陕西省石泉县池河中学九年级数学上册21.1一元二次方程教案(新版)新人教版

合集下载

九年级数学上册 21.1.1 一元二次方程教学设计 (新版)

九年级数学上册 21.1.1 一元二次方程教学设计 (新版)
解决问题
通过解决面积问题、比赛问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重点
一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
通过对这三个问题的解决,学生进一步明确列方程解应用题的步骤与方法;为后面的应用奠定基础。
活动三
方程(1)(2)(3)有什么共同特点?
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)它是一元一次方程吗?
老师点评:(1)都只含一个未知数x;(2)它们的 最高次数都是2次的;(3)是方程.
难点
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
二、教学流程安排
活动流程图
活动内容和目的
活动一复习导入
活动二创设问题情景,引出新知
活动三探究新知
活动四小结、布置作业
复习一元一次方程,对比学习一元二次方程
通过实际问题引出一元二次方程的具体例子,让学生感受到方程应用的广泛性。
能否熟练将一元二次方程化成一般形式,并指出二次项系数和一次项系数及常数项。
通过回顾、练习,进一步巩固提高。
复习列方程一次方程解应用题,为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.
通过复习一元一次方程的概念,为学习一元二次方程作铺垫。
活动二
问题(1)如图,如果 ,那么点C叫做线段AB的黄金分割点.
如果假设AB=2,求AC

九年级数学上册21.1一元二次方程教案(新版)新人教版 (2)

九年级数学上册21.1一元二次方程教案(新版)新人教版 (2)
聆听、思考、回答
四、程化成一元二次方程的一般形式,并写出其中的二次项系数及常数项.
练习
1.将下列方程化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)
(2)
2.当_____时,关于的方程是一元二次方程.
根据所学内容解答习题
2、总结归纳
谈谈本节课的收获?
3、作业:课堂
必做:教材第4页1题
选做:教材第4页2题
家庭
教材第4页习题21.1第1---7题
板书设计
21.1一元二次方程
定义:例题练习
一般形式:
教后记
⑸上述一元二次方程还有哪些相同点和不同点?你能类比一元一次方程的一般形式得出一元二次方程的一般形式吗?
⑹什么叫做一元二次方程的解?
阅读提纲,
(1)~(6)
4、组织学生自学
指导学生阅读课本P2---4课文,并回答问题。
学生自学得出结论组内交流,互助互教。
二、自学反馈
汇报或检测
1.一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.
一元二次方程
教学目标
知识与技能
通过对本节课的教学,使学生充分了解一元二次方程的概念,会判断一个数是否是一元二次方程的根,正确掌握一元二次方程的一般形式
过程与方法
培养学生分析问题、解决问题的能力以及对数学概念理解的完整性和深刻性,帮助学生掌握初步的研究问题的方法
情感态度与价值观
帮助学生树立转化的思想和严谨的科学态度;培养学生用数学的意识
共同点:①它们都是整式方程;②都含有一个未知数.
不同点:方程中未知数的最高次数是2;而一元一次方程的未知数最高次数是1。

