u o d lp r m n e P r l r c si g o o e wo DS k o d s a a i t s wel s i sa i t . i s i Ke wo d p we y t m ;d gt i n lp o e s r e i h r a d r e cr u t y r s: o r s se i i sg a r c so ;p rp ea h r wa ic i l a l s
基于dSPACE的直流电机PWM实验设计
基于TMS320F2812的DSP最小系统设计毕业设计论文
题目:基于TMS320F2812的DSP最小系统设计要求:TMS320F2812的DSP最小系统设计包括两个模块,即硬件设计模块和软件检测模块。
硬件设计模块包括电源设计、复位电路设计、时钟电路设计、存储器设计、JTAC接口设计等。
软件检测模块需要编写测试程序。
用Protel软件绘制原理图和PCB图。
从理论上分析,设计的系统要满足基本的信号处理要求。
DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快。
这就决定了DSP的特点和关键技术。
适合数字信号处理的技术:DSP包涵乘法器,累加器,特殊地址发生器,领开销循环等;提高处理速度的技术:流水线技术,并行处理技术,超常指令等。
DSP对元件值的容限不敏感,受温度、环境等外部参与影响小;容易实现集成;VLSI 可以时分复用,共享处理器;方便调整处理器的系数实现自适应滤波;可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;可用于频率非常低的信号。
关键词: TMS320F2812,CCS3.3,Protel99SE软件目录第1章绪论第2章系统设计2.1系统方案介绍2.2 系统结构设计第3章硬件电路设计3.1 TMS320F2812芯片介绍3.2电源及复位电路设计3.3 时钟电路设计3.4 DSP与JTAG接口设计3.5 DSP的串行接口设计3.6 通用扩展口设计3.7 总体电路原理图设计第4章软件设计4.1 程序设计4.2 仿真调试总结参考文献附录1:总体电路图附录2:程序代码第1章绪论数字化已成为电子、通信和信息技术的发展趋势与潮流。
在这种趋势与潮流的推动下,数字信号处理的理论与实现手段获得了快速的发展,已成为当代发展最快的学科之一。
而DSP芯片作为数字信号处理,尤其是实时数字信号处理的主要方法和手段,自20世纪70年代末、80年代初诞生以来,无论在性能上还是在价格上,都取得了突破性的迅猛发展。
基于DSP的双闭环直流电机调速实验系统设计共3篇
基于DSP的双闭环直流电机调速实验系统设计共3篇基于DSP的双闭环直流电机调速实验系统设计1双闭环直流电机调速实验系统设计直流电机调速是现代工业自动化控制领域中的一个重要应用。
直流电机调速系统一般采用PID控制器。
双闭环控制是PID控制器的一种改进,它既可以保证控制系统对速度的精度也可以对电机电流进行控制。
本文将介绍基于DSP的双闭环直流电机调速实验系统的设计。
硬件设计1.直流电机及驱动器直流电机是转换为机械能的电能转换的主要设备之一。
在实验中选择一台小型直流电机,以其低功率,小体积,易于控制为主要考虑因素。
驱动器采用直流调速电机控制器。
2. 双闭环控制器双闭环控制器是PID控制器的一种改进,它可以对电机电流进行控制,保证控制系统对速度的精度。
在本实验中,我们采用STM32系列单片机,该单片机集成了内置的PID控制器和模糊控制算法,可方便地实现双闭环控制。
3. 光电编码器和减速器光电编码器和减速器也是直流电机调速系统的重要组成部分。
光电编码器主要用于检测电机的转速或转角,减速器可以通过降低电机的转速来提高电机性能。
软件设计1. 算法设计基于DSP的直流电机调速系统中主要采用PID控制算法,该算法是通过调节三个参数,即比例、积分、微分调节来控制电机的速度。
PID控制器会不断地进行调节,使电机的输出保持在所需的速度范围内。
2. 软件运行本实验系统采用C语言编写,在DSP芯片中使用程序存储器存储程序,其中包含了PID控制器的算法,通过用户输入所需的速度值,根据PID 算法进行调节,实现电机的精确控制。
实验结果分析通过实验结果可以看出,基于DSP的双闭环直流电机调速实验系统控制精度高,控制范围广,动态响应速度快,能够满足直流电机调速系统的要求。
在多次测试中,实验系统的控制误差小于1%,性能稳定可靠。
结论本文介绍了基于DSP的双闭环直流电机调速实验系统的设计。
实验系统采用了STM32系列单片机,集成了内置的PID控制器和模糊控制算法,通过硬件和软件的结合,实现了电机的精确控制。
基于DSP的永磁同步电机控制系统硬件设计
基于DSP的永磁同步电机控制系统硬件设计胡宇;张兴华【摘要】以小功率永磁同步电机(PMSM)为研究对象,结合数字信号处理器TMS320F2812功能特点,给出了一套PMSM驱动控制系统硬件设计方案.详细阐述了功率驱动主电路、反馈信号检测电路以及供电电路的设计,介绍了主要元器件选型和参数计算方法.基于设计的硬件平台,对PMSM调速控制系统进行了测试.试验结果表明,所设计的控制系统硬件设计可靠、性能稳定、控制精度高.%Based on the controlled object of small power permanent magnet synchronous motor (PMSM),combined with the main features of digital signal processor TMS320F2812,an overall hardware design scheme had been put forward for the PMSM drive control system.Design of the power driven main circuit had illustrated,signal detection circuit and power supply circuit in detail,meanwhile introduced the main components selection and parameters calculation method.Based on the designed hardware platform,the control system of PMSM had been performed a functional test.Experimental results showed that the hareware design of control system had good reliability with stable performance and high control precision.【期刊名称】《电机与控制应用》【年(卷),期】2017(044)012【总页数】7页(P19-24,80)【关键词】永磁同步电机;功率驱动主电路;信号检测电路【作者】胡宇;张兴华【作者单位】南京工业大学电气工程与控制科学学院,江苏南京211816;南京工业大学电气工程与控制科学学院,江苏南京211816【正文语种】中文【中图分类】TM351永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)因其体积小、损耗低、功率密度高和效率高等优点,在机械制造、工业控制、航空航天等领域得到广泛应用[1]。
基于DSP闭环控制的逆变器
DSP闭环控制逆变器的硬件实现
1 2 3
硬件架构
基于DSP的闭环控制逆变器通常采用模块化设计 ,包括主电路、控制电路、驱动电路和保护电路 等。
核心元件
主电路的元件包括开关管、滤波器和变压器等, 控制电路的核心元件是DSP控制器和相关外围电 路。
电路连接
各电路元件通过合理的连接,实现能量的转换与 控制。
DSP的主要应用领域
总结词
通信、音频处理、图像处理、控制系 统等
详细描述
DSP技术在通信、音频处理、图像处 理、控制系统等领域有着广泛的应用 ,如语音识别、音频编解码、图像识 别、雷达信号处理等。
基于DSP的控制系统设计
总结词
实时性、高精度、稳定性
详细描述
基于DSP的控制系统设计具有实时性、高精度和稳定性等特点,能够实现对复杂 系统的精确控制和优化管理。
03
基于DSP的闭环控制逆变器设 计
闭环控制系统的基本原理
反馈控制
通过比较期望输出与实际输出之间的误差,调整系统参数以减小 误差。
负反馈
将系统输出信号反馈到输入端,用于纠正系统误差。
