2013年全国高考理科数学试题分类汇编8:直线与圆 Word版含答案
2013年四川省高考数学试卷及答案 word版(理)
2013年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)。
第I 卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
考试结束后,将本试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)注意事项;必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出四个选项中,只有一个是符合题目要求的。
1、设集合}02|{=+=x x A ,集合}04|{2=-=x x B ,则=⋂B A(A )}2{- (B){ 2 } (C) {-2,2} (D )φ2、如图在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是(A ) A (B ) B (C) C (D ) D3、一个几何体的三视图如图所示,则该几何体的直观图可以是4、设则:是偶数集,若命题是奇数集,集合集合,2,p B A ,B x A x Z x ∈∈∀∈(A )B x A x p ∉∈∀⌝2,: (B )B x A x p ∉∉∀⌝2:,(C) B x A x p ∈∉∀⌝2:,(D )B x A x p ∉∈∀⌝2:,5、函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图像如图所示,则ϕω、的值分别是(A ) 2,3-π (B ) 2,6-π(C) 4,6-π (D )4,3π6、抛物线x y42=的焦点到双曲线1322=-yx的渐近线的距离是(A )21 (B )23(C) 1 (D )37、函数133-=x xy 的图像大致是8、从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a 、b ,共可得到b a lg lg -的不同值的个数是(A ) 9 (B ) 10 (C) 18 (D ) 209、节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是(A )41 (B )21 (C)43 (D )8710、设函数为自然对数的底数),e R a a x x f x∈-+=(e)(若曲线x y sin =上存在点)(00y x ,使得00))((y y f f =,则a 的取值范围是(A ) ]e ,1[ (B )]11e[1,-- (C) [] (D ) [1-]第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。
2013年数学试卷(理科)解析卷
2013年高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2013•新课标Ⅰ)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.2.(5分)(2013•新课标Ⅰ)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.3.(5分)(2013•新课标Ⅰ)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.4.(5分)(2013•新课标Ⅰ)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y= C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.5.(5分)(2013•新课标Ⅰ)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.6.(5分)(2013•新课标Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C. D.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选A.7.(5分)(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6与a m,进而得到公差d,由前n项和公式【分析】由a n与S n的关系可求得a m+1及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.8.(5分)(2013•新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选A.9.(5分)(2013•新课标Ⅰ)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6 C.7 D.8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.10.(5分)(2013•新课标Ⅰ)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E 的方程为()A.B.C.D.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.11.(5分)(2013•新课标Ⅰ)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D12.(5分)(2013•新课标Ⅰ)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n 的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.14.(5分)(2013•新课标Ⅰ)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣115.(5分)(2013•新课标Ⅰ)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣16.(5分)(2013•新课标Ⅰ)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅰ)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.18.(12分)(2013•新课标Ⅰ)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.19.(12分)(2013•新课标Ⅰ)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:故EX=400×+500×+800×=506.2520.(12分)(2013•新课标Ⅰ)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.21.(12分)(2013•新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(2013•新课标Ⅰ)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.23.(2013•新课标Ⅰ)(选修4﹣4:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)【分析】(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;(Ⅱ)先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标.【解答】解:(Ⅰ)曲线C1的参数方程式(t为参数),得(x﹣4)2+(y﹣5)2=25即为圆C1的普通方程,即x2+y2﹣8x﹣10y+16=0.将x=ρcosθ,y=ρsinθ代入上式,得.ρ2﹣8ρcosθ﹣10ρsinθ+16=0,此即为C1的极坐标方程;(Ⅱ)曲线C2的极坐标方程为ρ=2sinθ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴C1与C2交点的极坐标分别为(,),(2,).24.(2013•新课标Ⅰ)(选修4﹣5:不等式选讲)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当时,f(x)≤g(x),求a的取值范围.【分析】(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x ﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,画出函数y的图象,数形结合可得结论.(Ⅱ)不等式化即1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a ﹣2,由此解得a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].。
2013年全国高考理科数学试题分类汇编8:直线与圆
2013年全国高考理科数学试题分类汇编8:直线与圆一、选择题1 .(2013年上海市春季高考数学试卷(含答案))直线2310x y -+=的一个方向向量是 ( )A .(2 3)-,B .(2 3),C .(3 2)-,D . (3 2),【答案】D 2 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2( C) 1(1]3 D . 11[,)32【答案】B3 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=【答案】A4 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有( ) A .3b a =B .31b a a =+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--= 【答案】C5 .(2013年高考江西卷(理))如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间//1l ,与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D 两点,设弧FG 的长为(0)x x π<<,y EB BC CD =++,若从1l 平行移动到2l ,则函数()y f x =的图像大致是【答案】D6 .(2013年高考湖南卷(理))在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC ∆的中心,则AP 等( ) A .2B .C .83D .43【答案】D二、解答题 7 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为,圆心在上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.【答案】解:(1)由⎩⎨⎧-=-=142x y x y 得圆心C 为(3,2),∵圆C 的半径为∴圆C 的方程为:1)2()3(22=-+-y x显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx ∴113232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43-=k ∴所求圆C 的切线方程为:3=y 或者343+-=x y 即3=y 或者01243=-+y x (2)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4)则圆C 的方程为:[]1)42()(22=--+-a y a x 又∵MO MA 2=∴设M 为(x,y)则22222)3(y x y x +=-+整理得:4)1(22=++y x 设为圆D ∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点∴[]12)1()42(1222+≤---+≤-a a 由08852≥+-a a 得R x ∈由01252≤-a a 得5120≤≤x 终上所述,a 的取值范围为:⎥⎦⎤⎢⎣⎡512,。
2013年高考理科数学试卷及答案---全国卷(新课标版)word版
2013年全国卷新课标数学(理)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为A. 3B. 6C. 8D. 102. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z 的共轭复数为i +1:4P z 的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P4. 设21,F F 是椭圆:E 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21B.32 C.43 D.54 5. 已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a aA.7B. 5C.5-D. 7-6. 如果执行右边的程序框图,输入正整数N )2(≥N 和 实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2BA +为N a a a ,,,21 的算术平均数 C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 89. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63 C.32 D.22 12. 设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+二、填空题.本大题共4小题,每小题5分.13.已知向量a ,b 夹角为︒45,且1=||a ,102=-||b a ,则=||b .14. 设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x Z 2-=的取值范围为 .15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)服从正态分布)50,1000(2N ,且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .16. 数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a项和为 . 三、解答题:解答题应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分) 已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .18. (本小题满分12分) 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(Ⅱ) 花店记录了100以100天记录的各需求量的频率作为各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19. (本小题满分12分)如图,直三棱柱111C B AABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1 (Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90BFD ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.21. (本小题满分12分) 已知函数121()(1)(0)2x f x f ef x x -'=-+. (Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号. 22. (本小题满分10分)选修4—1:几何证明选讲 如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明: (Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.24. (本小题满分10分)选修4—5:不等式选讲 已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集;(Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.