大学高数三角函数总结

合集下载

三角函数包含的知识点总结

三角函数包含的知识点总结

三角函数包含的知识点总结一、基本概念1. 三角函数的定义三角函数是由角的正弦、余弦、正切等与该角的变量之间的关系来定义的。

在以角为自变量的函数中,这些关系通常用三角函数名称来表示。

角度单位可以是度,也可以是弧度。

2. 正弦、余弦、正切、余切的定义正弦(sin)、余弦(cos)、正切(tan)、余切(cot)是最基本的四个三角函数,它们的定义如下:正弦:sinθ = 对边/斜边余弦:cosθ = 邻边/斜边正切:tanθ = 对边/邻边余切:cotθ = 邻边/对边3. 三角函数的周期性正弦、余弦、正切、余切都是周期函数,周期为2π或π,即f(x+2π) = f(x),或者f(x+π) = f(x)。

4. 三角函数的定义域和值域正弦、余弦、正切的定义域是全体实数;正弦、余弦的值域是[-1,1],而正切的值域是整个实数集。

二、性质与公式1. 倒数公式tanθ = 1/cotθ,cotθ = 1/tanθsinθ = 1/cscθ,cscθ = 1/sinθcosθ = 1/secθ,secθ = 1/cosθ2. 三角函数的和差化积公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)3. 三角函数的倍角公式sin2A = 2sinAcosAcos2A = cos^2A−sin^2Atan2A = 2tanA/(1−tan^2A)4. 三角函数的半角公式sin((1/2)A) = ±√[(1−cosA)/2]cos((1/2)A) = ±√[(1+cosA)/2]tan((1/2)A) = ±√[(1−cosA)/(1+cosA)]5. 三角函数的辅助角公式sin(180°−A) = sinAcos(180°−A) = −cosAtan(180°−A) = −tanAcot(180°−A) = −cotA6. 三角函数的同角变换sin(π−A) = sinAcos(π−A) = −cosAtan(π−A) = −tanAcot(π−A) = −cotA7. 三角函数的万能公式sinA+sinB = 2sin(A+B/2)cos(A−B/2)sinA−sinB = 2cos(A+B/2)sin(A−B/2)8. 三角恒等式sin^2A+cos^2A = 1,cot^2A+1 = csc^2A,tan^2A+1 = sec^2A三、函数图像和性质1. 正弦函数的图像和性质正弦函数y=sin(x)的图像是在直角坐标系中绕原点作周期为2π的振动,函数的最大值为1,最小值为-1,且为奇函数。

大学高数三角函数总结

大学高数三角函数总结

三角函数1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 x x k x x k xx k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ公式组三x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:公式组四 x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ公式组五xx x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ公式组六xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= ()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-2tan 12tan2tan 2ααα-=42675cos 15sin -==, ,3275cot 15tan -== ,. 3215cot 75tan +== 42615cos 75sin +==2sin2cos2sin sin βαβαβα-+=-2cos 2cos2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

高数三角函数

高数三角函数

高数三角函数高等数学中,三角函数是一种被广泛应用于各种科学和工程领域中的数学函数。

三角函数包括正弦函数、余弦函数、正切函数等,它们以三角学中的角度作为自变量,并输出一个实数作为函数值。

下面我们来看看三角函数的基本概念、性质和常用公式。

一、三角函数的基本概念1. 正弦函数:正弦函数 f(x)= sin(x) 是一个周期为2π 的函数,它在每个周期内的值都在 [-1,1] 的区间内变化。

该函数图像在原点处截距为零,在 90 度处达到最大值 1,在 270 度处达到最小值 -1。

2. 余弦函数:余弦函数 f(x)= cos(x) 也是一个周期为2π 的函数,它在每个周期内的值也在 [-1,1] 的区间内变化。

该函数图像在弧度为 0 或2π 时达到最大值 1,在弧度为π 或3π 时达到最小值 -1。

3. 正切函数:正切函数 f(x)= tan(x) 也是一个周期为π 的函数,它在每个周期内的值都在 (-∞,∞) 的区间内变化。

该函数图像在原点处截距为零,并在每个π 的整数倍处出现无穷大或无穷小的断点。

二、三角函数的性质1. 周期性:所有三角函数都是周期函数,其中正弦函数和余弦函数的周期为2π,正切函数的周期为π。

2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数,而正切函数既不是奇函数也不是偶函数。

3. 对称性:正弦函数在原点处对称,余弦函数在 y 轴上对称。

三、三角函数的常用公式1. 和差公式:sin(A+B)=sinAcosB+cosAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=tanA+tanB/1-tanAtanB。