比例-积分-微分控制
通过调整比例、积分和微分系数,改善系统动态性能和稳态精度。
基于DSP的闭环控制逆变器设计方法
快速响应
DSP的高速运算能力使得逆变器能够快速跟踪负载变化。
闭环控制逆变器的优点与局限性
• 灵活性:可实现复杂的控制算法,适应不 同的应用场景。
闭环控制逆变器的优点与局限性
对硬件要求高
需要高性能的DSP和高速A/D转换器 等硬件支持。
抗干扰能力有限
容易受到电网波动、电磁干扰等外部 因素的影响。
基于DSP三相电压源变换器SPLL设计与应用
基于DSP三相电压源变换器SPLL设计与应用吕飞;朱家林;余凤豪;张松涛【摘要】准确的相位信息是三相电压源变换器稳定运行的重要条件.软件锁相环(SPLL)具有设计多样性、高抗干扰性等优点可快速得到电网电压的相位信息.本文以三相电压源型PWM变换器为对象,分析了SPLL工作原理,推导出SPLL线性化模型,分析设计SPLL控制器参数,并用DSP实现所设计SPLL.仿真及试验表明所设计SPLL良好应用于三相电压源型PWM整流装置.【期刊名称】《船电技术》【年(卷),期】2015(035)003【总页数】5页(P36-39,43)【关键词】软件锁相环;电压源变换器;数字信号处理器;坐标变换【作者】吕飞;朱家林;余凤豪;张松涛【作者单位】海军蚌埠士官学校机电系,安徽蚌埠2330122;海军92763部队,辽宁大连116041;海军蚌埠士官学校机电系,安徽蚌埠2330122;海军蚌埠士官学校机电系,安徽蚌埠2330122【正文语种】中文【中图分类】TM1330 引言电网电压的相位信息是电力电子变换装置稳定运行的重要条件,同步旋转坐标下与电网电压同步的电压、电流信号需要相位信息计算获得[1]。
图1所示为三相电压源型PWM变换装置与电网相连的控制框图。
图中电流控制器(current controller)工作在同步旋转坐标系(SRF)下,电网电压的相位角为(k)。
经过Park变换,将三相静止坐标系下的电网电压和电流转换成两相同步旋转坐标系下的电压和电流,作为同步旋转坐标系下电流控制器的控制输入信号。
锁相环(PLL—Phase Locked Loop)技术能够得到精确的电网电压相位信息[2]。
SPLL是随着微控制器技术和数字处理器(DSP)的不断发展而逐渐实现的,SPLL所有的PLL函数都是在软件上执行,设计调整不需要修改硬件,使得SPLL比硬件PLL在设计上具有更好的灵活性和多样性[2,3]。
本文通过分析SPLL基本原理,推导出SPLL线性化模型;以线性化模型为依据,分析设计SPLL控制器PI参数;并用DSP实现SPLL功能,仿真及试验表明所设计的SPLL良好应用于三相电压源PWM整流装置。
基于DSP28355的简易信号源硬件设计
图2核心板电路原理图
2.3.2 D/A方案选择和电路设计
D/A转换器,简称DAC,它是把数字量转变成模拟量的器件。DAC主要由数字寄存器、模拟电子开关、位权网络、求和运算放大器和基准电压源(或恒流源)组成。主要特性指标包括:分辨率、线性度、转换精度、转换速度。在本系统中,主要关心两个问题,首先就是D/A的分辨率,其次就是采用串行还是并行的D/A。其中分辨率主要取决于芯片的位数,如N位D/A转换器,其分辨率为1/(2^N-1),位数越高,分辨率就越高,转换就更精确。这里有两种方案,用表格的形式做了一个简单的比较,如下表3所示:
因此在本系统中,决定选用TI公司的一款TMS320C28X系列浮点DSP控制器TMS320F28335型数字信号处理器作为波形发生和系统控制处理芯片。28335具有150MHz的高速处理能力,具备32位浮点处理单元,6个DMA通道支持ADC、McBSP和EMIF,有多达18路的PWM输出,其中有6路为TI特有的更高精度的PWM输出(HRPWM),12位16通道ADC。与前代DSP相比,平均性能提高50%,并与定点C28x控制器软件兼容,从而简化软件开发,缩短开发周期,降低开发成本。
引脚功能说明如下表4:
表4 TLV5638引脚说明
引脚编号
引脚名称
引脚功能
1
DIN
串行数据输入
2
SCLK
串行时钟输入
3
/CS
片选信号,低有效
4
OUTA
A通道模拟电压输出
基于DSP Builder的电压闪变测量的数字化设计
基于DSP Builder的电压闪变测量的数字化设计李杰;王爱民;董利科【摘要】介绍了IEC推荐的电压闪变测量的工作原理,利用基于Simulink/DSP Builder的数字信号处理的FPGA设计方法,采用数字滤波的方式在Simulink/DSP Builder环境下设计了电压波动与闪变测量系统的数字模型,并对该数字模型进行了系统功能和时序仿真.仿真结果表明:该方法充分利用了Matlab软件系统建模的优势,同时发挥了FPGA并行执行速度快、测量精度高的优点,设计简洁、高效,能够满足IEC推荐标准的电压波动和闪变测量系统的设计精度要求.【期刊名称】《电力系统保护与控制》【年(卷),期】2010(038)019【总页数】5页(P190-194)【关键词】电压闪变;数字滤波;FPGA;DSP Builder;Matlab【作者】李杰;王爱民;董利科【作者单位】安阳师范学院,河南,安阳,455000;中国科学院研究生院计算与通信工程学院,北京,100039;安阳师范学院,河南,安阳,455000;河南新能光伏有限公司,河南,安阳,455000【正文语种】中文【中图分类】TM930.20 引言电压波动为一系列电压变动或工频电压包络线的周期性变化。
闪变是由于电网中电压波动所引起的灯光闪烁对人视觉产生刺激的响应[1]。
它不仅和电压波动的大小有关,而且和其频率(即对工频电压的调幅频率)、照明灯具的性能以及人的主观视感因素有关[2]。
随着电力系统冲击性负荷的增加,电压闪变已成为衡量电能质量的主要指标之一。
为了抑制和治理电压闪变,电网已经投入了一定的补偿设备。
这些设备的研制和整定均需要准确详细的闪变参数,以提供正确的治理决策,因此对电压闪变实时监测,即准确测量短时间闪变值Pst,长时间闪变值Plt是治理电压闪变的基础[3-4]。
国际电工委员会标准IEC6100-4-15[5]和国标GB1232622000[6]给出了完整的电压闪变测试系统结构框图,以及有关反映人脑对频率选择特性的传递函数,根据该框图可以设计符合IEC标准的闪变测试系统。
基于dsp三相逆变整流电源的课程设计
综合课设报告一、背景意义和目的近年来,随着微机,中小型计算机的普及和航天航空数据通信,交通邮电等专业的迅速发展,以及为了各种自动化仪器、仪表和设备套的需要,当代对电源的需求不仅日益增大,而且对电源的性能、效率、重量、尺寸和可靠性以及诸如程序控制、电源通/端、远距离操作和信息保护等线性稳压电源功能提出了更高的要求,对于这些要求。
传统的线性稳压电源无法实现,和线性稳压电源相比,开关电源具有:效率高,稳压围宽,体积小重量轻,安全可靠。
学习目的:1. 巩固电力电子以及dsp课程的理论知识;2. 学习和掌握中电力电子系统控制系统设计的基本方法,设计一个三相50Hz交流稳压电源;3.培养学生独立分析和解决工程问题的工作能力及实际工程设计的基本技能4.提高编写技术文件和制图的技能。
二、任务要求对三相50Hz交流稳压电源的理论进行研究,设计一台样机,参数为50Hz,电压36V,容量为100VA,电压稳定度95%,失真度小于5%,效率80%。
三、设计容1.研究三相50Hz交流稳压电源的理论,并进行仿真;2.了解三相50Hz交流稳压电源的算法,软件设计编程及调试;3.相应的硬件电路设计和调试。
四、系统原理1.系统主电路,采样调理电路,控制电路,光电隔离电路,和保护电路组成,系统组成框图如图1所示,图1 系统组成框图2.系统主电路系统主电路是典型的AD-DC-AD逆变电路,由整流电路、中间电路、逆变电路和隔离变压器构成。
整流电路将输入的三相交流电经整流;中间电路滤波后的直流供给逆变器;逆变电路将直流电逆变为50Hz的三相正弦交流电。
主电路系统组成框图如图2所示。
图2 主电路系统组成框图1)主电路参数的确定为了得到36V的电压,我们知道逆变过来的电路中的关系,直流侧的电压U d =V vM U807.020*2*2*2*2==这里的调制度M=0.7; U=36/1.732=20V .逆推过去,U d 是经过不可控整流过来的,U d =2.45*U 0;所以U 0=32.65V 。
TMS320F28335在电网频率测量中的
TMS320F28335在电网频率测量中的
本文提出了一种基于TMS320F28335 的频率测量方法,用于监测电力系统的电能质量。
