人教版数学九年级上册教材习题答案
人教版九年级上册数学第二十一章练习和习题答案
![人教版九年级上册数学第二十一章练习和习题答案](https://img.taocdn.com/s3/m/82fc720cfbd6195f312b3169a45177232f60e44b.png)
人教版九年级上册数学第二十一章练习和习题答案人教版九年级上册数学第4页练习答案1.解:(1)5x²-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1.(2)4x²-81=0,二次项系数为4,一次项系数为0,常数项为-81. (3)4x²+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25.(4)3x²-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1.【规律方式:化为一般形式即把所有的项都移到方程的左侧,右边化为0的行驶,在肯定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包括前面的符号.】2.解:(1)4x²=25,4x²-25=0.(2)x(x-2)=100,x²-2x-100=0.(3)x∙1=(1-x)²-3x+1=0.人教版九年级上册数学第6页练习答案解:(1)2x²-8=0,∴x²=4,∴x_1=2,x_2=-2.(2)9x^2-5=3,移项,得9x^2=8,x^2=8/9,∴x_1=(2√2)/3,x_2=-(2√2)/3.(3)(x+6)²-9=0,移项,得(x+6)²=9.∴x+6=±3,∴x_1=-3,x_3=-9.(4)3(x-1)²-6=0,移项,化简得(x-1)²=2,∴x-1=±√2,∴x_1=1-√2,x_2=1+√2.(5)x²-4x+4=5,(x-2)²=5,∴x-2=±√5,∴x_1=2-√5,x_2=2+√5.(6)9x²+5=1.9x²=1-5,9x^2=-4.∵-4<0,,9x^2+5=1-5,9x^2=-4.∵-4<0,,9x^2+5=1无实数根.【规律方式:利用直接开平方式,首先应把方程化为左侧是含未知数的完全平方的形式.】人教版九年级上册数学第9页练习答案1.(1)25 5 (2)36 6 (3)25/4 5/2 (4)1/9 1/3【规律方式:对一个式子进行配方,先将二次项的系数变成1,然后在一次项以后加上一次项系数一般的平方,即得完全平方式.】2.解:(1)x²+10x+9=0,x²+10x+25-25+9=0,(x+5)²=16,x+5=±4,∴x_1=-1,x_2=-9.(2) x^2-x-7/4=0,x^2-x+(1/2)^2-(1/2)²-7/4=0,(x-1/2)²=2,x-1/2=±√2,∴x_1=1/2-√2,x_2=1/2+√2.(3)3x²+6x-4=0,3(x²+2x)-4=0.3(x²+2x+1-1)-4=0.3(x+1)²=7,(x+1)²=7/3,x+1=±√21/3,x_1=-1-√21/3,x_2=-1+√21/3.(4)4x^2-6x-3=0,4(x^2-3/2 x)=3,(x-3/4)^2=21/16,x-3/4=±√21/4,∴x_1=3/4-√21/4,x_2=3/4+√21/4.(5)x²+4x-9=2x-11,x²+2x+2=0,(x+1)²=-1,∴原方程无实数根.(6)x(x+4)=8x+12,x²-4x-12=0,(x-2)²=16,x-2=±4,∴x_1=6,x_2=-2.【规律方式:配方式解方程时,补充的项应为一次项系数一半的平方,组成完全平方后,在用直接开平方式来解.】人教版九年级上册数学第12页练习答案1.解:(1)x²+x-6=0,∵a=1,b=1,c=-6,∴b²-4ab=1+24=25>0,∴x=(-1±√25)/2,∴x_1=(-1-5)/1=-3,x_2=(-1+5)/2=2. (2) x^2-√3 x- 1/4=0,∵a=1,b=-√(3,)c=-1/4,∴b²-4ac=3-4×(-1/4)=4>0,∴x= (√3±2)/2,∴x_1=(√3-2)/2,x_2=(√3+2)/2.(3)3x²-6x-2=0,∵a=3,b=-6,c=-2,∴b²-4ac=36-4×3×(-2)=60>0,∴x= (6±√60)/(2×3)=(6±2√15)/6=(3±√15)/3,∴x_1=(3-√15)/3,x_2=(3+√15)/3.(4)4x²-6x=0,∵a=4,b=-6,c=0,∴b²-4ac=36-4×4×0=36>0,∴x= (6±6)/(2×4),x_1=0,x_2=3/2.(5)x²+4x+8=4x+11,整理,得x²-3=0,∵a=1,b=0,c=-3,∴b²-4ac=0-4×1×(-3)=12>0,∴x= (±√12)/2=±√3,∴x_1=√3,x_2=-√3.(6)x(2x-4)=5-8x,整理,得2x²+4x-5=0,∵a=2,b=4,c=-5,∴b²-4ac=16-4×2×(-5)=56,∴=(-4+√56)/(2×2)=(-4±2√14)/4=(-2±√14)/2,∴x_1=(-2-√14)/2,x_2=(-2+√14)/2.【规律方式:利用公式法解方程有如下四个步骤:一是将方程化为一般形式,即ax²+bx+c=0(a≠0)的形式;二是找出二次项系数a,一次项系数b及常数项c;三是求出b²-4ac的值;四是将a,b,b²-4ac的值代入求根公式,求出方程解.】2.解:x²-75x+350=0,∵a=1,b=-75,c=350,∴b²-4ac=(-75)²-4×1×350=4225,∴x= (75±√4225)/(2×1)=(75±65)/2,∴x_1=5,x_2=70(舍去).答:应切去边长为5cm的正方形.人教版九年级上册数学第14页练习答案1.解:(1)x²+x=0,x(x+1)=0,∴x=0或x+1=0,∴x_1=0,x_2=-1.(2)x²-2√3 x=0,x(x-2√3)=0,∴=0或x-2√3=0,∴x_1=0,x_2=2√3.(3)3x²-6x=-3,x²-2x+1=0,(x-1)²=0,∴x_1=x_2=1.(4)4x²-121=0,(2x-11)∙(2x+11)=0,∴2x-11=0或2x+11=0,∴x_1=11/2,x_2=-11/2.(5)3x(2x+1)=4x+2,3x(2x+1)-2(2x+1)=0,(2x+1)(3x-2)=0,,2x+1=0或3x-2=0,∴x_1=-1/2,x_2=2/3.(6)(x-4)²=(5-2x)²,(x-4)²-(5-2x)²=0,(x-4+5-2x)(x-4-5+2x)=0,(1-x)(3x-9)=0,∴1-x=0或3x-9=0,∴x_1=1,x_2=3.2.解:设小圆形场地的半径为Rm,则大圆形场地的半径为(R+5)m,由题意,得2πR²=π(R+5)^2,2R²=(R+5)^2,R²-10R-25=0,∴R= (10±√(10²+4×25))/2=(10±10√2)/2=5±5√2,R1=5-5√2(舍去),R2=5+5√2.答:小圆形场地的半径为(5+5√2)m.人教版九年级上册数学第16页练习答案解:(1)设x_1,x_2是方程x²-3x=15的两根,整理x²-3x=15,x²-3x-15=0,所以x_1+x_2=3,x_1∙x_2=-15.(2)设x_1,x_2 是方程3x²+2=1-4x的两根,整理3x²+2=1-4x,得3x²+4x+1=0,所以x_1+x_2=-4/3,x_1∙x_2=1/3.(3)设x_1,x_2 是方程5x^2-1=4x^2+x的两根,整理5x^2-1=4x^2+x,得x^2-x-1=0,所以x_1+x_2=1,x_1∙x_2=-1.(4)设x_1 x_2是方程2x²-x+2=3x+1的两根,整理方程2x²-x+2=3x+1,得2x²-4x+1=0,所以x_1+x_2=2,x_1 x_2=1/2.人教版九年级上册数学习题21.1答案1.解:(1)3x²-6x+1=0,二次项系数为3,一次项系数-6,常数项为1.(2)4x²+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81.(3)x²+5x=0,二次项系数为1,一次项系数为5,常数项为0.(4)x²-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1.(5)x²+10=0,二次项系数为1,一次项系数为0,常数项为10.(6)x²+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2.2.解:(1)设这个圆的半径为Rm,由圆的面积公式得πR²=6.28,∴πR²-6.28=0.(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x²-3x-18=0.3.解:方程x²+x-12=0的根是-4,3.4.解:设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x ∙(x+1)=132,∴x^2+x-132=0.5.解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式,得∙(0.5-x)=0.06,∴x²-0.5x+0.06=0.6.解:设有n人参加聚会,按照题意,可知(n-1)+(n-2)+(n-3)+…+3+2+1=10.即(n(n-1))/2=10,n²-n-20=0.7.解:由题意可知2²-c=0,∴c=4,∴原方程为x²-4=0,∴=±2,∴这个方程的另一个根为-2.人教版九年级上册数学习题21.2答案1.解:(1)36x²-1=0,移项,得36x²=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x_1=1/6,x_2=-1/6.(2)4x²=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x_1=9/2,x_2=-9/2.(3)(x+5)²=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x_1=0,x_2=-10.(4)x²+2x+1=4,原方程化为(x+1)^2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x_1=1,x_2=-3.2.(1)9 3 (2)1/4 1/2 (3)1 1 (4)1/25 1/53.解:(1)x²+10x+16=0,移项,得x²+10x=-16,配方,得x²+10x+5²=-16+5²,即(x+5)²=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x_1=-2,x_2=-8.(2)x²-x-3/4=0,移项,得x^2-x=3/4,配方,得x^2-x=3/4,配方,得x^2-x+1/4=3/4+1/4,即(x-1/2)^2=1,开平方,得x- 1/2=±1,∴原方程的解为x_1=3/2,x_2=-1/2.(3)3x²+6x-5=0,二次项系数化为1,得x²+2x-5/3=0,移项,得x²+2x=5/3,配方,得x²+2x+1=5/3+1,即(x+1)²=8/3,开平方,得x+1=±2/3 √6,∴x+1=2/3 √6或x+1=-2/3 √6,∴原方程的解为x_1=-1+2/3 √6,x_2=-1-2/3 √6. (4)4x²-x-9=0,二次项系数化为1,得x²-1/4x-9/4=0,移项,得x²-1/4 x= 9/4,配方,得x²-1/4x+1/64=9/4+1/64,即(x-1/8)²=145/64,开平方,得x-1/8=±√145/8,∴x-1/8=√145/8 或x- 1/8=-√145/8,∴原方程的解为x_1=1/8+√145/8,x_2=1/8-√145/8.4.解:(1)因为△=(-3)²-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根.(2)因为△=(-24)²-4×16×9=0,所以与原方程有两个相等的实数根.(3)因为△=(-4√2)^2-4×1×9=-4<0,因为△=(-8)²-4×10=24>0,所以原方程有两个不相等的实数根.5.解:(1)x²+x-12=0,∵a=1,b=1,c=-12,∴b²-4ac=1-4×1×(-12)=49>0,∴x= (-1±√49)/2=(-1±7)/2,∴原方程的根为x_1=-4,x_2=3.(2)x²-√2x-1/4=0,∵a=1,b=-√2,c=-1/4,∴b²-4ac=2-4×1×(-1/4)=3>0,∴x= (√2+√3)/2,∴原方程的根为x_1=(√2+√3)/2,x_2=(√2-√3)/2.(3)x²+4x+8=2x+11,原方程化为x²+2x-3=0,∵a=1,b=2,c=-3,∴b²-4ac=2²-4×1×(-3)=16>0,∴x= (-2±√16)/(2×1)=(-2±4)/2,∴原方程的根为x_1=-3,x_2=1.(4)x(x-4)=2-8x,原方程化为x²+4x-2=0,∵a=1,b=4,c=-2,∴b²-4ac=4²-4×1×(-2)=24>0,∴x= (-4±√24)/(2×1)=(-4±2√6)/2,原方程的根为x_1=-2+√6,x_2=-2√6.(5)x²+2x=0,∵a=1,b=2,c=0,∴b²-4ac=2²-4×1×0=4>0,∴x= (-2±√4)/(2×1)=(-2±2)/2,∴原方程的根为x_1=0,x_2=-2. (6)x^2+2√5x+10=0,∵a=1,b=2√5,c=10,∴b^2-4ac=(2√5)²-4×1×10=-20<0,∴原方程无实数根.6.解:(1)3x²-12x=-12,原方程可化为x²-4x+4=0,即(x-2)²=0,∴原方程的根为x_1=x_2=2.(2)4x^2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x_1=-6,x_2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0,∴x-1=0或3x-2=0,∴原方程的根为x_1=1,x_2=2/3.(4)(2x-1)²=(3-x)²,原方程可化为【(2x-1)+(3-x)】【(2x-1)-(3-x)】=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0,∴原方程的根为x_1=-2,x_2=4/3.7.解:设原方程的两根别离为x_1,x_2.(1)原方程可化为x^2-3x-8=0,所以x_1+x_2=3,x_1∙x_2=-8.(2)x_1+x_2=-1/5,x_1∙x_2=-1.(3)原方程可化为x²-4x-6=0,所以x_1+x_2=4,x_1∙x_2=-6.(4)原方程可化为7x²-x-13=0,所以x_1+x_2=1/7,x_1∙x_2=-13/7.8.解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,按照题意,得1/2 x(x+5)=7,所以x²+5x-14=0,解得x_1=-7,x_2=2,因为直角三角形的边长为√(x²+(x+5)^2 )=√(2²+7²)=√53 (cm).答:这个直角三角形斜边的长为√53cm.9.解:设共有x家公司参加商品交易会,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x^2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x_1=10,x_2=-9,∵x必需是正整数,∴x=-9不符合题意。