2. 积化和差公式:cosAcosB=1/2[cos(A+B)+cos(A-B)];sinAsinB=1/2[cos(A-B)-cos(A+B)]。

3. 万能公式:sin2A=2sinAcosA;cos2A=cos^2A-sin^2A;tan2A=2tanA/1-tan^2A。

三角函数知识点总结

三角函数知识点总结

三角函数知识点总结三角函数是数学中重要的概念之一,它包含了正弦函数、余弦函数、正切函数等。

三角函数广泛应用于大量的数学和物理问题中,掌握三角函数的知识对于理解和解决这些问题非常重要。

下面是对三角函数的一些重要知识点的总结:1.三角函数的定义:- 正弦函数(sine function),记作sin(x),表示一个锐角的对边与斜边之比。

- 余弦函数(cosine function),记作cos(x),表示一个锐角的邻边与斜边之比。

- 正切函数(tangent function),记作tan(x),表示一个锐角的对边与邻边之比。

以上定义只适用于锐角,对于其他类型的角需要通过周期性延拓。

2.三角函数的周期性:- 正弦函数和余弦函数的周期都是2π,即sin(x+2π) = sin(x)和cos(x+2π) = cos(x)。

- 正切函数的周期是π,即tan(x+π) = tan(x)。

-周期性意味着三角函数的图像在每个周期内重复出现。

3.三角函数的图像:-正弦函数的图像是一条连续的波浪线,其中最高/最低点为1和-1,图像关于y轴对称。

- 余弦函数的图像也是一条连续的波浪线,最高/最低点为1和-1,但与正弦函数的图像相位差π/2,即cos(x) = sin(x+π/2)。

-正切函数的图像在每个π/2的整数倍处有一个垂直渐近线,同时在每个π的整数倍处有一个不可定义的点(除数为零)。

图像关于原点对称。

4.三角函数的性质:- 正弦函数和余弦函数的值域是[-1,1],即-1≤sin(x)≤1和-1≤cos(x)≤1- 正切函数在一些特殊的角度处为零,即tan(0) = 0,tan(π) = 0,tan(2π) = 0,以此类推。

- 正弦函数是奇函数,即sin(-x) = -sin(x),余弦函数是偶函数,即cos(-x) = cos(x)。

- sin^2(x) + cos^2(x) = 1,这被称为三角恒等式。

5.三角函数的性质和公式:-三角函数具有一些重要的性质和公式,如和差公式,倍角公式,半角公式等。

完整版)三角函数知识点总结

完整版)三角函数知识点总结

完整版)三角函数知识点总结三角函数知识要点:1.角度集合:①与角度α(0°≤α<360°)终边相同的角的集合:β|β=k×360°+α,k∈Z②终边在x轴上的角的集合:β|β=k×180,k∈Z③终边在y轴上的角的集合:β|β=k×180+90,k∈Z④终边在坐标轴上的角的集合:β|β=k×90°,k∈Z⑤终边在y=x轴上的角的集合:β|β=k×180°+45°,k∈Z⑥终边在y=-x轴上的角的集合:β|β=k×180°-45°,k∈Z2.角度关系:⑦若角度α与角度β的终边关于x轴对称,则α=360°k-β⑧若角度α与角度β的终边关于y轴对称,则α=360°k+180°-β⑨若角度α与角度β的终边在一条直线上,则α=180°k+β⑩角度α与角度β的终边互相垂直,则α=360°k+β±90°3.角度与弧度的互换关系:360°=2π,180°=π,1°=0.≈57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。

4.弧长与扇形面积公式:弧长公式:l=|α|×r扇形面积公式:s=lr=|α|×r²5.三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),与原点的距离为r,则sinα=y/r;cosα=x/r;tanα=y/x;cotα=x/y;secα=r/x;cscα=r/y。