该方法采用DSP 的eCAP 模块和通用定时器对输入信号的上升沿进行捕捉,通过记录两个上升沿的触发时间得到输入信号的频率。
与软件测频方法相比,其硬件电路简单,可靠性高、实时性好。
理论分析和实验测试表明,该方法测频精度高,很好的满足了电能质量监测装置的要求。
引言:
频率是衡量电能质量的重要指标,也是判断电力系统故障的重要依据。
一般情况下,电力系统的频率会随着负荷的波动而有所变化。
在正常情况下电网频率变化缓慢,即使发生系统事故,在很短的时间内( 如一个工频周期) 电网频率的变化量也是较小的。
频率测量若能不断实时地测量电网频率,所测量的频率误差可减小到很小的程度。
数字频率的测量方法主要有:( 1) 测量电压波形某一整数周波的时间,从而计算频率; ( 2) 利用波形识别或曲线拟合技术来估算频率。
后一种方法不能很好的抑制谐波分量,计算量偏大,要对每一周波都进行一次计。
电气工程专业毕业设计选题(500个)
电气工程专业毕业设计选题(500个)□AE1460Y冰箱用连杆活塞式压缩机□软件无线电关键技术的研究□高层建筑电梯、照明和防雷系统的设计研究□交流接触器的优化设计□风力发电机的设计及风力发电系统的研究□交流电动机起动及软起动方法的研究□同步发电机励磁系统自动调节研究□交流绕组的环流的产生与消除□10kV变电所及低压配电系统设计□中小型异步电动机计算程序编程及MATLAB实现□智能型温控零电压开关□AE1370Y冰箱用连杆活塞式压缩机□基于神经网络PID控制在燃煤锅炉□交流变频调速电动机及控制的研究□单片机水温控制系统的设计□低压动态无功补偿装置的设计□35KV变电所及低压配电线路设计□35KV变电所及低压配电系统设计□6KV车间变电所及低压配电线路设计□开关磁阻电机系统设计□三相无刷同步发电机主发电机的电磁设计□镗床主轴系统三维设计和运动分析□智能温控无触点交流开关□智能型温控零电压开关□智能化高压开关柜的设计□中小型燃煤锅炉过热蒸汽温度控制系统设计□智能型温控零电压开关□智能低压断路器的研究□中小型异步电动机用户界面设计的MATLAB实现□一种基于DSP的智能型高压开关保护装置的设计□直流发电机的设计□永磁无刷直流电机调速系统设计□无刷同步发电机主发电机设计□无刷同步发电机交流励磁机的设计□无感绕组的谐波起动电动机及控制线路的设计□三相异步变频电机的设计与研究□智能型温控零电压开关□中小型异步电动机用户界面设计的MATLAB实现□转子外串电阻的谐波起动电动机及控制线路的设计□智能温控无触点交流开关的设计□直流机组发电机设计□直流电机试验计算机采集处理系统□真空断路器的电气设计□永磁无刷直流电机调速系统□永磁同步电动机结构及设计的研究□异步电动机智能综合保护器□异步电机节能控制系统设计□蓄电池活化装置□洗衣机电容运行洗涤XD-240电机及其控制□无刷永磁直流电机调速系统□无刷同步发电机交流励磁机的设计□无刷双馈电机的研究□无感绕组谐波起动电动机的研究□三相绕线型感应电动机的研究□转子外串电阻的谐波起动电动机及控制线路的设计□稀土永磁直流电动机设计□异步电动机的自动测试系统设计□无刷双馈电机调速系统的研究□无刷双馈电机转子磁动势谐波分析研究□基于神经网络的冶炼厂电热前床PID温度控制系统设计□异步电机自动测试系统的设计□智能低压断路器的研究□直流电机试验计算机采集处理系统的设计□洗衣机电容运行洗涤XD-370电机及其控制□永磁无刷直流电机调速系统的设计□蓄电池活化装置的设计□同步发电机励磁系统自动调节研究□三相交流变频电动机的设计及其研究□无刷同步发电机主发电机的设计□开关磁阻电机设计□无感绕组的谐波起动电动机及其控制线路的设计□交流接触器设计□蓄电池活化装置的设计□洗衣机电容运行脱水XDC-150电机及其控制□同步电机试验自动控制与数据采集系统的设计□数控直流源的设计□无刷直流电动机的设计□开关磁阻电机调速系统设计□开关磁组电动机及驱动系统的设计□CJ20-63交流接触器的工艺与工装□三相节能电动机研究□交流机组发电机设计□同步发电机励磁系统自动调节与研究□交流变频调速电动机及控制的研究□基于虚拟仪器的电网主要电气参数测试设计□基于瞬时值的SVC无功负序补偿方法□基于DSP谐波测量装置的研究□柜式空调室内电机YDK68-6设计□高压真空断路器的设计□高压变压器设计□三相绕线型感应电动机的研究□高压真空断路器的设计□基于虚拟仪器的电机变频实验系统□高压变压器及其继电保护□机加工自动线电气控制系统设计□低压变压器设计□交流电机试验计算机采集处理与控制系统的设计□交流机组电动机设计□三相油浸式变压器结构设计及电磁计算□D—F机组电动机设计□新型无刷双馈电动机及调速系统的研究□YSP160M—4变频电机的设计□YD—750变频调速旋转式压缩机--电容起动与运行电动机设计□CJ20-40交流接触器工艺及工装□开关磁阻电动机及其驱动系统的设计□交流机组电动机设计□混合型有源滤波装置原理及拓扑结构研究□基于CPLD的直流电机驱动及转速□开关磁阻电机调速系统设计□机加工自动线PLC控制系统□高压变压器设计□基于虚拟仪器的电机变频实验系统□基于单片机的变频恒压供水控制系统的设计□高压油浸式变压器设计及研究□风力发电电能变换装置的研究□基于DSP电力谐波测量装置的研究□柜式空调室内电机YDK68-6的设计□高速电机设计及其动态仿真研究□CJ20-100交流接触器的工艺与工装□无刷同步发电机主发电机的设计□无刷同步发电机交流励磁机的设计□交流接触器的优化设计□D—F机组电动机设计□三维激光彩色信息获取系统中的硬件控制子系统设计□复合励磁永磁同步发电机励磁调节系统研究□基于DSP的无功和谐波电流检测方法及其软硬件设计□基于PLC的断路器型式试验系统设计□高压开关柜微机测量/保护装置设计□基于EDA技术的多功能数字式测量仪的ASIC的设计与制作□电气设备远程监控技术的研究与开发□半导体脱扣器设计□高频通信开关电源□低压变压器及继电保护□CJ20-40交流接触器工艺及工装□低压动态无功补偿装置设计□风力发电机的设计及风力发电系统的研究□单绕组多速电动机的研究及控制线路设计□高压油浸式变压器的设计与研究□低压断路器智能脱扣器的设计□复合励磁永磁同步发电机励磁调节系统研究□高频通讯开关电源□单绕组多速电动机的研究□变频电动机的研究□变频调速中央空调送风电机YDK98-6设计□单绕组双速三相异步电动机□YSP132M─4变频调速电动机设计□电力现场图像监测系统的设计□电机故障诊断系统设计□半导体脱扣器设计□1000A智能型万能式断路器设计□CJ20-63交流接触器装配线设计□塑壳式小型断路器□Matlab在环保型变频器研究中的应用□单绕组多速电动机的研究及控制线路设计□变频中央空调送风电动机YSK98-6的设计□风力发电电能变换装置的研究□低压动态无功补偿装置的设计□交流电动机起动方法及软起动的研究□基于数据库技术的异步电机设计软件的研究□交流接触器的优化设计□无感绕组的谐波起动电动机及控制线路的设计□基于瞬时值的SVC无功及负序补偿方法□基于虚拟仪器的变压器电气参数测试设计□高压真空断路器的设计□电源微机保护计量控制系统研究□单绕组多速电动机的研究□智能脱扣器的研究□1000A智能型万能式断路器设计□开关磁阻电机的优化设计□变频电机试验自动数据采集系统的设计□高速电机专用电源设计及仿真研究□单相电容运转空调风扇电机设计□车辆发电总成自动测试系统设计□单绕组多速电动机的研究□电机故障诊断系统设计□变频电动机的研究□导体脱扣器的设计□S9系列节能型油浸式变压器设计与研究□Matlab在环保型变频器研究中的应用□高速电机专用电源前置变压器设计□高压真空断路器设计□高压变压器及继电保护设计□单绕组多速电动机的研究及控制线路设计□JSS型数字式时间继电器的设计□单绕组多速电动机的设计□PLC在冷冻干燥机中的应用(二)□1000A智能型万能式断路器的设计(二)□无感绕组的谐拨起动电动机及控制线路设计□新型塑壳式低压断路器设计□MATLAB在地铁变频器制动装置中的应用□YSP132M-4变频调速电动机设计□永磁直流电动机设计(二)□无刷同步发电机交流励磁机的设计□电力现场图象监测系统设计(二)□变频调速中央空调送风电机YDK98-6设计□S9系列节能型油浸式变压器设计与研究□单绕组多速电动机的研究□窗式空调送风电动机YSK98-6的设计□PLC在冷冻干燥机的应用(二)□半导体脱扣器设计(二)□220kV变电站的设计(二)□移动式空调电机YSK48-6设计(二)□开关磁阻发电机的优化设计的研究□126kV自能式SF6断路器的设计B□110kV变电站及其配电系统设计B□110kV变电站及其配电系统设计B□110kV变电站的设计B□高压变压器设计B□Matlab 