参考答案1-12:DACCD CBCAB AB 13、 14、[]3,3-. 15、3816、1830. 17、解:(Ⅰ)由cos sin 0a C C b c --=及正弦定理可得sin cos sin sin sin 0A C A C B C --=,()sin cos sin sin sin 0A C A C A C C +-+-=,sin cos sin sin 0A C A C C --=,sin 0C >,cos 10A A --=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=(Ⅱ)ABC S = △1sin 2bc A ∴==4bc ∴=, 2,3a A π==,222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=. 解得2b c ==.18、解:(Ⅰ) ()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N ∈); (Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X 的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.(ⅱ)若花店计划一天购进17枝玫瑰花,XX 的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花. 19、(Ⅰ) 证明:设112AC BC AA a ===, 直三棱柱111C B A ABC -, 1DC DC ∴==, 12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥. 又1DC BD ⊥ ,1DC DC D =,1DC ∴⊥平面BDC .BC⊂ 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC =,1BC =,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,,,90BD AD a DAB =∠= , AB ∴=.222AC BC AB ∴+=,AC BC ∴⊥.取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD , 已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角.在1Rt C DE △中,1111sin 2C EC DE C D∠===,130C DE ∴∠= .即二面角11C BD A --的大小为30.20、解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l的距离d FB FD ===.由ABD S =△,11222BD d p ⨯⨯=⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得A x . 直线m的斜率为3AF k ==.直线m的方程为0x =. 由py x 22= 得22x y p=,x y p '=.由3x y p '==, 3x p =.故直线n 与抛物线C的切点坐标为6p ⎫⎪⎪⎝⎭, 直线n的方程为06x -=. 所以坐标原点到m ,n3=. 21、解: (Ⅰ) 1()(1)(0)x f x f ef x -''=-+,令1x =得,(0)1f =, 再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得()1f e '=. 所以)(x f 的解析式为21()2x f x e x x =-+. ()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔<所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立,即()()21()102x h x f x x ax b e a x b =---=-+-≥恒成立, ()()1x h x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1xh x e a '=-+为增函数,由()0h x '=得()ln 1x a =+, 故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-.依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥,即()()11ln 1b a a a ≤+-++, 10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-, ()00()0u x x u x x ''>⇔<<⇔,所以当x =, ()u x取最大值2e u =.故当12a b+==时, ()1a b+取最大值2e.综上, 若baxxxf++≥221)(,则ba)1(+的最大值为2e.22、证明:(Ⅰ) ∵D,E分别为ABC△边AB,AC的中点,∴//DE BC.//CF AB,//DF BC,CF BD∴ 且=CF BD,又∵D为AB的中点,CF AD∴ 且=CF AD,CD AF∴=.//CF AB,BC AF∴=.CD BC∴=.(Ⅱ)由(Ⅰ)知,BC GF,GB CF BD∴==,BGD BDG DBC BDC∠=∠=∠=∠BCD GBD∴△∽△.23、解:(Ⅰ)依题意,点A,B,C,D的极坐标分别为.所以点A,B,C,D的直角坐标分别为、(、(1,-、1)-;(Ⅱ) 设()2cos,3sinPϕϕ,则2222||||||||PDPCPBPA+++())2212cos3sinϕϕ=-+()()222cos13sinϕϕ++-()()2212cos3sinϕϕ+--+)()222cos13sinϕϕ++--2216cos36sin16ϕϕ=++[]23220sin32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.24、解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[,即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立,即||2x a +≤对[]1,2x ∈恒成立,即22a x a --≤≤-对[]1,2x ∈恒成立, 所以2122a a --≤⎧⎨-≥⎩,即30a -≤≤.所以a 的取值范围为[]3,0-.。
2013年普通高等学校招生全国统一考试湖北卷(数学理)word版含答案
2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数2i1iz =+(i 为虚数单位)的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集为R ,集合1{()1}2x A x =≤,2{680}B x x x =-+≤,则A B =R ðA .{0}x x ≤B .{24}x x ≤≤C .{024}x x x ≤<>或D .{024}x x x <≤≥或3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π65.已知π04θ<<,则双曲线1C :22221cos sin x y θθ-=与2C :222221sin sin tan y xθθθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等6.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为 ABC.D.7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶的距离(单位:m )是A .125ln 5+B .11825ln 3+C .425ln 5+D .450ln 2+第8题图8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有A .1243V V V V <<<B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<9.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体. 经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()E X = A .126125 B .65C .168125 D .7510.已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <-C .1()0f x >,21()2f x <-D .1()0f x <,21()2f x >-二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题......号.的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(Ⅰ)直方图中x 的值为_________;(Ⅱ)在这些用户中,用电量落在区间[100,250)内的户数为_________.第11题图12.阅读如图所示的程序框图,运行相应的程序,输出的结果i =_________.第9题图14.古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n +=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出 了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+,正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-,六边形数 2(,6)2N n n n =-, ………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑. 如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若3AB AD =,则CEEO的值为_________. 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,椭圆C 的参数方程为cos ,sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>). 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴 为极轴)中,直线l 与圆O 的极坐标方程分别为πsin()4ρθ+=(m 为非零常数) 与b ρ=. 若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为_________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值. 18.(本小题满分12分)已知等比数列{}n a 满足:23||10a a -=,123125a a a =. (Ⅰ)求数列{}n a 的通项公式;D E OBA第15题图C(Ⅱ)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由. 19.(本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(Ⅰ)中的直线l 与圆O 的另一个交点为D ,且点Q满足12D Q C P =. 记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:s i n s i n s i n θαβ=.20.(本小题满分12分)假设每天从甲地去乙地的旅客人数X 是服从正态分布2(800,50)N 的随机变量. 记一天中从甲地去乙地的旅客人数不超过900的概率为0p . (Ⅰ)求0p 的值;(参考数据:若X ~2(,)N μσ,有()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.)(Ⅱ)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次. A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆. 公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆. 若每天要以不小于0p 的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?第19题图21.(本小题满分13分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 22.(本小题满分14分)设n 是正整数,r 为正有理数.(Ⅰ)求函数1()(1)(1)1(1)r f x x r x x +=+-+->-的最小值;(Ⅱ)证明:1111(1)(1)11r r r r rn n n n n r r ++++--+-<<++; (Ⅲ)设x ∈R ,记x ⎡⎤⎢⎥为不小于...x 的最小整数,例如22=⎡⎤⎢⎥,π4=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令S + S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)2013年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试题参考答案一、选择题1.D 2.C 3.A 4.B 5.D 6.A 7.C 8.C 9.B 10.D 二、填空题11.(Ⅰ)0.0044 (Ⅱ)70 12.5 1314.1000 15.8 16三、解答题 17. (Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).第21题图因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =. 由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.18.(Ⅰ)设等比数列{}n a 的公比为q ,则由已知可得331211125,||10,a q a q a q ⎧=⎪⎨-=⎪⎩ 解得15,33,a q ⎧=⎪⎨⎪=⎩ 或15,1.a q =-⎧⎨=-⎩ 故1533n n a -=⋅,或15(1)n n a -=-⋅-. (Ⅱ)若1533n n a -=⋅,则1131()53n n a -=⋅,故1{}n a 是首项为35,公比为13的等比数列,从而131[1()]191953[1()]111031013mmm n na =⋅-==⋅-<<-∑.