6.三角函数在各象限的符号:(一全二正弦,三切四余弦)7.三角函数线:正弦线:MP;余弦线:OM;正切线:AT。

8.重要结论:sinx|>|cosx|。

三角函数的定义域:对于三角函数f(x)=sinx、f(x)=cosx、f(x)=tanx、f(x)=cotx、f(x)=secx、f(x)=cscx,它们的定义域分别为{x|x∈R}、{x|x∈R}、{x|x∈R且x≠kπ+π,k∈Z}、{x|x∈R且x≠kπ,k∈Z}、{x|x∈R且x≠kπ+π/2,k∈Z}、{x|x∈R且x≠kπ,k∈Z}。

三角函数归纳总结

三角函数归纳总结

三角函数归纳总结三角函数是数学中的重要概念,用于描述角度和三角形之间的关系。

在数学和物理学等学科中,三角函数的理论和应用极其广泛。

本文将对常见的三角函数进行归纳总结,包括正弦函数、余弦函数、正切函数以及它们的基本性质和公式。

一、正弦函数(Sine Function)正弦函数是最基本的三角函数之一,一般表示为sin(x),其中x为角度。

正弦函数可以表示为一个周期性的波形,其特点如下:1. 定义域和值域:正弦函数的定义域为所有实数,值域为[-1, 1]之间;2. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x);3. 周期性:正弦函数的周期为2π,即sin(x+2π) = sin(x);4. 对称性:正弦函数在x=0处对称,即sin(π-x) = sin(x)。

二、余弦函数(Cosine Function)余弦函数是另一个常见的三角函数,一般表示为cos(x),其中x为角度。

余弦函数的性质如下:1. 定义域和值域:余弦函数的定义域为所有实数,值域为[-1, 1]之间;2. 奇偶性:余弦函数是偶函数,即cos(-x) = cos(x);3. 周期性:余弦函数的周期为2π,即cos(x+2π) = cos(x);4. 对称性:余弦函数在x=π/2处对称,即cos(π-x) = sin(x)。

三、正切函数(Tangent Function)正切函数是三角函数中另一个重要的函数,一般表示为tan(x),其中x为角度。

正切函数的性质如下:1. 定义域和值域:正切函数的定义域为除去所有奇数π/2的整数倍的点,值域为所有实数;2. 奇偶性:正切函数是奇函数,即tan(-x) = -tan(x);3. 周期性:正切函数的周期为π,即tan(x+π) = tan(x);4. 对称性:正切函数在x=0处对称,即tan(π/2-x) = cot(x),其中cot(x)为余切函数。

四、其他三角函数及性质除了正弦函数、余弦函数和正切函数外,还有一些与它们有关的三角函数,例如余切函数、正割函数和余割函数。

三角函数的专业知识点总结

三角函数的专业知识点总结

三角函数的专业知识点总结一、定义1. 正弦函数sin(x):在单位圆上,点P(x,y)的y坐标即为sin(x),其中x表示弧度。

2. 余弦函数cos(x):在单位圆上,点P(x,y)的x坐标即为cos(x),其中x表示弧度。

3. 正切函数tan(x):在单位圆上,点P(x,y)的y坐标除以x坐标即为tan(x),其中x表示弧度。

二、性质1. 周期性:正弦函数、余弦函数、正切函数都是周期函数,其中正弦函数和余弦函数的周期为2π,正切函数的周期为π。

2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

3. 值域:正弦函数和余弦函数的值域都是[-1,1],而正切函数的值域是整个实数集。

4. 单调性:正弦函数、余弦函数、正切函数在各自的定义域内都是单调函数。

三、图像1. 正弦函数sin(x)的图像:在数学坐标系中,正弦函数的图像是一条周期性波浪状的曲线,其极值在[-1,1]之间循环变化。

2. 余弦函数cos(x)的图像:余弦函数的图像也是一条周期性波浪状的曲线,与正弦函数的图像相似,但是相位不同。

3. 正切函数tan(x)的图像:正切函数的图像在每个周期上有无数个奇点,即在每个周期的0、π、2π等处都有垂直渐近线。

它的图像是一条周期性的周期性波浪状曲线。

四、公式1. 三角函数的和差化积公式:sin(a±b) = sin(a)cos(b)±cos(a)sin(b),cos(a±b) =cos(a)cos(b)∓sin(a)sin(b)。