在环保变频器研究中的应用B□35KV变电所及低压配电系统设计B□10KV干式变压器的设计与研究B□10kv变电所及低压配电系统设计B□多工位组合机床的PLC控制系统的设计□自动化变电站设计□转子外串电阻的谐波起动电动机及控制线路的设计□中央空调送风电机YDK44-6设计□中型交流电机试验计算机采集处理系统的设计□燃煤锅炉主蒸汽压力控制系统的算法研究及软件设计□中频发电机试验站调速系统的改造□智能型热过载继电器的研制□智能型高压开关保护装置的设计□智能化电器通讯网络设计研究□直流伺服电机的设计研究□直流接触器电磁铁优化及三维实体造型的软件设计□直流无刷稀土永磁电动机调速系统的设计□直流无刷稀土永磁电动机的设计研究□智能型高压开关保护装置□智能电器研究□直流接触器设计□直流机组发电机设计□直流电机试验数据采集处理系统□直流电机试验计算机采集处理系统的设计□真空断路器设计□永磁同步电机电磁程序的设计□异步电机智能综合保护器的设计□异步电机特定谐波消除的研究□异步电机电压空间矢量控制系统□异步电动机的自动测试系统设计□异步电机变频调速系统的设计□冶炼设备三相电流平衡自动控制系统设计□温度控制系统在冶炼厂电热前床温度控制系统中的应用□蓄电池活化装置的设计□新型无刷双馈电动机及调速系统的研究□新型塑壳式低压断路器设计□永磁同步电动机的设计和结构的研究□洗衣机电容运行洗涤XD-260电机及控制□异步起动永磁同步电动机电磁计算的fortran实现□智能型温控无触点交流开关\毕业设计□直流接触器设计□无刷永磁直流电机调速系统□智能低压断路器的研究□无刷直流电动机及其控制特性分析□无刷同步发电机交流励磁机的电磁设计□无刷双馈电机转子磁动势谐波分析研究□无刷双馈电机的磁场分析□无感绕组谐波起动电动机的研究□微机直流伺服控制系统设计□同步电机试验自动控制与数据采集系统的设计□低压漏电保护断路器设计□水轮发电机主要结构特点分析□数字式直流恒流/恒压源设计□数控直流电源的设计□交流接触器自动化生产流水线设计□三相油浸式变压器结构设计及电磁计算□三相绕线型感应电动机的研究□三维激光彩色信息获取系统中的硬件控制子系统设计□三相交流变频电动机设计□三维彩色扫描仪中的硬件接口设计□软开关技术在电焊机中的应用□软开关技术在变频器中的应用□模糊–PID 复合控制器在冶炼厂电热前床温度控制系统设计的应用□框架式低压断路器设计□空调用单相电容运转异步电动机设计研究□开关磁阻电机调速设计□交流异步电机试验自动采集与控制系统的设计□无刷同步发电机的设计□交流绕组环流的产生与消除的研究□基于虚拟仪器的电网主要电气参数测试设计□基于虚拟仪器的电机变频实验系统□基于虚拟仪器的变压器电气参数测试设计□基于校园网的《电子技术》课程辅助网站的构建□基于瞬时值的SVC无功负序补偿方法□基于数据库技术的异步电机设计软件的研究□基于可编程逻辑器件的频率和功率因数的测量□基于单片机的变频恒压供水控制系统的设计□基于单片机80C196MC矢量控制异步电动机变频调速系统的设计□基于TMS320LF2407异步电动机直接转矩控制系统的研究□基于PROFIBUS总线的城市交通控制系统□基于PLC的伺服电机试验系统□热电厂输煤传送带控制系统□基于PLC的断路器型式试验设计□智能温控无触电交流开关□基于FPGA的频率与功率因数在线测量□基于EDA技术的多功能数字式测量仪的ASIC的设计与制作□基于DSP的直接转矩控制系统的设计□基于DSP的发电机组并网系统的应用研究□基于DSP的电力谐波测量装置的研究□基于CPLD的直流电机驱动及转速测量与控制系统的研制□基于ACCESS数据库的绕线转子异步电动机设计□FPGA的电网频率与功率因数在线测量□三相直流电动机的设计□机加工自动线电气控制系统设计□混相变极的单绕组多速电动机的研究□混合型有源滤波装置的控制策略研究□环境试验箱的测控系统□过程控制工业锅炉水温控制系统□柜式室内空调电机YDK56-6设计□鼓风炉水冷却模糊PID控制□高压真空断路器□高压油浸式变压器设计及研究□高压开关机械性能测试装置设计□高压开关柜微机测量/保护装置设计□高压变压器及其继电保护□高速电机专用电源设计与仿真研究□高速电机设计及其动态仿真研究□高频通信开关电源□高层建筑配电系统的设计研究□复合励磁永磁同步发电机设计□风力发电电能变换装置的研究□分体式室外空调电机YDK44-6设计□单绕组双速异步电动机的研究□单绕组多速电动机的研究□多工位组合机床的PLC的控制系统的设计□电源微机保护计量控制系统研究□单相电容运转异步电动机设计研究□电器铁心冲片自动生产线□电气冲片自动生产线的设计□电流继电器设计□电力现场图像监测系统设计□电机故障诊断系统设计□电动机的电磁设计□低压断路器半导体式脱扣器设计□单相电容运转空调风扇电机设计□单绕组变极调速电机设计与研究□窗式空调电机YSK30—6设计□窗式空调送风电动机YSK68-6的设计□车辆发电总成自动测试系统设计□采用正弦绕组节能电机□步进调速系统设计研究□变压器设计□单相异步变频调速风扇电机的设计□变频电机试验自动采集与控制系统的设计□`半导体脱扣器设计说明书□异步变频调速电动机的设计□YSP132M─4变频调速电动机设计□YD-750旋转式压缩机电容起动与运行电机设计□S9系列节能型油浸式变压器设计与研究□PLC在冷冻干燥机中的应用□MATLAB在地铁变频器制动装置中的应用□LD5801冰箱用连杆活塞式压缩机电容起动与运行电机设计□KL-12M医用变频调速制冷电容启动电动机□JSS型数字式时间继电器设计□FB--515医用制冷电容启动电动机□FB--515医用变频调速制冷电容启动电动机□D-F机组电动机设计□CJ20交流接触器□CJ20-40交流接触器工艺及工装□CJ20-100交流接触器装配线设计□4000A多功能低压断路器控制技术□CJ20-100交流接触器的工艺与工装。
电气工程及其自动化专业毕业设计参考题目
电气工程及其自动化专业毕业设计参考题目1.集成电路型方向阻抗继电器设计锅炉过热汽温模糊控制系统的设计2.基于小波分析和神经网络理论的电力系统短路故障研究3.谐振接地电网调谐方式的性能分析与实验测试4.电力系统继电保护故障信息采集及处理系统5.消弧线圈接地补偿系统优化研究6.面向对象的10kV配电网拓扑算法研究7.蚁群算法在配电网故障定位中的应用8.中性点接地系统三相负载综合补偿9.电力有源滤波器控制设计10.110kV电力线路故障测距11.防窃电装置的分析与设计12.基于单片机的数字电能表设计13.跨导运算放大器在继电保护中的应用14.基于微机的三段式距离保护实验系统开发15.小干扰电压稳定性实用分析方法研究16.基于灰色系统理论的电力系统短期负荷预测17.冲击负载引起电压波动与闪变分析18.基于等波纹切比雪夫逼近准则最优化方法设计FIR滤波19.电力系统智能稳定器PSS的设计20.基于模糊集理论的电力系统短期负荷预测21.基于labview虚拟仪器的电力系统测量技术研究22.基于重复控制的冷轧机轧辊偏心补偿系统23.基于模糊聚类的变压器励磁涌流与短路电流的识别24.基于蚁群算法的配电网报装路径优化25.基于虚拟仪器的变压器保护系统设计26.配网无功功率优化27.复合控制型电力系统稳定器研究28.电力系统鲁棒励磁控制器设计29.基于标准系统方块图的OTA-C滤波器的实现30.6-10KV电网线损理论计算潮流算法研究31.基于DSP的逆变电源并联系统的功率检测技术研究32.滤除衰减非周期分量的微机保护算法研究33.分布式电力系统发电机动态模型仿真研究34.基于MSP430单片机的温度测控装置的设计35.电力系统谐波分量计算-最小二乘法36.用户供电事故自动回馈系统37.电力系统谐波抑制的仿真研究38.电能质量的模糊定量评价方法39.燕山大学西校区110KV供电方案设计40.数据采集系统USB接口的实现41.具有比率制动和二次谐波制动特性的差动继电器软件设计42.水轮发电机模糊调速系统研究43.电流传输器在继电保护中的应用44.双回电力线路故障测距45.电力负荷管理系统主站控制系统的研究和设计46.燕山大学供电电网改造的初步设计47.基于PLC的机械手控制系统设计48.500KV变电站设计49.基于MA TLAB的数字滤波器设计与仿真50.电力系统继电保护原理课件设计51.塑料注射成型机PLC控制系统设计52.铁磁谐振消谐器软件设计53.电力系统稳定器设计54.基于模糊理论的变电站电压无功综合控制研究55.基于小波理论的电力故障行波分析56.基于DSP的逆变电源并联系统锁相环设计57.220kV变电站设计58.医疗设备检测数量的计算机联网监控系统59.汽轮发电机故障诊断技术研究60.