陕西省石泉县池河中学人教版九年级数学上册教案:21.1一元一次方程

陕西省石泉县池河中学人教版九年级数学上册教案:21.1一元一次方程
实践活动和小组讨论环节,学生们表现出了很高的热情。他们通过讨论和实验操作,不仅加深了对一元一次方程的理解,还学会了如何将理论知识应用于实际问题的解决中。我在旁听学生的讨论时发现,他们在解决问题的过程中,能够相互启发,共同进步。
然而,我也注意到,部分学生在小组讨论中较为沉默,可能是因为害羞或者不自信。在未来的教学中,我需要更多地关注这些学生,鼓励他们积极参与,增强他们的自信心。同时,我也应该提供更多的机会让每个学生都有表达自己观点的机会。
4.练习:教材中第21.1节后的习题1-4题。
二、核心素养目标
本节课的核心素养目标旨在培养学生的逻辑推理、数学建模和问题解决能力。通过学习一元一次方程,使学生能够:
1.理解一元一次方程的概念,掌握方程的基本性质,提高逻辑推理能力;
2.学会运用移项、合并同类项等方法解一元一次方程,培养数学运算和数学建模能力;
-难点三:将实际问题抽象为一元一次方程的过程,学生需要掌握如何从问题中提取关键信息,正确设立变量,以及如何根据问题情境列出方程。
举例:
-对于移项难点,可以通过具体的例子,如方程2x + 5 = 3x - 2,展示如何将3x移至等式左边,2移至等式右边,并解释符号变化的规则。
-在合并同类项方面,可以通过对比x和2x,以及3和3x这样的项,强调只有变量和它们的系数相同的项才能合并,同时演示如何将常数项与其他项合并。
在总结回顾环节,我对学生今天的学习成果进行了简单的回顾,也给了他们提问的机会。我感到欣慰的是,学生们敢于提出自己的疑问,这表明他们有勇气面对自己的不足,也愿意寻求帮助。
3.能够将实际问题抽象为一元一次方程,提高问题分析和解决能力;
4.通过合作交流,提升学生的团队协作能力和表达交流能力,激发对数学学科的兴趣和自信心。

九年级数学上册21.1一元二次方程教案1(新版)新人教版

九年级数学上册21.1一元二次方程教案1(新版)新人教版

一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0 C.(x-1)(x-2)=3 D.ax2+bx+c=0 解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)( x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程. 解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x 2-2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C. 方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解. 【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( ) A .1 B .-1C .0D .无法确定 解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m =-1.故选B. 方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案

九年级数学上册 第21章 一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案
2. 直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是将其转化为一元一次方程——降次。本单元首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。本节知识学习时,注意对相关知识的复习、联系,多鼓励学生应用不同的解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。
这样容易完成学习内容。
三、教学目标
(结合课标)
1.理解一元二次方程的定义关键注意三点:整式、一个未知数、最高次数为2。
对一元二次方程理解时,一定注意“a≠0”这一条件。
把一个方程化为一般形式时应用了解一元一次方程的变形方法:去分母---去括号---移项---合并同类项。
注意:①当a是负值时,一般转化为正数; ②多给出b=0或c=0或b、c同时为0的例子。如: 。
解一元二次方程时,要根据方程实际,灵活选择适当的方法。
对于一元二次方程的一般形式ax2+bx+c=0(a≠0),当b2-4ac≥0时,可用公式法,一定要注意b2-4ac的取值问题。
配方法要先配方再降次;“配方法”不仅应用在一元二次方程中,注意配方在其他方面的应用。
因式分解法要先使方程的一边为两个一次因式相乘,另一边为0,再分别使各一次因式为0。配方法和公式法适用于所有的一元二次方程,因式分解法应用时要观察方程的特点,灵活选择方法。
数学建模思想的教学在本章得到进一步渗透和巩固。
二、学情分析
学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本章将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式.

九年级数学上册21一元二次方程教案新版新人教版

九年级数学上册21一元二次方程教案新版新人教版

第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2. 提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字? (3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t+1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1.(2)由已知,得:(x +3)2=2 直接开平方,得:x +3=± 2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2). 四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x +p)2=q 的形式,如果q≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1 解下列方程:(1)2x 2+1=3x (2)3x 2-6x +4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问 2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(b 2a )2=-c a +(b 2a )2即(x +b 2a )2=b 2-4ac4a2∵4a 2>0,当b 2-4ac≥0时,b 2-4ac4a2≥0 ∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b 2a =±b 2-4ac2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成: (1)x(2x +1)=0 (2)3x(x +2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1三、巩固练习教材第14页 练习1,2. 四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用. (2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a.观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a≠0)∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ;变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k. 三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0 (2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.。

