九年级上册数学期中试题(带答案和解释)
江苏省镇江市京口区2023-2024学年九年级上册期中数学试题(含解析)
7.如图,四边形ABCD10.如图是由三个边长分别为值是.二.选择题(6小题,每小题13.下列方程中,有实数根的是(A .14.将方程x 2+4x+2=0A .(x+4)2=2210x +=A .B .18.如图,在矩形ABCD 切线交BC 于点M ,切点为(1)判断四边形的形状,并说明理由.(2)若的直径为8,21.如图,在中,圆.3cm ABCD O ∠ABC(1)求证:是的切线;(2)若,,求的半径长.22.已知关于x 的一元二次方程((1)如果x=﹣1是方程的根,试判断(2)如果方程有两个相等的实数根,试判断(1)问题情境:如图,在中,,(2)操作实践:如图,是边上一点,请用无刻度的直尺与圆规在矩形,且(不写作法,保留作图痕迹)(3)迁移应用:已知,在中,,AC O 2AD =4AE =O 1ABC 30A ∠=︒BC 2E BC APB AEB ∠∠=PA PB =ABC A B ∠∠>C ∠26.如图①,一张半径为的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交于A ,B 两点.(1)如图②,若折叠后的圆弧恰好经过点O ,此时线段的长度为___________.(2)已知M 是内一点,.①若折叠后的圆弧经过点M ,则线段长度的最大值是___________,最小值是___________;②若折叠后的圆弧与直线相切于点M ,请用无刻度的直尺与圆规在图③中画出折痕,此时线段的长度为___________.参考答案与解析1.-3【分析】将x =1代入方程得到关于m 的方程,解得即可.【详解】根据题意,将x =1代入方程得到:1+m +2=0,解得:m =-3,故答案为:-3.【点睛】本题考查一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.2.,【分析】本题考查了一元二次方程的解法—因式分解法,由的形式可得或,即可求解;能根据方程的不同形式选择恰当的方法是解题的关键.【详解】解:或,,;5cm O AB cm O 2cm OM =AB OM AB AB cm 10x =21x =()()11220a x b a x b ++=110a x b +=220a x b +=0x =10x -=∴10x =21x =故答案:,.3.相离【分析】先由点的坐标得到点到轴的距离、点到轴的距离,然后判定与轴的位置关系.【详解】解∶∵,以点为圆心,个单位长度为半径作圆,∴点到轴的距离为,∴与轴相离,故答案为∶相离.【点睛】本题考查了直线与圆的位置关系,解题的关键是由点的坐标得到点到轴的距离.4.【分析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.【详解】解:∵圆锥的底面圆半径为,母线长为∴圆锥的侧面积故答案为:.【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.5.【分析】本题主要考查一元二次方程的应用,解题的关键是理解题意;因此此题可根据题意直接列出方程即可.【详解】解:由题意可列方程为;故答案为.6.26【分析】本题考查了垂径定理,勾股定理;连接,可得,,由即可求解;能构建由半径、弦的一半、弦心距组成的直角三角形是解题的关键.【详解】解:如图,连接,,,,,10x =21x =A A x A y A x ()34A ,A 3A x 4 r >OA x A A x 20π454520S ππ=⨯⨯=20π()230141x +=()230141x +=()230141x +=OA 1OE OA =-5AE =222AE OE OA +=OA OA OC ∴=OE OC CE∴=-1OA =-CD AB ⊥ 90AEO ∴∠=︒故答案为:.【点睛】本题主要考查勾股定理,扇形面积计算以及梯形面积计算,熟练掌握扇形面积计算以及勾股定理是解决本题的关键.10.4或62564π-在中,,,,如图2中当⊙与直线Rt PBM △PM 2224(8)x x ∴=+-5x ∴=5PC ∴=BP BC =-P,,,在中,综上所述,BP 的长为3或【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键.2PM PK CD BM ∴===4BM ∴=8PM =Rt PBM △8PB =圆内接正六边形圆内接正六边形,. ABCDEF ∴ABCDEF OG AB ⊥ 11cm 2AG AB ∴== ()621801-⨯【点睛】此题考查了圆周角定理以及矩形的判定.此题难度不大,注意掌握数形结合思想的应用.21.(1)详见解析(2)3【分析】(1)连接,由于是角平分线,则有;而,就有,等量代换有,那么利用内错角相等,两直线平行,可得;又,所以,即是的切线;(2)利用勾股定理即可求出半径.【详解】(1)证明:连接.平分,.又,,,,.又点在上,是的切线.(2)解:设的半径为,,,即,解得,的半径为3.【点睛】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.22.(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.【分析】(1)直接将x=﹣1代入得出关于a ,b 的等式,进而得出a=b ,即可判断△ABC 的形状;OE BE CBE OBE ∠=∠OB OE =OBE OEB ∠=∠OEB CBE ∠=∠BC OE ∥90C ∠=︒90AEO ∠=︒AC O OD OE BE ABC ∠CBE OBE ∴∠=∠OB OE =OEB OBE ∴∠=∠CBE OEB ∴∠=∠BC OE ∴∥90OEA C ∴∠=∠=︒E O AC ∴O O r 90OEA ∠=︒ 222AO AE OE ∴=+2222)4(r r +=+3r =O ∴(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.【详解】(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.23.(1)10元或30元;(2)80元【分析】(1)设该商品的销售单价应定为x元,则月销售数量为[500﹣10(x﹣50)]件,根据月销售利润=每件利润×销售数量结合每月销售利润为8000元,即可得出关于x的一元二次方程,解之即可求出x的值,再计算涨价的数量即可;(2)利用月销售成本=每件成本×月销售数量结合月销售成本不超过10000元,即可确定定价的值.【详解】(1)设该商品的销售单价应定为x元,则月销售数量为[500﹣10(x﹣50)]件,根据题意得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.∴单价上涨:60-50=10(元)或80-50=30(元).(2)∵销售成本不超过10000元,当x1=60时,成本:40×[500﹣10×(60﹣50)]=16000>10000,故舍去;当x2=80时,成本:40×[500﹣10×(80﹣50)]=8000<10000.∴该商品的销售单价应定为80元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.(3)作的外接圆,利用特殊直角三角形的性质及等边三角形的性质可得答案.【详解】(1)解:连接、,∵,∴,∵,∴是等边三角形,∴,∴的外接圆的半径为.故答案为∶.(2)解:如图,作的垂直平分线,交于点,以为圆心,为半径画圆,交垂直平分线于点,则点为所求作的点;(3)解:如图,作的外接圆,∵,,当时,为最长弦,即直径,∵,ABC OB OC 30A ∠=︒60BOC ∠=︒OB OC =OBC 6OB OC BC ===ABC 66AB AE O O OA P P ABC BAC ABC ∠∠>4AB =90BAC ∠=︒BC 60C ∠=︒∵点P 与点O 关于直线l 对称,∴直线l 垂直平分..在中,,PO OA =1522OH PO cm ∴==Rt AHO 222AH HO AO +=∵弧翻折与M 重合,当P ,D ,M 三点共线时,,,,, 在中,,AB PM 2OM cm =5OP cm =12MD PD PM ∴==PM =32DM PD cm ∴==Rt ADO △5=AO cm∵弧翻折与M 重合,当P ,D ,M 三点共线时,,,,在中,,,;得到垂直平分,,在中,,,在中,,, ,AB PM 2OM cm =5OP cm =()1722MD OP OM cm ∴=+=DO Rt ADO △5=AO cm 22912AD AO OD cm ∴=-=291AB AD cm ∴==OO 'AB 5O M OC cm ==' Rt OO M ' 2OM cm =2229OO O M OM cm ∴=+=''Rt ADO △5=AO cm 292DO cm =22712AD AO OD cm ∴=-=。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
湘教版九年级上册数学期中考试试卷含答案详解
湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列函数中,y 是x 的反比例函数的是()A .xy 3=B .5y x=C .21y x =D .1y 2x=+2.下列各点中,在反比例函数8y x=图象上的是A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若2a =3b ,则下列等式正确的是()A .23a b =B .32a b =C .32b a =D .32b a =4.一元二次方程2210x x -+=的根的情况是()A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知△ABC ∽△DEF ,若∠A =30°,∠B =80°,则∠F 的度数为()A .30°B .80°C .70°D .60°6.在同一直角坐标系中,反比例函数y =abx与一次函数y =ax+b 的图象可能是()A .B .C .D .7.如图,在△ABC 中,EF//BC ,13AE AB =,则AFAC =()A .12B .23C .13D .328.如图,正比例函数y =ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >-29.如图,点P 是△ABC 边AB 上一点(AB>AC ),下列条件不一定能使△ACP ∽△ABC 的是()A .AC APAB AC=B .PC ACBC AB=C .∠ACP=∠B D .∠APC=∠ACB10.如图, ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为()A .3B .4C .5D .611.已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是()A .34B .30C .30或34D .30或3612.如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为()A .3B .4C .92D .5二、填空题13.两个相似三角形的相似比为1:3,则它们周长的比为_____.14.若方程2340x x --=的两个根分别为1x 和2x ,则1211x x +=_________.15.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.有一人患流感,经过两轮传染后,共有49人患了流感,如果不及时控制(三轮传染速度相同),第三轮被传染的人数为________.18.如图,△ABC 中,AB =AC ,∠A =90°,BC =6,直线MN ∥BC ,且分别交边AB ,AC 于点M ,N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =________.三、解答题19.解方程:(1)x 2-4x-1=0(配方法)(2)3x(x-1)=2-2x20.已知反比例函数k 1y x-=(k 为常数,k≠1).(1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围.21.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.22.如图,已知AB AD ⊥,BD DC ⊥,且2BD AB BC =⋅,求证:ABD DBC ∠=∠.23.一次函数y=x+b和反比例函数2yx(k≠0)交于点A(a,1)和点B.(1)求一次函数的解析式;(2)求△AOB的面积;24.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.25.已知:如图,△ABC∽△ADE,∠A=45°,∠C=40°.求:∠ADE的度数.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.参考答案1.B【分析】根据反比例函数的定义判断即可.【详解】A、不符合反比例函数的定义,选项不符合题意;B、符合反比例函数的定义,选项符合题意;C、不符合反比例函数的定义,选项不符合题意;D、不符合反比例函数的定义,选项不符合题意.故选:B.【点睛】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式kyx=(0k≠).2.D 【分析】由于反比例函数y=kx中,k=xy,即将各选项横、纵坐标分别相乘,其积为8者即为正确答案.