若1(5)(1)n n a -=-⋅-,则111(1)5n n a -=--,故1{}n a 是首项为15-,公比为1-的等比数列,从而11,21(),1502().mn n m k k a m k k +=+⎧-=-∈⎪=⎨⎪=∈⎩∑N N , 故111mn n a =<∑.综上,对任何正整数m ,总有111mn na =<∑.故不存在正整数m ,使得121111ma a a +++≥ 成立.19.(Ⅰ)直线l ∥平面PAC ,证明如下:连接EF ,因为E ,F 分别是PA ,PC 的中点,所以EF ∥AC . 又EF ⊄平面ABC ,且AC ⊂平面ABC ,所以EF ∥平面ABC . 而EF ⊂平面BEF ,且平面BEF 平面ABC l =,所以EF ∥l .因为l ⊄平面PAC ,EF ⊂平面PAC ,所以直线l ∥平面PAC .(Ⅱ)(综合法)如图1,连接BD ,由(Ⅰ)可知交线l 即为直线BD ,且l ∥AC . 因为AB 是O 的直径,所以AC BC ⊥,于是l BC ⊥.已知PC ⊥平面ABC ,而l ⊂平面ABC ,所以PC l ⊥. 而PC BC C = ,所以l ⊥平面PBC .连接BE ,BF ,因为BF ⊂平面PBC ,所以l BF ⊥.故CBF ∠就是二面角E l C --的平面角,即CBF β∠=.由12DQ CP = ,作DQ ∥CP ,且12DQ CP =.连接PQ ,DF ,因为F 是CP 的中点,2CP PF =,所以DQ PF =, 从而四边形DQPF 是平行四边形,PQ ∥FD .连接CD ,因为PC ⊥平面ABC ,所以CD 是FD 在平面ABC 内的射影, 故CDF ∠就是直线PQ 与平面ABC 所成的角,即CDF θ∠=. 又BD ⊥平面PBC ,有BD BF ⊥,知BDF ∠为锐角,故BDF ∠为异面直线PQ 与EF 所成的角,即BDF α∠=, 于是在Rt △DCF ,Rt △FBD ,Rt △BCF 中,分别可得sin CF DF θ=,sin BF DF α=,sin CF BFβ=, 从而sin sin sin CF BF CFBF DF DFαβθ=⋅==,即sin sin sin θαβ=. (Ⅱ)(向量法)如图2,由12DQ CP = ,作DQ ∥CP ,且12DQ CP =.连接PQ ,EF ,BE ,BF ,BD ,由(Ⅰ)可知交线l 即为直线BD . 以点C 为原点,向量,,CA CB CP所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设,,2CA a CB b CP c ===,则有(0,0,0),(,0,0),(0,,0),(0,0,2),(,,)C A a B b P c Q a b c ,1(,0,),(0,0,)2E a cF c .于是1(,0,0)2FE a = ,(,,)QP a b c =-- ,(0,,)BF b c =- ,所以||cos ||||FE QP FE QP α⋅==⋅sin α=.又取平面ABC 的一个法向量为(0,0,1)=m,可得||sin ||||QP QP θ⋅==⋅ m m设平面BEF 的一个法向量为(,,)x y z =n ,所以由0,0,FE BF ⎧⋅=⎪⎨⋅=⎪⎩n n 可得10,20.ax by cz ⎧=⎪⎨⎪-+=⎩ 取(0,,)c b =n . 第19题解答图1第19题解答图2于是|||cos |||||β⋅==⋅m n m n,从而sin β==.故sin sin sin αβθ===,即sin sin sin θαβ=.20.(Ⅰ)由于随机变量X 服从正态分布2(800,50)N ,故有800μ=,50σ=(700900)0.9544P X <≤=.由正态分布的对称性,可得0(900)(800)(800900)p P X P X P X =≤=≤+<≤11(700900)0.977222P X =+<≤=. (Ⅱ)设A 型、B 型车辆的数量分别为, x y 辆,则相应的营运成本为16002400x y +.依题意, , x y 还需满足:021, 7, (3660)x y y x P X x y p +≤≤+≤+≥.由(Ⅰ)知,0(900)p P X =≤,故0(3660)P X x y p ≤+≥等价于3660900x y +≥. 于是问题等价于求满足约束条件21,7,3660900,, 0, ,x y y x x y x y x y +≤⎧⎪≤+⎪⎨+≥⎪⎪≥∈⎩N ,且使目标函数16002400z x y =+达到最小的,x y . 作可行域如图所示, 可行域的三个顶点坐标分别为(5,12), (7,14), (15,6)P Q R .由图可知,当直线16002400z x y =+经过可行域的点P 时,直线16002400z x y =+在y 轴上截距2400z 最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆.21. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n+=. 其中0a m n >>>, 1.m n λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则 111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 第20题解若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ② 从而由①和②式可得第21题解答图1第21题解答图2令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a tλ-=-.因为0k ≠,所以2k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>,所以当11λ<≤+l ,使得12S S λ=; 当1λ>l 使得12S S λ=.解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则 因为1d==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==. 因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >.所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<. 从而111λλλ+<<-,解得1λ> 当11λ<≤+l ,使得12S S λ=; 当1λ>l 使得12S S λ=.22. (Ⅰ)因为()(1)(1)(1)(1)[(1)1]r r f x r x r r x '=++-+=++-,令()0f x '=,解得0x =.当10x -<<时,()0f x '<,所以()f x 在(1,0)-内是减函数; 当0x >时,()0f x '>,所以()f x 在(0,)+∞内是增函数.故函数()f x 在0x =处取得最小值(0)0f =. (Ⅱ)由(Ⅰ),当(1,)x ∈-+∞时,有()(0)0f x f ≥=,即世纪金榜 圆您梦想 第11页(共11页) 山东世纪金榜科教文化股份有限公司 1(1)1(1)r x r x ++≥++,且等号当且仅当0x =时成立,故当1x >-且0x ≠时,有1(1)1(1)r x r x ++>++. ① 在①中,令1x n =(这时1x >-且0x ≠),得111(1)1r r n n+++>+. 上式两边同乘1r n +,得11(1)(1)r r r n n n r +++>++,即11(1).1r r rn n n r +++-<+ ② 当1n >时,在①中令1x n =-(这时1x >-且0x ≠),类似可得 11(1).1r r rn n n r ++-->+ ③ 且当1n =时,③也成立. 综合②,③得1111(1)(1).11r r r r r n n n n n r r ++++--+-<<++ ④ (Ⅲ)在④中,令13r =,n 分别取值81,82,83,…,125,得44443333338180(8281)44--(),44443333338281(8382)44-<-(),44443333338382(8483)44-<<-(), ………4444333333125124(126125)44-<-(. 将以上各式相加,并整理得444433333312580(12681)44S -<<-(). 代入数据计算,可得4433312580210.24-≈(),4433312681210.94-≈(). 由S ⎡⎤⎢⎥的定义,得211S =⎡⎤⎢⎥.。
2013年高考真题理科数学分类汇编:考点39 圆的方程、直线与圆、圆与圆的位置关系含解析
考点39 圆的方程、直线与圆、圆与圆的位置关系一、选择题1.(2013·重庆高考文科·T4)设P是圆22-++=上的动点,(3)(1)4x yx=-上的动点,则PQ的最小值为( )Q是直线3A. 6 B。
4 C. 3 D. 2【解题指南】PQ的最小值为圆心到直线的距离减去圆的半径。
【解析】选B。
PQ的最小值为圆心到直线的距离减去圆的半径.圆心)1,3(-到直线3-=x的距离为6,半径为2,所以PQ的最小值为6=-。
242.(2013·天津高考文科·T5)已知过点P(2,2)的直线与圆(x—1)2+y2=5相切,且与直线ax-y+1=0垂直,则a= ( )A. 1- B. 1 C。
2 D。
122【解题指南】根据圆的切线的性质确定切线的斜率,再由两直线垂直求a的值.【解析】选C.因为点P(2,2)为圆(x-1)2+y2=5上的点,由圆的切线性质可知,圆心(1,0)与点P(2,2)的连线与过点P(2,2)的切线垂直.因为圆心(1,0)与点P(2,2)的连线的斜率k=2,故过点P,所以直线ax-y+1=0的斜率为2,因此(2,2)的切线斜率为—12a=2。
A.1 B 。
2 C 。
4 D 。
【解题指南】 由圆的半径、圆心距、半弦长组成直角三角形,利用勾股定理即可求得半弦长。
【解析】选C.由22(1)(2)5x y 得圆心(1,2),半径5r,圆心到直线x+2y-5+的距离|1455|15d,在半径、圆心距、半弦长组成的直角三角形中,弦长222244lr d 。
4。
(2013·重庆高考理科·T7)已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M、N 分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( ) A 。
425- B.117-C.226-D.17【解题指南】根据圆的定义可知421-+=+PC PCPN PM ,然后利用对称性求解.【解析】选A.由题意知,圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=的圆心分别为)4,3(),3,2(21C C ,且421-+=+PC PCPN PM ,点)3,2(1C 关于x 轴的对称点为)3,2(-C ,所以252221=≥+=+CC PC PC PC PC ,即425421-≥-+=+PC PCPN PM .5.(2013·广东高考文科·T7)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A .0x y +=B .10x y ++=C .10x y +-= D .0x y +=【解析】选A. 由题意知直线方程可设为0x y c +-=(0c >),则圆心到直线的距离等于半径1,即1=,c =所求方程为0x y +=。
2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年高考全国Ⅰ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.2.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-IC .1+iD .1-i 答案 A解析 由已知得z =2i1-i =2i (1+i )(1-i )(1+i )=-1+i.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 答案 D解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .5.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ) A .-4 B .-3 C .-2 D .-1 答案 D解析 (1+ax )(1+x )5中含x 2的项为:(C 25+C 15a )x 2,即C 25+C 15a =5,a =- 1.6.执行右面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111!答案 B解析 k =1,T =11,S =1,k =2,T =11×2=12!,S =1+12!,k =3,T =11×2×3=13!,S =1+12!+13!,…由于N =10,即k >10时,结束循环,共执行10次.所以输出S =1+12!+13!+…+110!.7.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,1,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()答案 A解析 在空间直角坐标系中,先画出四面体O -ABC 的直观图,以zOx 平面为投影面,则得到正视图,所以选A.8.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c 答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c.(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1(D)210.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.11.设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x 答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎭⎫1-22,13 D.⎣⎡⎭⎫13,12 答案 B二、填空题13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________. 答案 8解析 由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n 个数中任意取出两个不同的数的总情况应该是C 2n=n (n -1)2=2÷114=28,∴n =8.15.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13,即{ 3sin θ=-cos θ,2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝⎛⎭⎫na 1+n (n -1)2d =n 3-10n 23=f (n ), f ′(n )=13n (3n -20).由函数的单调性知f (6)=-48,f (7)=-49. ∴nS n 的最小值为-49.三、解答题17.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =bcos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则{n ·CD →=0,n ·CA 1→=0,即{ x 1+y 1=0,x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.19.