北师大版八年级数学上册期中考试试卷
北师大版八年级上册数学期中测试卷及答案
北师大版八年级上册数学期中测试卷及答案北师大版八年级上册数学期中测试卷及答案本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共36分)1、36的平方根是()A、±6B、36C、±6D、-6改写:求36的平方根,正确的答案是±6.2、下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1.④38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应。
其中正确的有()A、2个B、3个C、4个D、5个改写:以下语句中,正确的是:①-1是1的平方根;③-1的立方根是-1;⑤(-2)的算术平方根是2;⑥-125的立方根是±5;⑦有理数和数轴上的点一一对应。
共有4个正确的语句,选项C为正确答案。
3、下列计算正确的是()A、-327=3B、a2+a3=a5C、a2·a3=a6D、(-2x)3=-6x3改写:下列计算中正确的是:A、-3-27=3.因为-3-27=-30,不等于3;B、a^2+a^3=a^5,正确;C、a^2·a^3=a^5,不等于a^6;D、(-2x)^3=-8x^3,不等于-6x^3.因此,正确答案为B。
4、分解因式-2xy2+6x3y2-1xy时,合理地提取的公因式应为()A、-2xy2B、2xyC、-2xyD、2x2y改写:分解因式-2xy^2+6x^3y^2-xy时,合理地提取的公因式应为2xy。
因为-2xy^2、6x^3y^2和-xy都含有xy,而且2是它们的最大公因数。
因此,正确答案为B。
5、对下列多项式分解因式正确的是()A、a3b2-a2b3+a2b2=a2b2(a-b)B、4a2-4a+1=4a(a-1)+1C、a2+4b2=(a+2b)2D、1-9a2=(1+3a)(1-3a)改写:对下列多项式分解因式正确的是:A、a^3b^2-a^2b^3+a^2b^2=a^2b^2(a-b);B、4a^2-4a+1=(2a-1)^2;C、a^2+4b^2=(a+2b)(a-2b);D、1-9a^2=(1+3a)(1-3a)。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是( )A .227B C .-3.14 D 2.下列四组线段中,能组成直角三角形的是( )A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=2,b=4,c=5D .a=3,b=4,c=53.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列计算错误的是( )A B C D 5.若函数()15m y m x =--是一次函数,则m 的值是( )A .±1B .1-C .1D .26.下列二次根式中,最简二次根式是( )A .BCD 7.一次函数24y x =-+的图象与y 轴的交点坐标是( )A .(4,0)B .(0,4)C .(2,0)D .(0,2)8.如图,在Rt ABC △中分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若14S =,216S =,则3S 的值为( )A .10B .6C .12D .209.一次函数23y x =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间二、填空题11=________. 12.已知点(),1A a 与点()4,B b -关于原点对称,则a -b 的值为________13有意义的x 的取值范围是14.点A(1,a)在直线y =-2x +3上,则a =_________15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____. 17.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.三、解答题18.计算(1)19.计算:(1(2)2++.(2(220.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?21.已知点P(a ,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.24CD=BC=8,.如图,四边形ABCD中,AB=AD,△BAD=90°,若AB=求四边形ABCD的面积.25.已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.26.联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为1y (元),B 套餐为2y (元),月通话时间为x 分钟.(1)分别表示出1y 与x ,2y 与x 的函数关系式;(2)月通话时间多长时,A ,B 两种套餐收费一样?(3)某客户每月的通话时间大概是500分钟,他应该选择哪种套餐更省钱?(4)如果某公司规定员工的话费最多是200元,他应该选择哪种套餐?参考答案1.B【解析】【分析】根据有理数和无理数的定义直接求解,无限不循环小数是无理数.【详解】解:A.227是有理数,故本选项不符合题意;C. 3.14-是有理数,故本选项不符合题意;2=是有理数,故本选项不符合题意.