九年级数学上册 21.1 一元二次方程教案 (新版)新人教版

九年级数学上册 21.1 一元二次方程教案 (新版)新人教版

教学难点
通过提出问题,建立一元二次方程的数学模型,•再由一元一次方 程的概念迁移到一元二次方程的概念.
教学过程设计
教学程序及教学内容
师生行为
设易方程,上初中后学 点题,板书课题. 联系曾经学
习了一元一次方程,二元一次方程组,可化为一 学生读题找等量关 习过的方程
方程,则 a 范围________.
3).已知方程 5x2+mx-6=0 的一个根是 x=3,则 m
的值为________
4).关于 x 的方程(2m2+m)xm+1+3x=6 可能是一元
二次方程吗? 四、小结归纳
1.一元二次方程的概念及其一般形式,能将一 个一元二次方程化为一般形式,并正确指出其各 项系数. 2.一元二次方程的根的概念,能判断一个数是 否是一个一元二次方程的根. 五、作业设计 必做:P4:1.2.4.6.7 选做:.P29:3.5.7
师巡视指导,了解 移提高
学生掌握情况,并 加深对概念理
概念归纳:
集中订正
解和运用,同
1.一元二次方程定义:
师生归纳总结,学 时对一元二次
分析:首先它是整式方程,然后未知数的个数是 生作笔记.
方程的根的情
1,最高次数是 2.
况初步感知
2.一元二次方程的一般形式:
使学生巩固
分析:
提高,
○1 .为什么规定 a ≠0?
2.下面哪些数是方程 x2+5x+6=0 的根? -4,-3,-2,-1,0,1,2,3,4.
3.你能用以前所学的知识求出下列方程的根 吗?
(1)x2-64=0(2)x2+1=0 (3)x2-3x=0 (4)
x2 2x 1 0 4.思考:一元一次方程一定有一个根,一元二 次方程呢? 5.排球邀请赛问题中,所列方程 x2 x 56 的根 是 8 和-7,但是答案只能有一个,应该是哪个? 归纳: ○1 一元二次方程的根的情况 ○2 一元二次方程的解要满足实际问题

九年级数学上册第二十一章一元二次方程21.1一元二次方程学案1(新版)新人教版

九年级数学上册第二十一章一元二次方程21.1一元二次方程学案1(新版)新人教版

22.1 一元二次方程一、学习目标1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;2、知道一元二次方程的一般形式是20(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;3、理解并会用一元二次方程一般形式中a ≠0这一条件;4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。

重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.二、知识准备1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。

三、学习过程1、 根据题意列方程:⑴正方形桌面的面积是2㎡,求它的边长。

设正方形桌面的边长是x m,根据题意,得方程_______________,这个方程含有_____个未知 数,未知数的最高次数是_____。

⑵如图4-1,矩形花园一面靠墙,另外三面所围的栅栏的总长度是19m,如果花园的面积是24㎡, 求花园的长和宽。

设花园的宽是x m,则花园的长是(19-2x )m,根据题意,得:x (19-2x )=24,去括号, 得:______________这个方程含有____________个未知数,含有未知数项的最高次数是 ________。