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的T 的数学期望.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T ={ 800X -39 000,100≤X <130,,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E (T )=45 000×20.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m =e x (x +1)-1x +1,令1)1()(-+=x e x g x ,则0)2()(>+='x e x g x ,又0)0(=g显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 令g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1(x +2)2>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0,所以,e t =1t +2⇒t +2=e -t , 当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增;所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =(1+t )2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.22.[选修4-1]几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B 、E 、F 、C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.(1)证明 因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)解 连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC , 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC外接圆面积的比值为12.23.[选修4-4]坐标系与参数方程已知动点P 、Q 都在曲线C :{ x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π,d =0,故M 的轨迹过坐标原点.24.[选修4-5]不等式选讲设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c2a +a ≥2c ,故a 2b +b 2c +c2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.。
2013年全国统一高考大纲版理科数学试卷及参考答案与解析
2013年全国统一高考大纲版理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )A.3B.4C.5D.62.(5分)=( )A.-8B.8C.-8iD.8i3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( )A.-4B.-3C.-2D.-14.(5分)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( )A.(-1,1)B.C.(-1,0)D.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f-1(x)=( )A. B. C.2x-1(x∈R) D.2x-1(x>0)6.(5分)已知数列{an }满足3an+1+an=0,a2=-,则{an}的前10项和等于( )A.-6(1-3-10)B.C.3(1-3-10)D.3(1+3-10)7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是( )A.5B.8C.12D.188.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是( )A. B. C. D.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是( )A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)10.(5分)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A. B. C. D.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(-2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=( )A. B. C. D.212.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是( )A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=-,则cotα=.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{an }的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项式.18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a-b+c)=ac. (Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.19.(12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A-PD-C的大小.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.22.(12分)已知函数.(I)若x≥0时,f(x)≤0,求λ的最小值;(II)设数列{an }的通项an=1+.2013年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )A.3B.4C.5D.6【分析】利用已知条件,直接求出a+b,利用集合元素互异求出M中元素的个数即可.【解答】解:因为集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+4=5、1+5=6、2+4=6、2+5=7、3+4=7、3+5=8,所以M中元素只有:5,6,7,8.共4个.故选:B.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力.2.(5分)=( )A.-8B.8C.-8iD.8i【分析】复数分子、分母同乘-8,利用1的立方虚根的性质(),化简即可.【解答】解:故选:A.【点评】复数代数形式的运算,是基础题.3.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(-),则λ=( )A.-4B.-3C.-2D.-1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴-(2λ+3)-3=0,解得λ=-3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为( )A.(-1,1)B.C.(-1,0)D.【分析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(-1,0),∴-1<2x+1<0,解得-1<x<-.∴则函数f(2x+1)的定义域为.故选:B.【点评】考查复合函数的定义域的求法,注意变量范围的转化,属简单题.5.(5分)函数f(x)=log2(1+)(x>0)的反函数f-1(x)=( )A. B. C.2x-1(x∈R) D.2x-1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:1+=2y,x=,其中y>0,x,y互换,得到y=log2(1+)的反函数:y=,故选:A.【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.6.(5分)已知数列{an }满足3an+1+an=0,a2=-,则{an}的前10项和等于( )A.-6(1-3-10)B.C.3(1-3-10)D.3(1+3-10)【分析】由已知可知,数列{an }是以-为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3an+1+an=0∴∴数列{an}是以-为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1-3-10)故选:C.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题7.(5分)(1+x)3(1+y)4的展开式中x2y2的系数是( )A.5B.8C.12D.18【分析】由题意知利用二项展开式的通项公式写出展开式的通项,令x的指数为2,写出出展开式中x2的系数,第二个因式y2的系数,即可得到结果.【解答】解:(x+1)3的展开式的通项为Tr+1=C3r x r令r=2得到展开式中x2的系数是C32=3,(1+y)4的展开式的通项为Tr+1=C4r y r令r=2得到展开式中y2的系数是C42=6,(1+x)3(1+y)4的展开式中x2y2的系数是:3×6=18,故选:D.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,本题解题的关键是写出二项式的展开式,所有的这类问题都是利用通项来解决的.8.(5分)椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是( )A. B. C. D.【分析】由椭圆C:可知其左顶点A1(-2,0),右顶点A2(2,0).设P(x,y)(x≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【解答】解:由椭圆C:可知其左顶点A1(-2,0),右顶点A2(2,0).设P(x0,y)(x≠±2),则,得.∵=,=,∴==,∵,∴,解得.故选:B.【点评】熟练掌握椭圆的标准方程及其性质、斜率的计算公式、不等式的性质等是解题的关键.9.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是( )A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥-2x在(,+∞)上恒成立,构造函数求出-2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥-2x在(,+∞)上恒成立,令h(x)=-2x,则h′(x)=--2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.10.(5分)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A. B. C. D.【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,如下图所示:则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),=(1,1,0),=(1,0,-2),=(1,0,0),设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,-2,1),设CD与平面BDC1所成角为θ,则sinθ=||=,故选:A.【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.11.(5分)已知抛物线C:y2=8x的焦点为F,点M(-2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=( )A. B. C. D.2【分析】斜率k存在,设直线AB为y=k(x-2),代入抛物线方程,利用=(x1+2,y1-2)•(x2+2,y2-2)=0,即可求出k的值.【解答】解:由抛物线C:y2=8x得焦点(2,0),由题意可知:斜率k存在,设直线AB为y=k(x-2), 代入抛物线方程,得到k2x2-(4k2+8)x+4k2=0,△>0,设A(x1,y1),B(x2,y2).∴x1+x2=4+,x1x2=4.∴y1+y2=,y1y2=-16,又=0,∴=(x1+2,y1-2)•(x2+2,y2-2)==0∴k=2.故选:D.【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.12.(5分)已知函数f(x)=cosxsin2x,下列结论中不正确的是( )A.y=f(x)的图象关于(π,0)中心对称B.C.D.f(x)既是奇函数,又是周期函数【分析】根据函数图象关于某点中心对称或关于某条直线对称的公式,对A、B两项加以验证,可得它们都正确.根据二倍角的正弦公式和同角三角函数的关系化简,得f(x)=2sinx(1-sin2x),再换元:令t=sinx,得到关于t的三次函数,利用导数研究此函数的单调性可得f(x)的最大值为,故C不正确;根据函数周期性和奇偶性的定义加以验证,可得D项正确.由此可得本题的答案.【解答】解:对于A,因为f(π+x)=cos(π+x)sin(2π+2x)=-cosxsin2x,f(π-x)=cos(π-x)sin(2π-2x)=cosxsin2x,所以f(π+x)+f(π-x)=0,可得y=f(x)的图象关于(π,0)中心对称,故A正确;对于B,因为f(+x)=cos(+x)sin(π+2x)=-sinx(-sin2x)=sinxsin2x,f(-x)=cos(-x)sin(π-2x)=sinxsin2x,所以f(+x)=f(-x),可得y=f(x)的图象关于直线x=对称,故B正确;对于C,化简得f(x)=cosxsin2x=2cos2xsinx=2sinx(1-sin2x),令t=sinx,f(x)=g(t)=2t(1-t2),-1≤t≤1,∵g(t)=2t(1-t2)的导数g'(t)=2-6t2=2(1+t)(1-t)∴当t∈(-1,-)时或t∈(,1)时g'(t)<0,函数g(t)为减函数;当t∈(-,)时g'(t)>0,函数g(t)为增函数.因此函数g(t)的最大值为t=-1时或t=时的函数值,结合g(-1)=0<g()=,可得g(t)的最大值为.由此可得f(x)的最大值为而不是,故C不正确;对于D,因为f(-x)=cos(-x)sin(-2x)=-cosxsin2x=-f(x),所以f(x)是奇函数.因为f(2π+x)=cos(2π+x)sin(4π+2x)=cosxsin2x=f(x),所以2π为函数的一个周期,得f(x)为周期函数.可得f(x)既是奇函数,又是周期函数,得D正确.综上所述,只有C项不正确.故选:C.【点评】本题给出三角函数式,研究函数的奇偶性、单调性和周期性.着重考查了三角恒等变换公式、利用导数研究函数的单调性和函数图象的对称性等知识,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知α是第三象限角,sinα=-,则cotα=2.【分析】根据α是第三象限的角,得到cosα小于0,然后由sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出cotα的值.