电压无功控制系统模糊控制器的设计61.电力系统电压-无功在线控制数据源仿真系统62.电力系统故障录波数据分析与研究63.火电厂除灰阀门PLC控制系统设计64.电压无功控制系统智能控制器的设计65.简单电力网络潮流计算系统的设计及开发66.混沌电路及其在保密通信中的应用67.电力系统通信协议转换的单片机实现68.混沌遗传算法在电力系统无功优化中的应用69.直流分布式发电系统控制70.逆变电源并联均流技术研究71.基于信息融合技术的变压器故障检测72.距离保护在高过渡电阻条件下的动作研究73.微机继电保护中滤除衰减直流分量的算法研究74.火电厂锅炉水位模糊控制系统的研究75.基于人工神经网络的电力变压器故障诊断76.蚁群算法在配电网重构中的应用77.基于遗传算法的电力市场竞价策略研究78.电梯PLC控制系统设计79.自动重合闸装置设计80.变电站仿真培训系统设计81.基于MSP430单片机的距离保护系统设计82.变压器保护整定计算系统的设计83.电网售电量预测软件研究84.基于可控硅控制的制动器设计研究85.电铁用电特性分析及补偿方法研究86.伴随运算放大器在继电保护中的应用87.电力系统振荡的数字仿真研究88.基于智能理论的高压输电线路故障分析89.电网规划中网架规划的方法研究90.智能交通信号灯系统设计91.基于随机粒子群算法的无功优化92.少油断路器参数测量仪的研制93.应用电磁暂态程序分析电力系统铁磁谐振94.基于VB的液压AGC监控系统设计95.短路电流计算算法研究与编程实现96.应用虚拟仪器测量电网的不平衡度97.电力市场需求侧管理项目投资预测方法研究98.分布式发电微型涡轮发电机控制仿真99.锅炉燃烧系统模糊控制器的设计100.模糊图像分割技术研究101.电力系统谐波分量计算-傅立叶算法102.脉冲式电表的数据采集器设计103.信号流图在电网络分析与设计的应用104.短路计算及继电保护整定系统的设计105.自适应低通滤波器的设计106.中性点不接地系统电容电流检测方法及系统设计107.基于正反馈的单相分布式发电孤岛检测108.混合式光纤电流互感器的设计109.电网无功优化分区的研究110.PLC在机械手控制中的应用111.万能过载保护与自动调整112.零序电流方向保护系统设计113.分布式发电系统可靠性分析114.塑壳断路器的智能控制器初步设计115.基于PLC的高空作业车电控系统研制116.分布式发电燃料电池控制系统仿真117.变压器油荧光谱EEM数据处理与分析118.伴随运算放大器在电流模电路中的应用119.电力系统电压稳定的研究120.利用两侧电量进行电力线路故障测距121.铁磁谐振消谐器硬件系统的设计122.电力系统谐波分量计算-傅立叶与最小二乘法比较123.燕山大学西校区10KV配网综合自动化124.OTA-C电路在继电保护中的应用125.运算放大器在继电保护中的应用126.超高压输电线路的线损研究127.配电变压器不经济状态下的损耗分析与计算128.单相接地故障定位指示器的设计129.电力负荷管理系统无线通信网络的研究和设计130.基于零序电流比幅比相法配电网故障检测的研究131.粒子群算法在无功电压控制中的应用132.PLC在电镀生产线上的应用133.电力系统通信协议转换的单片机实现(硬件部分)134.电力系统潮流和网损计算软件研究135.燕大西校区10KV配网消弧与补偿136.同步发电机短路故障电流仿真分析137.配电网故障恢复研究138.基于PLC的模糊-PI空调室温控制研究139.数学形态学在电力系统暂态信号分析中的应用140.谐振软开关变流器控制研究141.BOOST单级功率因数校正电路研究142.BUCK单级功率因数校正电路研究143.430单片机控制H桥逆变电源研究144.多级电容升压电路研究145.430单片机控制双正激变换器研究146.Boost-Buck级联电路控制研究147.并联谐振DC-DC变换电路研究148.基于430单片机电动车控制研究149.变流器重复控制研究150.单开关逆变电路控制研究151.基于DS证据理论逆变器故障诊断研究152.交流变频电机在自动门控制系统中的应用153.移相控制ZVZCS 变换器154.家用变频空调器中无刷直流电机的控制算法155.电力系统通信协议转换的单片机实现156.一种单片机控制的异步电动机节能装置157.有源电力滤波器(APF)的单周期控制158.TOPSWITCH在单端反激式稳压电源中的应用159.TOPSWITCH在单端正激式稳压电源中的应用160.带传感器的无刷直流电机调速系统161.UC3854在功率因数校正中的应用162.FX2N型PLC在电梯控制中的应用163.Boost电路的软开关PFC技术研究164.Buck电路的电荷控制技术研究165.基于单周期控制的全桥逆变器研究166.榨油厂PLC控制组态界面设计167.三电平直流变换器研究168.单级功率因数校正电路研究169.Buck电路电流控制策略研究170.有源箝位正激变换器研究171.正反激变换器特性研究172.UC3855在Boost PFC变换器中的应用173.单片机控制异步电动机节能器的设计174.“H”型直流脉宽调速系统设计175.热连轧机电气控制系统设计176.穿孔机电气系统设计177.软开关单相Boost PFC电路研究178.锂离子电池充电控制器179.无位置传感器的三相无刷直流电机控制研究180.自驱动同步整流有源嵌位正激DC-DC变换器181.铅酸蓄电池充电控制器182.CRM Boost PFC变换器183.智能生态网络供热系统184.智能大厦的多功能会议系统的设计185.智能建筑的安全防范系统设计186.采用单片机控制的交流电焊机的设计187.SPWM异步电动机变频调速仿真研究188.基于控制专用单片机的无刷电机控制系统189.DC-DC软开关电源及其并联均流研究190.具有PFC功能的AC-DC开关电源设计191.单级逆变器及其单周控制研究192.电动汽车双向直流传动系统研究193.单片机闭环控制BOOST变换器研究194.单片机控制感应电机双馈调速系统研究195.全桥逆变器的单周期控制研究196.BUCK TL 变换器研究197.ZVZCS移相全桥变换器设计198.基于TDA5142T的无刷直流电动机驱动控制系统199.基于MSP430控制移相全桥逆变器的研究200.DSP控制的无差拍控制逆变电源201.电流控制两态调制逆变器的研究202.电网故障限流、保护器203.直流开关电源并联控制及系统设计204.单周期控制和PI控制技术的对比研究205.隔离变换器漏感影响的研究206.隔离式变换器变换效率提高的技术途径探究207.太阳光伏电池系统控制问题的研究208.DC/DC变换器的滑模变结构控制209.单相并联型APF特性的仿真分析210.超导储能磁体参数优化设计211.储能磁体励磁电源及其控制技术212.高频谐振式储能电容充电控制系统213.电力负荷管理系统终端装置的研究与设计214.低压大电流同步整流DC-DC变换器设计215.低电压大电流电压半桥变换电路设计216.ZVT PFC BOOST 变换器设计217.ZVT PWM DC-DC变换电路设计218.自驱动ZVS同步整流DC-DC变换器研究219.新型超声波测距系统的设计220.智能化车窗升降控制器的设计221.电动助力转向系统的研究222.智能温度控制系统的研究223.高频开关电源的设计224.反激变换器控制方式的研究225.DSP控制单相全桥逆变器的研究226.ZVZCS移相全桥变换器的研究227.单周控制不连续导电ZVS谐振PFC电路228.ZVZCS移相全桥DC/DC变换器229.电力电子电路缓冲器研究与仿真230.基于Boost的零电压转换PWM变换器研究231.电力负荷管理系统接口系统的研究和设计232.高功率因数电子镇流器研究233.带有功率因数校正的单级隔离式DC/DC变换器234.车载高频正弦波逆变电源235.带辅助变压器ZVZC移相全桥DC/DC变换器设计236.基于单周期控制的单相功率因数校正研究237.基于单周期控制的三相电力有源滤波器研究238.自激式隔离多路输出开关电源239.双耦合绕组反激式单级PFC变换器研究240.单相逆变器并网控制技术仿真研究241.基于MSP430的温度检测仪设计242.基于MSP430直流电机调速系统设计243.逆变器并联运行环流分析及其控制技术研究244.基于定频积分控制的有源滤波器设计245.新型移相控制ZVZCS DC/DC变换器246.带脉动补偿单相升压PFC电路研究247.单周期控制功率因数校正器248.采用“H”桥的软开关功率因数校正器249.单相逆变器SPWM策略比较研究250.