⑶如图,长5m 的梯子斜靠在墙上,梯子的底端与墙的距离是3m 。

若梯子底端向右滑动的距离与 梯子顶端向下滑动的距离相等,求梯子滑动的距离。

设梯子滑动的距离是x m,根据勾股定理,滑动之前梯子的顶端离地面4m,则滑动后梯子的 顶端离地面(4-x )m,梯子的底端与墙的距离是(3+x )m 。

陕西省石泉县九年级数学上册 21.2 解一元二次方程教案

陕西省石泉县九年级数学上册 21.2 解一元二次方程教案
∴x1= 13,x2= -3
⑶2x-1)2+4=0⑷4x2-4x+1=0
(2x-1)2=-4<0 (2x-1)2=0
∴原方程无解2x-1=0∴x1=x2=
(学生独立完成,教师巡视指导)
四、巩固练习
【练习】Р6:( 1)--(6)
五、自主总结
1、用直接开平方解一元二次方程;理解“降次”思想。
2、理解x2=p或(mx+n)2=p(p≥0)为什么p≥0?
四、教学重点难点
教学重点
运用开平方法解形如(mx+n)2=p(p≥0)的方程;领会降次──转化的数学思想.
教学难点
灵活运用直接开平方法解一元二次方程。
五、教法学法
引导探索归纳法、讲练结合法。
六、教学过程设计
师生活动
设计意图
一、自主学习感受新知
【问题1】一桶某种油漆可刷的面积为1500dm2,小李用这桶漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?
21.2解一元二次方程
课标依据
能用直接开平方法解一元二次方程
一、教材分析
根据平方根的意义解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.把一般形式的一元二次方程(二次项系数是1,一次项系数是偶数)与左边是含有未知数的完全平方式右边是非负常数的一元二次方程对比,引入配方法,并掌握.
设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,根据一桶油漆 可刷的面积列出方程:
10×6x2=150 0
由此可得:x2=25
根据平方根的意义,得x=±5
即x1=5,x2=-5
可以验证5和-5是方程的两根,但棱长不能为负值,所以正方体的棱长为5dm。

人教版九年级上册数学211一元二次方程教案

人教版九年级上册数学211一元二次方程教案

人教版九年级上册数学 21.1一元二次方程教案人教版九年级上册数学 21.1一元二次方程教案一、教学目标1.掌握一元二次方程的概念及其特点。

2.学会判断一个方程是否为一元二次方程。

3.理解一元二次方程的一般形式及其各项系数的意义。

4.培养学生的观察、分析和归纳能力,提高学生的数学素养。

二、教学重点与难点重点:一元二次方程的概念及其特点,一元二次方程的一般形式。

难点:判断一个方程是否为一元二次方程,理解一元二次方程的各项系数的意义。

三、教学方法与手段教学方法:采用启发式教学和实例教学相结合的方法,通过具体的例子引导学生观察、分析和归纳。

教学手段:多媒体教学,利用PPT课件展示教学内容,增加课堂趣味性。

四、教学准备1.制作PPT课件,包括一元二次方程的概念、特点、一般形式等内容。

2.准备一些具体的方程例子,用于课堂讲解和练习。

3.准备课堂练习册和课后作业题。

五、教学过程1.导入新课(1)通过具体例子引出一元二次方程的概念。

例如:某商场一月份的销售额为100万元,二月份的销售额比一月份增加了10%,三月份的销售额比二月份增加了20%。

求三月份的销售额。

解:设一月份的销售额为x万元,则二月份的销售额为(1+10%)x万元,三月份的销售额为(1+20%)(1+10%)x万元。

根据题意,可列方程:x(1+10%)(1+20%)=100(1+10%+20%)化简得:x²+0.3x-135=0这是一个含有未知数的等式,并且未知数的最高次数是2,这样的方程就是一元二次方程。

(2)引导学生观察、分析和归纳一元二次方程的特点。

特点:a. 只含有一个未知数;b. 未知数的最高次数是2;c. 是整式方程。

2.学习新课(1)介绍一元二次方程的一般形式及其各项系数的意义。

一般形式:ax²+bx+c=0(a≠0)其中,a是二次项系数,b是一次项系数,c是常数项。

(2)通过具体的例子让学生练习判断一个方程是否为一元二次方程。

人教版九年级数学上册21.1一元二次方程教案

人教版九年级数学上册21.1一元二次方程教案
-熟练运用公式法解一元二次方程,理解求解公式中各个部分的含义。
-了解一元二次方程根的判别式Δ=b²-4ac的意义,能够根据判别式的值判断方程有几个实数根。
-将一元二次方程应用于解决实际问题,培养数学建模和数学应用的能力。
举例:对于重点内容“配方法解一元二次方程”,教师应详细讲解如何通过添加和减去同一个数,使方程两边保持等价,从而将原方程转化为完全平方公式形式,进而求解。
五、教学反思
在今天的教学过程中,我发现学生们对一元二次方程的概念和求解方法表现出很大的兴趣。通过引入日常生活中的实际问题,学生们能够更加直观地感受到数学知识的实用性。然而,我也注意到在教学中存在一些需要改进的地方。
在导入新课环节,我尝试以提问的方式引发学生的思考,但感觉问题设置可能还可以更加贴近学生的生活,以增强他们的代入感。今后,我可以考虑设计更具挑战性和趣味性的问题,进一步提高学生的参与度。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决面积、速度或距离等与二次关系相关的问题?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是指形如ax²+bx+c=0(a≠0)的方程。它在数学中占有重要地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示一元二次方程在求解物体自由落体运动中的距离问题,以及它如何帮助我们解决问题。
学生小组讨论环节,整体氛围较好,学生们能够围绕主题展开讨论。但在引导和启发学生思考方面,我觉得还可以做得更好。今后,我将更加注重提问的技巧,引导学生深入探讨问题,激发他们的创新思维。