【解答】解:由α是第三象限的角,得到cosα<0,又sinα=-,所以cosα=-=-则cotα==2故答案为:2【点评】此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道基础题.学生做题时注意α的范围.14.(5分)6个人排成一行,其中甲、乙两人不相邻的不同排法共有480 种.(用数字作答) 【分析】排列好甲、乙两人外的4人,然后把甲、乙两人插入4个人的5个空位中即可. 【解答】解:6个人排成一行,其中甲、乙两人不相邻的不同排法:排列好甲、乙两人外的4人,有中方法,然后把甲、乙两人插入4个人的5个空位,有种方法,所以共有:=480.故答案为:480.【点评】本题考查了乘法原理,以及排列的简单应用,插空法解答不相邻问题.15.(5分)记不等式组所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a 的取值范围是[,4] .【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入y=a(x+1)中,求出y=a(x+1)对应的a的端点值即可.【解答】解:满足约束条件的平面区域如图示:因为y=a(x+1)过定点(-1,0).所以当y=a(x+1)过点B(0,4)时,得到a=4,当y=a(x+1)过点A(1,1)时,对应a=.又因为直线y=a(x+1)与平面区域D有公共点.所以≤a≤4.故答案为:[,4]【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16.(5分)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于16π.【分析】正确作出图形,利用勾股定理,建立方程,即可求得结论.【解答】解:如图所示,设球O的半径为r,AB是公共弦,∠OCK是面面角根据题意得OC=,CK=在△OCK中,OC2=OK2+CK2,即∴r2=4∴球O的表面积等于4πr2=16π故答案为16π【点评】本题考查球的表面积,考查学生分析解决问题的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{an }的前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项式.【分析】由,结合等差数列的求和公式可求a2,然后由,结合等差数列的求和公式进而可求公差d,即可求解通项公式【解答】解:设数列的公差为d由得,3∴a2=0或a2=3由题意可得,∴若a2=0,则可得d2=-2d2即d=0不符合题意若a2=3,则可得(6-d)2=(3-d)(12+2d)解可得d=0或d=2∴an =3或an=2n-1【点评】本题主要考查了等差数列的通项公式及求和公式的应用,等比数列的性质的简单应用,属于基础试题18.(12分)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a-b+c)=ac. (Ⅰ)求B.(Ⅱ)若sinAsinC=,求C.【分析】(I)已知等式左边利用多项式乘多项式法则计算,整理后得到关系式,利用余弦定理表示出cosB,将关系式代入求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(II)由(I)得到A+C的度数,利用两角和与差的余弦函数公式化简cos(A-C),变形后将cos(A +C)及2sinAsinC的值代入求出cos(A-C)的值,利用特殊角的三角函数值求出A-C的值,与A+C的值联立即可求出C的度数.【解答】解:(I)∵(a+b+c)(a-b+c)=(a+c)2-b2=ac,∴a2+c2-b2=-ac,∴cosB==-,又B为三角形的内角,则B=120°;(II)由(I)得:A+C=60°,∵sinAsinC=,cos(A+C)=,∴cos(A-C)=cosAcosC+sinAsinC=cosAcosC-sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC=+2×=,∴A-C=30°或A-C=-30°,则C=15°或C=45°.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.19.(12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求二面角A-PD-C的大小.【分析】(I)取BC的中点E,连接DE,过点P作PO⊥平面ABCD于O,连接OA、OB、OD、OE.可证出四边形ABED是正方形,且O为正方形ABED的中心.因此OE⊥OB,结合三垂线定理,证出OE ⊥PB,而OE是△BCD的中位线,可得OE∥CD,因此PB⊥CD;(II)由(I)的结论,证出CD⊥平面PBD,从而得到CD⊥PD.取PD的中点F,PC的中点G,连接FG,可得FG∥CD,所以FG⊥PD.连接AF,可得AF⊥PD,因此∠AFG为二面角A-PD-C的平面角,连接AG、EG,则EG∥PB,可得EG⊥OE.设AB=2,可求出AE、EG、AG、AF和FG的长,最后在△AFG中利用余弦定理,算出∠AFG=π-arccos,即得二面角A-PD-C的平面角大小.【解答】解:(I)取BC的中点E,连接DE,可得四边形ABED是正方形过点P作PO⊥平面ABCD,垂足为O,连接OA、OB、OD、OE∵△PAB与△PAD都是等边三角形,∴PA=PB=PD,可得OA=OB=OD因此,O是正方形ABED的对角线的交点,可得OE⊥OB∵PO⊥平面ABCD,得直线OB是直线PB在内的射影,∴OE⊥PB∵△BCD中,E、O分别为BC、BD的中点,∴OE∥CD,可得PB⊥CD;(II)由(I)知CD⊥PO,CD⊥PB∵PO、PB是平面PBD内的相交直线,∴CD⊥平面PBD∵PD⊂平面PBD,∴CD⊥PD取PD的中点F,PC的中点G,连接FG,则FG为△PCD有中位线,∴FG∥CD,可得FG⊥PD连接AF,由△PAD是等边三角形可得AF⊥PD,∴∠AFG为二面角A-PD-C的平面角连接AG、EG,则EG∥PB∵PB⊥OE,∴EG⊥OE,设AB=2,则AE=2,EG=PB=1,故AG==3在△AFG中,FG=CD=,AF=,AG=3∴cos∠AFG==-,得∠AFG=π-arccos,即二面角A-PD-C的平面角大小是π-arccos.【点评】本题给出特殊的四棱锥,求证直线与直线垂直并求二面角平面角的大小,着重考查了线面垂直的判定与性质、三垂线定理和运用余弦定理求二面的大小等知识,属于中档题.20.(12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可.(II)X的所有可能值为0,1,2.分别求出X取每一个值的概率,列出分布列后求出期望值即可.【解答】解:(I)令A1表示第2局结果为甲获胜.A2表示第3局甲参加比赛时,结果为甲负.A表示第4局甲当裁判.则A=A1•A2,P(A)=P(A1•A2)=P(A1)P(A2)=;(Ⅱ)X的所有可能值为0,1,2.令A3表示第3局乙和丙比赛时,结果为乙胜.B 1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B2)=P(B1)P(B2)P()=.P(X=2)=P(B3)=P()P(B3)=.P(X=1)=1-P(X=0)-P(X=2)=.从而EX=0×+1×+2×=.【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.21.(12分)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.【分析】(I)由题设,可由离心率为3得到参数a,b的关系,将双曲线的方程用参数a表示出来,再由直线建立方程求出参数a即可得到双曲线的方程;(II)由(I)的方程求出两焦点坐标,设出直线l的方程设A(x1,y1),B(x2,y2),将其与双曲线C的方程联立,得出x1+x2=,,再利用|AF1|=|BF1|建立关于A,B坐标的方程,得出两点横坐标的关系,由此方程求出k的值,得出直线的方程,从而可求得:|AF2|、|AB|、|BF2|,再利用等比数列的性质进行判断即可证明出结论.【解答】解:(I)由题设知=3,即=9,故b2=8a2所以C的方程为8x2-y2=8a2将y=2代入上式,并求得x=±,由题设知,2=,解得a2=1所以a=1,b=2(II)由(I)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8 ① 由题意,可设l 的方程为y =k(x -3),|k|<2代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=,,于是 |AF 1|==-(3x 1+1), |BF 1|==3x 2+1, |AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即故=,解得,从而=- 由于|AF 2|==1-3x 1,|BF 2|==3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2||BF 2|=3(x 1+x 2)-9x 1x 2-1=16 因而|AF 2||BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列 【点评】本题考查直线与圆锥曲线的综合关系,考查了运算能力,题设条件的转化能力,方程的思想运用,此类题综合性强,但解答过程有其固有规律,一般需要把直线与曲线联立利用根系关系,解答中要注意提炼此类题解答过程中的共性,给以后解答此类题提供借鉴.22.(12分)已知函数.(I)若x ≥0时,f(x)≤0,求λ的最小值;(II)设数列{a n }的通项a n =1+.【分析】(I)由于已知函数的最大值是0,故可先求出函数的导数,研究其单调性,确定出函数的最大值,利用最大值小于等于0求出参数λ的取值范围,即可求得其最小值; (II)根据(I)的证明,可取λ=,由于x >0时,f(x)<0得出,考察发现,若取x =,则可得出,以此为依据,利用放缩法,即可得到结论【解答】解:(I)由已知,f(0)=0,f′(x)==,∴f′(0)=0欲使x ≥0时,f(x)≤0恒成立,则f(x)在(0,+∞)上必为减函数,即在(0,+∞)上f′(x)<0恒成立,当λ≤0时,f′(x)>0在(0,+∞)上恒成立,为增函数,故不合题意,若0<λ<时,由f′(x)>0解得x<,则当0<x<,f′(x)>0,所以当0<x<时,f(x)>0,此时不合题意,若λ≥,则当x>0时,f′(x)<0恒成立,此时f(x)在(0,+∞)上必为减函数,所以当x>0时,f(x)<0恒成立,综上,符合题意的λ的取值范围是λ≥,即λ的最小值为( II)令λ=,由(I)知,当x>0时,f(x)<0,即取x=,则于是a2n -an+=++…++====>=ln2n-lnn=ln2所以【点评】本题考查了数列中证明不等式的方法及导数求最值的普通方法,解题的关键是充分利用已有的结论再结合放缩法,本题考查了推理判断的能力及转化化归的思想,有一定的难度。
【精校】2013年普通高等学校招生全国统一考试(全国卷大纲版)理数-含答案
2013年普通高等学校招生全国统一考试(全国卷大纲版)理科数学一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,理1)设集合,,,则M 中元素的个数为( )A .3B .4C .5D .62. (2013大纲全国,理2)=( )A .-8B .8C .D .3. (2013大纲全国,理3)已知向量,,若,则=( )A .-4B .-3C .-2D .-14. (2013大纲全国,理4)已知函数f(x)的定义域为,则函数的定义域( ) A . B . C . D .5. (2013大纲全国,理5)函数(x>0)的反函数=( )A .B .C .D . 6. (2013大纲全国,理6)已知数列满足,,则的前10项和等于( ) A . B . C . D .7. (2013大纲全国,理7)的展开式中的系数是( )A .56B .84C .112D .1688. (2013大纲全国,理8)椭圆C :的左右顶点分别为,点P 在C 上且直线斜率的取值范围是,那么直线斜率的取值范围是( ) A . B . C . D . 9. (2013大纲全国,理9)若函数在是增函数,则a 的取值范围是( ) ={1,2,3}A B={45},={x|x=a+b,a A,b B}M ∈∈3(1)+8i -8i (1,1)m λ=+u r (2,2)n λ=+r ()()m n m n +⊥-u r r u r rλ(1,0)-(21)f x +(1,1)-1(1,)2--(1,0)-1(,1)221()log (1)f x x=+1()f x -1(0)21x x >-1(0)21xx ≠-21()x x R -∈21(0)x x ->{}n a 130n n a a ++=243a =-{}n a 106(13)---101(13)9-103(13)--103(13)-+84(1)(1)x y ++22x y 22143x y +=12,A A 2PA [2,1]--1PA 13[,]2433[,]841[,1]23[,1]421()f x x ax x =++1(,)2+∞A .B .C .D .10. (2013大纲全国,理10)已知正四棱柱中,,则CD 与平面所成角的正弦值等于( ) A .B .C .D .11.已知抛物线C :与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若,则k=( )A .B .C .D .212. (2013大纲全国,理12)已知函数,下列结论中错误的是( ) A .的图像关于点中心对称 B .的图像关于直线对称C .的最大值为D .既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.13.已知是第三象限角,,则14. 6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)15.记不等式组,所表示的平面区域为D.若直线与D 有公共点,则a 的取值范围是16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,,且圆O 与圆K 所在的平面所成的一个二面角为,则球O 的表面积等于 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2013大纲全国,理17)(本小题满分10分)等差数列的前n 项和为.已知,且成等比数列,求的通项公式.[1,0]-[1,)-+∞[0,3][3,)+∞1111ABCD A B C D -12AA AB =1BDC 23321328y x =0MA MB •=u u u r u u u r12222()cos sin 2f x x x =()y f x =(,0)π()y f x =2x π=()f x 3()f x α1sin 3α=-cot α=03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩(1)y a x =+32OK =060{}n a n S 232S a =124,,S S S {}n a18. (2013大纲全国,理18)(本小题满分12分)设的内角A 、B 、C 的对边分别为a 、b 、c ,. (Ⅰ)求B ; (Ⅱ)若,求C. 19. (2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD 中,,,和都是等边三角形.(Ⅰ)证明:; (Ⅱ)求二面角A-PD-C 的大小.20. (2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判. (Ⅰ)求第4局甲当裁判的概率;(Ⅱ)X 表示前4局中乙当裁判的次数,求X 的数学期望. 