臭氧发生器电源容性PWM控制研究251.Buck变换器的交错并联技术研究252.级联型变流器阶梯波脉宽调制研究253.谐波注入式SPWM技术研究254.ZVS移相全桥变换器的设计255.65W通用型多路隔离输出电源的设计256.基于单周期控制的单相电力有源滤波器的设计257.有源箝位ZVZCS移相全桥PWM变换器的研究258.单相逆变器的模糊控制技术仿真研究259.三电平Buck变换器的设计260.基于定频积分控制的单相PFC技术研究261.基于单周期控制的单相逆变器设计262.异步电动机SPWM变频调速仿真研究263.带位置传感器的无刷直流电机开环调速系统264.单周期控制的有源滤波器的研究265.临界工作模式单级功率因数校正电路研究266.多级电感升压电路研究267.变频电流源电路研究268.“T”型直流脉宽调速系统269.矿井提升机电控系统设计270.自驱动同步整流全桥变换器271.钢筋调直定尺剪切机数字控制研究272.热力企业生产监控系统的研究273.低电压大电流电压半桥变换器设计274.基于三次谐波检测无刷电机控制的研究275.三相UPS逆变器及其并联运行研究276.单片机控制半导体照明及其适配电源系统研究277.单周期控制功率因数校正技术研究278.发光二极管最佳驱动方式的对比研究279.DC/DC变换器并联输出控制技术280.DC/DC升压隔离变换及控制技术281.零电压转换PWM DC-DC变换电路设计282.基于神经网络控制的三相可逆变流器的研究283.基于Boost的零电流转换PWM变换器研究284.基于单片机的蓄电池容量测试系统285.单相单级高频链正弦波逆变器研究286.Boost PFC交错并联AC/DC变换器研究287.液晶电视电源系统设计288.移相控制全桥变换器设计289.直流开关电源的设计290.基于瞬时无功功率理论的谐波和无功电流实时检测291.交错并联式双管正激变换器的设计292.基于HPWM调制方式的逆变电源研究293.新型Boost ZCT-PWM变换器294.一种有源箝位正激变换器的设计短路电流计算曲线的算法研究及与IEC短路电流计算法的对比计算曲线法用于大容量机组短路电流计算的评估崇明电网配置低压减载装置的必要性和可行性研究电压稳定计算中配网模型的研究上海电网电压稳定极限运行能力分析发电机励磁系统模型对短路电流计算结果的影响联络线功率对上海电网电压稳定极限运行的影响采用“干预法”估计谐波阻抗波过程试验装置的研制直流电源中可控硅控制电路的设计应用于波过程试验装置的频率可调方波发生器的研制水位测量仪的液晶显示器电路的设计基于R232、R485的无线数据通信系统的设计直流电源中脉冲宽度控制电路的设计红外温度测试系统中数据采集电路的设计水位测试系统数据采集的电路设计背靠背电容器组开断试验研究100kV标准冲击电阻分压器的研制220kV断路器合成试验方案的设计100kV标准直流分压器的研制开关柜中加热器的控制器研制串联点火球隙放电特性研究10kV断路器恢复电压的实现大电流分流器的比对研究城市小区高中压配电网络规划《电力系统分析》课程网上教学平台变电运行信息管理系统的设计电力系统异种数据库数据共享连接方式探究电力市场中不同电价结算方式的分析与比较灰色GM(1,1)模型及其在电力负荷预测中的应用变电站操作票专家系统的设计及开发基于粗糙集的电力系统警报数据处理应用研究基于相似日的短期负荷预测技术研究电力市场改革中对搁置成本的处理方法研究浙江淳安“十一五”电力发展规划上海奉城经济园区高中压配电网络规划江苏大丰“十一五”电力发展规划马鞍山发电厂大型电力变压器故障诊断系统的应用开发马鞍山发电厂大型电力变压器故障诊断系统的研究上海意德商城中低压配电网络规划线路保护模块设计及电力系统分析软件应用变压器保护模块设计及电力系统计算分析软件应用输电线路短路故障分析与线路保护整定输电线路继电保护配置及模拟仿真配电网短路故障分析与变压器保护整定风场距离对风电并网运行特性的影响分析与计算风力发电并网运行时系统电源的影响分析与计算变压器和母线继电保护配置及模拟仿真元件模型对暂态稳定影响的研究220KV变电所工程电气部分初步设计一种模糊免疫PID励磁控制器的设计基于遗传算法的PMU优化配置免疫算法在PMU优化配置中的应用一种自适应模糊PID励磁控制器的设计负荷对电力系统稳定的影响研究AutoCAD在电气主接线设计中的应用及CAD在电气专业的二次开发宝钢微机保护装置仿真平台的开发500kV变电站电气倒闸操作票软件的开发新建2*600MW机组发电厂电气设计临海2*300MW机组电厂电气主系统设计扩建1*300MW机组电厂电气主系统设计2*200MW发电厂电气主系统设计220KV滁东变电站电气部分设计安平2*300MW机组电厂电气主系统设计220KV高资变电站电气部分设计电力有源滤波器谐波测量系统微机控制大型变电站电压、无功双参数调压微机控制有源电力滤波器的微机控制静止无功补偿器TCR+TSC设计研究电力系统单通滤波器设计配电网线损计算及降损措施分析电力系统中性点接地方式探讨基于DGA技术的变压器故障诊断方法研究油浸式变压器局部放电检测与放电特性的研究全寿命周期成本LCC管理在电力系统变电站的应用研究上海电网黑启动及LCC在事故启动电源配置方案上的应用基于蓝牙技术的变电站低频减载装置基于蓝牙通讯的变电站电压-无功监控的研究WJJX-6实验平台上交流电压值及相交差测量的实现基于蓝牙通讯技术的单片机交流电气参数监测系统电力市场竞价策略初步探讨串联补偿对电力系统稳定性的影响风力发电并网运行暂态分析研究基于Matlab实用化的电力系统计算研究配电网分析与优化研究风力发电并网运行稳态分析研究电力系统网损计算的研究电力系统可视化研究及潮流计算电力系统仿真平台体系研究济宁电网实时无功补偿以保证电压连续稳定性的研究济宁电网无功电源规划的研究用于风力发电机中的逆变器的设计和计算风力发电机整流器的设计与计算分布式母线保护的通信研究配电网规划的可靠性后评估方法研究一种电流互感器饱和检测的新方法基于分布式母线保护原理同步发电机失磁保护新方法的探索基于LCC的配电网经济性评估智能型电力系统稳定器的研究基于变频器技术的泵系统控制及实现基于人工智能的电力需求预测研究配电网开关优化配置的遗传算法变频调速电机功率因数特性优化设计变频调速电机设计中谐波抑制的研究双速异步风力发电机的双速绕组设计双速异步风力发电机功率因数特性设计双速异步风力发电机效率特性设计谐波及无功电流检测的Matlab仿真异步电机直接转矩控制变频调速的Matlab仿真变频调速电机的效率特性优化设计电力系统220KV继电保护试验与实验方法研究分布式数显表的软件研究WCB-821型微机厂用变保护与测控装置实验与试验方法研究电力系统220KV测控装置实验与试验方法研究35KV电容器综合保护测控装置WDR-821试验与实验方法研究电力系统220KV继电保护实验与试验方法研究2分布式数显表的硬件研究电力系统35KV线路综合测控装置WXH-822试验与实验方法研究基于门限小波包的长期负荷预测方法研究变压器铁心多点接地故障定位检测研究电力市场中发电厂竞价随机优化策略的研究基于门限小波包的短期负荷预测方法研究基于电流分布计算方法的6~10kv配电网优化运行XLPE电缆金属护套多点接地检测方法研究基于地理信息系统的电网设备管理系统电力市场的竞价策略电力市场的交易模式无功功率补偿调压地铁牵引电源谐波电流分析及滤波器设计整流装置谐波电流仿真分析及滤波器设计电能计量现场问题分析及防窃电技术电源的仿真分析与设计40000KV A变压器二次侧滤波补偿节能装置设计宝惠石油机械厂滤波补偿节能装置设计站用电400V交流系统仿真程序开发站用电110V直流系统仿真程序开发基于ANSOFT技术的异步机效率曲线的研究基于ANSOFT技术的变频电机优化设计谐波与无功电流的滤波检测分析及仿真浙江省青田县远期高压配电网初步规划浙江省龙泉市远期高压配电网初步规划异步电机直接转矩控制的DSP实现基于小波变换的异步电机故障诊断基于LABVIEW的同步发电机参数测定系统的设计与实现基于虚拟仪器的汽轮发电机振动故障监测与诊断基于虚拟仪器的异步电动机故障监测与诊断直流电动机调速控制的DSP实现油纸绝缘电气设备的故障诊断技术变压器在线监测技术的研究变压器油中溶解气体分析与故障诊断绝缘油中气体的在线监测传感器在变压器故障检测中的应用变压器的状态分析方法变压器状态检测技术的研究变压器可靠性分析与寿命评估多点温度检测系统中差模电路的仿真多路数据采集系统基于LabVIEW构建虚拟频率测量仪的研究基于labVIEW构建虚拟交流参数测量仪的研究基于MATLAB构建FIR数字信号处理仿真系统的研究基于MATLAB构建IIR数字信号处理仿真系统的研究多谐波源求和问题的研究利用概率密度函数估计公共点谐波发射水平传感技术在变压器故障诊断中的应用变压器故障诊断技术的研究人工智能(AI)在变压器故障诊断中的应用在线检测装置在变压器故障诊断中的应用变压器可靠性分析及其寿命评估变压器老化诊断变压器故障诊断的人工神经网络法(ANN)基于PSASP软件的电力系统无功优化研究基于PSASP软件的电力系统电压静态稳定性研究基于PSASP软件的电力系统短路电流水平分析高压直流输电系统EMTDC动态仿真高压直流输电系统的MA