离散性随机变量的数学期望
概率论与数理统计第一节随机变量的数学期望
2. 连续型随机变量函数的数学期望的求法:
(1)设X的概率密度为f ( x),则Y g( X )的数学期望为:
EY E[g( X )] g( x) f ( x)dx.
(2) 设( X,Y )的概率密度为f ( x,y),则Z g( X,Y )的数学期望为:
EZ E[g( X ,Y )] g( x, y) f ( x, y)dxdy.
0
1 3
.
(3)
E(X 2)
x2 f ( x)dx
1 2x3dx
0
1 2
x4
1 0
1 2
.
2. 连续型随机变量函数的数学期望的求法:
(1)设X的概率密度为f ( x),则Y g( X )的数学期望为:
EY E[g( X )] g( x) f ( x)dx.
(2) 设( X,Y )的概率密度为f ( x,y),则Z g( X,Y )的数学期望为:
0
0
(
xex
)
0
exdx
0
1
e x
0
1
.
(3) 正态分布N(, 2)的数学期望
设X服从正态分布,其概率密度为:
f (x)
1
( x )2
e
2 2
,
x ,
2
则 EX .
证明:E( X )
xf ( x)dx
+
x
( x )2
e 2 2 dx
2
令t
x
1
(t
)e
t2 2
dt
甲: 环数 8
9 10 乙: 环数 8
9 10
P 0.4 0.2 0.4
P 0.2 0.5 0.3
数学期望的原理及应用
数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。
具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。
数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。
数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。
对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。
具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。
数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。
例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。
2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。
通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。
3. 设计优化:数学期望可以帮助优化设计过程。
例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。
4. 分析:数学期望被广泛应用于分析中。
游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。
5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。
通过计算数学期望,可以进行更深入的统计分析和推断。
6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。
通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。
总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。
离散型随机变量的数学期望(均值)
1
0 2
t 2et
1
dt
1
2
t 31etdt
0
1
1
2
2
2 (3) 2 (2 1) 2 (2) 2
x1exdx [( 1) ( ), (n) (n 1)!] 0
第九讲 均值与矩
四. 二维随机变量条件下的单变量数学期
1望.已知离散变量(X ,Y)的P( xi , y j ) :
k2 e E( X ) 2ee 2
k2 (k 2)!
例9-3-3 设X ~ e(),试求E( X 2 )
解
:
由
已
知
:f
x
e
x
,
0,
x 0;,Y g( X ) X 2 其 它.
E(Y )
yf ( y)dy
g( x) f ( x)dx
+ x2exdx
0
令t x, dx 1 dt,则E( X 2 )
第九讲 均值与矩
解
3
3
3
E(Y ) yi p( yi ) g( xi ) p( xi ) xi2 p( xi )
i 2
i 2
i 2
(2)2 0.10 (1)2 0.20 02 0.25 12 0.20 22 0.15 32 0.10
2.30
例9-3-2 已知X ~ P(),试求E( X 2 )
PX ( xi ) P( xi , y j ),由 均 值 定 义 :
j
E( X ) xi PX ( xi )
xi P( xi , y j )
i
ji
类似地,E(Y ) y j PY ( y j )
y j P( xi , y j ).