人教版数学九年级上册21.1《一元二次方程(2)》教学设计

人教版数学九年级上册21.1《一元二次方程(2)》教学设计

人教版数学九年级上册21.1《一元二次方程(2)》教学设计一. 教材分析人教版数学九年级上册21.1《一元二次方程(2)》是学生在掌握了《一元二次方程(1)》的基础上,进一步深化对一元二次方程的理解和应用。

本节课主要内容是一元二次方程的根的判别式,根与系数的关系,以及一元二次方程的求解方法。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。

二. 学情分析学生在学习本节课之前,已经学习过一元二次方程的基本概念,能熟练解一元二次方程。

但在解决一些复杂的一元二次方程时,可能会遇到一些困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.理解一元二次方程的根的判别式,掌握根与系数的关系。

2.学会运用一元二次方程的求解方法,解决实际问题。

3.培养学生的逻辑思维能力,提高解题能力。

四. 教学重难点1.教学重点:一元二次方程的根的判别式,根与系数的关系,一元二次方程的求解方法。

2.教学难点:一元二次方程的求解方法在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究,发现规律。

2.运用案例分析法,让学生通过分析实例,掌握一元二次方程的求解方法。

3.利用小组合作学习,培养学生的团队协作能力和沟通能力。

4.采用激励评价法,激发学生的学习兴趣,提高学习积极性。

六. 教学准备1.准备相关的教学案例和练习题,用于引导学生进行探究和练习。

2.准备多媒体教学设备,如投影仪,用于展示教材内容和案例分析。

3.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生运用已学知识进行分析。

例如,已知一个二次函数的图像,如何求出它的方程。

2.呈现(10分钟)教师通过讲解和演示,呈现一元二次方程的根的判别式,根与系数的关系,以及一元二次方程的求解方法。

3.操练(10分钟)学生分组进行练习,运用一元二次方程的求解方法解决实际问题。

九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案2 (新版)新人教版-(新版)新

九年级数学上册 第二十一章 一元二次方程 21.1 一元二次方程教案2 (新版)新人教版-(新版)新

21.1 一元二次方程01 教学目标1.理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项.2.理解一元二次方程的根的意义,能够运用代入法检验根的正确性.02 预习反馈1.等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.如:下列方程:①1-x2=0;②2(x2-1)=3y;③2x2-3x-1=0;④1x2-2x=0中,是一元二次方程的是①③.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.3.使方程左右两边相等的未知数的值,就是这个一元二次方程的解,也叫做一元二次方程的根.求方程的解的过程,叫做解方程.如:下面哪些数是方程x2-x-6=0的根?-2,3.-4,-3,-2,-1,0,1,2,3,4.03 新课讲授类型1 一元二次方程的一般形式例1(教材P3例)将方程3x(x-1)=5(x+2)化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.【解答】去括号,得3x2-3x=5x+10.移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.【方法归纳】 1.把一元二次方程化为一般形式,就是把一元二次方程化为ax2+bx+c=0(a≠0)的形式.其中,二次项系数、一次项系数、常数项均包括数字前的符号.2.将一元二次方程化为一般形式时,通常要将首项化负为正,化分为整.【跟踪训练1】方程x2-2(3x-2)+(x+1)=0的一般形式是(A)A.x2-5x+5=0 B.x2+5x+5=0C.x2+5x-5=0 D.x2+5=0【跟踪训练2】(习题)一个关于x的一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,则这个一元二次方程是2x2+3x-5=0.类型2 一元二次方程的解的意义例2(教材补充例题)关于x的一元二次方程(a+1)x2-ax+||a-1=0的一个根为0,则a=1.【思路点拨】将x=0代入一元二次方程,得到关于a的方程,解方程即可.注意二次项系数a+1≠0.【跟踪训练3】已知关于x的方程x2+bx+a=0的一个根是x=-a(a≠0),则a-b 的值为(A)A.-1 B.0C.1 D.204 巩固训练1.若(p-2)x2-3x+p2-p=0是关于x的一元二次方程,则(D)A.p=2 B.p≠0C.p>2 D.p≠22.把方程(x-2)(x+2)+(2x-1)2=0化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别是(D)A.5、-4、6 B.1、-5、0C.5、-2、1 D.5、-4、-33.若x=3是关于x的方程2x2+ax-6=0的一个根,则a的值是-4.4.根据题意,列出方程(不必解答):(1)两个连续整数的积是210,求这两个数;(2)在一块长250 m、宽150 m的草地四周修一条路,路修好后草地的面积减少1 191 m2,求这条路的宽度.解:(1)设其中一个整数为x,则另一个整数为(x+1),依题意,得x(x+1)=210.(2)设这条路的宽为x m,则(250-2x)(150-2x)=250×150-1 191.05 课堂小结。