2. 三角函数的倍角公式:sin(2a) = 2sin(a)cos(a),cos(2a) = cos²(a) - sin²(a),tan(2a) =2tan(a) / (1 - tan²(a))。

3. 三角函数的半角公式:sin(a/2) = ±√((1-cos(a))/2),cos(a/2) = ±√((1+cos(a))/2),tan(a/2) = ±√((1-cos(a))/(1+cos(a)))。

高数 三角函数公式以及 通用公式

高数  三角函数公式以及 通用公式

三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n*22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3。

高数三角函数公式大全

高数三角函数公式大全

三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A Asin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)]cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =a acos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -其他非重点三角函数csc(a) =a sin 1sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1- sin(a) = (sin 2a -cos 2a)22-公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα公式六: 2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= co sα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A《机关公文常用词句集锦》一一1、常用排比:新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;活动力、控制力、影响力、创造力、凝聚力、战斗力;找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。

高数三角函数大总结

高数三角函数大总结

三角函数锐角三角函数公式正弦:sin α =∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式sin2A=2sinA?cosAcos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= ta nα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

三角函数章知识点总结

三角函数章知识点总结

三角函数章知识点总结1. 三角函数的定义三角函数是以角度或弧度为自变量的函数。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

这些函数都可以用单位圆来定义。

如果将一个角的顶点放在坐标原点,那么角的动点就在单位圆上。

给定这个角θ,单位圆上的点的坐标就是(cosθ,sinθ)。

这样,就可以把角与三角函数联系起来。

2. 三角函数的性质(1)周期性:正弦函数和余弦函数的周期都是2π,正切函数的周期是π。

(2)奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

(3)增减性:正弦函数和余弦函数在每个周期内都是交替增减的,而正切函数在每个周期内是单调递增或者单调递减的。

(4)界限:正弦函数和余弦函数的值在[-1, 1]之间,而正切函数的值没有界限。

3. 三角函数的图像(1)正弦函数的图像是一条波浪线,其最大值是1,最小值是-1,其周期是2π。

(2)余弦函数的图像是一条波浪线,与正弦函数的图像一样,只是相位差为π/2。

(3)正切函数的图像类似于正弦函数的图像,但是它在某些点上会无限增大或无限减小。

4. 三角函数的基本公式(1)正弦函数和余弦函数的基本公式:sin²θ + cos²θ = 1。

(2)正切函数的基本公式:1 + tan²θ = sec²θ。

(3)余切函数的基本公式:1 + cot²θ = csc²θ。

这些基本公式是三角函数的基石,许多三角函数的性质和定理都是由这些公式推导而来的。

5. 三角函数的应用三角函数在实际中有许多应用,比如在几何中用来求解三角形的性质,或者在物理中用来描述波形或者振动的运动。

在工程学中,三角函数也有很多应用。

比如在电路设计中,正弦函数可以被用来描述交流电压的变化,而正切函数可以被用来描述某些复杂的电路特性。

在航海、天文学、建筑学等领域,三角函数也有着重要的应用。

比如在导航中,三角函数可以被用来计算两地之间的距离和方位。

根据三角函数知识总结

根据三角函数知识总结

根据三角函数知识总结
三角函数是数学中重要的一部分,它在几何学、物理学和工程
学等众多领域中有着广泛的应用。

以下是关于三角函数的一些总结:
1. 三角函数的定义
三角函数包括正弦函数、余弦函数和正切函数。

正弦函数(sin)定义为直角三角形的对边与斜边的比值,余弦函数(cos)定义为
直角三角形的邻边与斜边的比值,正切函数(tan)定义为正弦函数与余弦函数的比值。

2. 三角函数的性质
三角函数具有很多重要性质,其中一些包括:
- 正弦函数和余弦函数的值范围在-1到1之间;
- 正弦函数的周期是2π,余弦函数的周期也是2π;
- 正切函数的周期是π。