【详解】解:A、∵-1×8=-8≠8,∴该点不在函数图象上,故本选项错误;B、∵-2×4=-8≠8,∴该点不在函数图象上,故本选项错误;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项错误;D、2×4=8,∴该点在函数图象上,故本选项正确.故选D.【点睛】考核知识点:反比例函数定义.3.B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A、由23ab=得:3 2a b=,故本选项错误;B、由32ab=得:2 3a b=,故本选项正确;C、由32ba=得:3 2a b=,故本选项错误;D、由32b a=得:3 2a b=,故本选项错误;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.B【分析】求出其根的判别式,然后根据根的判别式的正负情况即可作出判断.【详解】∵1a =,2b =-,1c =,∴()2242411440b ac =-=--⨯⨯=-=△,∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根的判别式24b ac =-△:当 >0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数根;当 <0,方程没有实数根.5.C 【分析】根据△ABC ∽△DEF ,从而推出对应角相等求解.【详解】∵△ABC ∽△DEF ,∴3080A D B E C F ∠=∠=∠=∠=∠=∠ ,,,∵180D E F ∠+∠+∠= ,∴70.F ∠=故选:C.【点睛】考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键.6.D 【分析】先根据一次函数图象经过的象限得出a 、b 的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a <0,b >0,∴ab <0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.C【分析】直接根据平行线分线段成比例定理即可求解.【详解】∵EF//BC,13 AEAB=,∴13 AF AEAC AB==,故选:C.【点睛】本题考查了平行线分线段成比例定理,正确的识别图形是解题的关键.8.B【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2,∵k ax x<,∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方,∴2x <-或02x <<,故选:B .【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.9.B 【分析】A .利用对应边成比例,且夹角相等来判断即可;B .对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等;C .利用两角对应相等,两三角形全等,进行判定即可;D .利用两角对应相等,两三角形全等,进行判定即可.【详解】解:A .∵AC APAB AC =,∠A=∠A .∴ ACP ∽ ABC .B .PC ACBC AB=对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等.C .∵∠ACP=∠B,∠A=∠A .∴ ACP ∽ ABC .D .∵∠APC=∠ACB,∠A=∠A .∴ ACP ∽ ABC .故选:B .【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.注意:两边对应成比例必须夹角相等.10.D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3 x,故BO=x+3 x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键.11.A【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b时;结合韦达定理即可求解;【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.12.C【解析】设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,,推出A 的坐标和B 的坐标,求出PA 、PB 的值,根据三角形的面积公式求出即可:∵点P 在1y=x 上,∴设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,.∵PA ⊥x 轴,∴A 的横坐标是p .∵A 在2y=x -上,∴A 的坐标是2p p ⎛⎫- ⎪⎝⎭,.∵PB ⊥y 轴,∴B 的纵坐标是1p .∵B 在2y=x-上,∴12=p x -,解得:x=﹣2p .∴B 的坐标是(﹣2p ,1p).∴()123PA = PB p 2p =3p p p p⎛⎫=--=-- ⎪⎝⎭,.∵PA ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴PA ⊥PB .∴△PAB 的面积是:1139PA PB 3p=22p 2⨯⨯=⨯⨯.故选C .13.1:3.【分析】由两个相似三角形的相似比为1:3,根据相似三角形周长的比等于相似比,即可求得答案.【详解】∵两个相似三角形的相似比为1:3,∴它们的周长比为:1:3.故答案为1:3.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.14.34-【分析】利用分式加减法,计算原式,应用一元二次方程根与系数关系,求出12x x +和12x x ,代入求值即可.【详解】解:12121211x x x x x x ++=⋅由已知12x x +=3,12x x =-4代入,得1212121134x x x x x x =+⋅+=-故答案为:3 4-【点睛】本题考查一元二次方程根的分布与系数的关系和分数加减法,解答关键是根据相关法则进行计算即可.15.y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=k x,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2 x,故答案为:y=2 x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4yx=,设C点的坐标为(x,4x),根据AC=BC得出方程,求出x即可.【详解】由图象可知:点A的坐标为(-1,-4),代入kyx=得:4k xy==,所以这个反比例函数的解析式是4y x =,设C 点的坐标为(x ,4x),∵A (-1,-4),B (-4,-1),AC=BC ,即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭,解得:2x =±,当2x =时,422y ==,当2x =-时,422y ==--,所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.294.【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有49人患了流感,可求出x ,进而求出第三轮过后,又被感染的人数.【详解】解:设每轮传染中平均每人传染了x 人,1+x +x (x +1)=49x =6或x =−8(舍去).∴每轮传染中平均一个人传染了6个人,第三轮被传染的人数为:49×6=294(人).故答案为:294.【点睛】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.18.3【分析】依据直线MN ∥BC ,可得△AMN ∽△ABC ,再根据直线MN 将△ABC 分为面积相等的两部分,即可得到S △AMN :S △ABC =1:2,进而得出12 ,22AM AB ==解得AM=3,过A 作AD ⊥BC 于D ,则132AD BC ==,故将线段AM 绕着点A 逆时针旋转45°,可以使点M 落在边BC 上的点D 处,此时132BD BC ==.【详解】∵△ABC 中,,906AB AC A BC ,,=∠==∴cos4532AB BC =⨯= ,∵直线MN ∥BC ,∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分,∴S △AMN :S △ABC =1:2,∴12 ,22AM AB ==即2 ,232=解得AM =3,如图,过A 作AD ⊥BC 于D ,则132AD BC ==,∴将线段AM 绕着点A 逆时针旋转45 ,可以使点M 落在边BC 上的点D 处,此时,132BD BC ==.故答案为3.【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.19.(1)x 15x 25;(2)x 1=1,x 2=-23(1)根据配方法的运算步骤依次计算可得;(2)先移项,再提取公因式(x-1),得到两个一元一次方程,解出即可.【详解】(1)∵x 2-4x-1=0∴x 2-4x=1∴x 2-4x+4=1+4,即(x-2)2=5则x-2=∴x 1x 2(2)3x(x-1)=2-2x3x(x-1)+2(x-1)=0(x-1)(3x+2)=0∴x 1=1,x 2=-23【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=,在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.21.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<22.见解析.【分析】由2BD AB BC =⋅可得AB BD =BD BC,可判定Rt △ABD ∽Rt △DBC ,然后由相似三角形对应角相等可得∠ABD=∠DBC.【详解】证明:∵2BD AB BC=⋅∴AB BD =BD BC∴Rt △ABD ∽Rt △DBC∴∠ABD=∠DBC【点睛】本题考查相似三角形的判定,熟练掌握直角三角形的斜边直角边对应成比例即可判定相似是解决本题的关键.23.(1)1y x =-;(2)32.【分析】(1)分别把A 的坐标代入反比例函数解析式求出a 的值,把A 的坐标代入一次函数解析式得出b 的值,即可求解;(2)先求得点B 的坐标,再求出一次函数与y 轴的交点D 的坐标,根据三角形的面积公式求出△AOD 和△BOD 的面积即可.【详解】(1)∵点A (a ,1)是反比例函数2y x=图象上的点,∴2y 1a ==,∴2a =,∴A (2,1),又∵点A 是一次函数y x b =+的图象上的点,∴12b =+,解得,b 1=-,故一次函数解析式为:1y x =-;(2)联立方程组:y x 12y x =-⎧⎪⎨=⎪⎩,解得:1212x 2x 1y 1y 2==-⎧⎧⎨⎨==-⎩⎩,,则()B 12--,,因为直线1y x =-与y 轴交点D 01)-(,,则1OD =,∴1131211222AOB AOD DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=.【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式,函数的图象等知识点,熟练掌握待定系数法求函数解析式是解题的关键.24.(1)(180﹣3x )件;(2)①该商品的售价为30元/件;②李晨每天通过销售该工艺品捐款的数额为45元.【分析】(1)售价设为x 元,那么降低的价格就是40x -元,那么增加的销量是()340x -件,再加上原来的60件就得到表达式;(2)①根据利润=销量⨯(售价-成本)列方程求出售价;②根据①中算出的售价求出销量,从而算出捐款的数额.【详解】解:(1)∵该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x )=(180﹣3x )件;(2)①依题意,得:(x ﹣20)(180﹣3x )=900,整理,得:x 2﹣80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去),答:该商品的售价为30元/件;②0.5×(180﹣3×30)=45(元),答:李晨每天通过销售该工艺品捐款的数额为45元.【点睛】本题考查一元二次方程的应用题,解题的关键是根据题意找到等量关系,根据利润=销量⨯(售价-成本)列方程求解.25.∠ADE=95°【分析】由△ABC ∽△ADE ,∠C=40°,根据相似三角形的对应角相等,即可求得∠AED 的度数,又由三角形的内角和等于180°,即可求得∠ADE 的度数.【详解】∵△ABC ∽△ADE ,∠C=40°,∴∠AED=∠C=40°.在△ADE中,∵∠AED+∠ADE+∠A=180°,∠A=45°即40°+∠ADE+45°=180°,∴∠ADE=95°.【点睛】此题考查了相似三角形的性质与三角形内角定理.题目比较简单,注意相似三角形的对应角相等.26.(1)①BD=,BP=(2)4 5.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,可得x2=(4﹣x)2+22,推出x的值,从而得出DN的长.由△BDN∽△BAM,可得DN BDAM AB=,由此求出AM.由△ADM∽△APE,可得AM ADAE AP=,由此求出AE的长,可得EC的长,由此即可解决问题.【详解】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB=∵AD=CD=2,∴BD=由翻折可知:BP=BA=②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD =AD =BC =2,∴四边形BCPD 是平行四边形.(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4﹣x .在Rt △BDC 中,∵BD 2=CD 2+BC 2,∴x 2=(4﹣x )2+22,∴x =52.∵DB =DA ,DN ⊥AB ,∴BN =AN 在Rt △BDN 中,DN =2.由△BDN ∽△BAM ,可得DN BDAM AB =,∴522AM =,∴AM =2,∴AP =2AM =4.由△ADM∽△APE,可得AM AD AE AP=,∴5 224 AE=,∴AE=16 5,∴EC=AC﹣AE=4﹣165=45.易证四边形PECH是矩形,∴PH=EC=4 5.。