人教版九年级上册数学第二十五章练习和习题答案
![人教版九年级上册数学第二十五章练习和习题答案](https://img.taocdn.com/s3/m/15f4f7ed1eb91a37f0115c3d.png)
人教版九年级上册数学第128页练习答案解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件.人教版九年级上册数学第129页练习答案1.解:P(落在海洋里)=7/10,P(落在陆地上)=3/10. ∵7/10>3/10,∴“落在海洋里”的可能性更大.2.解:(1)不能.(2)黑桃.(3)能,拿走一张黑桃或再加一张红桃.3.解:抛一枚骰子,“出现点数是2”和“出现点数是3”都是随机事件,“出现点数大于6”是不可能事件,“出现点数小于7”是必然事件.人教版九年级上册数学第133页练习答案1.解:有两种结果,它们的可能性相等,P(正面向上)=1/2.2.解:不相等.P(摸到红球)=5/8,P(摸到绿球)=3/8.3.解:不相等:A区的方格共8个,标号表示在这8个方格中有一个方格藏有地雷,因此点击A区域的任一方格遭地雷的概率是1/8. B区域的方格数为9×9-9=72,其中有地雷的方格数为10-1=9,因此点击B区域中的任一方格,遭到地雷的概率是9/72. 由于1/8=9/72,即点击A区域与点击B区域遭到地雷的可能性相同.所以点击A区域与B区域的安全性相同.人教版九年级上册数学第138页练习答案1.解:所能产生的全部结果列举如下:红红,红绿,绿红,绿绿.所有的结果共4个,并且这4个结果出现的可能性相等.(1)P(第一次摸到红球,第二次摸到绿球)=1/4. (2)P(两次都摸到相同颜色的小球)=2/4=1/2.(3)P (两次摸到的球中有一个绿球和一个红球)=2/4=1/2.2.解:用列表法表示.由表可知所求概率P=14/36=7/18.人教版九年级上册数学第139页练习答案1.用树状图表示如图56所示.(1)由树状图可知P(三辆车全部继续直行)=1/27.(2)由树状图可知P(两辆车向右转,一辆车向左转)=3/27=1/9.(3)由树状图可知P(至少有两辆车向左转)=7/27.人教版九年级上册数学第144页练习答案学子斋 > 课后答案 > 九年级上册课后答案 > 人教版九年级上册数学课本答案 >人教版九年级上册数学第144页练习答案1.解:(1)从左到右依次填0.56,0.60,0.52,0.52,0.49,0.51,0.50.(2)P (投中)≈0.52.提示:1/6≈0.17人教版九年级上册数学第147页练习答案解:从上到下依次填0.940,0.935,0.940,0.845,0.870,0.883,0.891,0.898,0.904,0.901,∴种子发芽的概率大约为0.9,,1000kg种子中大约有1000×(1-0.9)=100kg不能发芽.人教版九年级上册数学习题25.1答案1.解:是随机事件的是:(2)(3)(5)(6);是必然事件的是:(1);是不可能事件的是:(4).2.解:若硬币均匀,则公平,否则不公平.因为掷一枚均匀硬币,正面向上的概率和反面向上的概率各为1/2,所以采用这种方法确定哪一队首先开球是公平的.3.解:P(不合格产品)=1/10.4.解:(1)1/3. (2)0 (3)2/3.5.解:任选四个扇形图上红色,2个扇形图上蓝色6.解:(1)不能.(2)不会相等.因为球共有2+3+4=9(个),所以取出红球的概率是2/9,取出绿球的概率是2/9=1/3 ,取出篮球的概率是4/9,(3)由(2)可知取出篮球的概率是最大的.(4)使各颜色球的数目相等.人教版九年级上册数学习题25.2答案1.解:从13张黑桃牌中任意抽取一张,有13种结果,并且每种结果出现的可能性都相等.(1)P(抽出的牌是黑桃6)=1/13.(2)P(抽出的牌是黑桃10)=1/13.(3)P(抽出的牌带有人像)=3/13.(4)P(抽出的牌上的数小于5)=4/13.(5)P(抽出的牌的花色是黑桃)=1.2.解:(1)投掷一个正12面体一次,共有12种等可能的结果,向上一面的数字是2或3的有两种结果,所以P(向上一面的数字是2或3)=2/12=1/6.(2)向上一面的数字是2的倍数或3的倍数共有8种情况,即点数分别为2,4,6,8,10,12,3,9,所以P(向上一面的数字是2的倍数或3的倍数)=8/12=2/3.3.解:列表如下:由表可以看到共有16种结果,且每种结果的可能性相同.(1)两次取出的小球的标号相同共有4种结果,即(1,1),(2,2),(3,3),(4,4),所以P(两次取出的小球的标号相同)=4/16=1/4.(2)两次取出的小球的标号的和等于4共有3种结果,(3,1),(1,3),(2,2),所以即P(两次取出的小球的标号的和等于4)=3/16.4.解:由图可知蚂蚁寻找事物的路径共有2+2+2=6(条),而能获得事物的路径共有2条,所以它获得食物的概率P=2/6=1/3.5.解:(1)P(取出的两个球都是黄球)=1/3×1/2=1/6. (2)P(取出的两个球中有一个白球一个黄球)=2/3×1/2+1/3×1/2=1/2.6.解:树状图如图57所示,∴P(三只雏鸟中恰有两只雄鸟)=3/8.7.解:列表如下:∴P(一次打开锁)=2/6=1/3.8.解:树状图如图58所示,∴P(两张小图片恰好合成一张完整图片)=4/12=1/3.9.解:(1)由题意得x/(x+y)=3/8,∴8x=3x+3y,5x=3y,y=5/3x.(2)由题意得(10+x)/(x+y+10)=1/2 , ∴20+2x=x+y+10,y=x+10. 解得x=15,y=25.人教版九年级上册数学习题25.3答案1.解:事件发生的频率逐渐趋于一个稳定值.2.提示:图钉尖不着地的面积大,因为图钉帽重,所以它着地的可能性大.3.解:(1)从左到右依次填0.75, 0.83, 0.78, 0.79, 0.80, 0.80.(2)这些频率逐渐稳定在0.8左右.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率为0.8.4.提示:(1)略.(2)当d不变,l减小时,概率P会变小.当l不变,d减小时,概率P会变大.5.提示:有道理.用样本估计总体.6.提示:P(现年20岁的这种动物活到25岁)=5/8,P(现年25岁的这种动物活到30岁)=3/5.人教版九年级上册数学第25章复习题答案1.解:(1)P(字母为“b”)=2/11.(2)P(字母为”i“)=2/11 .(3)P(字母为”元音“字母)=4/11.(4)P(字母为”辅音“字母)=7/11.2.解:A盘停止时指针指向红色的概率与B盘停止时指针指向红色的概率相同.理由如下:设A盘停止时指针指向红色为A事件,B盘停止时指针指向红色为B 事件,则P(A)=4/12=1/3,P(B)=1/3,∴P(A)=P(B).3.解:(1)P(任意抽取一张是王牌)=2/54=1/27.(2)P(任意抽取一张是Q)= 4/54 =2/27.(3)P(任意抽取一张是梅花)=13/54.4.解:P(颜色搭配正确)=1/2,P(颜色搭配错误)=1/2.5.解:(1)0.68 0.74 0.68 0.69 0.6825 0.701 (2)0.76.解:同时投掷两枚骰子,等可能的结果共有36种,点数的和小于5的有6种,即(1,1)(2,2)(3,1)(1,3)(2,1)(1,2),所以P(点数的和小于5)=6/36=1/6.7.解:(1)P(包中没有混入的M号衬衫)=7/50.(2)P(混入的M号衬衫数不超过7)=(7+3+10+15+5)/50=4/5 .(3)P(混入的M号衬衫数超过10)=3/50 .8.解:用树状图表示如图59所示,∴两个人获胜的概率均为3/9=1/3 .9.解:用树状图表示如图60所示,∴ P(这三张图片恰好组成一张完整风景图片)=3/27=1/9.。
人教版九年级数学上册全册教案及作业题(带答案)
![人教版九年级数学上册全册教案及作业题(带答案)](https://img.taocdn.com/s3/m/15e9b9eb7f1922791788e820.png)
三一文库()/初中三年级〔人教版九年级数学上册全册教案及作业题(带答案)〕《人教版九年级上册全书教案》第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a(a≥0), =a (a≥0).(3)掌握 # =(a≥0,b≥0), = # ;= (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a ≥0)及 =a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB=问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、、、- 、、(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时, + 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2)(2)若 + =0,求a2004+b2004的值.(答案: )五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x2.下列式子中,不是二次根式的是()A. B. C. D.3.已知一个正方形的面积是5,那么它的边长是()A.5 B. C. D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义?3.若 + 有意义,则 =_______.4.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= .2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义.3.4.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新课标第一网1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1(4)∵4x2-12x+9=(2x)2-2#2x#3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业1.教材P8 复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(- )2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6=(4)(-3 )2=9× =6 (5)-62.(1)5=()2 (2)3.4=()2(3) =()2 (4)x=()2(x≥0)3. xy=34=814.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )(3)略1111。
人教版九年级数学上册课后习题参考答案
![人教版九年级数学上册课后习题参考答案](https://img.taocdn.com/s3/m/60452ef8f524ccbff12184be.png)
第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。
】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。
优品课件之人教版九年级数学上册全册教案及作业题(带答案)
![优品课件之人教版九年级数学上册全册教案及作业题(带答案)](https://img.taocdn.com/s3/m/9d3af6010066f5335b812115.png)