随机变量的期望值计算
随机变量的期望值计算随机变量的期望值是概率论中一个非常重要的概念,它代表了随机变量在一次试验中平均取值的大小。
在实际问题中,计算随机变量的期望值可以帮助我们更好地理解问题的特性和规律。
本文将介绍随机变量的期望值的计算方法,包括离散型随机变量和连续型随机变量的情况。
一、离散型随机变量的期望值计算对于离散型随机变量X,其取值为有限个或可数个,记为{x1,x2, ..., xn},对应的概率分布为{p1, p2, ..., pn},则随机变量X的期望值E(X)的计算公式为:E(X) = x1*p1 + x2*p2 + ... + xn*pn其中,xi为随机变量X的取值,pi为对应的概率。
通过这个公式,我们可以计算出离散型随机变量的期望值。
例如,假设有一个随机变量X的取值为{1, 2, 3, 4},对应的概率分布为{0.1, 0.2, 0.3, 0.4},那么随机变量X的期望值E(X)的计算如下:E(X) = 1*0.1 + 2*0.2 + 3*0.3 + 4*0.4 = 2.8因此,随机变量X的期望值为2.8。
二、连续型随机变量的期望值计算对于连续型随机变量X,其取值为一个区间[a, b],概率密度函数为f(x),则随机变量X的期望值E(X)的计算公式为:E(X) = ∫(a到b) x*f(x) dx其中,f(x)为随机变量X的概率密度函数。
通过这个公式,我们可以计算出连续型随机变量的期望值。
例如,假设有一个连续型随机变量X的概率密度函数为f(x) = 2x,取值区间为[0, 1],那么随机变量X的期望值E(X)的计算如下:E(X) = ∫(0到1) x*2x dx = 2∫(0到1) x^2 dx = 2*[x^3/3] (0到1) = 2/3因此,随机变量X的期望值为2/3。
三、随机变量的期望值计算的应用随机变量的期望值计算在概率论和统计学中有着广泛的应用。
通过计算随机变量的期望值,我们可以得到随机变量的平均取值大小,从而更好地理解问题的特性和规律。
2离散型随机变量的期望值和方差
离散型随机变量的期望值和方差一、基本知识概要:1、 期望的定义:一般地,若离散型随机变量ξ的分布列为则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。
E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P2、 方差、标准差定义:D ξ=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。
D ξ的算术平方根ξD =δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。
若ξ~B(n ,p),则D ξ=npq ,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
二、例题: 例1、(1)下面说法中正确的是 ( )A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。
B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。
C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。
D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。
解:选C说明:此题考查离散型随机变量ξ的期望、方差的概念。
(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。
解:含红球个数ξ的E ξ=0×101+1×106+2×103=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本题型和内容为主,突出应用性和实践性及综合性。
年高考第一轮复习数学离散型随机变量的期望值和方差
离散型随机变量的期望值和方差●知识梳理1.期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.2.方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差. D 叫标准差,反映了ξ的离散程度.3.性质:(1)E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ(a 、b 为常数). (2)若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ). ●点击双基1.设投掷1颗骰子的点数为ξ,则ξ=,D ξ=ξ=,D ξ=1235 ξ=,D ξ=ξ=,D ξ=1635 解析:ξ可以取1,2,3,4,5,6.P (ξ=1)=P (ξ=2)=P (ξ=3)=P (ξ=4)=P (ξ=5)=P (ξ=6)=61, ∴E ξ=1×61+2×61+3×61+4×61+5×61+6×61=, D ξ=[(1-)2+(2-)2+(3-)2+(4-)2+(5-)2+(6-)2]×61=65.17=1235. 答案:B2.设导弹发射的事故率为,若发射10次,其出事故的次数为ξ,则下列结论正确的是ξ=ξ=(ξ=k )=·-k(ξ=k )=C k10··-k解析:ξ~B (n ,p ),E ξ=10×=. 答案:A3.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71B.61 C.51 D.41 解析:E ξ=np =7,D ξ=np (1-p )=6,所以p =71. 答案:A4.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为.设发病的牛的头数为ξ,则D ξ等于解析:D ξ=10××=. 答案:C5.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知E ξ1=E ξ2,D ξ1>D ξ2,则自动包装机________的质量较好.解析:E ξ1=E ξ2说明甲、乙两机包装的重量的平均水平一样.D ξ1>D ξ2说明甲机包装重量的差别大,不稳定.∴乙机质量好.答案:乙●典例剖析【例1】 设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ.ξ-10 1 P1-2qq 2剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ.解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+,1,1210,1212122q p q q 解得q =1-22. 于是,ξ的分布列为ξ-11P2-123-2 所以E ξ=(-1)×21+0×(2-1)+1×(23-2)=1-2, D ξ=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(23-2)=2-1.评述:解答本题时,应防止机械地套用期望和方差的计算公式,出现以下误解:E ξ=(-1)×21+0×(1-2q )+1×q 2=q 2-21. 拓展提高既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列. 解:依题意ξ只取2个值x 1与x 2,于是有 E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x 解之得⎩⎨⎧==2,121x x 或⎪⎪⎩⎪⎪⎨⎧==.54,5921x x而x 1<x 2,∴x 1=1,x 2=2. ∴ξ的分布列为ξ12P【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?剖析:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求E ξ. 解:设ξ为盈利数,其概率分布为ξa a -30000a -10000P1-p 1-p 2p 1p 2且E ξ=a (1-p 1-p 2)+(a -30000)p 1+(a -10000)p 2=a -30000p 1-10000p 2. 要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 评述:离散型随机变量的期望表征了随机变量取值的平均值.思考讨论本题中D ξ有什么实际意义?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.剖析:每个球投入到每个盒子的可能性是相等的.总的投球方法数为44,空盒子的个数可能为0个,此时投球方法数为A 44=4!,∴P (ξ=0)=44!4=646;空盒子的个数为1时,此时投球方法数为C 14C 24A 33, ∴P (ξ=1)=6436. 同样可分析P (ξ=2),P (ξ=3). 解:ξ的所有可能取值为0,1,2,3.P (ξ=0)=4444A =646,P (ξ=1)=43324144A C C =6436,P (ξ=2)=422242424244A C C C C =6421,P (ξ=3)=4144C =641. ∴ξ的分布列为 ξ123P∴E ξ=6481,D ξ=264. 评述:本题的关键是正确理解ξ的意义,写出ξ的分布列.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.●闯关训练 夯实基础1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是与,则二项分布的参数n 、p 的值为 =4,p = =6,p = =8,p ==24,p =解析:由E ξ==np ,D ξ==np (1-p ),可得 1-p =4.244.1=,p =,n =4.04.2=6. 答案:B2.一射手对靶射击,直到第一次命中为止每次命中的概率为,现有4颗子弹,命中后的剩余子弹数目ξ的期望为解析:ξ=0,1,2,3,此时P (ξ=0)=,P (ξ=1)=×,P (ξ=2)=×,P (ξ=3)=,E ξ=. 答案:C3.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:D ξ=npq ≤n (2q p +)2=4n ,等号在p =q =21时成立,此时,D ξ=25,σξ=5. 答案:215 4.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为________. 解析:设甲在途中遇红灯次数为ξ,则ξ~B (3,52), 所以E ξ=3×52=. 答案:5.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为,求他在这次测试中成绩的期望和标准差.解:设学生甲答对题数为ξ,成绩为η,则ξ~B (50,),η=2ξ,故成绩的期望为E η=E (2ξ)=2E ξ=2×50×=80(分);成绩的标准差为ση=ηD =)2(ξD =ξD 4=22.08.050⨯⨯=42≈(分).6.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况: 4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744. 培养能力7.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为,和.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望E ξ和方差D ξ.解:设A i ={部件i 需要调整}(i =1,2,3),则P (A 1)=,P (A 2)=,P (A 3)=. 由题意,ξ有四个可能值0,1,2,3.由于A 1,A 2,A 3相互独立,可见 P (ξ=0)=P (1A 2A 3A )=××=;P (ξ=1)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3)=××+××+××=; P (ξ=2)=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3)=××+××+××=; P (ξ=3)=P (A 1A 2A 3)=××=. ∴E ξ=1×+2×+3×=,D ξ=E ξ2-(E ξ)2=1×+4×+9×-=-=. 8.证明:事件在一次实验中发生的次数的方差不超过41. 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则P (ξ=0)=1-p ,P (ξ=1)=p ,E ξ=0×(1-p )+1×p =p ,D ξ=(1-p )·(0-p )2+p (1-p )2=p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 探究创新9.将数字1,2,3,4任意排成一列,如果数字k 恰好出现在第k 个位置上,则称之为一个巧合,求巧合数的数学期望.