人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。
设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。
人教版九年级上册数学期中考试试卷含答案解析
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。
人教版九年级上册数学期中考试试卷带答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
人教版九年级上册数学期中考试试题(含解析)
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列四个图形中,即是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A .1B .2C .3D .43.正五边形绕着它的中心旋转和与本身重合,最小的旋转角度数是()A .36°B .40°C .72°D .108°4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x+1)=1035B .x (x ﹣1)=1035×2C .x (x ﹣1)=1035D .2x (x+1)=10355.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( )A .30°B .40°C .45°D .50°6.如图,是一个中心对称图形的一部分,点是对称中心,点和点是一对对应点,,那么将这个图形补成一个完整的图形是( )A .矩形B .菱形C .正方形D .梯形7.已知点,,在函数的图象上,则、、的大小关系为( )A .B .C .D.ABC O A B 90C ∠=()13,A y -()21,B y -()32,C y 22y x x b =--+1y 2y 3y 132y y y <<312y y y <<321y y y <<213y y y <<8.如图,抛物线与轴交于点、,与轴交于点,,则下列各式成立的是( ).A .B .C .D .9.二次函数,当且时,的最小值为,最大值为,则的值为()A.B .C .D .10.如图,⊙O 经过菱形ABCO 的顶点A 、B 、C ,若OP ⊥AB 交⊙O 于点P ,则∠PAB 的大小为( )A .15°B .20°C .25°D .30°二、填空题。
最新人教版九年级数学上册期中考试试题(含答案)
最新人教版九年级数学上册期中考试试题(含答案)一、选择题(每小题4分,共80分)1. 题目1a. A选项b. B选项c. C选项d. D选项答案:B2. 题目2a. A选项b. B选项c. C选项d. D选项答案:C...二、填空题(每小题4分,共40分)1. 题目1:_______是一个素数。
答案:132. 题目2:32的约数有_______个。
答案:6...三、计算题(每小题10分,共50分)1. 题目1:已知两个角的度数为45°和120°,这两个角的补角之和为多少度?答案:60°2. 题目2:某商店原价100元的商品打8折出售,实际售价为多少元?答案:80元...四、应用题(每小题12分,共60分)1. 题目1:甲、乙两个人同时从相距800千米的地点出发,甲每小时行40千米,乙每小时行50千米。
请问他们多长时间后会相遇?答案:8小时2. 题目2:一个矩形的长是宽的3倍,如果宽为6米,求该矩形的面积。
答案:108平方米...五、解答题(每小题15分,共75分)1. 题目1:如图所示,已知AB是⊙O的直径,CD是弧AB的弦,∠ACD=90°,AB=8,AD=6,请计算弧CD的长度。
![题目1图片](image1.jpg)答案:42. 题目2:根据下列计算过程,填写下表中的数据:计算过程:2*(-5) - 3*(-4) + 6*(-10) = ?...以上是最新人教版九年级数学上册期中考试试题及答案,希望对你有帮助!。
河南省南阳市邓州市2023-2024学年九年级上册期中数学试题(含解析)
A .8.我市为了增强学生的体质,组织了一次排球联赛,赛制为单循环形式(每两队之间都赛一场)比赛,则参加比赛的球队共有(A .4个ADE ABC △△∽6.4m8mA.B.10.数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试作了一种辅助线,如图1,2,其中辅助线作法能够用来证明三角形中位线定理的是(15.小华用一张直角三角形纸片玩折纸游戏,如图三、解答题(本大题共16.(1)计算:(2)先化简,再求值:17.(1)下面是小红同学解方程的过程,请认真阅读并完成相应的任务.(1)求证:;(2)求的面积.19.如图,要使用长为的篱笆,一面利用墙(墙的最大可用长度为36⎛⨯- ⎝1⎛ ⎝BEG CDE △∽△AFG 24mCE某班数学兴趣小组对某商场进行调研后了解到如下信息:信息一商场从厂家购进款式、大小、颜色、价格都不相同的两款书包,已知每个款书包的进价比每个探究发现:如图1,在(1)操作发现:将则______,设(2)进一步探究发现:顶角为B A BDC ∠=︒根据镜面反射可知:,∵,,∴,∴,∴,即,ACB ECD ∠=∠AB BD ⊥DE BD ⊥90ABC EDC ∠=∠=︒ACB ECD ∽△△AB CB = 1.62=22.(1)50;(2)76元或84元解得:(舍去);拓展应用:菱形较长对角线如图,在上截取,连接,得是顶角为的等腰三角形,即黄金三角形,【点睛】本题主要考查了等腰三角形的性质和判定,折叠的性质,黄金分割,相似三角形和性质和判定,菱形的性质,解一元二次方程等,理解黄金三角形并应用是解题的关键.1215,15x x =-+=--512BC AC -∴=底腰ABCD 252AC =+AC AE AD =DE ADE V 36︒。
河南省商丘市夏邑县2023-2024学年九年级上册期中数学试题(含解析)
....A .B 5.已知二次函数A .对称轴为C .函数的最大值是A .40°B 7.如图,的圆心O 上任意一点距离的最小值为(()33,33(y =-2x =-3-OA .8.在同一平面直角坐标系中,函数....A .B .二、填空题(每小题3分,共21-2-15.如图,在中,的长为 .16.如图,二次函数ABC AB AC =cm y =(1)画出线段绕点O 顺时针旋转(2)画出与关于直线对称的图形,点(3)填空:的度数为_________19.如图,四边形内接于(1)试判断的形状,并给出证明;(2)若,,求20.如图,老李想用长为留一个宽的门(建在(1)当羊圈的长和宽分别为多少米时,能围成一个面积为(2)羊圈的面积能达到OA AOB OB OCB ∠ABCD ABC 2AB =1AD =70m 2m EF 6502m(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素)(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处?23.图1是边长分别为和的两个等边三角形纸片和a ()b a b >ABC CDE参考答案与解析1.B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A 、是轴对称图案,不是是中心对称图案,故此选项不符合题意;B 、既是轴对称图案又是中心对称图案,故此选项符合题意;C 、是轴对称图案,不是是中心对称图案,故此选项不符合题意;D 、是轴对称图案,不是是中心对称图案,故此选项不符合题意;故选:B .【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握这两个概念是解题的关键.2.C【分析】根据配方法,先将常数项移到右边,然后两边同时加上,即可求解.【详解】解:移项得,两边同时加上,即∴,故选:C .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.3.B【分析】把代入方程,得到,整体代入求值即可.【详解】解:由题意,得:,∴,∴;故选B .【点睛】本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程成立的未知数的值,是解题的关键.4.B【分析】过点作,由题意可得:,,再利用含30度直角三角形的性质,求解即可.【详解】解:过点作,如下图:42410x x --=241x x -=42445x x +=-2(2)5x -=1x =21a b +=-2120a b ++=21a b +=-()()4842414a b a b +=+=⨯-=-C CE OB ⊥60OBC ∠=︒6OB OC ==C CE OB ⊥则由题意可得:∴,∴,,分别切于点,,90CEB ∠=︒OBC ∠=30BCE ∠=︒132BE BC ==PA PB O OA PA ∴⊥OB PB ⊥则的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:由勾股定理可得:EA OE AB =OA当时,则,即,∵四边形是正方形,∴,∴点,∴,解得:,0x =y c =OB c =OABC 22AC OB AD OD c ====AC ,22c c A ⎛⎫ ⎪⎝⎭224c c a c =⨯+2ac =-【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴,,∴故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.12.1【分析】根据抛物线与x 轴只有一个交点可知方程=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线与x 轴只有一个交点,∴方程=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.13.【分析】根据变化前数量变化后数量,即可列出方程.【详解】第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为.第二个月新建了个充电桩,第三个月新建了个充电桩,第三个月新建了500个充电桩,于是有,故答案为.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为,则有,其中表示变化前数量,表示变化后数量,表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.14. 6【分析】直接根据二次函数的图象进行解答即可.2a =3b =-()235a b -=--=22y x x k =++22x x k ++22y x x k =++22x x k ++2y ax bx c =++2301(1)500x +=2(1)x ⨯+= x ∴301(1)x +∴2301(1)x + 2301(1)500x +=2301(1)500x +=x (1)n a x b +=a b n 3-∵为直径,∴,∵∴,AB AD AB ⊥6cm,AB AC BAC ==∠=BD CD =BAD CAD ∠=∠∴当x =-1时,y =a -b +c <0,∴y =a +2a +c <0,∴3a +c <0,故③错误;故答案为:①②④.【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.17.(1)(2)【分析】本题考查因式分解法解一元二次方程,(1)移项,因式分解即可得到答案;(2)移项,因式分解即可得到答案;解题的关键是熟练掌握各种解法,选择适当的方法求解.【详解】(1)解:移项得,,因式分解得,,∴或,解得:∴原方程的解是:;(2)解:,∴;18.(1)详见解析(2)详见解析(3)【分析】(1)根据题目叙述画出图形即可;(2)根据题目叙述画出图形即可;(3)由(1)作图可得是等腰直角三角形,且,由对称的性质可得.122,1x x ==121,5x x ==(2)2x x x -=-(2)(2)0x x x ---=(2)(1)0x x --=10x -=20x -=122,1x x ==122,1x x ==2650x x -+=()()150x x --=121,5x x ==45︒AOB =45A ︒∠45OCB ∠=︒(2)画出与关于直线对称的图形,点(3)由(1)作图可得是等腰直角三角形,且再根据对称的性质可得故答案为:.【点睛】此题考查了旋转作图及作轴对称图形,解答本题的关键是仔细审题,得出旋转三要素,进而得出旋转后的图形.AOB OB AOB OCB ∠=∠45︒或360°﹣30°=330°,∴当α=150°或330°.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及旋转等知识,解决问题的关键是找全等的对应边和对应角,题目属于中考常考题型.。