人教版九年级数学上册全册教案及作业题(带答案)《人教版九年级上册全书教案》第二十一章二次根式教材内容 1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标 1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a (a≥0), =a(a≥0).(3)掌握• =(a≥0,b≥0),= • ; = (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算.教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及 =a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB= 问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“ ”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、- 、、(x≥0,y ≥0).分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥ 当x≥ 时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,+ 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1 当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评)本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x 2.下列式子中,不是二次根式的是()A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是() A.5 B. C. D.以上皆不对二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_______. 4.使式子有意义的未知数x有()个. A.0 B.1 C.2 D.无数 5.已知a、b 为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B 二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-421.1 二次根式(2) 第二课时教学内容 1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新|课|标|第|一|网 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2= ,()2= ,()2=0,所以()2=a(a≥0)例1 计算 1.()2 2.(3 )2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2 = ,(3 )2 =32•()2=32•5=45,()2= ,()2= .三、巩固练习计算下列各式的值:X|k |b| 1 . c|o |m ()2 ()2 ()2 ()2 (4 )2 四、应用拓展例2 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0 ()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计一、选择题 1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(- )2=________. 2.已知有意义,那么是一个_______数.三、综合提高题 1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6= (4)(-3 )2=9× =6 (5)-6 2.(1)5=()2 (2)3.4=()2 (3) =()2 (4)x=()2(x≥0) 3. xy=34=81 4.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- ) (3)略优品课件,意犹未尽,知识共享,共创未来!!!。
人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页
![人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页](https://img.taocdn.com/s3/m/5543a872453610661ed9f4bb.png)
习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时,20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18 解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2)x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=±1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2)x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2 (4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm 当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s(2)设小球滚动5m用了x s∙(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案。
人教版初中数学九年级上册《课本习题参考答案》第九页-六六页
![人教版初中数学九年级上册《课本习题参考答案》第九页-六六页](https://img.taocdn.com/s3/m/2682c738680203d8cf2f2413.png)
第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x- x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3 ∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5 ∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE 与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第2题答案练习第3题答案复习题第1题答案如下图所示:复习题第2题答案解:图(2)是由图(1)这个基本图案绕着图案的中心旋转90〬,180〬, 270〬后与原图形所形成的复习题第3题答案解:图中这4个图形都是中心对称图形,其对称中心为O点,如下图所示:复习题第4题答案如下图所示:解:依题意可知△EBC可以看做是△DAC以点C为旋转中心、逆时针旋转60〬°得到的复习题第6题答案解:依题意可知:右边倾斜的树以其根部为旋转中心,旋转一定的角度使树成直立的状态,再以与树干平行的一条直线为对称轴作树的对称图形,即可得到左边直立的树复习题第7题答案解:矩形FABE,菱形EBCD都为中心对称图形,过对称中心的任意一条直线,都可将图形分成面积相等的两部分如下图所示,直线MN可把这张纸分成面积相等的两部分复习题第8题答案解:当梯形是下底角为60〬且上底等于腰长的等腰梯形时,可以经过旋转和轴对称形成题中图(2)的图案第62页练习答案练习题答案第66页练习答案练习第1题答案练习第2题答案。
人教版数学九年级上教材课后习题答案
![人教版数学九年级上教材课后习题答案](https://img.taocdn.com/s3/m/304075365727a5e9856a6110.png)
" 1 ( 1 7)槡 1( 槡 1 7) ' ( 0 ) " 1 " 槡
' ' $ + +) 槡 $ ( " + ) " +槡 $" 槡
7 $ 7) 槡 ) " $ 1 7 槡 1 7 mp; * &槡 * 槡 &* 1 ) " ') ' ' ) 1 ) 槡 1 槡 )
' ' " $ ) $ " ' $槡 ' ) " * " 槡 ' # +,
" " / ) " 0 0 槡 " " )/ $ /槡 / " 1 " + ) ) " 槡 " + " + 槡
' " + " $ ) + " $ " ' 槡 ' ' / '
'
5 0)// ' ) '槡 '/ ' + " * $ % & " ' )* " # +, " ' $.槡 2 )槡 '(槡 $.槡 '(槡 2) 槡 ' ( $. 槡 ' ( 2)槡 3. 槡 " +" 槡 槡 * + 1 + . ' * +. 槡 1 + 8槡 2) 槡 * +8槡 2. 槡 1 +8槡 2) 槡 2 2
人教版初中数学九年级上册《课本习题参考答案》第四页1-10
![人教版初中数学九年级上册《课本习题参考答案》第四页1-10](https://img.taocdn.com/s3/m/7713d22851e79b8969022613.png)
人教版数学九年级上册课后答案第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1(2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25(4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。
】第4页练习第2题答案解:(1)4x2=25,4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6)x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1∙x2=-8(2)x1+x2=-1/5,x1∙x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1∙x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1∙x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时,20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18 解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2)x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=±1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2)x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%。
人教版九年级数学上册课本练习题答案
![人教版九年级数学上册课本练习题答案](https://img.taocdn.com/s3/m/7a4a33e6e518964bce847c56.png)
第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。
】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,。
习题24 .4人教版九年级上册数学教材习题课件
![习题24 .4人教版九年级上册数学教材习题课件](https://img.taocdn.com/s3/m/d4934f303069a45177232f60ddccda38376be1b9.png)
的长为 20 cm.求扇面的面积.
解:由题意可知 S扇面 = S扇形BAC –
S扇形DAE
=
120π 302 360
- 120π (30 - 20)2 360 B
= 800 (π cm2).
C
3
D
E
A
综合运用
9. 如图,粮仓的顶部是圆锥形,这个圆锥的底面
圆的周长为 32 m,母线长 7 m. 为了防雨,需
要在它的顶部铺上油毡,所需油毡的面积至少
是多少?
解:由于圆锥的侧面展开图是半径
为 7 m,弧长为 32 m 的扇形,故其
面积为
1 2
×32×7
=
112(m2).
答:所需油毡的面积至少为 112 m2.
拓广探索
10. 如图,从一块直径是 1 m 的圆形铁皮上剪出一个圆心 角为90°的扇形,求被剪掉的部分的面积;如果将剪下 来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?
域是一个扇形,这个扇形的
半径是 20 m. 求它能喷灌的
草坪的面积.
解:由题意可知它的喷灌区域是一个圆心角为 220°,
半径为 20 m 的扇形及其内部,其面积为 220 π 202
= 2200 π(m2).
360
9
综合运用
8. 如图,扇形纸扇完全打开后,外侧两竹条 AB,
AC 夹角为 120°,AB 的长为 30 cm,扇面 BD
由题意得 240π = 1×20π×R,
2
解得 R = 24.
则有 20π = nπ×24,解得 n = 150.
180
(3)用一个圆心角为 120°,半径为 4 的扇形作
一个圆锥的侧面,这个圆锥的底面圆的半径为
人教版数学九年级上册全册含课后练习
![人教版数学九年级上册全册含课后练习](https://img.taocdn.com/s3/m/be4ccf9fe518964bce847c84.png)