TLAB动态仿真HVDC系统的电压静态稳定性研究安徽电网短路电流限制措施研究利用概率密度函数进行矢量分解估计谐波发射水平宝钢微机保护装置仿真平台系统设计宝钢ABB--REF线路微机保护仿真平台设计宝钢东芝--GRL线路微机保护仿真平台设计上海清洁能源应用及并网运行研究上海电力公司电网潮流、短路计算程序编制上海风力发电并网运行方式研究宝钢东芝--GRT变压器微机保护仿真平台设计风力发电并网动态过程分析基于MATLAB的三相整流桥谐波分析与谐波检测基于MATLAB的APF仿真研究一种新型的电力有源滤波器带三相不平衡调节功能的无功补偿装置研究一种基于数字信号处理器的新型的DC-DC变换器电力系统高压设备检测(变频谐振电源)基于数字信号处理器的三电平变换器配电网规划的技术经济评估分析高压电磁场环境影响评价柳林刘家山100输变电新建工程一次部分设计舟山电网“十一五”规划及2020年远景展望PLC控制的变频调速在岸边集装箱起重机上的应用研究电网基础信息模型的研究110KV新区变电所二次部分的设计220kV REL551线路微机保护装置仿真模型开发天荒坪抽水蓄能电站厂用直流系统通用仿真程序开发500kV WYP-01线路微机远方跳闸就地判别装置仿真模型开发天荒坪抽水蓄能电站厂用交流系统通用仿真程序开发220kV RCS-902线路微机保护装置仿真模型开发。
基于ADSP-21992的电力系统准同期装置的设计
基于ADSP-21992的电力系统准同期装置的设计王洪坤;马玉荣;聂晶【摘要】Advanced automatic control technology and equipment can ensure power system's safety, economic operation and power quality. This paper designs interface circuits of synchronization device in power systems based on a core of ADSP-21992,which contains data collecting unit and external interfaces of ADSP-21992. Finally,the software system of device is developed,which includes main procedure and interrupt service routine. Though testing,the device can meet the requirements of engineering design.%为保证电力系统的安全及经济运行,必须依靠先进的自动装置.本文以ADSP-21992为核心,设计实现了电力系统准同期装置的硬件电路及准同期软件系统.首先以实现同期功能为目的,设计实现了准同期装置的硬件电路,包括数据采集模块、外部接口模块,然后设计实现了装置的同期主程序及中断服务子程序.经功能试验测试,能够满足准同期装置性能要求.【期刊名称】《石河子大学学报(自然科学版)》【年(卷),期】2011(029)002【总页数】5页(P260-264)【关键词】准同期;ADSP;数据采集;接口电路【作者】王洪坤;马玉荣;聂晶【作者单位】石河子大学机械电气工程学院,石河子832003;石河子天富水利水电工程公司,石河子832000;石河子大学机械电气工程学院,石河子832003【正文语种】中文【中图分类】TP368.1随着我国智能电网的不断发展,研制电力系统自动控制装置越显必要和急迫,并成为电力系统研究领域中新的热点。
基于DSP的高压节点在线测试系统设计
基于DSP的高压节点在线测试系统设计李炜;于清涛;李旭;秦炳坤【摘要】With the high voltage electrical equipment increasing in oil petrochemical indus-try, in order to test the operation energy consumption and performance under different con-ditions. In view of lacking portable high voltage electric parameter online test equipment, designed the electrical parameters acquisition and processing circuit with DSP as the core, which realizes high speed data transmission between the host computer by the network com-munication interface based on TCP/IP protocol, and makes the high voltage electrical nodes electrical parameters display more intuitive, more specific and more vivid. The field experi-ments show that the system can collect data in real time based on DSP high voltage electric node online testing system, which has high accuracy in measuring parameters, and play an important role in safety productionand energy saving for oil enterprises from now on.%随着石油、石化行业中高压用电设备的不断增加,需要对设备运行能耗以及不同工况下的性能进行测试,但目前油田缺乏高压节点电参数测试设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于D SP的电力系统电压测量装置设计①陈 理,吴为麟(浙江大学电气工程学院,杭州310027)摘要:为保证电力系统高压测量的准确度,采用TM S320L F2407芯片对传统电容式电压互感器(CV T)的二次侧进行数字化控制,利用PFC校正实现输入电压信号的功率放大,基于D SP的无差拍外电压环控制和带无差拍观测器的内电流环控制,大大改善了因采样延时和计算延时对测量系统实时性和精确性的影响,使得该装置输出电压波形能很好地跟踪输入电压。
实验结果充分说明了上述结论。
关键词:电力电压测量;数字信号处理器;逆变系统;无差拍控制中图分类号:TM933.2 文献标识码:A 文章编号:100328930(2006)0320014204D esign of D SP Ba sed Voltage M ea surem en t D ev icefor Power System sCH EN L i,W U W ei2lin(Co llege of E lectrical Engineering,Zhejiang U n iversity,H angzhou310027,Ch ina)Abstract:T he design of the equ i pm en t adop ts TM S320L F2407to con tro l the traditi onal CV T on second side w ith digital strategy,realizes the functi on of amp lifying the pow er of inpu t vo ltage signal,i m p lem en ts dead2 beat vo ltage con tro l and dead2beat ob server based inner cu rren t con tro l u sing D SP,i m p roves the real2ti m e capab ility and the accu racy of the m easu rem en t system greatly,avo ids the effect p roduced by A D and calcu lati on delay,en su res that the ou tpu t vo ltage can track the inpu t signal perfectly.A t last,the experi m en t resu lts show the effectiveness of the design.Key words:electrical vo ltage m easu rem en t system;digital signal p rocesso r(D SP);inverter system;dead2 beat con tro l1 前言 目前常用的电力系统高压测量器件有电磁式电压互感器(EV T)和电容式电压互感器(CV T)两种。