解:设ξ为巧合数,则P (ξ=0)=44A 9=249,P (ξ=1)=4414A 2C ⨯=31,P (ξ=2)=4424A C =41,P (ξ=3)=0,P (ξ=4)=4444A C =241, 所以E ξ=0×249+1×31+2×41+3×0+4×241=1. 所以巧合数的期望为1. ●思悟小结1.离散型随机变量的期望和方差都是随机变量的重要的特征数,期望反映了随机变量的平均值,方差反映了随机变量取值的稳定与波动、集中与离散的程度.2.求离散型随机变量的期望与方差,首先应明确随机变量的分布列,若分布列中的概率值是待定常数,应先求出这些待定常数后,再求其期望与方差.3.离散型随机变量的期望和方差的计算公式与运算性质: E ξ=∑∞=1i x i p i,D ξ=∑∞=1i (x i-E ξ)2p i,E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ.4.二项分布的期望与方差:若ξ~B (n ,p ),则E ξ=np ,D ξ=np (1-p ).5.对求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率.●教师下载中心 教学点睛1.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.3.要培养学生运用期望与方差的意义解决实际问题的能力.拓展题例【例1】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值; (2)求ξξE D 12-的最大值. 剖析:要求D ξ、ξξE D 12-的最大值,需求D ξ、E ξ关于p 的函数式,故需先求ξ的分布列. 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E ξ=0×(1-p )+1×p =p ,D ξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D ξ=p -p 2=-(p -21)2+41, ∵0<p <1, ∴当p =21时,D ξ取得最大值为41. (2)ξξE D 12-=p p p 1)(22--=2-(2p +p1),∵0<p <1,∴2p +p1≥22. 当且仅当2p =p1,即p =22时,ξξE D 12-取得最大值2-22.评述:在知识的交汇点处出题是高考的发展趋势,应引起重视.【例2】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.解:ξ的概率分布为E ξ=1×)1(n n ++2×)1(n n ++3×)1(+n n +…+n ×)1(+n n=)1(2n n +(12+22+32+…+n 2)=312+n .。
随机变量的数学期望与方差
随机变量的数学期望与方差随机变量是概率论和统计学中的重要概念,用来表示随机试验的结果。
在研究随机变量时,我们常常关注它们的数学特征,其中最常用的指标是数学期望和方差。
一、数学期望数学期望是描述随机变量平均取值的一个指标,记作E(X)。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X = x))其中,x 表示随机变量可能的取值,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的平均取值。
例如,假设我们抛一枚公平的硬币,正面为1,反面为0。
随机变量 X 表示硬币正面朝上的次数,那么 X 的所有可能取值及其概率为:X = 0,P(X = 0) = 1/2X = 1,P(X = 1) = 1/2根据数学期望的计算公式,我们可以计算得到该随机变量的数学期望为:E(X) = 0 * 1/2 + 1 * 1/2 = 1/2这意味着,在多次独立重复抛硬币的实验中,硬币正面朝上的平均次数大约为 1/2。
对于连续型随机变量,数学期望的计算公式稍有不同,可以使用积分的方法计算。
二、方差方差是描述随机变量取值分散程度的一个指标,记作Var(X)或σ²。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))² * P(X = x))其中,x 表示随机变量可能的取值,E(X)表示随机变量的数学期望,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的方差。
方差的计算公式可以拆解为方差等于随机变量与数学期望的偏差的平方乘以概率的和。
这意味着方差可以用来衡量随机变量的取值与其期望值之间的差异程度。
例如,我们继续以抛硬币的例子来说明方差的计算过程。
在之前的例子中,我们已经计算出随机变量 X 的数学期望为 1/2。
现在,我们可以使用方差的公式来计算方差:Var(X) = (0 - 1/2)² * 1/2 + (1 - 1/2)² * 1/2 = 1/4这意味着在多次独立重复抛硬币的实验中,硬币正面朝上的次数与其期望值的差异程度可以用方差 1/4 来描述。
随机变量及其分布-离散型随机变量的数学期望和方差
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
3.2.3离散型随机变量的数学期望课件高二下学期数学选择性
.
3.若X服从参数为N,M,n的超几何分布,即X~H(N,M,n),则E(X)=
.
过关自诊
1.一名射手每次射击中靶的概率为0.9,则独立射击3次中靶的次数X的数学
2.7
期望是
.
解析 E(X)=3×0.9=2.7.
2.在10件产品中有3件次品,从中不放回地抽5件产品,抽到次品数的数学期
是
3
2
.
C 23 C 01
P(X=0)= C 2
4
B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
=
1
C 13 C 11
,P(X=2)=
2
C 24
=
1
,故
2
X的
4.随机变量ξ的分布列如图所示,则其数学期望E(ξ)=( B )
ξ
1
2
P
a
b
A.1
B.2
C.3
D.不能确定
解析 由题意可知a+b+a=1,即2a+b=1,而
D.E(aX)=44.1
解析 由题意和分布列的性质得0.5+0.1+b=1,且E(X)=4×0.5+0.1a+9b=6.3,
解得b=0.4,a=7.
∴E(aX)=aE(X)=7×6.3=44.1,E(bX+a)=bE(X)+a=0.4×6.3+7=9.52.
故ABD正确.