21.1 二次根式(1)(民中)第一课时一、教学目标: (a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.三、 教学过程:例1. 下列式子,哪些是二次根式,、1x x>0)、、、1x y+(x ≥0,y•≥0).例2. 当x 在实数范围内有意义?四、应用拓展:例3.当x +11x +在实数范围内有意义?例4(1)已知,求x y的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后作业:(一)选择题:1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当x是多少时,x3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)(民中)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;)2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出)2=a (a≥0).三、教学过程:例1计算)21.22.(23.24.(2四、应用拓展:例2 计算1.2(x≥0)2.23.24.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ).A .a>0B .a ≥0C .a<0D .a=0(二)填空题1.()2=______. 2_______数.(三)综合提高题1.计算(1)2 (2)-2 (3)(12)2(4)( 2 (5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)(民中)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论.三、教学过程:例1 化简(1 (2 (3 (4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3),则a 可以是什么数?五、归纳小结:(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8.七、课后作业:(一)选择题:1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.(二)填空题:1=________.2.则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)(民中)第四课时一、教学目标:a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4六、归纳小结:本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.七、布置作业:1.课本P151,4,5,6.(1)(2).八、课后作业:(一)选择题1和,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简)A B C.D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.D.×(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)(民中)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算. 二、教学重难点:1a ≥0,b>0)a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.三、教学过程:例1.计算:(1(2 (3 (4例2.化简:(1 (2 (3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3.=,且x 为偶数,求(1+x六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9.八、课后作业:(一)选择题: 1.的结果是( )A .27B .27C D .723==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”)A .2B .6C .13 D (二)填空题:1.分母有理化:(1)=_________;(2) =______.2.已知x=3,y=4,z=5_______.(三)综合提高题:1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1·(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)(民中)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)(2) ;(3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,从计算结果中找出规律,并利用这一规律计算+)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用.七、布置作业:1.教材P15习题21.2 3、7、10.八、课后作业:(一)选择题:1y>0)是二次根式,那么,化为最简二次根BAC式是( ). A(y>0) B .y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A B C . D .3.在下列各式中,化简正确的是( )A B ±12 C 2 D .4的结果是( ) A .-3 B . C . D . (二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 确,•请写出正确的解答过程:2.若x 、y 为实数,且y x y -的值.21.3 二次根式的加减(1)(民中)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式.三、教学过程:例1.计算:(1 (2例2.计算:(1) (2))+ 四、巩固练习:教材P 19 练习1、2.五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值. 六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5.八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个(二)填空题:1是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1≈2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 21.3 二次根式的加减(2)(民中)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3a是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.BC.D.(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)(三)综合提高题:1.n是同类二次根式,求m、n21.3 二次根式的加减(3)(民中)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程:例1.计算:(1)(2)()÷例2.计算:(1))((2)))四、巩固练习:课本P20练习1、2.BACQPBA C2m1m4m D五、应用拓展:例3.已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0, 六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.七、布置作业: 1.教材P 21 习题21.3 1、8、9.八、课后作业:(一)选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1(二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,(结果用最简二次根式表示) 第二十二章 一元二次方程(民中)第十课时一、教学目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念。
人教版九年级上册数学第二十四章练习和习题答案
![人教版九年级上册数学第二十四章练习和习题答案](https://img.taocdn.com/s3/m/a7545936a5e9856a56126079.png)
人教版九年级上册数学第81页练习答案1.解:找两个人,一人拿一根5m长的绳子的一端,站定一个位置,当做圆的圆心,另一个人拉紧绳子,拿着绳子的另一端,绕着圆心走一圈并画出走的路线即可.2.解:(23/2)/20=23/2×1/20=0.575(cm).3.如图36所示,取AB的中点O,连接OB,∵∠ACB=90〬,∴OA=OB=OC,∴A、B、C三点在同一个圆上.人教版九年级上册数学第83页练习答案1.解:由题意知AE=4cm,,OE=3cm. 在Rt△AOE中,AO =√(OE^2+AE^2 ) =√(3^2+4^2 ) = 5 cm,即⨀O的半径为5cm.2.证明:∵OE"⊥" AC于E,OD⊥AB于D,AC=AB,∴AE=AD. ∵OE"⊥" AC, OD⊥AB,AC⊥BA,∴四边形ADOE是矩形.又∵AE=AD,∴四边形ADOE是正方形.人教版九年级上册数学第85页练习答案1.解:(1)∠AOB=∠COD ⌒AB =⌒CD(2)∠AOB=∠COD AB=CD(3)⌒AB =⌒CD AB=CD(4)OE=OF. 理由如下:∵OA=OB=OC=OD,AB=CD,∴△AOB ≌△COD . ∵OE⊥AB, OF⊥CD, ∴1/2AB•OE=1/2OD•OF, ∴OE=OF.2.解:∵∠COD=35〬,⌒BC =⌒CD =⌒DE,AB是⊙O的直径,∴⌒AE 的度数= 180〬-3 ×35〬=180〬-105〬=75〬.∴∠AOE=75〬.人教版九年级上册数学第88页练习答案1.解:图(3)中的角是圆周角.2.解:∠1=∠4,,2=∠7,,3=∠6,∠5=∠8.同弧所对的圆周角相等.3.证明:∵∠AOB=2∠BOC,∴⌒AB =2⌒BC ,∴∠ACB=2∠BAC.4.解:答案不唯一,如图37所示,仅给出两种方法.5.解:∵∠B=110〬,∴∠ADC=70〬,∠ADE=180〬-∠ADC=180〬-70〬=110〬.人教版九年级上册数学第95页练习答案1.解:如图47所示,阴影部分即为所求(包括边界).2.解:小明投出的铅球落在6m~7m区域,小丽投出的铅球落在5m~6m区域.3.解:使点A,点B落在圆上,那么CD一定经过圆心,连续作两次,使两次中的CD相交,那么这两次CD的交点即为圆心.人教版九年级上册数学第96页练习答案1.解:半径=13/2=6.5(cm).(1)∵6.5cm>4.5cm, ∴直线与圆相交,有两个公共点.(2)∵6.5cm=6.5cm, ∴直线与圆相切,有一个公共点.(3)∵8cm>6.5cm, ∴直线与圆相离,无公共点.人教版九年级上册数学第96页练习答案1.解:半径=13/2=6.5(cm).(1)∵6.5cm>4.5cm, ∴直线与圆相交,有两个公共点.(2)∵6.5cm=6.5cm, ∴直线与圆相切,有一个公共点.(3)∵8cm>6.5cm, ∴直线与圆相离,无公共点.人教版九年级上册数学第98页练习答案1.证明:∵AT=AB,∠ABT=45〬,∴∠T=∠ABT=45〬,∴∠TAB=90〬,∴AB⊥TA. 又∵AB是⨀O的直径,∴AT是⨀O的切线.2.解:l₁//l₂.证明如下:∵直线l₁,l₂是⨀O的切线,切点分别为A,B,AB为直径,∴AB⊥l₁,AB⊥l₂,∴l₁//l₂.人教版九年级上册数学第100页练习答案1.解:∵点O为内心,∴点O是三角形内角平分线的交点,∴∠BOC=180〬-((∠ABC)/2+(∠ACB)/2)=180 〬-(50〬+75〬)/2=117.5〬.2.解:设AB=c,BC=a,AC=b,则a+b+c=l,∴△ABC的面积S=1/2ra+1/2rb+1/2rc =1/2 r(a+b+c)= 1/2 rl.人教版九年级上册数学第106页练习答案1.解:矩形、菱形都不是正多边形,只有正方形是正多边形.因为正多边形不仅各边相等,而且各角也相等.2.解:各边相等的圆内接多边形是正多边形,因为各边相等的圆内接多边形各个内角也相等.各角相等的圆内接多边形不一定是正多边形,例如矩形.3.解:如图50所示,O为圆心,连接BO,连接AO并延长交BC于D,则AD ⊥BC, ∠OBD=30〬.在 Rt△OBD中,BD=√(R^2-〖(R/2)〗^2 )=√3/2R, ∴边长为√3R,边心距OD=R/2,S△ABC=1/2×√3R×(R/2+R)=(3√3)/4R².如图51所示,O为圆心,连接BD,则BD必过点O,过O作OE ⊥BC于E,在Rt△BCD 中,BD=2R, ∴BC=√(4R²/2)=√2R,边心距OE=DC/2=(√2 R)/2,S正方形ABCD=√2 R•√2 R=2R².人教版九年级上册数学第108页练习答案1.操作提示:(1)画一个半径为2cm的圆.(2)把这个圆五等分.(3)依次连接各分点得正五边形.(4)连接正五边形的对角线可画出一个五角星.2.提示:第一幅图将圆周三等分,第二幅图将圆周六等分,第三幅图将圆周五等分.人教版九年级上册数学第113页练习答案1.解:不一定.2.解:由l=nπR/180,可知R=180l/nπ=(180 ×12)/81π≈8.5(m).3.