2023-2024学年北师大新版九年级上册数学期中复习试卷(含答案)
2023-2024学年北师大新版九年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一元二次方程x2+px+2p=0的一个根为2,则p的值为( )A.1B.2C.﹣1D.﹣22.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为( )米.A.6B.8C.9D.103.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率4.如图是某几何体的三视图,该几何体是( )A.正方体B.圆锥C.四棱柱D.圆柱5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )A.4B.C.4D.286.如图,矩形ABCD中,BD=2,AB在x轴上.且点A的横坐标为﹣1,若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为( )A.(2+,0)B.(2+1,0)C.(2﹣1,0)D.(2,0)7.下列一元二次方程中,无实数根的是( )A.x2﹣2x﹣3=0B.x2+3x+2=0C.x2﹣2x+1=0D.x2+2x+3=0 8.已知一元二次方程x2﹣8x+c=0有一个根为2,则另一个根为( )A.10B.6C.8D.﹣29.如图,EB为驾驶员的盲区,驾驶员的眼睛点P处与地面BE的距离为1.6米,车头FACD 近似看成一个矩形,且满足3FD=2FA,若盲区EB的长度是6米,则车宽FA的长度为( )米.A.2B.C.D.10.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则下列结论中:①BM=DM;②∠BEC=∠MDC=15°;③∠AMD的度数是75°;④△AMB≌△AMD≌△EMD.正确的有( )个.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.在△ABC中,点D,E分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么AC= .12.今年五月上旬我市空气质量指数如下表,省外某单位组织了一次退休职工到我市旅游3天,则他们在我市旅游3天时,空气质量都是优良(空气质量指数不大于100表示空气质量优良)的概率是 .日期12345678910空气质量指数304236588095701155610113.如图,小芸用灯泡O(看作一个点)照射一个矩形相框ABCD,在墙上形成矩形影子A'B'C'D'.现测得OA=20cm,OA'=50cm,相框ABCD的周长为36cm,则影子A'B'C'D'的周长为 cm.14.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是 m.15.如图,已知四边形ABCD为矩形,且AB=3,AD=4,将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',B'C与AD交于点O,且DO=B'O,则AO的长为 .三.解答题(共7小题,满分75分)16.用适当的方法解一元二次方程:(1)2x2﹣3x=2;(2)x2+6x﹣111=0.17.为推进社会主义新农村建设,东胜区某社区决定组建社区文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全社区范围内随机抽取部分居民进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“纸牌”所在扇形的圆心角的度数为 ;并补全条形统计图;(2)若在“纸牌、象棋、跳棋、军棋”这四个项目中任选两项组队参加元旦节庆典活动,请用列表法或画树状图的方法,求恰好选中“象棋、军棋”这两个项目的概率.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣3,2),B(1,5),C(3,4),画出△ABC,并画出以原点O为位似中心,将△ABC三条边放大为原来的2倍后的△A1B1C1.19.操作作图如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D在边AC上,请用圆规和直尺作菱形DEFG,使点E、F在边AB上,点G在边BC上(不写作法,但要保留作图痕迹).阅读理解我们把图①中的菱形DEFG称为△ABC的有一边平行于AB的内接菱形,简称AB类内接菱形.类似的可得到AB类内接矩形.若公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,求CD的长.深入探究(1)当CD长度满足什么条件时,可作2个AB类内接菱形DEFG?说明理由;(2)直接写出AB类内接菱形DEFG面积的最大值.20.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)直接写出:OA= ,OB= ;(2)若点E为x轴上的点,且△AOE∽△DAO.求此时点E的坐标.21.小琴的父母承包了一块荒山地种植一批香梨树,今年收获一批香梨,小琴的父母打算以m元/斤的零售价销售5000斤香梨;剩余的5000(m+1)斤香梨以比零售价低1元的批发价批给外地客商,总共的销售额为55000元.(1)小琴的父母今年共收获这种香梨多少斤?(2)批发商买回这批香梨后,零售平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的利润,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元使得每天销售利润为600元?22.综合与实践问题情境:在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).操作发现:(1)如图①,当AC=BC时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为 ;②探究发现AD和BE有什么数量关系,请写出你的探究过程;探究证明:(2)如图2,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE.①在点D的运动过程中,请判断AD与BE有什么数量关系?并证明;②若AC=2,在点D的运动过程中,当△CBE的形状为等腰三角形时,直接写出此时△CBE的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵一元二次方程x2+px+2p=0的一个根为2,∴22+2p+2p=0.∴4p=﹣4.∴p=﹣1.故选:C.2.解:过点A作AF∥DE交CD于点F,则DF=AE=4m,△CAF∽△C′CD′.∴D′C′:C′C=CF:CA,即2:3=CF:6.∴CF=4.∴DC=4+4=8(m).即:这棵树高8m.故选:B.3.解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率,故此选项符合题意;故选:D.4.解:该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.故选:D.5.解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.6.解:∵四边形ABCD是矩形,∴BD=AC=2,由题意可知:AM=AC=2,∵OA=|﹣1|=1,∴OM=AM﹣OA=2﹣1,∴点M的坐标为(2﹣1,0),故选:C.7.解:在x2﹣2x﹣3=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;在x2+3x+2=0中,Δ=b2﹣4ac=32﹣4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;在x2﹣2x+1=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;在x2+2x+3=0中,Δ=b2﹣4ac=22﹣4×1×3=﹣8<0,即该方程无实数根,故选项D 符合题意;故选:D.8.解:设方程的另一个根为t,根据题意得2+t=8,解得t=6,即方程的另一个根是6.故选:B.9.解:如图,过点P作PM⊥BE,垂足为M,交AF于点N,则PM=1.6,设FA=x米,由3FD=2FA得,FD=x=MN,∵四边形ACDF是矩形,∴AF∥CD,∴△PAF∽△PBE,∴=,即=,∴PN=x,∵PN+MN=PM,∴x+x=1.6,解得,x=,故选:D.10.解:∵四边形ABCD为正方形,AC为对角线,∴BC=DC,∠BCA=∠DCA=45°,BC=DC,∠BCD=90°,在△BCM和△DCM中,,∴△BCM≌△DCM(SAS),∴BM=DM,故结论①正确;∵△CDE为等边三角形,∴∠DCE=60°,DC=CE,∴BC=CE,∴∠BEC=∠EBC,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴°,∵△BCM≌△DCM,∴∠MBC=∠MDC,即:∠BEC=∠MDC=15°;故结论②正确;∵∠MDC=15°,∠DCA=45°,∴∠AMD=∠MDC+∠DCA=60°,故结论③不正确;在△AMB和△AMD中,,∴△AMB≌△AMD(SAS),∵四边形ABCD为正方形,△CDE为等边三角形,∴AD=ED,∠ADC=90°,∠EDC=60°,∵∠MDC=15°,∴∠ADM=∠ADC﹣∠MDC=75°,∠EDM=∠MDC+∠EDC=75°,∴∠ADM=∠EDM=75°,在△AMD和△EMD中,,∴△AMD≌△EMD(SAS),∴△AMB≌△AMD≌△EMD,故结论④正确,综上所述:正确的结论是①②④,共有3个.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:∵DE∥BC,∴AD:AB=AE:AC,∵AD=2,DB=4,AE=3,∴2:6=3:AC,∴AC=9,故答案为:9.12.解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),其中旅游3天,空气质量都是优良的有5种结果,所以空气质量都是优良的概率是,故答案为:.13.解:∵OA=20cm,OA'=50cm,∴OA:OA′=20:50=2:5,∵AB∥A′B′,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=OA:OA′=2:5,∴矩形ABCD的周长:矩形A′B′C′D′的周长为2:5,又矩形ABCD的周长为36cm,则矩形A′B′C′D′的周长为90cm.故答案为:90.14.解:如图,作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).答:电线杆的高度是6m.故答案为:6.15.解:∵将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',∴AB=CD=3,B′C=BC=AD=4,∠D=90°.设OD=x,则B'O=x,OC=4﹣x.在Rt△COD中,∵∠D=90°,∴OC2=OD2+CD2,即(4﹣x)2=x2+32,解得x=,∴AO=AD﹣OD=4﹣=.故答案为:.三.解答题(共7小题,满分75分)16.解:(1)2x2﹣3x=2,2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,∴2x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2+6x﹣111=0,x2+6x+9=111+9,即(x+3)2=120,∴x+3=,∴x1=﹣3+2,x2=﹣3﹣2.17.解:(1)这次参与调查的居民人数为:24÷20%=120(人);∴喜欢“纸牌”的人数为:120﹣24﹣15﹣30﹣9=42(人),∴扇形统计图中“纸牌”所在扇形的圆心角的度数为360°×=126°,故答案为:126°,补全条形图如图所示:(2)设:纸牌为A,象棋为B,跳棋为C,军棋为D,根据题意画树状图:由树状图可知:一共有12种等可能的情况,其中恰好选中“象棋、军棋”这两个项目的有2种,∴恰好选中“象棋、军棋”这两个项目的的概率是同时选中B、D的概率为=.18.解:如图,△ABC和△A1B1C1为所作.19.解:操作作图:如图所示中的四边形DEFG为符合条件的其中一个菱形.阅读理解:符合条件的图形如图所示:∵公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,∴DG=GF,DC=FM,∠C=∠FMC=90°=∠FMB.∴Rt△DCG≌Rt△FMG(HL).∴CG=MG.∵DG∥AB,∴∠DGC=∠B.∴△DCG≌△DMB(AAS).∴CG=BM.∴.∵△DCG∽△ACB,∴.即,∴DC=2.深入探究:(1)如图所示,当点E与点A重合时,此时存在符合条件的两个菱形.在Rt△ABC中,.∵四边形DEFG为菱形,∵DG∥AB,∴,即.解得DC=.如图,当DE⊥AB时,过点C作CH⊥AB,交DG于点Q,交AB于点H.在Rt△ABC中,.∵DG∥AB,∴△ABC∽△DGC.∴.即,∴.∴.即,∴.∴当<CD≤时,可作2个AB类内接菱形DEFG.