3. 三角函数的图像
三角函数可以表示为图像,在平面直角坐标系中,正弦函数和余弦函数的图像是周期性的波形,而正切函数的图像则呈现周期性的锯齿形状。

4. 三角函数的应用
三角函数在实际应用中有着广泛的应用,例如:
- 在几何学中,三角函数可以用于求解三角形的各个属性,如边长、角度等;
- 在物理学中,三角函数可以描述波动和周期性运动的行为;
- 在工程学中,三角函数可以用于计算电路中的交流信号和电压。

总结:三角函数是数学中的重要概念,它有着广泛的应用。

了解三角函数的定义、性质和图像有助于解决各种实际问题,并应用于几何学、物理学和工程学等领域。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数知识点归纳总结
1、三角函数:三角函数是指能表示直角三角形三边与两个角关系的
函数。

通常所说的三角函数,是指正弦函数、余弦函数和正切函数,它们
与三角形的角度和对边之间有密切的联系,作用甚广。

2、正弦函数:正弦函数的值取决于弧度值,而弧度值又取决于角度值,
也就是说正弦函数的值实质上取决于角度值。

也就是说,正弦函数是一种
以角度值为自变量,弧度值为因变量的函数,其公式为:y=sin(θ)。

3、余弦函数:余弦函数是以角度值为自变量,弧度值为因变量的函数,
其公式为:y=cos(θ)。

余弦函数的最大值为1,最小值为-1,值域为[-
1,1]。

4、正切函数:正切函数是以角度值为自变量,弧度值为因变量的函数,
其公式为:y=tan(θ)。

正切函数的值域为正无穷大和负无穷大之间。

5、反正弦函数:反正弦函数也称为反三角函数,其公式为:y=arcsin(x)。

反正弦函数,它表示为y=arcsin(x),以x为自变量,y为因变量,取值
范围为[-π/2,π/2]。

6、反余弦函数:反余弦函数公式为:y=arccos(x),x为自变量,y为因
变量,取值范围为[0,π]。

7、反正切函数:反正切函数也称为反三角函数,其公式为:y=arctan(x),x为自变量,y为因变量,取值范围为[-π/2,π/2]。

(完整版)大学用三角函数公式大全

(完整版)大学用三角函数公式大全

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。

完整版)三角函数知识点总结

完整版)三角函数知识点总结

千里之行,始于足下。

完整版)三角函数知识点总结三角函数是数学中一个重要的分支,主要研究角和三角形之间的关系。

它广泛应用于几何学、物理学、工程学等领域。

本文将对三角函数的知识点进行总结,帮助读者更好地理解和应用三角函数。

一、弧度制和角度制1. 角度:以圆心为顶点,两条射线之间的夹角称为角度。

角度可用度(°)表示。

2. 弧度:以圆心为顶点,将圆周上的弧长所对应的圆心角称为弧度。

弧度可用弧长除以半径来表示。

二、常见三角函数1. 正弦函数(sin):在直角三角形中,对于任意的锐角θ,正弦函数定义为对边与斜边的比值,即sinθ = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,对于任意的锐角θ,余弦函数定义为邻边与斜边的比值,即cosθ = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,对于任意的锐角θ,正切函数定义为对边与邻边的比值,即tanθ = 对边/邻边。