1.定义:一般地,若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
高中数学选修2-3-离散型随机变量的期望与方差
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
离散型随机变量的期望和方差公式
离散型随机变量的期望和方差公式
离散型随机变量是指其概率分布中的取值非连续,比较容易准确衡量的一种变量。
它的期望(Expectation)和方差(Variance)很容易求取,分别表示离散型
随机变量的平均值与离差的大小。
其具体的期望和方差的计算公式分别为:
期望:E(X)=∑(X×P(X))
方差:Var(X)=E(X^2)-[E(X)]^2
其中,E(X)是离散型随机变量X的期望,P(X)是该随机变量X出现各种取值的
概率,Var(X)是X的方差。
从数学角度看,衡量离散型随机变量不同取值组合对系统产生的影响大小,首
先要做的就是求取这些函数的期望和方差。
以上公式可以很好地满足这一要求,只要知道每种取值的概率分布,按照公式便可轻松求得它的期望和方差。
计算期望和方差更重要的意义在于,它可以作为评价随机变量取值组合优劣的
标准。
期望和方差能够对随机对象的平均水平和变异程度有一个明确而准确的量化,是经济学研究中不可或缺的一项重要工具。
因此,熟练掌握离散型随机变量的期望和方差计算公式,可以有效的指导系统
优化、风险分析等管理与计算中的实际应用。
数学期望和方差公式
数学期望和方差公式数学期望和方差是概率论和统计学中重要的概念,在许多领域中有广泛的应用。
它们是度量随机变量分布的指标,可以帮助我们了解随机现象的平均值和离散程度。
本文将详细介绍数学期望和方差的定义、性质以及计算公式。
一、数学期望数学期望,也称为均值或平均值,是衡量随机变量平均值的指标。
对于离散型随机变量X,它的数学期望E(X)的定义如下:E(X) = Σx * P(X = x)其中,x代表随机变量X可能取到的值,P(X = x)表示随机变量取到x的概率。
对于连续型随机变量X,它的数学期望E(X)的定义如下:E(X) = ∫x * f(x) dx其中,f(x)表示X的概率密度函数。
数学期望具有以下性质:1. 线性性质:对于任意实数a和b,以及任意两个随机变量X和Y,有E(aX + bY) = aE(X) + bE(Y)。
2. 递推性质:对于离散型随机变量X,可以通过递推公式E(X) = Σx * P(X = x)来计算。
3. 位置不变性:对于随机变量X和常数c,有E(X + c) = E(X) + c。
数学期望的计算公式可以帮助我们求解随机变量的平均值,进而了解随机现象的集中程度。
二、方差方差是衡量随机变量取值的离散程度的指标,它表示随机变量与其均值之间的差异程度。
对于离散型随机变量X,其方差Var(X)的定义如下:Var(X) = Σ(x - E(X))^2 * P(X = x)对于连续型随机变量X,其方差Var(X)的定义如下:Var(X) = ∫(x - E(X))^2 * f(x) dx方差具有以下性质:1. 线性性质:对于任意实数a和b,以及任意随机变量X和Y,有Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y)。
2. 位置不变性:对于随机变量X和常数c,有Var(X + c) = Var(X)。
3. 零偏性:Var(X) >= 0,当且仅当X是一个常数时,等号成立。
数学期望公式
数学期望公式数学期望是概率论中一个重要的概念,它用于描述随机变量的平均数。
数学期望的计算方法有很多种,其中最常见的是离散型随机变量的数学期望公式和连续型随机变量的数学期望公式。
本文将详细介绍这两个公式,并简要介绍一些常见的应用。
首先,我们来介绍离散型随机变量的数学期望公式。
离散型随机变量的取值是有限个或可数个,用概率分布函数来描述。
设随机变量X 的取值为x1、x2、...、xn,对应的概率分布函数是P(X=x1)、P(X=x2)、...、P(X=xn)。
则X的数学期望可以通过以下公式计算:E(X)=x1*P(X=x1)+x2*P(X=x2)+...+xn*P(X=xn)其中,E(X)表示随机变量X的数学期望。
接下来,我们来介绍连续型随机变量的数学期望公式。
连续型随机变量的取值是一个区间上的任意实数,在概率密度函数中描述。
设随机变量X的概率密度函数是f(x),则X的数学期望可以通过以下公式计算:E(X)=∫xf(x)dx其中,∫表示对x的积分。
数学期望公式的意义在于可以帮助我们计算随机变量的平均值,从而更好地理解和解释概率分布的特征。
数学期望是概率论中的一个核心概念,被广泛应用于统计分析、经济学、工程学等领域。
在统计分析中,数学期望可以用来描述一组数据的平均水平。
比如,我们可以计算一个班级学生的平均成绩,从而了解整个班级的学习情况。
在经济学中,数学期望可以用来衡量风险和收益,从而帮助决策者制定合理的投资策略。
在工程学中,数学期望可以用来评估系统的性能和可靠性,从而指导工程设计和优化。
除了离散型和连续型随机变量的数学期望公式,还有一些常见的概率分布的数学期望公式,如正态分布、泊松分布、指数分布等。
这些分布函数都有特定的形式,可以使用数学期望公式来计算其数学期望。
值得注意的是,数学期望并不是随机变量取值的真实平均值,而是其期望值。
这是因为随机变量的取值是根据概率分布进行随机生成的,不同的取值有不同的概率。