(2)如图,过点C作CH⊥AB于点H,交DG于点Q.∵四边形DEFG为菱形,设DG=x,∵DG∥AB,∴△ABC∽△DGC.∴.即,∴CQ=.则QH=.∴S菱形DEFG=DG×CH=.配方得.当点F与点B重合时,可求得DG=,由(1)可知:.在此范围内S菱形DEFG随x的增大而增大,∴当x=时,S菱形DEFG最大,最大值为.∴AB类内接菱形DEFG面积的最大值为.20.解:(1)方程x2﹣7x+12=0,分解因式得:(x﹣3)(x﹣4)=0,可得:x﹣3=0,x﹣4=0,解得:x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;故答案为4,3;(2)设点E的坐标为(m,0),则OE=|m|,∵△AOE∽△DAO,∴=,∴=,∴|m|=,∴m=±,∴点E的坐标为:(,0)或(﹣,0).21.解:(1)依题意,得5000m+(m﹣1)×5000(m+1)=55000,整理,得m2+m﹣12=0,解得:m1=3,m2=﹣4(不合题意,舍去),∴5000+5000(m+1)=25000.答:小琴的父母今年共收获这种香梨25000斤.(2)设降价x元,则每斤的利润为(2﹣x)元,每天的销售量为200+=(200+400x)斤,依题意,得(2﹣x)(200+400x)=600,整理,得2x2﹣3x+1=0,解得:x1=0.5,x2=1,又∵为了加快销售,∴x=1.答:应降价1元使得每天销售利润为600元.22.解:(1)①∵线段CD绕点C逆时针旋转90°得到线段CE,∴∠DCE=90°,DC=CE,∵∠ACB=90°,∴∠ACD=∠BCE,∵AC=BC,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=45°,故答案为:45°;②AD=BE,理由如下:由①知△ACD≌△BCE,∴AD=BE;(2)①,理由如下:∵BC=2AC,CE=2CD,∴,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,∴;②过C作CF⊥AB于F,CG⊥BE于G,如图:∵AC=2,BC=2AC,∴BC=4,AB==2,∴sin∠ABC====,cos∠ABC===,∴=,=,∴CF=,BF=,∵四边形CGBF是矩形,∴CG=BF=,BG=CF=,(Ⅰ)当CB=CE时,如图:∴BE=2BG=,∴△CBE的面积为××=;(Ⅱ)当BC=BE时,如图:此时BE=BC=4,∵CG=BF=,∴△CBE的面积为×BE•CG=×4×=(Ⅲ)当CE=BE时,如图:设BE=CE=t,则EG=t﹣,在Rt△CEG中,t2=()2+(t﹣)2,解得t=2,∴BE=2,∴△CBE的面积为CG•BE=××2=8,综上所述,△CBE的面积为或或8.。
山东省枣庄市市中区2023-2024学年九年级上学期期中数学试题(含答案)
2023—2024学年第一学期期中联合教研质量监测九年级数学试题温馨提示:请将试题的正确答案填涂或书写在答题纸上,在本试卷上答题无效.一、精心选一选,你一定能选对!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在答题纸上.)1.下列关于的方程中,是一元二次方程的是( )A .B .C .D.2.下列各组线段的长度成比例的是( )A .1,2,3,4B .2,3,4,6C .3,4,5,6D .5,10,15,203.如图,菱形中,连接AC ,BD ,若,则的度数为()(第3题图)A .B .C .D .4.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .85.已知,则的值为( )A .B .C .D .6.枣庄市要组织一次中学生篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛.如果设邀请个球队参加比赛,那么根据题意可以列方程为( )A .B .C .D .7.如图,在中,D ,E ,F 分别是边AB ,AC ,BC 上的点,,,且,那么的值为( )x 220x x +=10x +=2ax bx c ++=211x =ABCD 120∠=︒2∠20︒60︒70︒80︒323x y y +=yx311-3113737-x 215x =(1)15x x +=(1)15x x -=(1)152x x -=ABC △DE BC ∥EF AB ∥:2:3AD DB =:CF BF第7题图A .4:3B .3:2C .3:4D .2:48.关于的一元二次方程有一根为0,则的值为( )A .2B .C .2或D.9.如图,下列条件不能判定的是()第9题图A .B .C .D .10.如图,已知正方形的边长为3,点是对角线BD 上的一点,于点于点,连接PC ,当时,则PC 等于( )第10题图AB .2CD .二、认真填一填,相信你能填对!(每小题3分,共18分.)11.写出以0和1为根且二次项系数为1的一元二次方程是______.12.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取B ,C ,D 三点,使得,,点在BC 上,并且点A ,E ,D 在同一条直线上,若测得,则河的宽度为______.第12题图x 22(2)40m x x m +++-=m 2-2-12ADB ABC △△∽ABD ACB ∠=∠ADB ABC ∠=∠2AB AD AC=⋅AD ABAB BC=ABCD P PF AD ⊥,F PE AB ⊥E :1:2PE PF =52A AB BC ⊥CD BC ⊥E 20m,10m,20m BE CE CD ===13.若是关于的一元二次方程的解,则______.14.琪琪准备完成题目:解一元二次方程.若“”表示一个字母,且一元二次方程有实数根,则“”的最大值为,此时方程的解为______.15.如图,菱形ABCD 的对角线AC 、BD 相交于点,过点作于点,连接,若菱形ABCD 的面积为,则CD 的长为______.第15题图16.如图,在矩形ABCD 中,E 是AD 边的中点,于点F ,则下列结论:①;②;③.其中正确结论的个数是______.第16题图三、解答题:(本题共7小题,满分72分.解答应写出必要的文字说明或演算步骤.)17.(本小题满分10分)用适当的方法解下列方程:(1);(2).18.(本小题满分10分)如图,点A 的坐标为,点B 的坐标为,点C 的坐标.(1)求出的面积;(2)请以点O 为位似中心作一个与位似的,使得的面积为18.1x =x 230x mx n ++=62m n +=260x x -+=□□260x x -+=□□O D DH AB ⊥H ,2OH OH =BE AC ⊥AEF CAB △△∽2BF EF =CD AD =23(3)12x -=2210x x --=()3,1-()1,1-()0,1-ABC △ABC △111A B C △111A B C △19.(本小题满分10分)如图,在中,,,,将沿着图示中的虚线剪开,使剪下的小三角形与相似,下面有四种不同的剪法.第19题① ② ③ ④(1)其中正确的剪法有中______(填序号);(2)请选择其中一种剪法,并写出所选中两个三角形相似的证明过程.20.(本小题满分10分)人工智能是数字经济高质量发展的引擎,也是新一轮科技革命和产业变革的重要驱动.人工智能市场分为决策类人工智能,人工智能机器人,语音类人工智能,视觉类人工智能四大类型,将四个类型的图标依次制成A ,B ,C ,D 四张卡片(卡片背面完全相同),将四张卡片背面朝上洗匀放置在桌面上.A .决策类人工智能B .人工智能机器人C .语音类人工智能D .视觉类人工智能.(1)随机抽取一张,抽到决策类人工智能的卡片的概率为______;(2)从中随机抽取一张,记录卡片的内容后放回洗匀,再随机抽取一张,请用列表或树状图的方法求抽取到的两张卡片内容一致的概率.21.(本小题满分10分)公安交警部门提醒市民,骑车由行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?22.(本小题满分10分)阅读下面的材料,回答问题:方程一个一元四次方程,ABC △72A ∠=︒4AB =6AC =ABC △ABC △()()22215140x x ---+=我们可以将看成一个整体,设,则原方程可化为①,解①得,.当时,当时,.原方程的解为(1)在由原方程得到方程(1)的过程中,是利用换元法达到_____的目的(填“降次”或“消元”),体现了数学的转化思想;(2)仿照上面的方法,解方程.23.(本小题满分12分)如图,已知:在四边形ABFC 中,的垂直平分线EF 交BC 于点,交AB 于点,且.第23题(1)求证:四边形BECF 是菱形;(2)当______°时,四边形BECF 是正方形;.(3)在(2)的条件下,若,求四边形ABFC 的面积.2023—2024学年第一学期期中联合教研质量监测九年级数学试题参考答案及评分标准一、选择题二、填空题(每题3分)11.(答案不唯一)12.40m 13.14.9;15.416.317.(1);题目12345678910答案ABCCDDBADC21x -21x y -=2540y y -+=11y =24y =1y =211,x x -==4y =214,x x -==∴1234x x x x ====()()2224120x xx x ----=90,ACB BC ∠=︒D E CF AE ∥A ∠=4AC =20x x -=2-123x x ==125,1x x ==(2)1211x x =+=18.(1)解:(1)的面积;(2)如图,或为所作.19.解:(1)①③;(2)(答案丕唯一)(1),,;(3),.20.解:(1)共有4张卡片,从中随机抽取一张,抽到决策类人工智能的卡片的概率为;故答案为:;(2)解:根据题意画图如下:共有16种等可能的结果数,其中抽取到的两张卡片内容一致的结果数为4,所以抽取到的两张卡片内容一致的概率为.21.解:(1)设该品牌头盔销售量的月增长率为,依题意,得:,解得:(不合题意,舍去).答:该品牌头盔销售量的月增长率为.(2)设该品牌头盔的实际售价为元,依题意,得:,整理,得:,ABC △12222=⨯⨯=111A B C △A B C '''△72CDE A ∠=∠=︒ C C ∠=∠CDE CAB ∴△△∽A A ∠=∠ 4136364242AD AC AE AB -=====-CDE CAB ∴∽△△ ∴141441164=x 2150(1)216x +=120.220%, 2.2x x ===-20%y ()()30600104010000y y ⎡⎤---=⎣⎦213040000y y -+=解得:(不合题意,舍去),,答:该品牌头盔的实际售价应定为50元.22.解:(1)降次(2)设,原方程化为,解得,①当时,,解得,②当时,,,,此方程无解,所以原方程的解为.23.(1)证明:垂直平分BC ,,,,,,,,,,.,∴四边形BECF 是菱形;(2)解:当时,四边形BECF 是正方形;(3)解:由(2)知,四边形BECF 是正方形,,四边形ABFC.180y =250y =2y x x =-24120y y --=126,2y y ==-16y =26x x -=123,2x x ==-22y =-22x x -=-220x x ∴-+=141270∆=-⨯⨯=-< ∴123,2x x ==-EF BF FC ∴=BE EC =FCB FBC ∴∠=∠CF AE ∥FCB CBE ∴∠=∠FBC CBE ∴∠=∠90FDB EDB ∠=∠=︒ BD BD =(ASA)FDB EDB ∴≌△△BF BE ∴=BE EC FC BF ∴===45A ∠=︒AE BE CE ===∴12=。
人教版九年级数学(上册)期中测试卷(附参考答案)
九年级数学(上册) 期中测试卷( 测试时间:120分钟 满分12分)一、选择题(本题共7个小题,每个小题只有一个正确选项,每小题3分,满分21分)1.a 的取值范围是 ( )A.0a ≥B.0a ≤C.3a ≥D. 3a ≤2.如图1所示,将正方形图案绕中心O 旋转180°后,得到的图案是 ( )图13.下列计算正确的是 ( )A .224=-B =3=- 4.一元二次方程0452=-+x x 根的情况是 ( ) A. 两个不相等的实数根 B. 两个相等的实数根C. 没有实数根D. 不能确定5.方程0562=-+x x 的左边配成完全平方后所得方程为 ( )A.14)3(2=+xB.14)3(2=-xC.4)3(2=+xD.4)3(2=-x 6.如图2所示,平面直角坐标系内Rt △AB O 的顶点A 坐标为(3,1),将△AB O 绕O 点逆时针旋转90°后,顶点A 的坐标为 ( ) A. (-1,3) B. (1,-3)C. (3,1)D. (-3, 1)ODCBA图27.三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是 ( ) A .24 B .48 C .24或. 二、填空题(本大题共8小题,每小题3分,满分24分)8.最简二次根式12+b 与17--a b 是同类二次根式,则a= b= .9.=2,且ab<0,则a-b= .10.关于x 的方程032=--a ax x 的一个根是2-,则a 的值为_______.11.已知a 、b 是方程的两个实数根,则的值为_____. 12.已知a ,b ,则ab=_______.13.已知关于x 的一元二次方程22)210m x x -++=(有实数根,则m 的取值范围是 .14.点P (—1,3)关于原点对称的点的坐标是 。