4. cosec函数(csc):正弦函数的倒数,即cscθ = 1/sinθ。

5. sec函数:余弦函数的倒数,即secθ = 1/cosθ。

6. cot函数:正切函数的倒数,即cotθ = 1/tanθ。

三、三角函数的性质1. 周期性:正弦和余弦函数的周期均为2π,即sin(x+2π) = sinx,cos(x+2π) = cosx。

2. 奇偶性:正弦函数为奇函数,即sin(-x) = -sinx;余弦函数为偶函数,即cos(-x) = cosx。

第1页/共3页锲而不舍,金石可镂。

3. 正切函数的周期为π,即tan(x+π) = tanx。

4. 值域:正弦和余弦函数的值范围在[-1, 1]之间;正切函数的值域为实数集。

5. 三角函数的关系式:sin^2θ + cos^2θ = 1;1 + tan^2θ = sec^2θ;1 + cot^2θ = csc^2θ。

四、三角函数的图像1. 正弦函数的图像:水平位移为π/2,垂直位移为0,振幅为1。

高数三角函数公式大

高数三角函数公式大

高数三角函数公式大全三角函数公式大全两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) = cot(A+B) = cot(A-B) = 倍角公式 tan2A = Sin2A=2SinA•CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()= cos()= tan()= cot()= tan()== 和差化积sina+sinb=2sincos sina-sinb=2cossin cosa+cosb = 2coscos cosa-cosb = -2sinsintana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)] cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)] cosasinb = [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(-a) = cosa cos(-a) = sina sin(+a) = cosa cos(+a) = -sina sin(π-a) =s ina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = 万能公式 sina=cosa= tana= 其他非重点三角函数 csc(a) = sec(a) = 双曲函数 sinh(a)= cosh(a)= tg h(a)=其它公式a•sina+b•cosa=×sin(a+c) [其中tanc=] a•sin(a)-b•cos(a) = ×cos(a-c) [其中tan(c)=] 1+sin(a) =(sin+cos)2 1- sin(a) = (sin-cos)2 2- 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -si nα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:±α及±α与α的三角函数值之间的关系:sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotα cot(+α)= -tanα sin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanα sin(+α)= -cosα cos(+α)= sinα tan (+α)= -cotα cot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinα tan(-α)= cotα cot (-α)= tanα (以上k∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin 《机关公文常用词句集锦》一一 1、常用排比:新水平、新境界、新举措、新发展、新突破、新成绩、新成效、新方法、新成果、新形势、新要求、新期待、新关系、新体制、新机制、新知识、新本领、新进展、新实践、新风貌、新事物、新高度;重要性,紧迫性,自觉性、主动性、坚定性、民族性、时代性、实践性、针对性、全局性、前瞻性、战略性、积极性、创造性、长期性、复杂性、艰巨性、可讲性、鼓动性、计划性、敏锐性、有效性;法制化、规范化、制度化、程序化、集约化、正常化、有序化、智能化、优质化、常态化、科学化、年轻化、知识化、专业化、系统性、时效性;热心、耐心、诚心、决心、红心、真心、公心、柔心、铁心、上心、用心、痛心、童心、好心、专心、坏心、爱心、良心、关心、核心、内心、外心、中心、忠心、衷心、甘心、攻心;政治意识、政权意识、大局意识、忧患意识、责任意识、法律意识、廉洁意识、学习意识、上进意识、管理意识;出发点、切入点、落脚点、着眼点、结合点、关键点、着重点、着力点、根本点、支撑点;活动力、控制力、影响力、创造力、凝聚力、战斗力;找准出发点、把握切入点、明确落脚点、找准落脚点、抓住切入点、把握着重点、找准切入点、把握着力点、抓好落脚点;必将激发巨大热情,凝聚无穷力量,催生丰硕成果,展现全新魅力。

三角函数总结大全(整理好的)

三角函数总结大全(整理好的)

三角函数(一)任意角的三角函数及诱导公式1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。

旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。

如果一条射线没有做任何旋转,我们称它形成了一个零角。

2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。

要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。

终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。

区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。

3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。

角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。

角度制与弧度制的换算主要抓住180rad π︒=。

弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ;1°=180π≈0.01745(rad )。

弧长公式:r l ||α=(α是圆心角的弧度数); 扇形面积公式:2||2121r r l S α==。

4 三角函数的定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P到原点的距离记为(0)r r ==>,那么sin y r α=; cos x r α=; tan y x α=; (cot x y α=; sec r x α=; csc r yα=) 利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)y x x α=≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad ) 3、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域7. 三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 x x k x x k xx k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ公式组三 xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =x xsin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:公式组四 x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ公式组五xx x x xx x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ公式组六xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan1cos 22ααα+-= ()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-2tan 12tan2tan 2ααα-=42675cos 15sin -==, ,3275cot 15tan -== ,. 3215cot 75tan +== 42615cos 75sin +==2sin2cos2sin sin βαβαβα-+=-2cos 2cos2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(π=T ); 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

高中数学三角函数常见习题类型及解法1.三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

相关文档
最新文档