随机变量及其分布-离散型随机变量的数学期望和方差
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1. 定义则称E(X)=人》• X2p2亠 '亠人口亠I•.亠X n P n为随机变量X的数学期望或均值。
2. 意义:反映离散型随机变量取值的平均水平。
3•性质:若X是随机变量,丫二aXF,其中a,b是实数,则Y也是随机变量,且E(aX b^aE(X) b二、离散型随机变量的方差1. 定义n则称D(X)八,(人-E(X))2p i为随机变量的方差。
i=12. 意义:反映离散型随机变量偏离均值的程度。
23. 性质:D(aX b)二a D(X)三、二项分布的均值与方差如果X ~ B(n, p),则E(X)二np , D(X)二叩(1 - p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)= 1.6,则a— b =( )A.0.2 B . 0.1C.—0.2 D . 0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数E的数学期望为()A . 0.6B . 1C. 3.5 D . 2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为________________________ .【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰•机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;⑵若要求P(X W n)> 0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n= 19与n= 20之中选其一,应选用哪个?【过关练习】1•今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为匕则E( 3等于()A . 0.765B . 1.75C . 1.765D . 0.222•某射手射击所得环数 3的分布列如下:3•已知随机变量 3的分布列为则 x = _______ , P(1< 33) = __________ , E( 3 = ________.4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有 10个粽子,其中豆沙粽 2个,肉粽 3个,白棕5个,这三种粽子的外观完全相同•从中任意选取 3个.(1) 求三种粽子各取到1个的概率;(2) 设X 表示取到的豆沙粽个数,求 X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中 p € (0,1),则( )A . D(X) = p 3B .C . D(X) = p — p 2D .0.9和0.85,设发现目标的雷达的台数为D(X)= p 2 D(X)= pq 2A . 8B . 12 2 C.9D . 16【例 3】若 D(3= 1 ,则 D( 3- D( 3) = _________ .3【例 4】若随机变量 X 1 〜B(n,0.2), X 2〜B(6, p), X 3〜B(n , p),且 E(X 1)= 2, D(X 2)=刁 贝卩 c(X 3)=( )A . 0.5 B. 1.5 C. 2.5D . 3.5【例5】根据以往的经验,某工程施工期 间的降水量X(单位:mm)对工期的影响如下表:降水量X X<300300W X<700700 W X<900X > 900工期延误 天数Y2610该工程施工期间降水量 的均值与方差.【过关练习】1•某人从家乘车到单位,途中有3个路口 .假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为 ( )A . 0.48B . 1.2C . 0.72D . 0.62.设投掷一个骰子的点数为随机变量 X ,则X 的方差为 .3.盒中有2个白球,3个黑球,从中任取 3个球,以X 表示取到白球的个数,n 表示取到黑球的个数.给出6 9 9下列结论:① E(X)= 5, E (n= 5;② E(X 2) = E (n ;③ E (n )= E(X);④ D(X) = D (n = 25. 其中正确的是 _________ .(填上所有正确结论的序号) 4.海关大楼顶端镶有 A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:【例2】设随机变量 ,k = 0,1,2,…,n ,且 E(8 = 24,则 D( 3的值为(历年气象资料表明, E 的分布列为P(E= k) = C n课后练习【补救练习】1. 若随机变量E〜B(n,0.6),且E(8= 3,贝U P( 1)的值为()A . 2 X 0.44B . 2X 0.45C. 3X 0.44 D . 3X 0.642•已知〜B(n, p), E(8= 8, D(3= 1.6,则n与p的值分别为()A . 100 和0.08B . 20 和0.4C. 10 和0.2 D . 10 和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X 甲)= E(X 乙),方差分别为D(X()甲)= 11, D(X乙)=3.4.