15.将两块直角三角尺的直角顶点重合为如图3所示的位置, 若∠AOD=110°,则∠BOC= .图32250x x +-=22a ab a ++2690b b -+=三、解答题:(本大题共8个小题,满分75分)16、(本小题8分)化简。
四川省成都市武侯区成都西川中学2023-2024学年九年级上册期中数学试题(含解析)
A . . . .3.下列函数是反比例函数的是( ).21y x =-3xy =1y x =-2y x =A.①③B.①②③C.①②④D.③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)()(三、解答题(本大题共5个小题,共48分,答案写在答题卡上)14.(1)(2)15.如图所示,九年级某班开展测量旗杆高度的活动,已知标杆的高度,人的眼睛与地面的高度,当A ,C ,E 三点共线时,标杆与标杆的水平距离,人与标杆CD 的水平距离,求旗杆AB 的高度.16.如图,甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,且分别标有数字1,2,3;乙转盘被分成四个大小相同的扇形,且分别标有数字1,2,3,4.固定指针的位置,将两个转盘各转一次至自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部).(1)甲转盘停止后,指针指向3的概率是___________;(2)将甲、乙两个转盘自动停止后指针指向的数字分别记为m ,n ,利用列表或画树状图的方法,求一元二次方程有实根的概率.17.如图,在中,两条对角线交于点O ,且平分.(1)求证:四边形是菱形:(2)作于H ,交于E .若,,求菱形的边长及面积.18.图形面积与线段比例之间有着紧密的联系,通常将面积之比与线段之比相互转化,以达到简便求解的效果.如图,在平面直角坐标系中,直线分别交x 轴,y 轴于点A ,B ,直线与过点的直线在第一象限内交于点D ,且,连接.()2239x x -=-22310x x --=3m CD =1.6m EF =15m BD =2m DF =20x mx n ++=ABCD □AC BAD ∠ABCD DH AB ⊥AC 3OE =4OD =ABCD 4y x =+AB ()5,0C 2AB BD =OD(1)求点D 的坐标及直线的函数表达式;(2)若点P 是线段上一点,连接交于点E .①若的面积与的面积相等,求点P 的坐标;②连接交于点F ,连接,若,求22.如图,在平面直角坐标系坐标之比为.若反比例函数CD CD AP OD ADE V PDE △PB OD OP AE PF PE BF= 1:2(1)求证:;(2)判断是否为定值,若是,则求出:若不是,请说明理由;(3)连接,,若,求的长.26.【阅读思考】在平面直角坐标系中,点的坐标分别【初步探究】(1)如图1,分别在轴、轴的正半轴上.①若,,,求证:点是的智慧点;AOE ABP ∽△△DQ DQ CE DP 2135DP CE =BP xOy A B ,(0a ,A B ,x y 4a =2b =()22P ,P A B ,,故选C.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.,由作图可知,∴,∴,∴BD BC =1DF CF ==3AB AC ==BF =22AB AF -=,,,,四边形和四边形CD FB ⊥ AB FB ⊥CD AB ∴∥EG CD ∴⊥∴EFDG∵直线,∴,,∴,∵轴,轴∴,4y x =+()4,0A -()0,4B 4AO OB ==45OAB OBA ∠=∠=︒DK x ⊥OB x ⊥OB DK①∵,∴直线的解析式,∵的面积与的面积相等,∴,∵直线的解析式为,∵直线,∴,,∴,,∴,()2,6D OD 3y x =ADE V PDE △AE PE =CD 210y x =-+4y x =+()4,0A -()0,4B 4AO OB ==45OAB OBA ∠=∠=︒2211442222OG AB ==+=∵点B ,C 在第一象限,且B ,∴可设点B 的坐标为,则点∵反比例函数的图象经过点(),m n k y x=∴可设点的坐标为则解得:,P (m ()()2200m m -+--m b =-设点的坐标为同理可得:,,1P (m m -,m b =()1P b b ∴-,PQ y ⊥Q (Q,则四边形是矩形,,设,PDA CEP ∠=∠=∠∴ODEC OC ED ∴=CE OD =AD m =PD n =90APD PAD ∠+∠=解得:,.【点睛】本题主要考查了坐标与图形、相似三角形的判定与性质、勾股定理、等腰直角三角形的性质、矩形的判定与性质、三角形全等的判定与性质等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线,采用分类讨论的思想,是解此题的关键.11m n =⎧⎨=⎩()21P ∴-,。
2022-2023学年四川省绵阳市江油市九年级(上)期中数学试题及答案解析
2022-2023学年四川省绵阳市江油市九年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 方程x2+1−2x=0的二次项系数、一次项系数和常数项分别是( )A. 1,1,2B. 1,−2,1C. 1,−2,−1D. 0,2,12. 用配方法解一元二次方程2x2−4x+1=0时,原方程可变形为( )A. 2(x−1)2=3B. (x+1)2=12C. (x−1)2=12D. (x−1)2=23. 下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线4. 图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )A. y=−2x2B. y=2x2C. y=−12x2 D. y=12x25. 若关于x的一元二次方程ax2+2x−1=0有两个不相等的实数根,则a的取值范围是( )A. a≠0B. a>−1且a≠0C. a≥−1且a≠0D. a>−16. 共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,若第二个月的增长率是x,第三个月的增长率是第二个月的两倍,那么y与x的函数关系是( )A. y=a(1+x)(1+2x)B. y=a(1+x)2C. y=2a(1+x)2D. y=2x2+a7. 要得到抛物线y=2(x−4)2−1,可以将抛物线y=2x2( )A. 向左平移4个单位长度,再向上平移1个单位长度B. 向左平移4个单位长度,再向下平移1个单位长度C. 向右平移4个单位长度,再向上平移1个单位长度D. 向右平移4个单位长度,再向下平移1个单位长度8. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点B是对应点.若点B′恰好落在AB边上,则点A 到直线A′C的距离等于( )A. 3√3B. 2√3C. 3D. 29. 若关于x的一元二次方程x2−2mx+m2−4m−1=0有两个实数根x1,x2,且(x1+2)(x2+2)−2x1x2=17,则m=( )A. 2或6B. 2或8C. 2D. 610. 如图,在△ABC中,∠ACB=90°,BC=a,AC=b.以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E.下列哪条线段的长度是方程x2+2ax−b2=0的一个根( )A. 线段BC的长B. 线段AD的长C. 线段EC的长D. 线段AC的长11. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC 的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A. 4B. 3C. 2D. 112. 在平面直角坐标系内,已知点A(−1,0),点B(1,1)都在直线y=12x+12上,若抛物线y=ax2−x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是 ( )A. a≤−2B. a<98C. 1≤a<98或a≤−2 D. −2≤a<98二、填空题(本大题共6小题,共18.0分)13. 如果函数y=(k−3)x k2−3k+2+7x+2是关于x的二次函数,那么k的值是______.14. 如果点P(m+1,8−2m)关于原点的对称点Q在第四象限,则m的取值范围是______.15. 如图,在△ABC中,∠BAC=100°,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一条直线上,则∠E的度数为______.16. 如图,在正方形ABCD中,AB=2,点M为正方形ABCD的边CD上的动点(与点C,D不重合),连接BM,作MF⊥BM,与正方形ABCD的外角∠ADE的平分线交于点F.设CM=x,△DFM的面积为y,则y与x之间的函数关系式____.17. 如图,设P为等边三角形ABC内的一点,且PB=2√2,PA=1,PC=3,三角形APB的面积是______.18. 已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0下列三个结论:①若抛物线经过点(−3,0),则抛物线的顶点是(−1,−3a);②若b=c,则方程cx2+bx+a=0一定有根x=−2;③点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2;其中正确的是______(填写序号).三、解答题(本大题共6小题,共46.0分。
河南省新乡市辉县市2023-2024学年九年级上册期中数学试题(含解析)
A .2B .310.如图,△AOB 是直角三角形,∠函数y =的图象上,则k 的值为( )A .415.如图,在等边三角形平移,点的对应点为,当平移后的为 .k xABC B G三、解答题(本大题共8个小题,满分16.解方程:(1).(2)(1)将先向右平移3个单位,再向上平移(2)以点为位似中心,位似比为标.(3)求出面积.19.已知关于x 的一元二次方程(1)求证:方程有两个不相等的实数根;(5)153x x x -=-224(21)9(3)x x +=-ABC (0,2)222A B C △x(1)求证:;(2)若,,求的长.21.如图,小亮想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,请你帮助小亮求树高.22.山西平遥古城吸引着全国各地的游客前来游玩.某纪念品商店购进一批纪念品进行销售,购进20个甲种纪念品和10个乙种纪念品共花费1100元,购进10个甲种纪念品和20个乙种纪念品共花费1300元.(1)求单个甲种纪念品和乙种纪念品的进价.(2)店员小丽追踪乙商品销售情况,发现当乙种纪念品售价为60元时,每天能卖出100件,每个乙种纪念品每涨价1元,就少售出2件.某天商店将乙种纪念品涨价m 元,且相关部门规定乙种纪念品售价不得超过75元,若当天销售乙种纪念品获得利润1600元,求销售乙种纪念品的数量.23.在探索平面图形的性质时,往往需通过剪拼的方式帮助我们寻找解题思路.知识回顾例如,在证明三角形中位线定理时,可以采用如图(1)的剪拼方式,将三角形转化为平行四边形使问题得以解决.实践操作如图(2),在梯形中,,是腰的中点,请你沿着将上图的梯形剪开,重新拼成一个完整ABD ACB ∽△△4=AD 3CD =AE AB 1m 1.2m 1.4m CD =4.8m BD =AB ABCD AD BC F DC AF的三角形,并画出来.(不用剪开,作图即可)猜想证明如图(3),在梯形中,,、分别是两腰、的中点,我们把叫做梯形的中位线.请类比三角形的中位线的性质,猜想和、有怎样的位置和数量关系?请结合“实践操作”完成猜想的证明.知识运用(1)已知梯形的中位线长为,高为,则梯形面积是______;(2)直线为外的任意一条直线,过、、、分别作直线的垂线段、、、,线段、、、之间的数量关系为______.ABCD AD BC E F AB DC EF ABCD EF AD BC 5cm 6cm 2cm l ABCD Y A B C D l AF BE CG DH AF BE CG DH【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理,分别是,的中点,∴是的中位线,∴,,∴,∴,D E BC AC DE ABC DE AB ∥12DE AB =BAG EDG ∠=∠ABG DEG ∠=∠DEG ABG ∽∵重叠部分的面积是面积的由平移的性质,可知∴.∵,DEG △BF GE ∥DBF DGE ∽△△34DBF S S =△△则.∴.∵,∴,即12DGM DEG S S =△△12CDH DGM S S =△△60ACB ∠=︒30GDE ∠=︒90CHD ∠=︒CH DE ⊥(2)如图,即为所求作的三角形.(3)面积19.(1)见解析(2)【分析】(1)先计算判别式得到222A B C △222A B C △144242=⨯-⨯⨯21y m =-∆【点睛】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.∵四边形为平行四边形,∴点O 为和的中点,∵,,∴四边形为梯形,ABCD AC BD ⊥AF l CG l ⊥AFGC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学期中试题(带答案和解释)泰州市靖江实验学校2012-2013学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表相应位置上) 1.(3分)使有意义的x的取值范围是() A. B. C.x≥ D.x≥考点:二次根式有意义的条件.. 