解:S△ABC=1/2a√(a^2-〖(a/2)〗^2 )=√3/4a².S扇形FBD=60/360•π•(a/2)²=1/6 π•a²/4=πa²/24.由题意知S扇形EAF =S扇形DBF=S扇形DCE, ∴S 阴影=S△ABC-3S扇形FBD=√3/4a²-3•πa²/24=√3/4a²-πa²/8.人教版九年级上册数学第114页练习答案1. 解:设它的侧面展开图的圆心角为θ〬,弧长为l, 则π•80= (θπ×90)/180,∴θ=160,故它的侧面展开图的圆心角为160〬. ∵S侧面积=πrl=π×40 ×90=3600π(cm^2) , ∴S全面积=S侧面积+S底面积=3600π+π× 40²=5200π(cm²).2. 解:∵做一个圆锥形烟囱帽至少需要铁皮π×40× 50=2000π(cm^2 ),∴做100个这样的烟囱帽至少需用铁皮的面积为100×2000π(cm²),200000πcm²=20πm²≈62.8m².人教版九年级上册数学习题24.1答案1.已知:如图38所示,在⨀O中,AB为直径,CD为⨀O的任意一条弦(不是直径的弦).求证:AB>CD.证明:连接OC,OD,在△OCD中,OC+OD>CD,即AB>CD.2.解:(1)∵OA,OB是⨀O的半径,∴OA=OB=50mm,又∵AB=50mm,∴OA= OB =AB,∴△AOB是等边三角形,∴∠AOB=60〬(2)过点O作OC⊥AB,垂足为点C,如图39所示,则∠OCA=90〬,由垂径定理得,AC=CB=1/2AB,∵AB=50mm,∴AC= 25mm.在Rt△OAC中,OC²=OA²-AC²=50²-25²=25²×3, ∴OC= √(25²×3) = 25√3 (mm),即点O到AB的距离是25√3mm.3. 解:∵⌒AB =⌒AC , ∴AB=AC, ∴∠B=∠C=75〬,∴∠A=180〬-75〬-75〬=30〬.即∠A的度数是30〬.4. 解:⌒AB =⌒CD ,证明如下:∵AD=BC,∴⌒AD =⌒BC ,∴⌒AD +⌒AC =⌒BC +⌒AC ,即⌒DC = ⌒AB .5. 解:如图40所示,连接OC . ∵ OA⊥BC , ∴ =⌒AB , ∴∠COA=∠AOB ,∵∠AOB =50〬,∴∠COA=50〬,∴∠ADC=1/2∠AOC=1/2×50〬=25〬,即∠ADC=25〬.6.解:第二个(即中间的)工件是合格的,理由是90〬的圆周角所对的弦是直径.7.已知:如图41所示,四边形ABCD为⨀O内接平行四边形,求证:◇ABCD为矩形.证明:四边形ABCD为平行四边形,∴∠A=∠C.又∵四边形ABCD内接于⨀O,∴∠A+∠C=180〬,∴∠A=∠C=90〬,∴◇ABCD为矩形.8.解:如图42所示,连接OC,设⨀O的半径为r,∵M为CD的中点,∴OM⊥CD,∴CM=1/2CD=1/2×4=2cm. 在Rt△CMO中,OC²-OM²=CM²,即r²-(6-r)²=2², r ²-(36-12r+ r²)=4,12r=40,r=10/3,∴⨀O的半径为10/3 cm.9.证明:如图43所示,过点O作OP⊥AB,垂足为点P,由垂径定理可知PA=PB,PC=PD,∴PA-PC=PB-PD,即AC=BD.10.解:分两种情况讨论.①当AB、CD在点O的同侧时,如图44(1)所示,过点O作EF⊥AB,垂足为P₁,交⨀O于点E、F,交CD于P₂. ∵CD//AB,∴CD⊥EF,由垂径定理可知AP₁=BP₁=1/2AB=24×1/2=12(cm). CP₂=DP₂=1/2CD=5(cm). 连接OA,OC. 在Rt△AOP₁中,P₁O ²=OA²-AP₁²,OA=13cm,AP₁=12cm,∴P₁O ²=13²-12²=25 ,∴P₁O=5cm, 同理,OP₂=√(OC^2-CP₂²)=√(〖13〗^2-5^2 )=12(cm), ∴P₁P₂=OP₂ - OP₁=12 -5=7(cm). ②当AB、CD在点O的两侧时,如图44(2)所示,与AB、CD在点O 的同侧时的解法类似,可得OP₁=5cm , OP₂=12cm, ∴P₁P₂= OP₁+OP₂=5+12=17(cm) , 即AB与CD的距离为7cm或17cm.11.证明:∵AB//CD,⌒AC =⌒BD . 又∵MN是AB的垂直平分线,则有,MN过圆心O,是直径,∴⌒AM =⌒BM , ⌒AM -⌒AC =⌒BM -⌒BD ,即⌒CM =⌒DM , ∴MN垂直平分CD.12.∵OC⊥AB,AB=300,∴由垂径定理,可知AD=DB=1/2AB=150,又∵CD=45,∴OD=OC-CD=OC-45,又∵OA,OC均为⨀O的半径,∴OA=OC,在Rt△AOD中,OA²=OD ²+AD²,∴OC²=(OC-45)²+150²,∴OC=272.5(m). 答:这段弯路的半径是272.5m.13.证明:连接OC,∵C是⌒AB 的中点,∴⌒AC =⌒BC ,∴∠AOC=∠BOC,又∵∠AOB=120〬, ∴∠AOC=∠BOC=1/2×120〬=60〬. 又∵OA=OC=OB, ∴△AOC与△BOC均是等边三角形,∴OA=AC=OC, BO=OC=BC, ∴OA=AC=BC=OB, ∴四边形OACB 是菱形.14.解:△ABC是等边三角形,证明如下:∵∠APC=∠CPB=60〬,∴∠BAC=∠ABC=60〬,∵∠ACB=180〬-∠BAC-∠ABC = 180〬-60〬-60〬=60〬, ∴∠ABC=∠ACB=∠BAC, ∴AB=BC=CA,∴△ABC是等边三角形.15.解:OM<ON. 理由如下:如图45所示,连接OC,OA,则OA=OC. ∵ON⊥CD,OM ⊥AB,∴CN=1/2CD,AM=1/2 AB,又∵CD<AB, ∴CN<AM, ∴CN²<AM².在Rt△OCN和Rt△OAM中,OM²=OA²-AM², ON²=OC²-CN²,∴OM²<ON²,∴OM<ON.16.解:如图46所示,过点A作AB⊥ON,垂足为B,因为∠QON=30〬,OA=200m,∠OBA=90〬,所以AB=1/2OA=1/2×200=100(m),因为100m<200m,所以居民楼会受到噪音的影响.在MN上找到点C,使AC=200m,又OA=200m,则火车在铁路MN 上沿ON方向行驶到点O处时,居民楼开始受到火车噪音的影响.由勾股定理,得OB²=OA²-AB²=200²-100²=30000,所以OB=100√3(m),同理BC= 100√3(m),所以OC=OB+BC=100√3+100√3=200√3(m),又(200√3÷1000)÷72×3600=10√3≈17.3(s),所以居民楼受噪音影响的时间约为17.3s.17.解:同弧所对的圆外角小于相应地圆周角,因此只要航行中保持∠XPY<∠XZY,就能保证点P在⌒XY 所在的圆外,也就保证了船只不进入浅滩.人教版九年级上册数学习题24.2答案1.解:(1)点P在⨀O内. (2)点P在⨀O上. (3)点P在⨀O外.2.提示:(1)相离. (2)相切. (3)相交.3.解:(1)因为VU是⨀T的切线,U为切点,所以UT ⊥UV,所以∠VUT=90〬.在Rt△UVT中,∠UVT=90〬,UV=28cm, TU=25cm,所以VT²=UV²+TU²,即VT²=28²+25², 所以VT=√(〖28〗^2+〖25〗^2 )=√1409(cm).(2)因为VU与VW均是⨀T的切线,所以∠UVT=∠TVW,∠TWV=90〬. 又因为∠UVW=60 〬,所以∠TVW = 1/2×60 〬=30 〬.在Rt△TVW 中,∠TWV=90〬,∠TVW =30 ,TW=25cm,所以TV=2WT=2×25=50(cm).4.证明:连接OC. ∵OA=OB, ∴△OAB为等腰三角形,又∵CA=CB,∴OC⊥AB. ∵AB经过⨀O的半径OC的外端C,并且垂直于半径OC,∴AB是⨀O的切线.5.证明:连接OP,因为AB是小圆O的切线,P为切点,所以OP⊥AB,又AB是大圆O的弦,所以由垂径定理可知AP=PB.6.解:因为PA,PB是⨀O的切线,所以PA=PB,∠ PAB=∠PBA.又由题意知OA ⊥PA,∠OAB=25〬,所以∠PAB=90〬-25〬=65〬.所以∠P=180〬-2∠PAB=180〬-65〬×2=50〬.7.解:半径为4cm的圆可以做两个,半径为3cm的圆只能作一个,不能作出同时经过A,B两点,且半径为2cm的圆.8.提示:锐角三角形的外心在这个三角形的内部;直角三角形的外心在这个直角三角形的斜边的中点;钝角三角形的外心在这个三角形的外部.9.提示:可以在车轮上任意连接两点,作出它的中垂线,重复一次,则这两条中垂线的交点即为圆心,从而可确定它的半径.10.解:设圆心为O,如图48所示,连接OW,OX,因为YW,YX均是⨀O的切线,W,X 均为切点,所以OW⊥WY,OX⊥XY. 又因为XY⊥WY,所以∠OWY=∠OXY=∠WYX = 90〬,所以四边形OXYW是矩形.又因为OW=OX,所以四边形OXYW是正方形,所以OW=WY=0.65m. 答:这个油桶的底面半径是哦0.65m.11.解:连接OE,OG,则OE ⊥AB,OG⊥CD,又因为AB//CD,所以点E,O,G在同一直线上.由AB,CD,BC均是⨀O 的切线,可得∠BOC=90〬. 在Rt△BOC中,OB=6cm,CO=8cm,所以BC=√(OB^2+OC^2 )=√(6^2+8^2 )=10(cm). 答:BC的长是10cm.12.证明:连接OC, ∵CD为⨀O的切线,C为切点,∴OC ⊥CD. 又∵AD⊥CD∴AD// OC , ∴∠DAC= ∠OCA. ∵OA=OC, ∴∠OAC= ∠OCA. ∴∠DAC=∠CAO,即AC平分∠DAB.13.解:连接O₁B,O₁O₂,O₂A,O₂B. ∵两个圆是等圆,而⨀O ₁经过O ₂,故⨀O ₂过O₁, ∴ O₁A=O₂A=O₁B=O ₂B=O₁O ₂,∴四边形AO ₁BO ₂是菱形,又O₁O ₂= O₁A,∴△O₁A O ₂是等边三角形,∴∠O₁A O ₂=60〬. ∵AB是菱形AO₁BO ₂的对角线,∴∠O₁AB=1/2∠O₁A O ₂=1/2×60〬=30〬.14.解:如图49所示,连接OA,OB,OC,设⨀O 与AB,BC,CA的切点分别为D,E,F,连接OD,OE,OF,则OD ⊥AB,OE ⊥BC,OF ⊥AC,∴ S△ABC=S△AOB+S△BOC+S△AOC =1/2AB•OD +1/2 BC•OE+ 1/2 AC•OF=1/2 AB•r+ 1/2 BC•r+ 1/2 AC•r= 1/2 r(AB+BC+AC)=1/2 r(a+b+c) , 又∵S△ABC= 1/2AC•BC=1/2 ab,∴1/2r(a+b+c)=1/2ab, ∴ r=ab/(a+b+c).人教版九年级上册数学习题24.3答案1.解:填表如下:2.解:如图52所示,连接AC,∵∠D=90〬, ∴AC为直径.在Rt△ACD中,AC=√(a^2+a^2 )=√2 a,∴半径至少为√2/2a.3. 解:正多边形都是轴对称图形.当正多边形的边数为奇数时,对称轴条数与正多边形边数相等,是正多边形顶点与对边中点所在的直线;当正多边形的边数为偶数时,它的对称轴条数也与边数相等,分别是对边中点所在的直线和相对顶点所在的直线.正多边形不都是中心对称图形.当正多边形边数为偶数时,它是中心对称图形,对称中心是正多边形的中心;当正多边形的边数为奇数时,它不是中心对称图形.4. 证明:∵ ABCDE为正五边形,∴ AB=BC=AE , ∠A= ∠B= ∠C. 又∵L,H,I分别为AE,AB,BC边中点,∴AL=AH=BH=BI=IC, ∴△AHL≌△BIH≌△CJI, ∴ HL=HI=IJ . ∠AHL=∠BHI=∠BIH=∠CIJ, ∠LHI=180〬-∠AHL-∠BHI, ∠HIJ=180〬-∠BIH-CIJ, ∴∠LHI=∠HIJ.同理:LK=KJ=IJ=HI=HL, ∠HLK=∠LKJ=∠KJI=∠LHI=∠HIJ. ∴五边形HIJKL是正五边形.5. 解:如图53所示,连接BF,过点A作AG ⊥BF ,垂足为点G, 因为∠BAF=120〬,所以∠BAG=60〬,所以∠ABG=∠30〬.在Rt△ABG中,AB=12cm,∠AGB=90〬,∠ABG=30〬,所以AG=1/2AB=1/2×12=6(cm).由勾股定理,得BG= √(AB^2-AG^2 ) =√(〖12〗^2-6^2 )=6√3(mm),即b=BF=2BG=2×6√3=12√3(mm).答:扳手张开的开口b至少要12√3mm.6. 解:设剪去的小直角三角形的两直角边长分别为xcm,xcm,由题意可知(4-2x)²=x²+x².解得x₁=4+2√2,x₂=4-2√2.因为x<4,所以x=4+2√2不符合题意,舍去,所以x=4-2√2.所以4-2x=4-2(4-2√2)=(4√2-4)cm,即这个正八边形的边长是(4√2-4) (cm),S正八边形=S正方形-4S小三角形=4²-4×1/2•x•x=16-2(4-2√2)²= 16 -2 (24-16√2) =(32√2-32) cm^2. 答:这个正八边形的边长为(4√2-4)cm,面积是(32√2-32)cm².7. 解:①当用48cm长的篱笆围成一个正三角形时,边长为48÷3=16(m),此时 S△=1/2×16×8√3=64√3(m²).②当围成一个正方形时,边长为48÷4=12(m),此时S 正方形=12×12=144(m²).③当围成一个正六边形时,边长为48 ÷6=8 (m),此时S 正六边形=6×1/2 ×8 ×4√3=96√3 (m^2 ).④当围成一个圆时,圆的半径为48/2π = 24/π(m),此时,S圆=π(24/π)^2=576/π(m^2 ).因为64√3<144<96√3<576/π,所以S圆最大. 答:用48cm长的篱笆围成一个圆形的绿化场地面积最大.8. 提示:圆外切正三角形的边长为2√3R;圆外切正四边形的边长为2R;圆外切正六边形的边长为(2√3)/3R.