21. (2013大纲全国,理21)(本小题满分12分)已知双曲线C :(a>0,b>0)的左、右焦点分别为、,离心率为3,直线y=2与C 的两个交点间的距离为. (Ⅰ)求a,b ;(Ⅱ)设过的直线l 与C 的左、右两支分别交于A 、B 两点,且,证明:、、成等比数列.22. (2013大纲全国,理22)(本小题满分12分) 已知函数.(Ⅰ)若时,,求的最小值; (Ⅱ)设数列的通项,证明:.ABC ∆()()a b c a b c ac ++-+=31sin sin 4A C -=090ABC BAD ∠=∠=2BC AD =PAB∆PAD ∆PB CD ⊥1222221x y a b-=1F 2F 62F 11||||AF BF =2||AF ||AB 2||BF (1)()ln(1)1x x f x x xλ+=+-+0x ≥()0f x ≤λ{}n a 111123n a n =++++L 21ln 24n n a a n-+>参考答案一.二、填空题13. 14.480 15. 16. 三、解答题17. 设的公差为d.由得,故或. 由,,成等比数列得. 又,,, 故.若,则,,,所以,此时,不合题意;若,则,解得或.因此的通项公式为,,或.18. (Ⅰ),,因为,所以.由余弦定理得, 因此.(Ⅱ)由(Ⅰ)知,,,所以1[,4]216π{}n a 232S a =2223a a =20a =23a =124,,S S S 2214=S S S 12S a d =-222S a d =-4242S a d =+2222(2)()(42)a d a d a d -=-+20a =222d d =-0d =0n S =23a =2(6)(3)(122)d d d -=-+0d =2d ={}n a 3n a =21n a n =-()()a b c a b c ac ++-+=222a c b ac +-=-2221cos 22a cb B ac +-==-0120B =060A C +=故或, 因此或.19. (Ⅰ)证明:取BC 的中点E ,,,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O. 连结OA ,OB,OD,OE.由和都是等边三角形知PA=PB=PD , 所以OA=OB=OD ,,,即点O 为正方形ABED 对角线的交点, 故,从而.因为O是BD 的中点,,,E 是BC 的中点,所以OE//CD.因此. (Ⅱ)解法一:由(Ⅰ)知,,. 故平面PBD.又平面PBD ,,,所以. 取PD 的中点F ,PC 的中点G ,连结FG , 则FG//CD ,FG//PD.连结AF ,由为等边三角形可得AF ⊥PD.所以,,为二面角A-PD-C 的平面角. ……8分 连结AG ,EG ,则EG//PB. 又PB ⊥AE ,所以EG ⊥AE. 设AB=2,则, cos()cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+cos()2sin sin A C A C =++122=+2=030A C -=030A C -=-015C =045C =PAB ∆PAD ∆OE BD ⊥PB OE ⊥PB CD ⊥CD PB ⊥CD PO ⊥PB PO P =I CD ⊥PD ⊂CD PD ⊥APD ∆AFG ∠AE =112EG PB ==故.在中,,, 所以.因此二面角A-PD-C 的大小为. 解法二:由(Ⅰ)知,OE,OB,OP 两两垂直.以O 为坐标原点,,,的方向为x 轴的正方向建立如图所示的空间直角坐标系O-xyz.设,则,,,.,. ,.设平面PCD 的法向量为,则 , ,可得,.取,得,,,故. 设平面PAD 的法向量为,则 , ,可得.取m=1,得,故.3AG ==AFG∆12FGCD ==AF =3AG =222cos2FG AF AG AFGFG AF +-∠==⨯⨯π-OE uuu r||2AB =u u ur(A (0,D CP PC =u u ur (0,PD =u u u rAP =u u u r AD =u u u r1(,,)n x y z =u r1(,,)0n PC x y z •=•=u r u u ur1(,,)(0,0n PD x y z •=•=u r u u u r20x y z --=0y z +=1y =-0,1x z ==1(0,1,1)n =-u r2(,,)n m p q =u u r2(,,)n AP m p q •=•u u r u u u r2(,,)n AD m p q •=•u u r u u u r0,0m p m p +=-=1,1p q ==-2(1,1,1)n =-u u r于是.由于,,等于二面角A-PD-C 的平面角,所以二面角A-PD-C 的大小为. 20. (Ⅰ)记表示事件,,“第2局结果为甲胜”, 表示事件“第3局甲参加比赛时,结果为甲负”, A 表示事件“第4局甲当裁判”.则.. (Ⅱ)X 的可能取值为0,1,2.记表示事件“第3局乙和丙比赛时,,,结果为乙胜丙”,表示事件“第1局结果为乙胜丙”,表示事件“第2局乙和甲比赛时,,,结果为乙胜甲”,表示事件“第3局乙参加比赛时,结果为乙负”.则 ,,.21.(Ⅰ)由题设知,,,即,故. 所以C 的方程为.将y=2代入上式,求得121212cos ,=-3||||n n n n n n •<>=u r u u ru r u u r u r u u r 12,n n <>u r u u rarccos3π-1A 2A 12=A A A •12121()=P()()()4P A A A P A P A •==3A 1B 2B 3B 1231231(0)()()()()8P X P B B A P B P B P A ==••==13131(2)()()=4P X P B B P B P B ==•=()115(1)1-(0)(2)1848P X P X P X ===-==--=9()0(0)1(=1)+2(2)8E X P X P X P X =•=+••==3c a=2229a b a +=228b a =22288x y a -=x =由题设知,. 所以(Ⅱ)由(Ⅰ)知,,,C 的方程为. ①由题意可设的方程为,,,,代入①并化简得.设,,则,,,.于是,由得,,,即.故,解得,,,从而. 由于,.故,.因而,,,所以、、成等比数列.22. (Ⅰ)由已知,,,,. 若,则当时,,所以. 若,则当时,,,,所以当时,.=21a =1,a b ==1(3,0)F -2(3,0)F2288xy -=l (3)y k x =-||k <2222(8)6980k x k x k --++=11(,)A x y 22(,)B x y 11x ≤-21x ≥212268k x x k +=-2122988k x x k +•=-11||(31)AF x ===-+12||31BF x ===+11||||AF BF=12(31)31x x -+=+1223x x +=-226283k k =--245k =12199x x •=-21||13AF x ===-22||31BF x ===-2212||||||23()4AB AF BF x x =-=-+=221212||||3()9-116AF BF x x x x •=+-=222|||||AB|AF BF •=2||AF ||AB 2||BF (0)0f =2'2(12)()(1)x x f x x λλ--=+'(0)0f =12λ<02(12)x λ<<-'()0f x >()0f x >12λ≥0x >'()0f x <0x >()0f x <综上,的最小值是. (Ⅱ)证明:令.由(Ⅰ)知,,,当时,, 即.取,则. 于是 . 所以. 考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
江苏省2013届最新高三数学(精选试题26套)分类汇编8 直线与圆
江苏省2013届高三最新数学(精选试题26套)分类汇编8:直线与圆一、填空题1 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知直线1l :210ax y a -++=和2l :2(1)20x a y --+=()a ∈R ,则12l l ⊥的充要条件是a =________. 【答案】132 .(江苏省扬州中学2013届高三最后一次模拟考试数学试题)已知,,a b c 成等差数列,点(1,0)M -在直线0ax by c ++=上的射影点为N ,点(1,1)P ,则PN 的最大值为_____________ . 【答案】52+3 .(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc )直线032=-+y x 与直线04=++b y ax 关于点)0,1(A 对称,则b=_______;【答案】24 .(江苏省启东中学2013届高三综合训练(2))已知动点()y x P ,满足11=-+-a y x ,O为坐标原点,若PO 的最大值的取值范围为,17,217⎥⎦⎤⎢⎣⎡则实数a 的取值范围是________ 【答案】⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡--3,2121,3 5 .(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc )直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N 两点,若|MN|≥23,则k 的取值范围是____【答案】⎣⎢⎡⎦⎥⎤-34,0 6 .(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc )当且仅当a r b <<时,在圆()x y r r +=>2220上恰好有两点到直线2x+y+5=0的距离为1,则a b +的值为______. 【答案】257 .(江苏省徐州市2013届高三考前模拟数学试题)过点(1,1)P 的直线将圆224x y +=分成两段圆弧,要使这两段弧长之差最大,则该直线的方程为________.【答案】20x y +-=8 .(江苏省常州高级中学2013年高考数学模拟试卷)在平面直角坐标系xOy 中,“直线y x b =+,b ∈R 与曲线21x y =-相切”的充要条件是“___________”. 【答案】2b =-;9 .(江苏省常州市戴埠高级中学2013年高考数学(文科)冲刺模拟试卷)已知圆心在x轴上,半径为2的圆C 位于y 轴的右侧,且与直线x+y=0相切,则圆C 标准方程为___________.【答案】 22(2)2x y -+=10.(江苏省常州市奔牛高级中学2013年高考数学冲刺模拟试卷)经过点(-2,3),且与直线250x y +-=平行的直线方程为______________.【答案】210x y ++=11.(江苏省常州市第二中学2013年高考数学(文科)冲刺模拟试卷doc )若过点)1,2(P 的直线l 与圆0742:22=--++y x y x C 相交于两点B A 、,且060=∠ACB (其中C 为圆心),则直线l 的方程为___________________.【答案】 05342=--=y x x 或12.(江苏省西亭高级中学2013届高三数学终考卷)不经过坐标原点O 的直线l 与圆x 2+y 2=1交于不同的两点P 、Q ,若直线PQ 的斜率是直线OP 和OQ 斜率的等比中项,则△POQ 面积S 的取值范围为 .【答案】(0,12) 13.(江苏省2013届高三高考压轴数学试题)已知A( —2,0),B(0,2),实数k 是常数,M 、N 是圆220x y kx ++=上不同的两点,P 是圆. 220x y kx ++=上的动点,如果M 、N 关于直线X —y —1 = 0对称,则ΔPAB 面积的最大值是______. 【答案】32+14.(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc )已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA →·PB →的最小值为____【答案】-3+2 215.(江苏省启东中学2013届高三综合训练(2))某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线24()13f x x =-的一部分,栏栅与矩形区域的边界交于点,M N ,交曲线于点P ,则OMN ∆(O 为坐标原点)的面积的最小值为_______.【答案】23二、解答题16.(江苏省常州市金坛四中2013年高考数学冲刺模拟试卷doc )已知圆C:x 2+y 2+2x-4y+3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P(x 1,y 1)向该圆引一条切线,切点为M,O 为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时点P 的坐标.【答案】解(1)将圆C 配方得(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=k x, 由|k +2|1+k2=2,解得k=2±6,得y=(2±6)x. ②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0, 由|-1+2-a|2=2,得|a-1|=2,即a=-1,或a=3. ∴直线方程为x+y+1=0,或x+y-3=0.综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,或x+y+1=0,或x+y-3=0. (2)由|PO|=|PM|,得x 21+y 21=(x 1+1)2+(y 1-2)2-2,整理得2x 1-4y 1+3=0.即点P 在直线l:2x-4y+3=0上当|PM|取最小值时,即OP 取得最小值,直线OP⊥l,∴直线OP 的方程为2x+y=0.解方程组⎩⎪⎨⎪⎧ 2x +y =0,2x -4y +3=0,得点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.。
三年高考2013_2015高考数学试题分项版专题08直线与圆理(含解析)
第八章 直线与圆一、选择题1. 【2015高考广东,理5】平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是( )A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x 【答案】D .【名师点睛】本题主要考查直线与圆的位置关系,利用点到直线距离求直线的方程及转化与化归思想的应用和运算求解能力,根据题意可设所求直线方程为20x y c ++=,然后可用代数方法即联立直线与圆的方程有且只有一解求得,也可以利用几何法转化为圆心与直线的距离等于半径求得,属于容易题.2. 【 2013湖南8】在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的中心,则AP 等于( ) A .2 B .1 C .83 D .43【答案】 D【解析】 使用解析法。