专题:计算题.分析:根据二次根式的被开方数为非负数即可解答.解答:解:由二次根式有意义得:3x�4≥0,解得:x≥ .故选D.点评:本题考查二次根式有意义的条件,难度不大,注意掌握二次根式的被开方数为非负数. 2.(3分)(2006•无锡)设一元二次方程x2�2x�4=0的两个实数为x1和x2,则下列结论正确的是() A. x1+x2=2 B. x1+x2=�4 C. x1x2=�2 D. x1x2=4考点:根与系数的关系.. 分析:根据一元二次方程根与系数的关系求则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2= ,x1x2= .解答:解:这里a=1,b=�2,c=�4,根据根与系数的关系可知:x1+x2=�=2,x1•x2= =�4,故选A 点评:本题考查了一元二次方程根与系数的关系. 3.(3分)(2010•随州)在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为() A. B. C. D.考点:锐角三角函数的定义;互余两角三角函数的关系.. 分析:本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.解答:解:由题意,设BC=4x,则AB=5x,AC= =3x,∴tanB= = = .故选B.点评:本题利用了勾股定理和锐角三角函数的定义.通过设参数的方法求三角函数值. 4.(3分)下列命题中正确的是() A.一组对边平行的四边形是平行四边形 B.两条对角线相等的平行四边形是矩形 C.两边相等的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形考点:命题与定理.. 专题:应用题.分析:两组对边平行的四边形是平行四边形;两条对角线相等的四边形是矩形;邻边相等的平行四边形是菱形;对角线互相垂直,相等且互相平分的四边形是正方形.解答:解:A、两组对边平行的四边形是平行四边形,故本选项错误. B、两条对角线相等的四边形是矩形,故本选项正确. C、邻边相等的平行四边形是菱形,故本选项错误. D、对角线互相垂直,相等且互相平分的四边形是正方形,故本选项错误.故选B.点评:本题考查了平行四边形,矩形,菱形,正方形的判定定理,要熟记这些判定定理. 5.(3分)点P到⊙O的圆心O的距离为d,⊙O的半径为r,d与r的值是一元二次方程x2�3x+2=0的两个根,则点P 与⊙O的位置关系为() A.点P在⊙O内 B.点P在⊙O 外 C.点P在⊙O上 D.点P不在⊙O上考点:点与圆的位置关系;解一元二次方程-因式分解法.. 分析:求解方程求得方程的两个根即可得到d与r的值,然后做出判断即可.解答:解:解方程x2�3x+2=0得:x=1或x=2,∵d≠r,∴点P不在⊙O上,故选D.点评:本题考查了点与圆的位置关系及用因式分解法解一元二次方程的知识,解题的关键是正确的解方程. 6.(3分)当b<0时,化简等于() A. 2b�1 B.�1 C. 1�2b D. 1考点:二次根式的性质与化简;绝对值.. 专题:计算题.分析:由于b<0,直接利用二次根式的基本性质进行化简,再由绝对值的一般性质知|b|=�b, =1�b,再代入所求代数式,即可得所求结果.解答:解:∵b<0,∴得|b|=�b,b�1<0,∴ =1�b,∴ =�b+1�b=1�2b.故选C.点评:本题主要考查二次根式的简单性质,对简单的二次根式进行化简,是中考中的常考内容,要引起注意. 7.(3分)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,tan∠OBM= ,则AB的长是() A. 2cm B. 3cm C. 4cm D. 2 cm考点:垂径定理;解直角三角形.. 分析:在直角三角形OBM中,利用锐角三角函数定义表示出tan∠OBM,由tan∠OBM的值设出OM=3xcm与BM=4xcm,再由直径CD的长求出半径OB的长,利用勾股定理列出方程,求出方程的解得到x的值,确定出BM的长,再由CD 垂直于AB,利用垂径定理得到M为AB的中点,即可求出AB的长.解答:解:在Rt△OBM中,tan∠OBM= = ,设OM=3xcm,BM=4xcm,由直径CD=5cm,得到OB=2.5cm,根据勾股定理得:OB2=OM2+BM2,即6.25=9x2+16x2,解得:x=0.5,则BM=4x=2cm,∵AB⊥DC,∴M 为AB的中点,即AM=BM= AB,则AB=2BM=4cm.故选C.点评:此题考查了垂径定理,勾股定理,锐角三角函数定义,利用了方程的思想,熟练掌握垂径定理是解本题的关键. 8.(3分)如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A. 7个 B. 8个 C. 9个 D. 10个考点:等腰三角形的判定;正方形的性质.. 专题:计算题;压轴题.分析:根据正方形的性质,利用等腰三角形的判定方法,从右到左依次考虑,即可得到所有构成等腰三角形的情况,得到直线AB 上会发出警报的点P的个数.解答:解:当BC=BP时,△BCP为等腰三角形;当P与B重合时,△APC为等腰三角形;当P运动到AB 边的中点时,PD=PC,此时△PCD为等腰三角形;当P与A重合时,△PBD为等腰三角形;当PA=AD时,△PAD为等腰三角形;当AP=AC 时,△APC是等腰三角形;当BD=BP时,△BDP 是等腰三角形,综上,直线AB上会发出警报的点P有7个.故选A 点评:此题考查了等腰三角形的判定,以及正方形的性质,熟练掌握等腰三角形的判定是解本题的关键.二、填空题(每题3分,共30分) 9.(3分) = 2 .考点:二次根式的乘除法.. 专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式= = =2 .故答案为:2 .点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键. 10.(3分)(2012•历下区二模)己知α是锐角,且,则α= 45°.考点:特殊角的三角函数值.. 专题:计算题.分析:直接根据sin60°= 进行解答即可.解答:解:∵sin60°= ,α是锐角,且,∴α+15°=60°,解得α=45°.故答案为:45°.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键. 11.(3分)小明沿着坡度为1:2的山坡向上走了100m,则他升高了20 m .考点:解直角三角形的应用-坡度坡角问题.. 分析:首先根据题意画出图形,由小明沿着坡度为1:2的山坡向上走了100m,利用坡度的意义,根据三角函数的定义,即可求得答案.解答:解:如图,过点A作AE⊥BC于点E,∵坡度为1:2,∴i=tan∠B= = ,∴sin∠B= ,∵AB=100m,∴AE= =20 (m).即他升高了20 m.故答案为:20 m.点评:此题考查了坡度坡角问题.此题难度不大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想的应用. 12.(3分)(2008•濮阳)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= 20 cm.考点:等腰梯形的性质;三角形中位线定理.. 分析:利用等腰梯形和中位线定理和已知条件,即可推出结论.解答:解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF= AC.又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.点评:本题考查的是等腰梯形的性质即三角形中位线的性质,属一般题目. 13.(3分)最简二次根式与是同类二次根式,则xy= 9 .考点:同类二次根式.. 专题:计算题.分析:由同类二次根式的定义得到根指数相等,被开方数相等,列出方程,求出x与y的值,即可确定出xy的值.解答:解:根据题意得:x2�3=2x,y�1=2,且x2�3=2x≥0, x2�2x�3=0,即(x�3)(x+1)=0,解得:x=3或x=�1(舍去),y=3,则xy=9.故答案为:9 点评:此题考查了同类二次根式,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式. 14.(3分)关于x的方程mx2�(2m�1)x+m�2=0有两个实数根,则m的取值范围是m 且m≠0.考点:根的判别式;一元二次方程的定义.. 分析:根据方程有两个实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集,即可得到m的范围.解答:解:∵关于x的方程mx2�(2m�1)x+m�2=0有两个实数根,∴△=b2�4ac=(2m�1)2�4m(m�2)≥0,解得:m≥�,则m的取值范围是m≥�且m≠0.故答案为:m 且m≠0.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2�4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的定义. 15.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为14.5 cm.考点:垂径定理的应用;勾股定理.. 专题:应用题.分析:根据题意,把实际问题抽象成几何问题,即圆中与弦有关的问题,根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径.解答:解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r�2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r�2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm.点评:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个. 16.(3分)如图,⊙O的直径AB 与弦CD相交于点E,若AE=7,BE=1,cos∠AED= ,则CD= 2 .考点:垂径定理;勾股定理;解直角三角形.. 专题:计算题.分析:过O作OF⊥CD,交CD于点F,利用垂径定理得到DF=CF,连接OD,有AE+BE求出AB的长,进而确定出OB的长,由OB�EB求出OE 的长,在直角三角形OEF中,利用锐角三角函数定义求出EF的长,利用勾股定理求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.解答:解:过O作OF⊥CD,交CD于点F,可得DF=CF,连接OD,∵AE=7,BE=1,∴OB=OD= AB= ×8=4,OE=OB�EB=3,在Rt△OEF中,OE=3,cos∠AED= ,∴EF=OEcos∠AED=2,根据勾股定理得:OF= = ,在Rt△ODF中,根据勾股定理得:DF= = ,则CD=2DF=2 .故答案为:2 .点评:此题考查了垂径定理,勾股定理,以及解直角三角形,熟练掌握垂径定理是解本题的关键. 17.(3分)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为 2.3 .考点:梯形;等腰三角形的性质;勾股定理;三角形中位线定理.. 专题:计算题.分析:延长AF至BC延长线上交于G点,由已知可证明∠AGB=∠EAG,则EF为△ABG的中位线,得出EF=3,还可证明FG=4,由勾股定理得EG=5,则求得CE的长为2.3.解答:解:延长AF至BC延长线上交于G点,∵AE=BE,∴∠ABE=∠BAE,∵AF⊥AB,∴∠ABE+∠AGB=90°,∠BAE+∠EAG=90°,∴∠AGB=∠EAG,∴∠ABE=∠AGE,∴AE=EG,∴GE=BE,∴E为BG中点,∴EF是△ABG 的中位线,故可得:EF= AB=3,FG=AF=4,∴AG=8,∴BG=10,∴EG=5,∵AF⊥AB,AE=BE,∴点E是BG的中点,∴EG=BE=5,∴可得△EFG 为直角三角形,∴CE=EG�CG=EG�AD=5�2.7=2.3.故答案为:2.3.点评:本题考查了三角形的中位线定理、等腰三角形的性质和勾股定理,是一道综合题,难度较大. 18.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则sin∠APD的值是.考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义.. 专题:网格型.分析:首先连接BE,AE,过点A作AF⊥BE于点F,由勾股定理即可得AB=AE= ,BE= ,则可求得AF的长,继而可求得答案.解答:解:如图,连接BE,AE,过点A作AF⊥BE于点F,∵由题意得:AB= = ,AE= = ,BE= = ,∴AE=AB,∴BF= BE= ,∴在Rt△ABF中,AF= = ,∴sin∠ABF= = = ,∵CD∥BE,∴∠APD=∠ABE,∴sin∠APD= .故答案为:.点评:此题考查了三角函数的定义、等腰三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题 19.(8分)计算:.考点:特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂;二次根式的性质与化简.. 专题:计算题.分析:按照实数的运算法则依次计算,注意(π�3.14)0=1,(�)�1=�2.解答:解:原式=1+(�2)+ �4× =1�2+3��=2�.