人教版九年级上册数学习题24.4答案1. (1)6[提示:2.5π= (75π×R)/180,R=6.](2)150〬[提示:240π=1/2 ×20π×R,R=24,20π= (nπ×24)/180,n=150.](3)4/3[提示:2πr= (120π×4)/180,r=4/3.]2. 解:这条传送带的长是一个圆的周长与两条平行线段的长度的和,C圆=πd=3π(m),∴传送带的长是3π+10×2=3π+20(m).3. 解:(2 × 3.14 × 6370 × 1000)/(360 ×60)≈1852(m). 答:1n mile 约等于1852米.4. 解:解法1:设图中阴影部分的面积为x,空白部分的面积为y,由图形的对称性可知解得x=1/2 πa²-a².解法2 :S阴影= a²-2[a^2-π( a/2)²] =(π/2-1)a².解法3:S阴影=4×π/2×(a/2)²-a²=(π/2-1)a².5. 提示:当沿BC边所在直线旋转时,得到一个底面半径为3,高为4的圆锥,它的全面积为24π.当沿AC边所在直线旋转时,得到一个底面半径为4,高为3的圆锥,它的全面积为36π.当沿AB边所在直线旋转时,得到两个圆锥的组合体,它的全面积为16.8π.6. 解:3000+2×(90π×1000)/180≈6142(mm).答:图中管道的展直长度约为6142mm.7. 解:由题意可知它能喷灌的草坪是一个形如圆心角为220〬,半径为20m 的扇形,其面积S=(220×π×20²)/360=2200/9 πm².8. 解:由题意可知S贴纸=S扇形BAC-S扇形DAE=(120π•AB^2)/360- (120π•AD^2)/360 =1/3 π(AB²-AD² )=1/3 π[30²-(30-20)²]=800/3 π(cm^2 ). 答:贴纸部分的面积是800/3 πcm^2.9. 解:由圆锥的侧面展开图(扇形)的面积公式S=1/2lR可知所求面积为1/2×32×7= 112(m^2).答:所需油毡的面积至少为112m².10. 解:连接AO,BC,因为∠BAC=90〬,所以BC是⨀O的直径,则BC=1m.因为AB =AC ,所以∠ABC=∠ACB=45〬,∠AOC=90〬,OB=OC可知OA=OC= 1/2 BC=0.5m,由勾股定理,得AC=√(OA^2+OC^2 )=√(〖0.5〗^2+〖0.5〗^2 )=√2/2(m),所以l⌒BC = (90×π×√2/2)/180 =√2/4 π(m) ,S扇形BAC=(90π×(√2/2)²)/360=π/8(m²),所以被剪掉的部分的面积为π×(1/2)²-π/8 = π/8(m^2).设圆锥地面圆的半径为r m,则2πr= √2/4 π,所以r=√2/8(m).答:被剪掉的部分的面积为π/8 m²,圆锥底面圆的半径是√2/8m.人教版九年级上册数学第24章复习题答案1. (1)B[提示:连接OA, ∵CD=10,∴ OA=5.又∵OM:OC=3:5,∴OM= 3 . AM = √(OA^2-OM^2 )=√(5^2-3^2 )=4,∴AB=2AM=2×4=8(cm).(2)D [提示:∠C=∠APD-∠A=75〬-40〬=35〬,∠B=∠C=35〬.](3)B[提示:连接OA, OC ,∵PA与PB分别于⨀O相切,∴∠PAO=∠PBO=90〬,又∵∠P=70〬,∴∠AOB=110〬,∴∠C=1/2∠AOB=1/2×110〬=55〬.] (4)C(5)B2. 证明:连接OC,因为⌒AC 和⌒CB ,所以∠AOC=∠COB.因为D、E 分别是半径OA,OB的中点,所以OD=1/2OA,OE=1/2OB.又因为OA=OB,所以OD=OE.在△CDO和△CEO中,所以△CDO≌△CEO(SAS),所以CD=CE.3. 解:因为OA=OB,所以∠A=∠B.又因为∠AOB=120〬,所以∠A=∠B=1/2(180〬-120〬)=30〬. 过O作OC⊥AB,垂足为C,由垂径定理,得AC=CB=1/2AB,在Rt△ACO中,∠OCA=90〬,∠A=30〬,OA=20cm,所以OC=1/2OA=10(cm),CA=√(OA^2-OC^2 )=√(〖20〗^2-〖10〗^2 )=10 √3(cm),所以AB=2AC=30√3(cm),所以S△AOB=1/2AB•OC=1/2×20√3×10=100√3(cm²),即△AOB的面积是100√3 cm².4. 解:连接OC,则OC⊥AB,因为OA=OB,所以AC=CB=1/2AB,又因为AB=10cm,所以AC=CB=5cm.因为⨀O的直径为8cm,所以OC=1/2×8=4(cm),在Rt△AOC中,∠OCA=90〬,OC=4cm,AC=5cm,所以OA=√(AC^2+OC^2 ) =√(5^2+4^2 ) = √41 (cm),即OA的长为√41cm.5. 解:过点E作EG ⊥x轴,垂足为G,连接OE,则△OED是正三角形, ∴∠EOG=60〬 ,∴∠OEG=30〬,又∵OE=2cm,∠OGE=90〬,∴OG=1/2OE=1cm,∴ EG=√(OE^2-OG^2 ) =√(2^2-1^2 )=√3(cm),∴点E的坐标为(1,√3),有由题意知点D的坐标为(2,0)结合正六边形的对称性可知A(-2,0),B(-1,-√3),C(1,-√3),F(-1,√3).故这个正六边形ABCDEF各个顶点的坐标分别为A(-2,0),B(-1,-√3),C(1,-√3),D(2,0),E(1,√3 ) ,F(-1,√3).6.解:L₁和L₂的关系是L₁=L₂.理由如下:设n个小半圆的直径分别为d1,d2,d3,…,dn,大半圆的直径为d大,则有d1+d2+d3+…+dn=d大,∴L2= 1/2(d1π+d2π+d3π+…+dnπ)= 1/2(d1+d2+d3+…+dn)π=1/2 d大π,又∵L₁= 1/2d 大π, ∴L₁=L₂.7 解:由三角形内角和定理知∠A+∠B+∠C=180〬,设∠A=α〬,∠B=β〬, ∠C=γ〬, ∴α+β+γ=180〬.∴S阴=(α×π×0.5²)/360+(β×π×0.5²)/360+(γ×π×0.5²)/360=(π×0.5²)/360(α+β+γ)=(π×0.25)/360×180=0.125π(cm²).即阴影部分面积之和为0.125πcm².8.解:提示:找出三段弧所在圆的圆心即可.9.解:点E,F,G,H四点共圆,圆心在点O处.理由如下:连接HE,EF,FG, GH,OH, OE, OF, OG.∵E,F,G,H分别为AB,BC,CD,DA边上的中点,,∴, ∴四边形EFGH是平行四边形,同时,由菱形ABCD的对角线互相垂直,可知:∠HEF=90〬,∴四边形EFGH是矩形,∴OH=OE=OF=OG, ∴E,F,G,H 四个点在同一个圆上,圆心为点O .10.解:连接OA,过O作OC⊥AB,垂足为C,延长OC交⨀O 于点D,由垂径定理可知AC=CB=1/2AB=1/2×600=300(mm),在Rt△OAC中,∠OCA=90〬,OA=1/2×650= 325(mm),所以OC=√(OA^2-AC^2 )=√(〖325〗^2-〖300〗^2 )=√(25²×5²)=125(mm). 答:油的最大深度为200mm.11.解:甲将球传给乙,让乙射门好.理由如下:如图54所示,设AQ交⨀O于点M ,连接PM,则∠B=∠PMQ,又因为∠PMQ是△PAM的一个外角,由外角性质,得∠PMQ >∠A,所以∠B>∠A,所以仅从射门角度考虑,甲将球传给乙,让乙射门好.12.提示:可以证明“如果圆的两条切线互相平行,那么连接两切点所得线段是直径”,这就是利用图示方法可以测量圆的直径的道理.13.证明:连接BE,∵E是△ABC的内心,∴∠ABE=∠EBC, ∠BAE=∠DAC, ∠EBD=∠EBC+∠CBD, ∠BED=∠ABE+∠BAE.又∵∠CBD=∠DAC,∴∠CBD=∠BAE,∴∠DBE=∠BED,∴DE=DB.14.解:这个锚标浮筒的表面积为S=S圆柱侧面+2S圆锥侧面=800×π×800+2(1/2×800×π×√(〖300〗^2+〖400〗^2 ))=64000π+40000π=1040000π(mm ²),则电镀这样的锚标浮筒100个,共需锌0.11×(1040000π÷106×100)=0.11×104π =11.44π(kg).答:需用锌11.44πkg.15.解:过点D作DF⊥BC于F.由切线性质可知DE=DA=x,CE=CB=y.∵AB ⊥AD, AB ⊥BC,DF ⊥BC,∴四边形ABFD是矩形,∴DF=AB=12,FC=y-x,又DC=y+x,在Rt△DCF中,DF²+FC²=DC²,∴12²+(y-x)²=(y+x)²,∴y=36/x.由△DFC 的三边关系可知(y+x)-(y-x)< 12< (y+x)+(y-x),∴x<6,从而可知x 的取值范围是0<x<6,∴y与x的函数关系式是y=36/x(0<x<6),其图像如图55所示.16.证明:连接AD,则AD⊥BC.易证O在AD上,连接DF.因为G,F,D分别为AB,AC,BC 的中点,所以GF■(〃@=)BD.所以四边形BGFD为平行四边形,∠ B+∠BGF=180〬.因为∠A=36〬,AB=AC,所以∠B=1/2(180〬-∠A)= 1/2×(180〬-36〬)=72〬,所以∠BGF=180〬-∠B=180〬-72〬=108〬.同理可证:∠GFE =108〬.因此易得⌒EF = ⌒GH , 所以EF=HG.因为AD为⨀O的直径所在的直线,所以AD等分⨀O,AD ⊥GF.所以⌒DH =⌒DE .所以DH=DE.因为四边形GHDF 为⨀O的内接四边形,所以∠HGF+∠HDF=180〬.所以∠HDF=180〬-∠HGF=180〬-108〬=72〬.因为四边形BDFG 为平行四边形,所以BD//DF.所以∠GHD+∠HDF=180〬,所以∠GHD=180〬-∠HDF = 180〬-72〬=108〬,.同理可得∠FDE=108〬.所以∠HDE=540〬-108〬×4=108〬.因为∠BHD+∠GHD=180〬,所以∠BHD=180〬-108〬=72〬 . 因为∠B =72〬,所以∠B=∠BHD.所以BD=DH.所以DH=GF=DE.因为FD=FC,∠C=72〬,所以∠DFC = 180〬-72〬×2=36〬.因为∠DEF=108〬,所以∠EDF=180〬-∠DEF-∠DFC= 180〬-108〬-36〬=36〬.所以∠DEF=∠DFC,所以EF=ED.所以 EF=DE=DH =GH =GF.所以五边形DEFGH是正五边形.。
2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)
![2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)](https://img.taocdn.com/s3/m/654ab0b1ff00bed5b8f31d39.png)
2020年人教版九年级数学上册课后练习本一元二次方程实际问题-握手贺卡比赛问题一、选择题1.在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x人参加这次聚会,则列出方程正确的是( )A.x(x-1)=10B.x(x-1)=2×10C.x(x+1)=10D. x(x+1)=2×102.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次。
若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x-1)=253C.2x(x-1)=253D.x(x-1)=253×23.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x-1)=10B. =10C.x(x+1)=10D. =104.九年级某班在期中考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1190张卡片,设全班有x名学生,根据题意列出方程为( )A.x(x-1)=2×1190B.x(x+1)=2×1190C.x(x+1)=1190D.x(x-1)=11905.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=10356.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出方程是( )A.x(x+1)=182B.x(x-1)=182C.x(x+1)=182×2D.x(x-1)=182×27.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=90二、填空题8.在一次聚会中,每两个参加聚会的人都相互握了一次手,一共握了15次手,则参加本次聚会的共有人.9.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是 .10.一次聚会中每两人都握了一次手,所有人共握手10次,则有____人参加聚会。
九年级上人教版数学练习册答案.pdf
![九年级上人教版数学练习册答案.pdf](https://img.taocdn.com/s3/m/882e427a6294dd88d1d26b8a.png)