由此可以估计A •甲种水稻比乙种水稻分蘖整齐B•乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D•甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为__________ ;方差为________ .【巩固练习】1. 现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A. 6B. 7.8C . 9D . 122. —射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A . 2.44 B. 3.376C . 2.376 D. 2.43. 已知随机变量X + Y= 8,若X〜B (10,0.6),贝U E(Y), D(Y)分别是()A . 6,2.4 B. 2,2.4C . 2,5.6 D. 6,5.64•马老师从课本上抄录一个随机变量E的概率分布列如下表:请小牛同学计算E的数学期望•尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(3 = __________ .5•某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历•假定该毕业生得到甲公司面试的2概率为2得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生1得到面试的公司个数,若P(X= 0) = 12,则随机变量X的数学期望E(X) = _____________ .6•随机变量E的分布列如下:1其中a, b, c成等差数列,若E( 3= 3则D(3 = _______________ •7•某城市出租汽车的起步价为6元,行驶路程不超出3 km时按起步价收费,若行驶路程超出3 km,则按每超出1 km加收3元计费(超出不足 1 km的部分按 1 km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18, 0.20, 0.20,0.18,0.12,设出租车行车路程3是一个随机变量,司机收费为n元),则n= 3 3- 3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设3为成活沙柳的株数,数学期望E(3= 3,标准差D 3为中.(1)求n, p的值并写出3的分布列;⑵若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E(3 —3 =( )A . 0B . 1C. 2 D .不确定2•甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛•假设每局甲获胜的概率为2,乙获胜的概率为3各局比赛结果相互独立.(1)求甲在4局以内洽4局)赢得比赛的概率;⑵记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3. A, B两个投资项目的利润率分别为随机变量X i和X2.根据市场分析,X i和X2的分布列分别为:(1)在A, B两个项目上各投资100万元,Y i(万元)和丫2(万元)分别表示投资项目A和B所获得的利润,求方差D(Y”, D(Y2);⑵将x(0w X W 100)万元投资A项目,(100 —x)万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和•求f(x)的最小值,并指出x为何值时,f(x)取到最小值.。
高中数学概率随机变量的数字特征离散型随机变量的数学期望离散型随机变量的方差
所取球的标号.求 ξ 的分布列、均值和方差.
12/9/2021
第二十二页,共四十四页。
【解】 由题意得,ξ的所有可能取值为 0,1,2,3,4,
P(ξ=0)=1200=12,P(ξ=1)=210, P(ξ=2)=220=110,P(ξ=3)=230, P(ξ=4)=240=15.
3 10
η0 1 2
P
5 10
3 10
2 10
试对这两名工人的技术水平进行比较.
12/9/2021
第二十九页,共四十四页。
【解】 工人甲生产出次品数 ξ 的期望和方差分别为 E(ξ)=0×160+1×110+2×130=0.7, D(ξ)=(0-0.7)2×160+(1-0.7)2×110+(2-0.7)2×130=0.81.工人 乙生产出次品数 η 的期望和方差分别为 E(η)=0×150+1×130+2×120=0.7,
12/9/2021
第十九页,共四十四页。
解:(1)由已知,有 P(A)=C22C23C+48C23C23=365. 所以,事件 A 发生的概率为365. (2)随机变量 X 的所有可能取值为 1,2,3,4. P(X=k)=Ck5CC4843-k(k=1,2,3,4). 所以,随机变量 X 的分布列为
12/9/2021
第四页,共四十四页。
2.离散型随机变量的方差 (1)离散型随机变量的方差、标准差 ①设一个离散型随机变量 X 所有可能取的值是 x1,x2,…,xn, 这些值对应的概率是 p1,p2,…,pn,则 D(X)=(x1-E(X))2p1+ (x2-E(X))2p2+…+(xn-E(X))2pn 叫做这个离散型随机变量 X 的 方差.离散型随机变量的方差反映了离散型随机变量取值相对于 期望的平_均__(p_ín_gj_ūn_)波__动__大__小___.