池河中学九年级数学上册 21.1 一元二次方程教案 新人教版(2021年整理)

池河中学九年级数学上册 21.1 一元二次方程教案 新人教版(2021年整理)

陕西省石泉县池河中学九年级数学上册21.1 一元二次方程教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县池河中学九年级数学上册21.1 一元二次方程教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县池河中学九年级数学上册21.1 一元二次方程教案(新版)新人教版的全部内容。

21。

1 一元二次方程课标依据理解一元二次方程的概念,会将一元二次方程化成一般形式。

一、教材分析一元二次方程是人教版九年级上第二十二章第一节,是中学数学的主要内容,在初中代数中占有重要的地位.实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础.此外,学习一元二次方程对其他学科也有重要意义本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

二、学情分析学生对一元一次方程的概念较熟悉,为本节课的学习三、教学目标知识与技能1。

理解一元二次方程的概念。

2。

掌握一元二次方程的一般形式,能将一个一元二次方程化为一般形式3。

理解一元二次方程的根的概念,会判断一个数是否是一个一元二次方程的根过程与方法1。

.通过根据实际问题列方程,向学生渗透知识来源于生活。

2。

通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度与价值观通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.四、教学重点难点教学重点一元二次方程的概念、一般形式和一元二次方程的根的概念。

九年级数学上册 21 一元二次方程复习教案1 新人教版(2021学年)

九年级数学上册 21 一元二次方程复习教案1 新人教版(2021学年)

陕西省石泉县九年级数学上册21一元二次方程复习教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县九年级数学上册21 一元二次方程复习教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县九年级数学上册21 一元二次方程复习教案1 (新版)新人教版的全部内容。

第21章一元二次方程详见PPT课件四、课堂小结:今天的目标你达到了吗?(回望目标)五、当堂检测:六、课外延展:要求:请同学们分小组制作,小组长做好组内成员分工,下节课分小组展示成果。