1 数学·九年级上·人教版第二十一章 二次根式第1节 二次根式1.C 2.B 3.A 4.D 5.A 6.<槡7.7 犪2+犫槡28.(1)狓≥-1;(2)任何实数;(3)犿≤0;(4)犿=2;(5)犪>0;(6)犪>39.(1)80;(2)74;(3)910.4 11.1或-1 12.2犫+犮-犪第2节 二次根式的乘除1.D 2.C 3.C 4.狓≥25.48 32 306.8狓槡狔狔 --槡犪 -槡犫犪7.-1-槡犪 8.< <9.(1)槡-11;(2)(1-犪)1-槡犪;(3)-2犪犫10.(1)-2;(2)2槡11.306cm212.(1)槡117;(2)槡82;(3)槡5513.014.提示:平方后比较,槡槡2+6<槡槡3+5.第3节 二次根式的加减练习一(加减运算)1.B 2.03.(1)槡-142;(2)285槡10;(3)169槡34.(1)0;(2)105.(1)槡246;(2)槡槡6-56.(1)2;(2)槡-657.1槡8.-29.114练习二(混合运算)1.D 2.B 3.A 4.3 45 槡5.326.(狓2+3)(狓+槡3)(狓-槡3)槡7.1-468.(1)狓=-1;(2)狓≤0槡9.1+310.甲的对,被开方数根要大于零11.200112.∵犪槡-4+3犪-槡犫=0而犪槡-4≥0,3犪-槡犫≥0∴犪槡-4=0,且3犪-槡犫=0解之得 犪=4,犫=12∴犪2+犫2=42+122=160.13.提示:作一个腰为1的等腰直角三角形犃犅犆,以其斜边犃犆为直角边作直角三角形犃犆犈,其中犈犆=1.则以点犃为圆心,以直角三角形犃犆犈的斜边长为半径画弧,它与数轴正半轴的交点即为表示槡3的点,即可找到槡3+1的点.图12 人教版·数学·九年级(上)第二十二章 一元二次方程第1节 一元二次方程1.4狓2-5狓+3=0 4 -5 32.D 3.C 4.C 5.B6.狓2+2狓-1=0.7.设最小的整数为狀,则狀2+狀-272=0.8.设这个人行道的宽度为狓m,则(24-2狓)(20-2狓)=32.9.设中粳“6427”稻谷的出米率的增长率为狓,则稻谷产量的增长率为2狓.根据题意,得500(1+2狓)·70%(1+狓)=462,化简可得:50狓2+75狓-8=0.10.(1)设11、12月的平均月增长率为狓,则100(1+狓)+100(1+狓)2=231;(2)1100吨.11.设最短的直角边长为狓,则长直角边为狓+14,可得狓(狓+14)=120.12.设兔舍平行于旧墙的长为狓m,则宽为12(35-狓)m.根据题意,得狓·12(35-狓)=150,化简得:狓2-35狓+300=0,解得狓1=15,狓2=20.第2节 降次———解一元二次方程练习一1.B 2.C3.(1)狓1=2,狓2=4;(2)狓1=2,狓2=10.4.(1)狓1,2=1±槡63;(2)狓1=8,狓2=-193.5.(1)狓1=0,狓2=2;(2)狓=56.狓1=-2,狓2=1 7.1s8.13±槡347≈32分9.4或1.0 10.8,911.若一元二次方程犪狓2+犫狓+犮=0的两个根是狓1、狓2,则二次三项式犪狓2+犫狓+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都运用的是配方法.(2)第一种方法出现分式犫2犪,配方比较繁;两边开方时分子、分母都出现“±”,相除后为何只有分子上有“±”,不好理解;还易误认为4犪槡2=2犪.所以,第二种方法好.13.(1)狓2+7狓+6=(狓+1)(狓+6);(2)狓2-7狓-60=(狓-12)(狓+5);(3)狆2+7狆-18=(狆+9)(狆-2);(4)犫2+11犫+28=(犫+4)(犫+7).14.(1)犿1=-1,犿2=-2;(2)狓1=1,狓2=6;(3)犿1=3,犿2=4;(4)狓1=4,狓2=2.练习二1.B 2.0或-2 3.0 -1 14.145.13 6.2.5m7.设三、四月份平均每月增长的百分率为狓,依题意得60×(1-10%)(1+狓)2=96.解得狓=13≈33.3%.8.设2007年年获利率为狓,则2008年的年获利率为(狓+0.1),100(1+狓)(1+狓+0.1)=156,解得狓=20%,0.1+狓=30%.9.因为8<狓<14,通过估算可知狓=10.10.设应挖狓m,则(64-4狓)(162-2狓)=9600,解得狓=1m.11.A 12.C 13.C 14.D 15.C16.2 17.10 18.犽>119.(1)方程无实数根;(2)方程有两个不相等的实数根;20.(1)答案不唯一.根据一元二次方程根的判别式,只要满足犿<5的实数即可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;(2)答案不唯一.要依赖(1)中的犿的值,由根与系数的关系可得答案.α=0,β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)=9犿2-6犿+1=(3犿-1)2 3 参考答案与提示要使狓1≠狓2,∴Δ>0,得犿≠13.另解:由狓2+(犿-1)狓-2犿2+犿=0得狓1=犿,狓2=1-2犿,由狓1≠狓2解得.(2)∵狓1=犿,狓2=1-2犿,狓12+狓22=2∴犿2+(1-2犿)2=2解得犿1=-15,犿2=1.另解:也可用韦达定理来解.22.(1)狓1=-1,狓2=-1,狓1+狓2=-2,狓1·狓2=1(2)狓1=槡3+132,狓2=槡3-132,狓1+狓2=3,狓1·狓2=-1(3)狓1=1,狓2=-73,狓1+狓2=-43,狓1·狓2=-73猜想:犪狓2+犫狓+犮=0的两根为狓1与狓2,则狓1+狓2=-犫犪,狓1·狓2=犮犪,应用:另一根为槡2-3,犮=123.依题意有:狓1+狓2=-2(犿+2) ①狓1狓2=犿2-5②狓12+狓22=狓1狓2+16③Δ=4(犿+2)2-4(犿2-5)≥0烅烄烆④由①②③解得:犿=-1或犿=-15,又由④可知犿≥-94,∴犿=-15(舍去),故犿=-1.24.由一元二次方程根与系数关系可知:狓1+狓2=2犽-3,狓1·狓2=2犽-4.(1)狓1+狓2>0,狓1·狓2>0即2犽-3>0,2犽-4>0所以犽>2;(2)狓1+狓2>0,狓1·狓2<0即2犽-3>0,2犽-4<0所以32<犽<2;(3)不妨设狓1>3,狓2<3,则狓1-3>0,狓2-3<0,即(狓1-3)(狓2-3)<0所以犽>72.第3节 实际问题与一元二次方程练习一1.C 2.A3.设这两年平均增长的百分率为狓,则8(1+狓)2=9,解得狓≈6%.4.设三、四月份的平均增长率为狓,则1000(1-10%)(1+狓)2=1296,解得狓=20%.5.由题意得10-狓()102=25%,解得狓=5.6.提示:设金边宽为狓cm,则(60+2狓)(40+2狓)-60×40=1375×60×40.7.设垂直墙面的边长为狓m,则另一边长为(33-2狓)m,列方程得狓(33-2狓)=130,解得狓1=6.5,狓2=10.当狓=6.5时,33-2狓=20>18不符合要求,舍去;当狓=10时,33-2狓=13<18符合要求.故花坛的长为13m,宽为10m.8.(1)∵四月份用电180度,交电费,恰好为每度0.2元,∴四月份用电没超过犪度,五月份用电250度,交电费56元,每度超过0.2元.∴五月份用电超过了犪度.(2)由题意得,(250-犪)·犪625+0.2犪=56整理得,犪2-375犪+56×625=0即(犪-200)(犪-175)=0,∴犪1=200,犪2=175又∵犪≥180,∴犪=200.9.(1)18000千克;(2)在果园出售,毛收入为18000×1.1=19800元;在市场出售,毛收入为18000×1.3-18×8×25=19800元;虽然,两个收入相同,但市场出售还要费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)[1+(1+狓)+(1+狓)2]=57000,解得狓=0.5=50%.4 人教版·数学·九年级(上)10.(1)狔=(30-2狓)狓;(2)10,8;(3)不是;狓=7.5时,最大为112.5m2.练习二1.设甬路宽度为狓m,根据题意得(40-2狓)(26-狓)=144×6,解得狓1=2,狓2=44(不合题意,舍去),所以甬路宽为2m.2.根据题意可得方程(50-2-狓)×(30-2狓)=50×302,化简可得 狓2-63狓+345=0,解得: 狓1≈6.06,狓2=56.94,经检验,狓2不合题意舍去,所以狓的值约取6.06m.图23.设狓s后两只蚂蚁与犗点组成的三角形面积等于450cm2.(1)若这只蚂蚁在犗犃上,根据题意得12(50-2狓)·3狓=450,解得狋1=10,狋2=15.(2)若这只蚂蚁在犗犅上,根据题意得12(2狓-50)·3狓=450,解得狋1=30,狋2=-5(不合题意,舍去).所以分别在10s,15s,30s时两只蚂蚁与犗点组成的三角形面积等于450cm2.4.设有狀个人参加聚会,则在这狀个人中任何1个人,他(她)都要与除自己以外的(狀-1)个人握手;又因为甲与乙握手与乙与甲握手是同一次握手,所以握手总次数为12狀(狀-1).所以,狀(狀-1)=56.和这个问题所列方程相同的实际问题很多,如:(1)狀个村庄,每两个之间都有一条公路,若有人统计共有28条公路,问共有多少个村庄?(2)在某两地的铁路线上,共有28个不同的火车站,问这条铁路共有多少个不同的票价?(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表队参加?(4)空间狀个点,任意三点不共线,可以连28条不同的直线,求空间共有多少个点?(5)平面上有28条直线,若任意两条不平行,任意三条不共点,则有多少个交点?和这个问题列方程的思想一样的实际问题很多,如:(1)春节前后,几个人互打电话问候,若共打了20次电话,问共有几人?(2)元旦前后,几个同学互相赠送贺年卡,若共赠送了20张贺年卡,问共有几人?(3)在某两地的铁路线上,共有20个不同的火车站,问这条铁路共需设计多少个不同的火车票?5.(1)由题意设2月,3月每月增长的百分率为狓,则25[1+(1+狓)+(1+狓)2]=91,解得狓=0.2=20%.即2月、3月份每月平均增长的百分率为20%.(2)显然,3月份的生产收入为25×(1+0.2)2=25×1.44=36(万元)设治理狀个月后所投资金开始见效,则有91+36(狀-3)-111≥20狀,狀≥8.即治理8个月后所投资金开始见效.6.设商品降低了狓个100元,则优惠价是(3500-100狓)元,每个商品的利润是[(3500-100狓)-2500]元,销售量为(8+2狓)个,由题意得[(3500-100狓)-2500](8+2狓)=8×(3500-2500)(1+12.5%),解得狓1=1,狓2=5.所以,优惠价应定为3000元或3400元.到底定为多钱,要视具体情况而定.7.(1)70,4,2007.(2)设2009年和2010年两年绿地面积的年平均增长率为狓,根据题意,得70(1+狓)2=84.7.整理后,得(1+狓)2=1.21.解这个方程,得狓1=0.1,狓2=-2.1(不合题意,舍去).故所求平均增长率为10%.第二十三章 旋 转第1节 图形的旋转1.C 2.B 3.D 4.A 5 参考答案与提示5.相同 相等 旋转中心6.45° 90° 7.犅犆犇 犆 60°8.底角是60°,腰与底相等的等腰梯形9.图略 10.五角星图311.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆槡=3m.(2)画出犃点经过的路径,如图4所示.图4∵∠犃犅犃1=180°-60°=120°,犃1犃2=犃犆槡=3m,∴犃点所经过的路径长=120180×π×槡2+3=43π槡+3≈5.9(m).第2节 中心对称1.B 2.C 3.C 4.C5.关于原点对称6.3 7.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)(2)将得到的这组图形以一条边的中点为旋转中心旋转.(图6)(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的图形.图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋转90°后或绕点犆逆时针旋转90°后能与正方形犃犅犆犇重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)图8(2)把△犃犅犆绕犃犆的中点犗旋转180°即可(如图9).6 人教版·数学·九年级(上)图9四边形是菱形,平行四边形.13.答案不唯一,下面举出三例,如图10所示.图10第3节 课题学习 图案设计1.左右,上下2.圆心 逆时针 90°3.45°(答案不唯一)4.3 犗 90° 矩形犃犅犉犎 犉犎5.旋转变换,平移变换(答案不唯一)6.平移变换,旋转变换(答案不唯一)7.提示:(1)犃犉=犆犈;(2)两次旋转变换(答案不唯一)8.图案如图11所示,四边形犈犗犆犎的面积是4cm2.图119.(1)平移后的小船如图12所示.图12(2)如图12所示,点犃′与点犃关于直线犔成轴对称,连接犃′犅交直线犔于点犘,则点犘为所求.10.答案不唯一,下面举出两例(如图13所示).图1311.略第二十四章 圆第1节 圆练习一1.A 2.B 3.A槡4.63 5.306.50° 7.8 8.200°9.50° 10.15°11.64° 12.30° 13.︵犅犇的中点14.以犕为圆心,以大于犕到⊙犗的最小距离且小于犕到⊙犗的最大距离为半径画圆,与⊙犗的交点即分别为犃、犅.15.1cm或7cm 16.258cm槡17.35cm18.75°练习二1.B 2.C 3.B 4.A 5.96.2.5m7.50° 8.130° 槡9.53cm图1410.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆= 7 参考答案与提示犃犅2+犅犆槡2=32+4槡2=5.当狉=犃犅=3时,⊙犃经过点犅,点犆、犇在⊙犃外;当狉=犃犇=4时,⊙犃经过点犇,点犅在⊙犃内,点犆在⊙犃外;当狉=犃犆=5时,⊙犃经过点犆,点犅、犇在⊙犃内.所以,(1)当狉<3时,点犅、犆、犇均在圆外;(2)当3≤狉<4时,点犅、犆、犇中有两点在圆外;(3)当4≤狉<5时,点犅、犆、犇中只有一点在圆外.12.