点评:本题考查的知识点是:任何不等于0的数的0次幂是1,(),其中a满足a2+a�1=0.a�p= . 20.(8分)先化简,再求值:考点:分式的化简求值.. 专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,除数分母利用平方差公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,由已知方程求出a的值,代入计算即可求出值.解答:解:∵a2+a�1=0,即a2=�(a�1),∴原式= ÷ = • = = =�1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.(8分)关于x的一元二次方程x2�x+p�1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.考点:根的判别式;根与系数的关系.. 专题:计算题.分析:(1)根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2�4ac的意义得到△≥0,即12�4×1×(p�1)≥0,解不等式即可得到p的取值范围;(2)根据一元二次方程ax2+bx+c=0(a≠0)的解的定义得到x12�x1+p�1=0,x22�x2+p�1=0,则有x12�x1=�p+1=0,x22�x2=�p+1,然后把它们整体代入所给等式中得到(�p+1�2)(�p+1�2)=9,解方程求出p,然后满足(1)中的取值范围的p值即为所求.解答:解:(1)∵方程x2�x+p�1=0有两个实数根x1、x2,∴△≥0,即12�4×1×(p�1)≥0,解得p≤ ,∴p的取值范围为p≤ ;(2)∵方程x2�x+p�1=0有两个实数根x1、x2,∴x12�x1+p�1=0,x22�x2+p�1=0,∴x12�x1=�p+1=0,x22�x2=�p+1,∴(�p+1�2)(�p+1�2)=9,∴(p+1)2=9,∴p1=2,p2=�4,∵p≤ ,∴p=�4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2�4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义. 22.(8分)如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.考点:圆心角、弧、弦的关系.. 专题:证明题.分析:连接BO,OD,利用等腰三角形性质证圆心角相等,即可得出AB=CD.解答:解:连接BO,OD,∵OA=OB,∴∠A=∠B,∵OC=OD,∴∠C=∠D,∵∠A=∠C,∴∠AOB=∠COD,∴AB=CD.点评:此题主要考查了圆周角定理和等弧对等弦,以及全等三角形的判定和性质. 23.(10分)(2006•上海)已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB= .求:(1)线段DC的长;(2)tan∠EDC的值.考点:解直角三角形;直角三角形斜边上的中线.. 专题:计算题.分析:(1)在Rt△ABD中,根据已知条件求出边AB的长,再由BC的长,可以求出CD的长;(2)根据直角三角形中,斜边上的中线等于斜边的一半,求出∠C=∠EDC,从而求出∠C的正切值即求出了tan∠EDC的值.解答:解:(1)∵AD是BC边上的高,△ABD 和△ACD是Rt△,在Rt△ABD中,∵sinB= ,AD=12,∴ ,∴AB=15,∴BD= ,又∵BC=14,∴CD=5;(2)在Rt△ACD中,∵E为斜边AC的中点,∴ED=EC= AC,∴∠C=∠EDC,∴tan∠EDC=tanC= .点评:此题要灵活应用三角函数公式和解直角三角形的公式,同时还要掌握“直角三角形中,斜边上的中线等于斜边的一半“等知识点. 24.(10分)国家为了加强对房地产市场的宏观调控,抑制房价的过快上涨,规定购买新房满5年后才可上市转卖,对二手房买卖征收差价的x%的附加税.某城市在不征收附加税时,每年可成交10万套二手房;征收附加税后,每年减少0.1x万套二手房交易.现已知每套二手房买卖的平均差价为10万元.如果要使每年征收的附加税金为16亿元,并且要使二手房市场保持一定的活力,每年二手房交易量不低于6万套.问:二手房交易附加税的税率应确定为多少?考点:一元二次方程的应用.. 分析:国家征收的附加税金总额=二手房的销售额(即单价×销售量)×征收的税率.以此可得出方程,然后根据“不低于6万套”舍去不合题意的解.解答:解:设税率应确定为x%,根据题意得10(10�0.1x)•x%=16, x2�100x+1600=0,解得x1=80,x2=20,当x2=80时,10�0.1×80=2<6,不符合题意,舍去, x1=20时,100�0.1×20=8>6,答:税率应确定为20%.点评:此题考查了一元二次方程的应用,此题不仅是一道实际问题,而且结合了现在房价问题,是一个比较典型的题目. 25.(10分)(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD 是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.考点:菱形的判定;平行四边形的性质.. 专题:证明题;压轴题.分析:(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE 是平行四边形,即可证明DE∥BF,(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE= AB,DF= CD.∴BE=DF,BE∥DF,∴四边形DFBE 是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.点评:本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中. 26.(10分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:≈1.732)(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为14.0 米;(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.考点:解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.. 分析:(1)由三角函数的定义,即可求得DF与BF的长,又由坡度的定义,即可求得EF的长,继而求得平台DE的长;(2)首先设GH=x米,由三角函数的定义,即可求得GH的长,继而求得答案.解答:解:(1)∵FM∥CG,∴∠BDF=∠BAC=30°,∵斜坡AB长60米,D是AB的中点,∴BD=30米,∴DF=BD•cos∠BDF=30× =15 ≈25.98(米),BF=BD•sin∠BDF=30× =15(米),∵斜坡BE的坡度为1:0.8,∴ = ,解得:EF=12(米),∴DE=DF�EF=25.98�12≈14.0(米);故答案为:14.0;(2)设GH=x米,则MH=GH�GM=x�15(米),GH′=GH=x米,MH′=GH′+GM=x+15(米),在Rt△EMH中,tan30°= = ,在Rt△EMH′中,tan45°= =1,∴ = ,即 = ,解得:x=56.0,即GH=56.0米,∵∠BEF=∠DEH′=45°,∴EF=BF=15(米),∴EM=MH′=x+15=71.0(米),∴FM=EF+EM=15+71.0=86.0(米),∴CG=FM=86.0米,∵AC=AB•cos30°=60× =30 ≈52.0(米),∴AG=CG�AC=86.0�52.0=34.0(米).答:建筑物GH的高为56.0米,AG的长约为34.0米.点评:此题考查了坡度坡角问题以及俯角仰角的定义.此题难度较大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用. 27.(12分)(2011•盘锦)已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.考点:菱形的性质;三角形的面积;全等三角形的判定与性质;锐角三角函数的定义.. 专题:综合题;压轴题.分析:(1)利用AD=AB,AG=AE,∠GAD=∠EAB(SAS)证明△AGD≌△AEB即可;(2)当α=60°时,AE与AD重合,作DH⊥CF于H.由已知可得∠CDF=120°,DF=DC=5,在Rt△CDH中,CH=DCsin60°,继而求出CF的长;(3)当∠CEF=90°时,延长CE交AG于M,连接AC,∠CEF=90°,只需求出EC的长,又EC=MC�ME,在Rt△AME和Rt△AMC中求解MC和ME的长即可.解答:解:(1)∵菱形ABCD绕着点A逆时针旋转得到菱形AEFG,∴AG=AD,AE=AB,∠GAD=∠EAB=α.∵四边形AEFG是菱形,∴AD=AB.∴AG=AE.∴△AGD≌△AEB.(3分)(2)解法一:如图(1),当α=60°时,AE与AD重合,(4分)作DH⊥CF于H.由已知可得∠CDF=120°,DF=DC=5.∴∠CDH=∠CDF=60°,CH= CF.在Rt△CDH中,∵CH=DCsin60°=5× = ,(6分)∴CF=2CH=5 .(7分)解法二:如图(1),当α=60°时,AE与AD重合,(4分)连接AF、AC、BD、AC与BD交于点O.由题意,知AF=AC,∠FAC=60°.∴△AFC是等边三角形.∴FC=AC.由已知,∠DAO= ∠BAD=30°,AC⊥BD,∴AO=ADcos30°= .(6分)∴AC=2AO=5 .∴FC=AC=5 .(7分)(3)如图(2),当∠CEF=90°时,(8分)延长CE交AG于M,连接AC.∵四边形AEFG是菱形,∴EF∥AG.∵∠CEF=90°,∴∠GME=90°.∴∠AME=90°.(9分)在Rt△AME中,AE=5,∠MAE=60°,∴AM=AEcos60°= ,EM=AEsin60°= .在Rt△AMC中,易求AC=5 ,∴MC= = .∴EC=MC�ME= �, = (�).(11分)∴S△CEF= •EC•EF= .(12分)点评:本题考查菱形的性质,同时涉及了锐角三角函数的定义、全等三角形的判定与性质及三角形面积公式,注意这些知识的熟练掌握并灵活运用,难度较大. 28.(12分)如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B 出发沿BA方向向点A匀速运动,速度为2cm/s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:(1)当t为何值时,△APQ是直角三角形?(2)是否存在某时刻t,使线段PQ恰好把△ABC 的面积平分?若存在求出此时t的值;若不存在,请说明理由;(3)把△APQ沿AB(或沿AC)翻折,翻折前后的两个三角形所组成的四边形能不能是菱形?若能,求出此时菱形的面积;若不能,请说明理由.考点:相似形综合题.. 专题:压轴题.分析:(1)表示出AP、AQ,然后分∠AQP=90°和∠APQ=90°两种情况,利用∠A的余弦列式计算即可得解;(2)先求出△ABC的面积,然后利用∠A的正弦求出点P到AQ的距离,再根据△APQ的面积公式列出方程,然后求出根的判别式△<0,确定不存在;(3)根据菱形的对角相等,对角线平分一组对角可得关于AB翻折时,∠A=∠APQ,过点Q作QD⊥AB 于D,根据等腰三角形三线合一的性质可得AD= AP,然后利用∠A的余弦列式求出t的值,再根据正弦求出DQ,然后根据S菱形=2S△APQ 计算即可得解;关于AC翻折时,∠A=∠AQP,过点P作PE⊥AC于E,根据等腰三角形三线合一的性质可得AE= AQ,然后利用∠A的余弦列式求出t的值,再根据正弦求出PE,然后根据S菱形=2S△APQ计算即可得解.解答:解:(1)∵点P的速度为2cm/s,点Q的速度为1cm/s,∴AP=10�2t,AQ=t,如图1,∠AQP=90°时,cos∠A= = ,∴ = ,解得t= ,如图2,∠APQ=90°时,cos∠A= = ,∴ = ,解得t= ,综上所述,t= 或时,△APQ是直角三角形;(2)△ABC的面积= AC•BC= ×8×6=24cm2,假设存在t使线段PQ恰好把△ABC的面积平分,则点P到AQ的距离为:AP•sin∠A=(10�2t)× = (10�2t),∴△APQ的面积= t• (10�2t)= ×24,整理得,t2�5t+20=0,∵△=(�5)2�4×1×20=25�80=�55<0,∴此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分;(3)根据菱形的性质,若关于AB翻折时,则∠A=∠APQ,如图1,过点Q作QD⊥AB于D,则AD= AP= (10�2t)=5�t,cos∠A= = ,∴ = ,解得t= ,∴DQ=AQ•sin∠A= × = , AP=10�2t=10�2× = ,∴S菱形=2S△APQ=2× × × = ;若关于AC翻折时,则∠A=∠AQP,如图2,过点P作PE⊥AC于E,则AE= AQ= ,cos∠A= = ,∴ = ,解得t= ,∴PE=AP•sin∠A=(10�2× )× = × = ,∴S菱形=2S△APQ=2× × × = ;综上所述,△APQ沿AB(或沿AC)翻折,翻折前后的两个三角形所组成的四边形能是菱形,菱形的面积为或.点评:本题是相似形综合题型,主要考查了锐角三角函数,三角形的面积,菱形的对角相等,对角线平分一组对角的性质,(1)(3)两题难点在于要分情况讨论求解,(2)利用根的判别式判断即可,综合题,但难度不大.。