).34,34(32).2,2(),0,(O O ABC D BC x P ∴∆处,在中线的的重心的中点设))1(3)12(4,)1(3)2(4()),1(34,0(34)34(,++++-⇒+-=k k k k Q k R x k y k RQ 则其方程为的斜率为设直线,0)1)(12(1,0,)1(3)2(4)12(4,3)1(4=--⇒=⋅=++-++=-=k k k k k k k x k k k k k QP RP QP RP 由题知⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧==⇒3421(01x k x k ,舍) 选D【考点定位】直线与方程【名师点睛】本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,解决问题的关键是根据光的反射原理正确计算对称点坐标,利用对称性得到直线斜率之间的关系解决问题即可.3. 【2013山东,理9】过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ).A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 【答案】:A【名师点睛】本题考查直线与圆的位置关系、直线方程.此类问题的基本解法有 “几何法”和 “代数法”,涉及切线问题,往往利用圆心到直线的距离等于圆的半径建方程求解. 本题是一道能力题,在考查查直线与圆的位置关系、直线方程等基础知识的同时,考查考生的计算能力、逻辑思维能力及数形结合思想.是一道常见题型,故考生易于正确解答. 4. 【2015高考山东,理9】一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,则反射光线所在直线的斜率为( )(A )53-或35- (B )32- 或23- (C )54-或45- (D )43-或34-【答案】D【解析】由光的反射原理知,反射光线的反向延长线必过点()2,3- ,设反射光线所在直线的斜率为k ,则反身光线所在直线方程为:()32y k x +=- ,即:230kx y k ---=. 又因为光线与圆相切,()()22321x y ++-=1= ,整理:21225120k k ++= ,解得:43k =-,或34k =- ,故选D . 【考点定位】1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.【名师点睛】本题考查了圆与直线的方程的基础知识,重点考查利用对称性解决直线方程的有关问题以及直线与圆的位置关系的判断,意在考查学生对直线与直线、直线与圆的位置关系的理解与把握以及学生的运算求解能力.5.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【答案】C【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ∆是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 6. 【2013高考重庆理第7题】已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ). A.4 B1C.6-【答案】A【名师点睛】本题考查了圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,属于中档题.7. 【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B、、6 D、 【答案】C【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到圆的距离为d ,圆的半径为r ,则由点P所作切线的长l =8. 【2013,安徽理8】函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 ( )A .{}3,4B .{}2,3,4C . {}3,4,5D .{}2,3【答案】B .【易错警示】不理解代数式的几何意义,不能对问题进行等价转化是常见错误.【名师点睛】数形结合思想在高考中经常用到,常分为“以形助数”和“以数助形”,本题主要用到“以形助数”的思想,通过数与形之间的对应关系(()f x x的几何意义是曲线上点()(),x f x 与原点连线的斜率),通过把数转化为形,通过对形的研究解决数的问题、或获得解决数的问题解决思路去解决数学问题的思想.9.【2013天津,理5】已知双曲线2222=1x y a b-(a >0,b >0)的两条渐近线与抛物线y 2=2px (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 则p =( ). A .1 B .32C .2D .3 【答案】C【名师点睛】本题考查抛物线与双曲线的几何性质,重点考查双曲线的渐近线方程及抛物线的准线方程,本题属于基础题, 正确利用双曲线线的渐进线与抛物线的准线相交,求出交点的坐标,利用面积公式列方程求出P ,这样的题目在高考试题中很常见,要灵活应用圆锥曲线的几何性质解题.10. 【2014天津,理5】已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -=【答案】A . 【解析】【名师点睛】本题考查抛物线与双曲线的几何性质,重点考查待定系数法求双曲线的方程,本题属于基础题, 正确利用双曲线线的渐进线与直线l 平行,斜率相等,列出,a b 的一个关系式,直线l 与x 轴交点为双曲线的一个焦点,求出c ,借助222a b c +=,联立方程组,求出,a b ,即可.待定系数法求双曲线的标准方程时,注意利用题目的已知条件,布列关于,,a b c 的方程,还要借助22a b +2c =,正确解出,a b 的值.11. 【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(,且双曲线的一个焦点在抛物线2y= 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -= 【答案】D【名师点睛】本题主要考查双曲线的定义、标准方程及几何性质,同时也学生的考查运算能.把双曲线的几何性质与抛物线的几何性质相结合,找出双曲线中,,a b c 的关系,求出双曲线方程,体现圆锥曲线的统一性.是中档.12. 【2014福建,理6】直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) .A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分又不必要条件【答案】A【名师点睛】本题主要考查直线与圆的位置关系、三角形的面积及充分条件与必要条件等基础知识,意在考查转化划归能力及运算能力,充分条件与必要条件多以客观题形式出现.相关结论是:若p q ⇒ ,则p 是q 的充分条件,q 是p 的必要条件.13. 【2014福建,理9】设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A.25B.246+C.27+D.26 【答案】D【名师点睛】本题主要考查圆与椭圆的基础知识,及划归思想.本题解法的关键是把两点间的最大距离转化为圆心到椭圆上的点的最大距离再加上圆的半径,注意与圆锥曲线有关的试题,一般运算量比较大,要注意运算的准确性. 二、填空题1.【2014江苏,理9】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .【名师点晴】求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2.(2)代数方法:运用韦达定理及弦长公式:|AB |=1+k 2|x 1-x 2|= 1+k 2[ x 1+x 2 2-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.2. 【2015江苏高考,10】在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】22(1) 2.x y -+=【名师点晴】利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程.圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题.当半径表示为关于m 的函数后,利用基本不等式求最值,需注意一正二定三相等的条件. 3. 【2015高考陕西,理15】设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .【答案】()1,1【考点定位】1、导数的几何意义;2、两条直线的位置关系.【名师点晴】本题主要考查的是导数的几何意义和两条直线的位置关系,属于容易题.解题时一定要注意考虑直线的斜率是否存在,否则很容易出现错误.解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.4. 【2014高考陕西版文第12题】若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______. 【答案】22(1)1x y +-=【名师点晴】本题主要考查的是圆的标准方程,点关于直线的对称,,属于容易题.解题时利用对称性求出圆心坐标,就可以写出圆的标准方程.5. 【2014新课标,理16】设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________. 【答案】[1,1]-【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在R t O M ∆中,因为∠OMN=45,所以||||sin 45OA OM =o =||12OM ≤,解得||OM ≤因为点M (0x ,1),所以||OM =≤解得011x -≤≤,故0x 的取值范围是[1,1]-.【考点定位】直线与圆的位置关系【名师点睛】本题考查直线与圆的位置关系,属于中档题,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.6. 【2014四川,理14】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 .【答案】【考点定位】1、直线与圆;2、重要不等式.【名师点睛】利用基本不等式求最值时,要注意“一正,二定,三相等”.7.【2014高考重庆理第13题】已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.【答案】4【解析】试题分析:由题设圆心到直线20ax y --==解得:4a =所以答案应填:4.考点:1、直线与圆的位置关系;2、点到直线的距离公式.【名师点睛】本题考查了直线与圆的位置关系,点到直线的距离公式,等边三角形的性质,本题属于基础题,注意仔细分析题目条件,将等边三角形这一条件等价转化为圆心到直线的距离是非常关键的.8.【2014年普通高等学校招生全国统一考试湖北卷12】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .【答案】2【名师点睛】本题考查直线与圆的位置关系,夯实基础,注重基础知识的运用,充分体现了数形结合的数学思想在数学问题中的应用,能较好的考查学生动手作图能力、基本知识的识记能力和灵活运用能力,锻炼学生的严密地逻辑推理能力.9. 【2015高考湖北,理14】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =. (Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③【考点定位】圆的标准方程,直线与圆的位置关系.【名师点睛】用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略. 常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 三、解答题1. 【2015高考广东,理20】已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)33,44k ⎡⎧⎫∈-⎨⎬⎢⎩⎭⎣⎦ .(3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且5,33E ⎛ ⎝⎭,5,33F ⎛- ⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆C 相切时,由32=得34k =±,又043DE DFk k ⎛- ⎝⎭=-=-=-,结合上图可知当33,44k ⎡⎧⎫∈-⎨⎬⎢⎩⎭⎣⎦ 时,直线L :()4y k x =-与曲线C 只有一个交点.【考点定位】圆的标准方程、轨迹方程、直线斜率等知识与数形结合思想等应用.【名师点睛】本题主要考查圆的普通方程化为标准方程、轨迹方程、直线斜率等知识,转化与化归,数形结合思想和运算求解能力,属于中高档题,本题(1)(2)问相对简单,但第(2)问需注意取值范围(533x <≤),对于第(3)问如果能运用数形结合把曲线C 与直线L 的图形画出求解则可轻易突破难点.2. 【2013江苏,理17】如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1) y =3或3x +4y -12=0.;(2) 120,5⎡⎤⎢⎥⎣⎦所以点C 的横坐标a 的取值范围为120,5⎡⎤⎢⎥⎣⎦.【考点定位】本小题主要考查直线与圆的方程,考查直线与直线、直线与圆、圆与圆的位置关系,等基础知识,考查运用数形结合、待定系数法等数学思想方法分析解决问题的能力. 【名师点晴】1.圆的切线问题(1)过圆x 2+y 2=r 2(r >0)上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2;(2)过圆x 2+y 2+Dx +Ey +F =0外一点M (x 0,y 0)引切线,有两条,求方程的方法是待定系数法,圆的切线问题的处理要抓住圆心到直线的距离等于半径建立关系解决问题. 2.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.3. 【2013课标全国Ⅰ,理20】(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.当k y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |2118|7x x -=.当4k =时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187. 【名师点睛】本题考查椭圆的定义、弦长公式、直线的方程,考查考生的运算能力、化简能力以及数形结合的能力.4.【2013天津,理18】设椭圆2222=1x y a b +(a >b >0)的左焦点为F ,离心率为3,过点F且与x (1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC ·DB +AD ·CB=8,求k 的值.【答案】(Ⅰ)22=132x y +;(Ⅱ)(2)设点C(x1,y1),D(x2,y2),由F(-1,0)得直线CD 的方程为y =k(x +1),由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k2)x2+6k2x +3k2-6=0.求解可得x1+x2=22623k k -+,x1x2=223623k k-+. 因为A(0),0), 所以AC ·DB +AD ·CB=(x1x2,-y2)+(x2x1,-y1) =6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1) =6-(2+2k2)x1x2-2k2(x1+x2)-2k2=22212623k k+++. 由已知得22212623k k +++=8,解得k=考点定位:本题考点为直线与圆锥曲线相关知识【名师点睛】本题考查待定系数法求椭圆方程,直线与椭圆有关知识,属于中偏难题目,解决直线与圆锥曲线问题,首先要求学生要学会设而不求的解题思想,先设出直线方程,设出直线与椭圆的交点,把直线方程和椭圆方程联立方程组,消元后,借助一元二次方程的根与系数关系,通过12121212,,,x x x x y y y y ++的关系及题目的要求解题.