详见PPT课件章知识的掌握程度,为接下来的课后巩固训练提供依据。

以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

The above is the whole content ofthis article,Gorky said:"th ebook isthe ladder ofhumanprogress."Ihopeyoucan make progress with thehelp of this ladder. Materiallife isextremely rich, science and technologyare developing rapidly, allofwhichgradually change theway of people's study andleisure.Many people are no longereager to pu rsue a document,but as long as you stillhave such asmallpersistence, you will continue togrowandprogress. When the complex worldleads ustochase out, reading anarticle or doing a problem makes us calm down andreturnto ou rselves. Withlearning, we canactivate ourimagination andthinking, establish ourbelief, keepour pure spiritual world and resist theattack of theexternal world.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.一元二次方程的根的概念,能判断一个数是否是一个一元二 次方程的根.
五.作业
A组:P41、2、3、6、7。
B组:1、3、6。
鼓励学生独立解决问题,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型。
探索一元二次方程的定义及其相关概
判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断
(5)x2-2x=x2+1;(6)ax2+bx+c=0
(学生根据相关概念作答,复习巩固.)
课本例题
分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.
一元二次方程的根的概念
1.类比一元一次方程的根的概念获得一元二次方程的根的概念
2.下面哪些数是方程x2+5x+6=0的根?
-4,-3,-2,-1,0,1,2,3,4.
3.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0(2)x2+1=0(3)x2-3x=0(4)
4.思考:一元一次方程一定有一个根,一元二次方程呢?
5.排球邀请赛问题中,所列方程 的根是8和-7,但是 答案只能有一个,应该是哪个?
归纳:
一元二次方程的根的情况
一元二次方程的解要满足实际问题
三、课堂训练
1.课本练习
2补充:
(1)在下列方程中,一元二次方程的个数是().
①3x2+7=0②ax2+bx+c=0③(x-2)(x+5)=x2-1
④3x2- =0
A.1个 B.2个C.3个D.4个
(2)关于x的方程(a-1)x2+3x=0是一元二次方程,则a范围________.
2.一元二次方 程的一般形式:
【注意】方程ax2+bx+c=0只有当a≠0时才叫一元二次方程,如果a=0,b≠0时就是一元一次方程了。所以在一般形式中,必须包含a≠0这个条件。
【补充练习】判断下列方程,哪些是一 元二次方程?
(1)x3-2x2+5=0;(2)x2=1;
(3)5x2-2x- =x2-2x+ ;(4)2(x+1)2=3(x+1);
二、学情分析
学生对一元一次方程的概念较熟悉,为本节课的学习
三、教学目标
知识与
技能
1.理解一元二次方程的概念.
2.掌握一元二次方程的一般形式,能将一个一元二次方程化为一般形式
3.理解一元二次方程的根的概念,会判断一个数是否是一个一元二次方程的根
过程与
方法
1..通过根据实际问题列方程,向学生渗透知识来源于生活.
2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.
3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,
情感态度与价值观
通过生活学习数学,并用数学解决生活中 的问题来激发学生的学习热情.
四、教学重点难点
教学重点
一元二次方程的概念、一般形式和一元二次方程的根的概念。
二、探究新知
问题1:有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?
【分析】设宽为x米,则列方程得:x(x+10)=900;
整理得x2+10x-900=0
问题2:探究课本问题2
分析:
1.参赛的每两个队之间都要比赛一场是什么意思?
2.全部比赛场数是多少?若设应邀请x个队参赛,如何用含x的代数式表示全部比赛场数?
21.1一元二次方程
课标依据
理解一元二次方程的概念,会将一元二次方程化成一般形式。
一、教材分析
一元二次方程是人教版九年级上第二十二章第一节,是中学数学的主要内容,在初中代数中占有重 要的地位.实数与代数式的运算、一元 一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固.同 时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础.此外,学习一元二次方程对其他学科也有重要意义本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二 次方程,并通过观察归纳出一元二次方程的概念。
(3)已知方程5x2+mx-6=0的一个根是x=3,则m的值为________
(4)关于x的方程( 2m2+m)xm+1+3x=6可能是一元二次方程吗?
(学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正)
四、小结归纳
1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式, 并正确指出其各项系数.
教学难点
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
五、教法学法
引导探索归纳法、讲练结合法。
六、教学过程设计
师生活一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念.
(学生读题找等量关系列方程.观察所列方程整理后的特点,把握方程结构,初步感知一元二次方程概念.)
整理所列方程后观察:
1.方程中未知数的个数和次数各是多少?
2.下列方程中和上题的方程有共同特点的方程有哪些?
4x+3=0; ; ; ;
(学生尝试叙述,然后师生归纳)
概念归纳:
1.一元二次方程定义:
分析:首先它是整式方程,然后未知数的个数是1,最高次数是2.
使学生巩固提高,
了解学生掌握情况
相关文档
最新文档