关于离散型随机变量数学期望的几种求法
关于离散型随机变量数学期望的几种求法离散型随机变量数学期望是衡量随机变量数字大小指标之一,也是概率论与数理统计中最基本也最重要的概念。
它可以体现利用该变量值观察数据的水平。
本文将介绍离散型随机变量的求数学期望的几种方法。
首先,关于离散型随机变量的数学期望,最基本的求法是加法法则。
即将分布函数f(x)的每一个取值乘以相应样本量x取,并把所有乘积相加就可以得到离散型随机变量的数学期望。
用数学符号表示就是:E[X] = Σ xf (x)。
如果离散型随机变量X的取值和概率f (x)都很多,那上述乘加过程就不方便进行。
此时,可以利用乘法法则求数学期望。
乘法运算公式表示如下:E[X] = Σ xP(X=x)。
乘法运算的结果可以让抽样的数据简单明了,只要把每一个X的取值乘以相应的概率P(X=x)即可得到期望值,这不仅仅可以大大简化计算,而且是个较为可靠的评价指标。
而数学期望的另一种求解方法则叫做函数法则,其思想就是把μ作为一个函数,给定P(x),当E[X]为函数f (X),其结果可由函数f(X)与P(X)给出,函数法则可以有效降低传统加法法则求法中变量和概率的乘积,减小计算量,提高效率。
最后还有另一种求离散型随机变量数学期望的方法,它叫做采样平均法,这种法则的思想就是,根据我们了解到的离散型随机变量的取值及概率,以此为基础,根据实际的情况随机抽取一定数量的样本来分析离散型随机变量的期望,然后将抽到取值的平均值作为期望值来表示。
用数学符号表示就是:E[X] =抽样值x1+ x2 +。
+xn/n。
该方法结果较加法法则有一定的偏差,但也较准确。
总结来说,以上三种不同的方法都可以用来求离散型随机变量的数学期望,每一种方法都有其使用优劣之处。
但是,总体来说,最佳的方式是采用函数法则,当然,这也取决于需求的精确度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1离散性随机变量的数学期望学习目标:1:了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出均值或期望. 2:理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξ B (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
重点难点:离散型随机变量的均值或期望的概念;根据离散型随机变量的分布列求出均值或期望知识链接:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi (i=1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列4. 分布列的两个性质: ⑴Pi ≥0,i =1,2,...; ⑵P1+P2+ (1)5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 0 1… k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p),其中n ,p 为参数,并记kn k k n q p C -=b(k ;n ,p).6. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(k A )=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---==== (k =0,1,2,…,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 123…k… Pp pq2q p … 1k q p -…称这样的随机变量ξ服从几何分布记作g(k ,p)=1k q p -,其中k =0,1,2,…, p q -=1.学习过程:一. 课内探究根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ 次得4环;n n P 04.0)5(=⨯=ξ 次得5环;…………n n P 22.0)10(=⨯=ξ 次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯ n 04.05n ⨯⨯22.010+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i=0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1.均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …n x n 1)⨯+,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,它们的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(…=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …)=b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)( 5.若ξ B (n,p ),则E ξ=np 证明如下:∵kn k k n k n k k n q p C p p C k P --=-==)1()(ξ, ∴ =ξE 0×n n q p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×k n k k n q p C -+…+n ×q p C n n n . 又∵11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n kn nC k n k n n k n k n k kC ,∴ =ξE (np 001n n C p q --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q pC n n n ---np q p np n =+=-1)(.故 若ξ~B(n ,p),则=ξE np .二.典型例题例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望变式:.随机抛掷一枚骰子,求所得骰子点数ξ的期望例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望变式:.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次ξ的期望(结果保留三个有效数字)三.小结反思四.当堂检测1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则Eξ=()A.4;B.5;C.4.5;D.4.752.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望;⑶他罚球3次的得分ξ的数学期望.3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.五.课后巩固1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)2.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用ξ表示得分数 ①求ξ的概率分布列 ②求ξ的数学期望3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p1、p2、p3,求试验中三台投影仪产生故障的数学期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是5. A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是321,,A A A ,B 队队员是321,,B B B ,现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队,B 队最后所得分分别为ξ,η(1)求ξ,η的概率分布; (2)求ξE ,ηE六.学习后记当堂检测答案答案:C解:⑴因为7.0)1(==ξP ,3.0)0(==ξP ,所以=ξE 1×)1(=ξP +0×7.0)0(==ξP⑵η的概率分布为η 012P23.0.07.012⨯⨯C 27.0所以 =ξE 0×09.0+1×42.0+2×98.0=1.4. ⑶ξ的概率分布为所以 =ξE 0×027.0+1×189.0+2×98.0=2.1.分析:任取1升水,此升水中含一个大肠杆菌的概率是m 1,事件“ξ=k ”发生,即n 个大肠杆菌中恰有k个在此升水中,由n 次独立重复实验中事件A (在此升水中含一个大肠杆菌)恰好发生k 次的概率计算方法可求出P(ξ=k),进而可求Eξ.解:记事件A :“在所取的1升水中含一个大肠杆菌”,则P(A)=m 1.∴P(ξ=k)=Pn(k)=C knm 1)k(1-m 1)n -k (k=0,1,2,….,n ).∴ ξ~B(n,m 1),故 Eξ =n ×m 1=m n。