直线与圆锥曲线问题为每年高考必考问题,也是备考重点.5. 【2014天津,理18】设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B.已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点O 的直线l 与该圆相切,求直线l 的斜率.【答案】(Ⅰ)e =;(Ⅱ)直线l的斜率为4+或4-.【解析】由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043c x =-,代入①得03cy =,即点P 的坐标为4,33c c 骣÷ç-÷ç÷ç桫.设圆的圆心为()11,T x y ,则142323c x c -+==-,12323c cy c +==,进而圆的半径r ==.设直线l 的斜率为k ,依题意,直线l 的方程为y kx =.由l r ,即,整理得2810k k -+=,解得4k =?.∴直线l的斜率为4+或4-考点:1.椭圆的标准方程和几何性质;2.直线和圆的方程;3.直线和圆的位置关系. 【名师点睛】本题考查求离心率和待定系数法求椭圆方程,属于中偏难题目,解决直线与圆锥曲线问题,首先求离心率就是根据题目所给条件列出一个关于,,a b c 的等式,就能求出离心率;其次解决直线与圆锥曲线问题,要求学生要学会设而不求的解题思想,先设出直线方程,设出直线与椭圆的交点,把直线方程和椭圆方程联立方程组,消元后,简单方程直接求解,而大多借助一元二次方程的根与系数关系,通过12121212,,,x x x x y y y y ++的关系及题目的要求解题.直线与圆锥曲线问题为每年高考必考问题,也是备考重点.6. 【2015高考天津,理19】(本小题满分14分)已知椭圆2222+=1(0)x y a b a b>>的左焦点为(,0)F c -,M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,|FM|=3. (I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FPOP (O 为原点)的斜率的取值范围.【答案】(I) 3; (II) 22132x y += ;(III) ,333⎛⎛-∞- ⎝⎭⎝⎭ .(III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1y t x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得t => 312x -<<-或10x -<<, 设直线OP 的斜率为m ,得y m x =,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =m ∈⎝⎭ ②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝⎭综上,直线OP 的斜率的取值范围是,⎛-∞ ⎝⎭⎝⎭【考点定位】1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.【名师点睛】本题主要考查椭圆的定义、标准方程及几何性质,直线与圆锥曲线的位置关系.由勾股定理求圆的弦长,体现数学数形结合的重要数学思想;用数字来刻画几何图形的特征,是解析几何的精髓,联立方程组,求出椭圆中参数的关系,进一步得到椭圆方程;构造函数求斜率取值范围,体现函数在解决实际问题中的重要作用,是拨高题.。
2013年全国高考理科数学试题分类汇编8:直线与圆Word版含答案
2013 年全国高考理科数学试题分类汇编8:直线与圆一、选择题1.( 2013 年上海市春天高考数学试卷( 含答案 ) )直线2x 3y10 的一个方向向量是()A.(2,3)B.(2,3)C.( 3,2)D.(3,2)【答案】 D2 .( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))已知点A( 1,0), B(1,0),C (0,1) ,直线 y ax b(a0) 将△ABC切割为面积相等的两部分,则 b 的取值范围是()A.(0,1)B.(12,1)( C)(12,1] D.[1,1)222332【答案】 B3.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))过点(3,1)作圆(x 1)2y21的两条切线 ,切点分别为 A , B ,则直线 AB 的方程为()A. 2x y 3 0B. 2x y 3 0C. 4 x y 3 0D. 4x y 3 0【答案】 A4.( 2013 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))已知点O 0,0 , A 0,b , B a,a3 .若ABC 为直角三角形 , 则必有()A.b a3B.b a31aC.b a3 b a310D.b a3 b a310a a【答案】 C5.( 2013 年高考江西卷(理))如图,半径为1的半圆O与等边三角形ABC夹在两平行线,l1, l2之间 l//l1,l 与半圆订交于F,G 两点 , 与三角形ABC两边订交于E,D 两点 , 设弧FG的长为 x(0x) ,y EB BC CD, 若l从l1平行挪动到l2,则函数y f ( x)的图像大概是【答案】 D6 .( 2013 年高考湖南卷(理))ABC中 ,AB=AC4, P AB在等腰三角形点是边上异于A, B 的一点,光芒从点P出发,经 BC ,CA 发射后又回到原点P (如图1).若光芒QR经过 ABC的中心,则 AP 等()A.2B.1C.8D.4【答案】 D33二、解答题7 .( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD版含附带题))本小题满分14 分 . 如图 , 在平面直角坐标系xOy中 , 点A(0,3) , 直线l : y 2x4,设圆C 的半径为 1,圆心在 l 上.(1)若圆心 C 也在直线y x 1上 , 过点A作圆C的切线 , 求切线的方程 ;(2)若圆 C上存在点 M ,使 MA2MO ,求圆心 C 的横坐标a的取值范围.ylAO x【答案】解 :(1)y2x4∵圆 C 的半径为1由y得圆心 C 为(3,2),x 1∴圆 C 的方程为:(x3)2( y2)21明显切线的斜率必定存在, 设所求圆 C 的切线方程为y kx3, 即kx y30∴ 3k 2 31∴3 1k 21 ∴2k( 4k3)0∴k0或许k3k21k4∴所求圆 C 的切线方程为 : y 3 或许y 3 x 3 即y 3 或许 3x4y1204(2) 解: ∵圆C的圆心在在直线l : y2x 4 上,因此,设圆心C为(a,2a-4)则圆C 的方程为 :(x a) 2y( 24) 21a又∵MA2MO∴设M为 (x,y)则x 2( y3) 22x2y 2整理得 : x2( y1) 24设为圆D∴点 M应当既在圆C上又在圆 D上即 : 圆 C和圆 D有交点∴ 2 1 a 2(2a4) ( 1)2 2 1由 5a 由 5a 228a8 0 得x R12a0 得012x512终上所述 , a的取值范围为 :0,。
江苏省2013届高三最新数学(精选试题26套)分类汇编8:直线与圆
XX省2021届高三最新数学〔精选试题26 套〕分类汇编 8:直线与圆一、填空题错误!未指定书签。
〔. XX省XX中学2021届高三最后一次模拟考试数学试题〕直线 l1: ax y2a 1 0和 l2: 2x(a1) y 2 0 ( a R ),那么l1l2的充要条件是a________.【答案】13错误!未指定书签。
.〔XX 省XX中学2021届高三最后一次模拟考试数学试题〕 a, b, c 成等差数列,点M( 1,0)在直线 ax by c 0上的射影点为 N ,点 P(1,1), 那么PN的最大值为 _____________ .【答案】52错误!未指定书签。
.〔XX省XX市金坛四中2021年高考数学冲刺模拟试卷doc 〕直线x 2 y30 与直线 ax 4 y b0关于点 A(1,0) 对称,那么b=_______;【答案】 2错误!未指定书签。
〔. XX省启东中学2021届高三综合训练〔 2〕〕动点P x, y满足x 1y a1,O 为坐标原点 , 假设PO的最大值的取值X围为17 ,17 , 那么实数a的取值X围是________2【答案】3,112,32错误!未指定书签。
.〔XX省XX市金坛四中2021年高考数学冲刺模拟试卷doc 〕直线y=kx+3与圆(x-3) 2+(y-2) 2=4 相交于 M,N两点 ,假设 |MN| ≥2 3,那么 k 的取值X围是 ____3【答案】-4,0错误!未指定书签。
.〔XX省XX市金坛四中2021年高考数学冲刺模拟试卷doc 〕当且仅当a r b 时,在圆 x2y2r 2 (r0) 上恰好有两点到直线2x+y+5=0的距离为1,那么 a b 的值为______.【答案】 25错误!未指定书签。
.〔XX省XX市2021届高三考前模拟数学试题〕过点 P(1,1)的直线将圆 x2y2 4 分成两段圆弧 , 要使这两段弧长之差最大 , 那么该直线的方程为 ________.【答案】 x y20错误!未指定书签。
北京市2013高考数学 一模试题解析分类汇编系列五 8 直线与圆 文
【解析分类汇编系列五:北京2013高三(一模)文数】8:直线与圆1.(2013届北京市朝阳区一模数学文)若直线y x m =+与圆22420x y x +++=有两个不同的公共点,则实数m 的取值范围是A .(2+B .()4,0-C .(22--+D . ()0,4D圆的标准方程为22(2)2x y ++=,所以圆心为(2,0)-,半径为。
由题意知<22m -<,解得04m <<,选D.2.(2013届北京市石景山区一模数学文)设a ∈R ,则“1a =”是“直线l 1:ax+2y=0与直线l 2:x+(a+1)y+4=0平行的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 A直线1l 的斜率为2a -,直线2l 的斜率为11a -+,所以如两直线平行则有112aa -=-+,解得1a =或2a =-。
所以1a =是两直线平行的充分不必要条件,选A.3.(2013届北京市延庆县一模数学文)已知圆的方程为08622=--+y x y x ,设该圆过点)5,3(的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .610 B .620 C .630 D .640B圆的标准方程为22(3)(4)25x y -+-=,所以圆心为(3,4)M ,半径为5.其中过点(3,5)N 的最长弦为直径10AC =,当MN BD ⊥时,BD 最小,此时1MN =,所以BD ===,所以四边形ABCD 的面积为111022BD AC ⋅=⨯=,选B.4.(2013届北京市延庆县一模数学文)已知直线01)1(:1=+++y a ax l ,02:2=++ay x l ,则“2-=a ”是“21l l ⊥”( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A当2-=a 时,两直线方程为1:210l x y --+=,2:220l x y -+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国高考理科数学试题分类汇编8:直线与圆
一、选择题
错误!未指定书签。
.(2013年上海市春季高考数学试卷(含答案))直线2310x y -+=的一
个方向向量是 ( )
A .(2 3)-,
B .(2 3),
C .(3 2)-,
D . (3 2),
【答案】D
错误!未指定书签。
.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版
含答案))已知点(1,0),(1,0),(0,1)A B C -,直线(0)y
ax b a =+>将△ABC 分割为面积
相等的两部分,则b 的取值范围是 ( )
A .(0,1)
B
.1
(1)2
( C) 1(1]23-
D . 11[,)32
【答案】B
错误!未指定书签。
.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))过
点(3,1)作圆2
2
(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )
A .230x y +-=
B .230x y --=
C .430x y --=
D .430x y +-=
【答案】A
错误!未指定书签。
.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))
已知点()()()
3
0,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有
( )
A .3
b a =
B .3
1
b a a
=+
C .(
)3
3
10b a b a a ⎛⎫
---
= ⎪⎝⎭
D .3
3
1
0b a b a a
-+--
= 【答案】C
错误!未指定书签。
.(2013年高考江西卷(理))如图,半径为1的半圆O 与等边三角形ABC
夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D
两点,设弧 FG 的长为(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2
l ,则函数()y f x =的图像大致是
【答案】D
错误!未指定书签。
.(2013年高考湖南卷(理))在等腰三角形ABC 中,=4AB AC =,点P
是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图
1).若光线QR 经过ABC ∆的中心,则AP 等
( )
A .2
B .1
C .
8
3
D .
43
【答案】D 二、解答题
错误!未指定书签。
.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯
WORD 版含附加题))本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线
42:-=x y l ,设圆C 的半径为1,圆心在l 上.
(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.
【答案】解:(1)由⎩⎨
⎧-=-=1
4
2x y x y 得圆心C 为(3,2),∵圆C 的半径为1
∴圆C 的方程为:1)2()3(22=-+-y x
显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx
∴
11
3
232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43
-=k
∴所求圆C 的切线方程为:3=y 或者34
3
+-
=x y 即3=y 或者01243=-+y x (2)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4) 则圆C 的方程为:[]1)42()(2
2=--+-a y a x
又∵MO MA 2=∴设
M 为(x,y)则
22222)3(y x y x +=-+整理
得:4)1(2
2
=++y x 设为圆D
∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点 ∴[]12)1()42(122
2+≤---+≤
-a a
由08852
≥+-a a 得R x ∈
由01252
≤-a a 得5
120≤
≤x 终上所述,a 的取值范围为:⎥⎦
⎤
⎢⎣⎡512,。