如图15所示,(1)连结犅犈,则∠犅犈犆=90°.∵犃犅=犅犆,犅犈平分∠犃犅犆,∴∠犃犅犈=∠犆犅犈.图15∴︵犇犈=︵犆犈,∴∠犈犇犆=∠犈犆犇.(2)∵︵犇犈=︵犆犈,∴犇犈=犆犈.∵犃犅=犅犆,犅犈⊥犃犆,∴犃犈=犆犈.∴犃犈=犆犈=犇犈=3cm,犃犆=6cm.在Rt△犃犅犈中,犅犈=犃犅2-犃犈槡2=52-3槡2=4,∵犅犆为⊙犗直径,∴∠犃犈犅=∠犃犇犆=90°.又∠犃=∠犃,∴△犃犅犈∽△犃犆犇,∴犃犅犃犆=犅犈犆犇,即56=4犆犇.∴犆犇=4.8cm.13.(1)∵犃犇为∠犈犃犆的平分线,∴∠犈犃犇=∠犇犃犆.∵四边形犃犅犆犇是圆内接四边形,∴∠犈犃犇=∠犅犆犇.又∵∠犇犃犆=∠犇犅犆,∴∠犅犆犇=∠犇犅犆.∴犅犇=犇犆.(2)补充下列条件中的任意一个,都能使直线犇犉经过圆心.①犅犉=犆犉;②犇犉⊥犅犆;③犇犉平分∠犅犇犆.(理由略)图1614.(1)如图16所示,证明:连结犗犇.∵犃犅是直径,犃犅⊥犆犇,∴︵犅犆=︵犅犇.∴∠犆犗犅=∠犇犗犅=12∠犆犗犇.又∵∠犆犘犇=12∠犆犗犇,∴∠犆犘犇=∠犆犗犅.(2)∠犆犘′犇与∠犆犗犅的数量关系是:∠犆犘′犇+∠犆犗犅=180°.∵∠犆犘′犇+∠犆犘犇=180°,∠犆犘犇=∠犆犗犅,∴∠犆犘′犇+∠犆犗犅=180°.第2节 点、直线、圆和圆的位置关系练习一1.C 2.C 3.C 4.D 5.36.∠犅=∠犆7.∵犃犆=犅犆,∴∠犃=∠犅.∵直线犇犈切⊙犗于点犆,∴∠犃犆犇=∠犅.∴∠犃犆犇=∠犃.∴犇犈∥犃犅.图178.(1)如图17所示,连结犗犆.∵犘犆切⊙犗于点犆,∴∠犘犆犗=90°.∵∠犘犆犅=30°,∴∠犅犆犗=60°.∵犗犅=犗犆,∴△犅犗犆是等边三角形.∴∠犆犅犃=∠犅犗犆=60°.(2)在Rt△犗犆犘中,∵犗犆犗犘=cos∠犅犗犆=12,∴犗犘=2犗犆=6.∴犘犃=犗犘+犗犃=6+3=9.9.证明:如图18所示,连结犗犆.∵犅犆∥犗犘,∴∠犘犗犆=∠犅犆犗,∠犘犗犃=∠犅.∵犗犅=犗犆,∴∠犅犆犗=∠犅.∴∠犘犗犆=∠犘犗犃.8 人教版·数学·九年级(上)图18又∵犗犆=犗犃,犗犘=犗犘,∴△犘犗犆≌△犘犗犃,∴∠犘犆犗=∠犘犃犗.∵犘犃⊥犃犅,∴∠犘犃犗=90°,∴∠犘犆犗=90°∴犘犆是⊙犗的切线.图1910.(1)如图19所示,证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.(2)当犗犃<犗犅时,上述结论成立.当犗犃>犗犅时,上述结论也成立.图20如图20所示,以犗犃<犗犅为例证明如下:证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.11.“△犆犇犙是等腰三角形”还成立.证明:如图21所示,连结犗犆.∵犗犃=犗犆,∴∠犗犃犆=∠犗犆犃.∵∠犗犃犆=∠犘犃犙,∴∠犗犆犃=∠犘犃犙.∵犆犇切⊙犗于犆点,∴∠犗犆犇=90°.图21∴∠犇犆犙+∠犗犆犃=90°.∴∠犇犆犙+∠犘犃犙=90°.在Rt△犙犘犃中,∠犙犘犃=90°,∴∠犘犃犙+∠犙=90°.∴∠犇犆犙=∠犙.∴犇犙=犇犆.即△犆犇犙是等腰三角形.练习二1.B 2.A 3.2或6 4.30°5.14π犪2 6.75° 7.68.提示:连结三个圆的圆心构成等边三角形.最高点到地面的距离是2+槡3.图229.证明:如图22所示,延长犆犗2交⊙犗2于点犉,交犇犈于点犌,连结犃犅、犅犉.在⊙犗2中,∠犅犉犆=∠犅犃犆.∵四边形犃犅犈犇是⊙犗1的内接四边形,∴∠犅犃犆=∠犈.∴∠犅犉犆=∠犈.∵犆犉是⊙犗2的直径,∴∠犉犅犆=90°.∴∠犅犆犉+∠犅犉犆=90°.∴∠犅犆犉+∠犈=90°.∴∠犆犌犈=90°,∴犗2犆⊥犇犈.图2310.证明:如图23所示,连接犕犖、犖犃,连接犅犕并延长交犆犇于点犈.∵⊙犕与⊙犖外切于犘点,∴犕犖经过点犘.∴∠犅犘犕=∠犃犘犖.∵犕犅=犕犘,∴∠犅犘犕=∠犅.∵犖犃=犖犘,∴∠犃犘犖=∠犘犃犖.∴∠犅=∠犘犃犖.∴犅犈∥犖犃.∵犃犇切⊙犖于点犃,∴犖犃⊥犃犇. 9 参考答案与提示∴犅犈⊥犃犇,即犅犈⊥犆犇,∴︵犅犆=︵犅犇.图2411.(1)如图24所示,连结犗犙.∵犚犙是⊙犗的切线,∴∠犗犙犘+∠犚犙犘=90°.∵犗犃⊥犗犅,∴∠犗犘犅+∠犅=90°.∵犗犅=犗犙,∴∠犗犙犘=∠犅.∴∠犚犙犘=∠犗犘犅=∠犚犘犙.∴犚犘=犚犙.(2)延长犅犗交⊙犗于点犆.连结犆犙.∵犅犆是⊙犗的直径,∴∠犅犙犆=90°.∵犗犃⊥犗犅,∴∠犅犗犘=90°.∴∠犅犙犆=∠犅犗犘.又∵∠犅=∠犅,∴△犅犙犆∽△犅犗犘.∴犅犙犅犗=犅犆犅犘.∵犗犘=犘犃=1,∴犅犗=犃犗=2.∴犅犘=22+1槡2=槡5,犅犆=2犅犗=4.∴犅犙2=4槡5.∴犅犙=槡855.∴犘犙=槡855槡-5=槡355.图2512.(1)∠犅犘犆=∠犆犘犇成立.(2)(1)中的结论仍然成立,如图25所示.过点犘作两圆的公切线犘犕,则∠犕犘犅=∠犃,∠犕犘犆=∠犅犆犘.∴∠犅犘犆=∠犕犘犆-∠犕犘犅=∠犅犆犘-∠犃=∠犆犘犃.∴∠犅犘犆=∠犆犘犇.第3节 正多边形和圆1.C 2.D 3.B 4.2 5.略6.120,槡3,π 槡7.738.学生1:如图26(1),把井盖卡在角度尺间,可测得犃犅的长.记井盖所在圆的圆心为犗,连接犗犅、犗犆,由切线的性质得犗犅⊥犃犅,犗犆⊥犃犆,又,犃犅⊥犃犆,犗犅=犗犆,则四边形犃犅犆犇为正方形,那么井盖半径犗犆=犃犅,这样就可求出井盖的直径.学生2:如图26(2),把角尺顶点犃放在井盖边上某点,记角尺一边与井盖边缘交于点犅,另一边交于点犆(若角尺另一边无法达到井盖的边上,把角尺当直尺用,延长另一边与井盖边缘交于点犆),度量犅犆长即为直径.学生3:如图26(3),把角尺当直尺用,量出犃犅的长度,取犃犅中点犆,然后把角尺顶点与犆点重合.有一边与犆犅重合,让另一边与井盖边交于犇点,延长犇犆交井盖边于点犈,度量犇犈长即为直径.学生4:如图26(4),把井盖卡在角尺间,记录犅、犆的位置,再把角尺当作直尺用,可测得犅犆的长度.记圆心为犗,作犗犇⊥犅犆,犇为垂足,由垂径定理得犅犇=犇犆=12犅犆,且∠犅犗犇=∠犆犗犇.由作图知∠犅犗犆=90°,∴∠犅犗犇=12×90°=45°.在Rt△犅犗犇中,犅犗=犅犇sin45°,这样就可求出井盖的半径,进而求得直径.图2610 人教版·数学·九年级(上)学生5:如图26(5),把角尺当作直尺用,先测得犃犅的长度,记录犃、犅的位置,再量犃犆=犃犅,记录犆的位置,然后测得犅犆的长度.作等腰三角形犅犃犆底边犅犆上的高犃犇,犇为垂足.∵犃犇垂直平分犅犆,∴由垂径定理可求出犃犇,那么,在Rt△犅犇犗中,犗犅2=犅犇2+犗犇2=犅犇2+(犃犇-犃犗)2.设井盖半径为狉,则狉2=犅犇2+(犃犇-狉)2,∵犅犇、犃犇都已知.∴解一元二次方程就可求出井盖的半径狉,这样就可求出井盖的直径.9.(1)a、b、c,a、c;(2)略第4节 弧长和扇形面积练习一1.C 2.B 3.C 4.B 5.A6.23π 7.1练习二1.D 2.1 3.2π4.160° 5.57.32 6.12π犪27.犾=狀π犚180=120π×6180=4π(cm),∵弧长犾等于圆锥的底面周长,即犆=4π,∴底面半径狉=犆2π=2(cm),∴犛底=4π(cm2).8.23π犪2图279.证明:如图27所示,连结犗犘、犗犆,设∠犘犗犆=狀°.由已知得狀π×5180=52π,解得狀=90.∴∠犘犗犆=90°.∴∠犘犅犆=12∠犘犗犆=45°.∵犃犅是直径,∴∠犃犆犅=90°.∴∠犆犕犅=45°.∴∠犘犅犆=∠犆犕犅.∴犕犆=犅犆.10.(1)证明:∵∠犆犗犇=∠犃犗犅=90°,∴∠犃犗犆=∠犅犗犇.又∵犗犃=犗犅,犗犆=犗犇,∴△犃犗犆≌△犅犗犇.(2)犛阴影=犛扇形犗犃犅-犛扇形犗犆犇=2π.11.方法1:仔细观察,不难发现:犃、犅、犆阴影部分面积相等(正方形面积-圆的面积),由四选一型选择题的特点,只能选犇.方法2:因为犃、犅、犆中圆弧的半径均为犪2,犇中圆弧的半径为犪,所以犃、犅、犆、犇的面积分别为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犛犇=犪2-2π犪24-12×犪×[]犪=2犪2-π犪22=犪22(4-π).显然,犇最大.应选犇.图28方法3:因为犃、犅、犆中圆弧的半径均为犪2,所以犃、犅、犆的面积为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犇中圆弧的半径为犪,可将原图形犇中白色区域对角线连结,然后将对角线上方的图沿着逆时针方向旋转90°,重新拼成图28,则犛犇=犪×2犪-π犪22=犪22(4-π).显然,犇最大.应选犇.第二十五章 概率初步第1节 随机事件与概率练习一1.16 2.12 12 3.23 4.145.50.2% 6.必然 7.浅色 8.犃9.B 10.A 11.B 12.B 13.3614.摸到红球、白球、黄球的可能性不相同.因为红球最多,所以摸到红球的可能性最大,而摸到黄球的可能性最小.练习二1.152 2.2% 11 参考答案与提示3.(1)小;(2)一样大;(3)大4.大于 5.大于 6.A 7.A 8.B9.D 10.C11.候车不超过3分钟的可能性较大.12.这个游戏不公平,小明更容易获胜.因为任意把两张卡片上的数字相加,和为奇数的更多.13.(1)108,114,120;(2)不能.第2节 用列举法求概率练习一1.D 2.B 3.C 4.C5.15 6.25 7.118 8.3 2 19.百万分之二10.可以用表格列举所有可能得到的牌面数字之和:共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共出现4次,因此牌面数字之和等于5的概率为25%.11.(1)1个;(2)列举略,两次摸到不同颜色的球的概率为犘=1012=56.练习二1.B 2.D 3.A 4.D5.13 23 6.12 12 17.14 113 1528.14组 1189.(1)篮球:10%+12%+15%+5%=42%,足球:20%+12%+18%+5%=55%,乒乓球:15%+18%+15%+5%=53%;所以开展足球运动会有更多人参与;(2)抽到喜欢乒乓球的可能性较大.10.(1)犘(1等奖)=136;犘(2等奖)=19,犘(3等奖)=16;(2)5000元.第3节 利用频率估计概率1.A 2.C 3.C 4.D5.(1)相同条件 (2)实验的次数(3)不一定6.(1)1 3 1;(2)1 20 5,10,15,207.(1)219 (2)519 (3)12198.28 0.56 9.0.3 1510.(1)表中数据:频数从上到下依次为:9,21,50;频率从上到下依次为:0.42,0.04;(2)0.76×400=304;(3)能,不能.11.A、B、C、D、E五种品牌的雪糕分别按总量的25.5%、35%、13%、7.5%、19%进货.12.不合理,图钉落地后钉尖朝上和钉尖朝下的机会不均等.13.(1)不可信.实验次数太少;(2)不好.改变了实验条件,啤酒瓶盖和可乐瓶盖落地后正面朝上的机会不一定相同;(3)好.这样既能提高速度又不会对实验结果造成影响,但应在瓶盖完全相同的条件下进行实验.14.可能性为34,这种说法是正确的.15.24%第4节 课题学习 键盘上字母的排列规律略期中综合练习1.B 2.C 3.B 4.C 5.C 6.C7.A 8.B槡9.2 10.-6 11.1和012.② 13.犿≠-1且犿≠2槡14.3-5 15.略16.化简后为狓2+4 17.略18.19000只19.原式=2狓+4.当狓=槡2-2时,原式槡=22.20.(1)-3,9;(2)是第十个;(3)狓2-2狀狓-3狀2=0.21.提示:(犪-21)(350-10犪)=400,解之得 犪1=25,犪2=31.因为 21×(1+20%)=25.2而犪=3112 人教版·数学·九年级(上)不合题意,舍去.所以 350-10犪=100件所以进货100件,定价为25元.期末综合练习1.A 2.A 3.C 4.D 5.C 6.B7.D 8.D 9.A 10.D槡11.±2212.狓1=1,狓2=-3 13.1 14.515.①③④⑤ 16.127 17.65°18.略 19.4 20.4(1+狓)2=721.原式=槡2-122.(1)犘(指针指向奇数区域)=36=12;(2)方法一:如图29所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为23;图29方法二:自由转动转盘,当它停止时,指针指向的数字不小于3时,指针指向的区域的概率是23.23.(1)可以通过逆时针旋转90°使△犃犅犈变到△犃犇犉的位置.(2)犅犈=犇犉.提示:证△犃犅犈≌△犃犇犉(SAS).24.设所折成矩形的长为狓cm,则有狓(11-狓)=30,即狓2-11狓+30=0,解得狓1=5,狓2=6.故矩形的长和宽分别为6cm、5cm时,面积是30cm2.由狓(11-狓)=32,即狓2-11狓+32=0,犫2-4犪犮=121-4×1×32<0,方程无实数根,故不能折成面积是图3032cm2的矩形.25.不改变.如图30所示,连结犗犘,犗犆=犗犘 ∠2=∠犘∠2=∠烍烌烎1 ∠1=∠犘犗犘∥犆犇犆犇⊥}犃犅犗犘⊥犃犅 ︵犘犃=︵犘犅 犘点为中点.26.(1)(方法1)连结犇犗,犗犇是△犃犅犆的中位线,运用中位线的性质.(方法2)连结犃犇,∵犃犅是⊙犗的直径,∴犃犇⊥犅犆.∵犅犇=犆犇,∴犃犅=犃犆.(2)连结犃犇,∵犃犅是⊙犗的直径,∴∠犃犇犅=90°,∴∠犅<∠犃犇犅=90°.∠犆<∠犃犇犆=90°.∴∠犅,∠犆为锐角.∵犃犆和⊙犗交于点犉,连接犅犉,∴∠犃<∠犅犉犆=90°.∴△犃犅犆为锐角三角形檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪殏殏殏殏.《练习册》参考答案下载请登陆:陕西师范大学教育出版集团网址:http://www.snupg.com。