由于CV T较EV T有更多的优点,近年来开始全面替代EV T用于电力系统高压测量。
CV T的工作原理是将电力系统高压信号通过电容器分压,使一次电压变换为适当的中间电压,再用中间变压器将中间电压变为二次电压,并采用电抗器来补偿分压电容器的容抗,使电抗器的电抗与中间变压器的感抗元和与等值容抗在工频下调谐,消除容抗压降随二次负荷的变化而引起的二次电压剧变。
这种电容分压器能驱动的负荷极小,只有在二次侧开路或接入高阻抗负载如静电电压表或真空管电压表等小负荷时才有可能,否则读数将不准确。
在实际使用中,通过在一次侧加装一个电抗器用其感抗来抵消电容器容抗的方法来提高它的带负荷能力。
当在CV T一次侧发生了强电压冲击或二次短路又突然消除时,电容和串入的电感所组成的电路有可能产生铁磁谐振。
为了保证CV T的测量准确度,总是把回路中的串联电阻设计得很小,靠其本身电阻来阻尼谐振是不可能的,必须设置阻尼器进行阻尼,而阻尼器的储能往往又对瞬变响应有不可忽略的影响。
目前对于上述问题的解决不外乎是改进消谐阻尼器和补偿电抗器[1],无法从根本上解决问题。
基于对传统CV T存在的问题的研究,本文提出了在CV T的二次侧设计带有功率放大的数字系统,只要二次侧存在输入信号,就可以获得和输入第18卷第3期2006年6月 电力系统及其自动化学报P roceedings of the CSU2EPSAV o l.18N o.3Jun. 2006①收稿日期:2005206227;修回日期:2005208228基金项目:国家自然科学基金重点资助项目(50437010)电压信号相吻合的高精度可带一定负载的输出测量信号,这样彻底地解决了传统式单一互感器带来的固有的难以解决的电磁谐振和瞬变响应引起的问题。
2 系统硬件结构及实现电压测量系统主要由输入A C DC 功率因数校正,DC A C 逆变控制两部分组成,如图1所示。
图1 DSP 控制的电压测量系统结构图F ig .1 Structure of volt age m ea sure m en tsyste m with D SP con trol 输入电压波形经整流后,进行功率因数校正。
PFC 由简单的boo st 电路组成[2],采用U C3854芯片进行电压电流双环控制,给后级逆变系统提供稳定的直流电源,避免了因输入电压波动造成整个测量系统输出产生误差的情况。
同时PFC 环节由U C3854来实现,电路较为简单,且不采用D SP 控制,保证了后级逆变器双环控制运算速度。
逆变主电路采用单相半桥电压源逆变形式。
逆变桥触发脉冲采用D SP 实现SPWM 调制的方法[3],处理器内部全比较单元2的两个输出脚PWM 3、PWM 4对逆变器的功率管进行触发控制。
由于功率器件有一定的关断时间,可能出现两管直通现象,导致器件的损坏。
通过对D SP 比较单元进行死区编程,在同一桥臂的开通与关断时间插入一定的死区时间,防止发生直通现象。
D SP 内设ADC 采样模块,实现对输入参考电压信号U sin ,滤波器的输出电压信号u 和电流i 的A D 转换。
U sin 和u 在通道ADC02和ADC12内完成,电流i 在ADC13进行。
特别要说明的是,控制系统对电压和电流的采样要求采用不同的采样频率,D SP 程序在每个A D 周期结束后,通过设定不同采样时基,达到变频率采样的目的,以满足逆变系统对电压电流的要求。
D SP 高速的ADC 模块为数字化双环控制提供实时信号,确保输出信号对输入信号实时精确跟踪。
为了提高系统安全性,装置配有电源驱动保护功能。
将管脚PD P I N T 设定为电源驱动保护中断。
如果PD P I N T 未被屏蔽,当PD P I N T 引脚电平被拉低后,则在D SP 产生一外部中断,使所有的P WM 输出均为高阻态,这样可以在过流等故障的情况下,关闭功率开关器件,起到保护器件的作用。
过电流中断的信号是输出电流信号I o 经ADC 模块ADC13通道送到D SP 内部。
3 D SP 数字双环控制本装置逆变器的等效电路如图2所示。
对逆变系统的控制目前常用瞬时P I D 控制、重复控制技术以及无差拍控制等。
利用上述数字化控制技术来实现电压电流双环控制,可以达到精度高,THD 值小。
由于数字控制方法存在采样和计算延时,截止频率比模拟系统要低一些,所以通常从控制效果来说,数字控制的实时性比模拟控制差一些。
本系统采用电压电流无差拍双环控制[4]的方法,数字化采样和计算延时则会导致无差拍控制无法实现,有必要对其进行延时补偿。
在实际控制系统中,一般都采用一拍延迟控制,即把当前时刻采样计算所得的控制信号作为下一时刻的控制量,在下一个开关周期中输出。
由电容特性可知其电流具有超前性,这里通过设计电容电流状态预测器来补偿时间延时,从而实现无差拍控制。
图2 单相半桥逆变器主电路图F ig .2 M a i n c ircuit of ha lf -br idge si ngle pha se i nverter3.1 带无差拍观测器的电流控制环用于补偿时间延时的电容电流无差拍状态观测器[5,6],其基本思想是将预测的下一个电容电流采样值当作本次电容电流值,以达到补偿一个采样周期的延时。
补偿延时后,电流环就可以实现无差拍控制环。
本环的电流采样时间设定为T i 。
采用零阶保持器对电流环进行离散化,经过Z 变换后可得G i (z )=Z [1-e 2T i SS×1SL]=T iL (z -1)(1)・51・第18卷第3期 陈 理等:基于D SP 的电力系统电压测量装置设计由图3的电流环结构图可得i C (n )=i L (n -1)+T i K iLv r (n -1)- [i L (n )-i L (n -1)](2)其中,K i =K a u 。
K a 为采样系数,可取为1,u 为直流侧电压。
图3 离散电流环控制框图F ig .3 Con trol block of discreted curren t loop 状态观测器采用全阶形式来实现。
假设状态观测反馈系数为G ,而且在测量期间不存在负载扰动,也就是说在采样点n 和n -1时刻负载上的电流相等,则可得状态观测器的差分方程为i 3c (n )=i 3c (n -1)+T i K iL v r (n -1)+ G [i c n -1)-i 3c (n -1)](3)将式(3)进行Z 变换得i 3c (z )=1z -1+G [T i K p Lv r (z )+G i C (z )](4)观测器的特征方程为z -1+G =0(5)要达到消除时间延迟,则要求观测器必须是无差拍控制,即G =1于是,式(4)可表示为i 3C (z )=T i K i Lz 21v r (z )+z 21i C (z )(6)在图3中加入状态观测器后,可得到新的电流环框图,如图4所示,从而求得电流环闭环传递函数,即i C (n )i C ,r (n )=K T D i (z )z -1+K T D i (z )(7)式中,K T =K i T i L Tb 。
电流环特征方程为z -1+K T D i (z )=0(8)根据无差拍原理得D i (z )=1K T(9)修正后的电流环如图4所示。
图4 带观测器电流环框图F ig .4 Block of curren t loop with observer3.2 电压环无差拍控制由于电流环的截止频率高于电压环的截止频率,在设计电压外环时,电流内环可以近似为一比例环节,且系数为1。