故选:B【点睛】本题主要考查了有理数和无理数的判断,熟练掌握有理数和无理数的概念是解答此题的关键.2.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.△ 12+22=5≠32,△不能构成直角三角形,故本选项错误;B.△ 22+32=13≠42 ,△不能构成直角三角形,故本选项错误;C.△ 22+42=20≠52,△不能构成直角三角形,故本选项错误;D.△ 32+42=25=52,△能构成直角三角形,故本选项正确.故选D.【点睛】本题考查了勾股定理的逆定理.解题的关键是,验证两小边的平方和等于最长边的平方即可证明直角三角形.3.D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:△点P (a 、b )在第二象限,△a<0,b>0,△点Q (b ,a )在第四象限,故选D .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).4.B【解析】【分析】根据二次根式的运算直接进行计算化简判断即可.【详解】A =,正确;BC =D故选:B .【点睛】本题主要考查二次根式的化简运算,熟练掌握二次根式的运算是解题的关键.5.B【解析】【分析】函数()15m y m x =--是一次函数,根据一次函数的定义,求出m 的值即可.【详解】△函数()15m y m x =--是一次函数, △1m =,且10m -≠,解得:1m =-,故答案选:B .【点睛】本题考查一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,正确判断未知数的次数与系数是解答本题的关键.6.A【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意; B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.B【解析】【分析】求一次函数图像与y 轴的交点坐标,令x=0,求出y 值即可.【详解】令x=0,得y=-2×0+4=4,△一次函数与y 轴的交点坐标是(0,4),故选B.【点睛】本题考查一次函数与坐标轴的交点坐标问题,求图像与y 轴交点坐标时,令x=0,解出y 即可;求图像与x 轴交点坐标时,令y=0,解出x 即可.8.D【分析】根据勾股定理的验证计算即可;【详解】在Rt ABC △中,222AC AB BC +=,由正方形的面积公式可得21S AB =,222S AC =,223S BC =,△14S =,216S =,△31241620S S S =+=+=;故选D .【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.B【解析】【分析】根据一次函数(0)y ax b a =+≠的a 、b 的符号判定该一次函数所经过的象限即可.【详解】 解:一次函数23y x =-的20k =>,30b =-<,∴一次函数23y x =-经过第一、三、四象限,即一次函数23y x =-不经过第二象限.故选:B .【点睛】本题考查了一次函数的图象,即直线y kx b =+所在的位置与k 、b 的符号有直接的关系.解题的关键是掌握当0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交. 10.C【解析】【分析】因为△OAB 是一个直角三角形,且有OC=OB ,所以可求得OB 的长度即得C 点所表示的数,可判断其大小.解:△AB△OA△在直角三角形OAB 中有 OA 2+AB 2=OB 2△.OB =△45又△OC=OB△点C 所表示的数介于4和5之间故选:C .【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案.11【解析】【分析】先根据二次根式的性质化简,再合并即可.【详解】=12.5【分析】直接利用关于原点对称点的性质得出a ,b 的值,代入求解即可.【详解】解:△点A (a ,1)与点B (﹣4,b )关于原点对称,△4a =,1b =-,△5a b -=,故答案为:5.13.x≥3【分析】根据二次根式有意义的条件,可推出30x -≥,然后通过解不等式,即可推出5x ≥【详解】解:若30x -≥,原根式有意义,3x ∴≥,故答案为3x ≥.14.1【详解】将点A 的坐标(1, a)代入直线的解析式y=-2x+3,得a=-2+3=1.故答案为:115.4【分析】少走的距离是AC+BC -AB ,在直角△ABC 中根据勾股定理求得AB 的长即可.【详解】解:如图,△在Rt ABC 中,222AB AC BC =+,△ 5AB ===米,则少走的距离为:3452AC BC AB +-=+-=米,△2步为1米,△少走了4步.故答案为:4.16.x=2【解析】由直线y=2x+b 与x 轴的交点坐标是(2,0),求得b 的值,再将b 的值代入方程2x+b=0中即可求解.【详解】把(2,0)代入y=2x+b,得:b=-4,把b=-4代入方程2x+b=0,得:x=2.故答案为:x=2.17.y=12x【详解】设该正比例函数的解析式为y=kx (k≠0).将点(2, 1)的坐标代入该正比例函数的解析式y=kx,得2k=1,△12k=,△该正比例函数的解析式为12y x =.故答案为:12 y x =18.(1)-1【分析】(1)根据平方差公式,结合二次根式的性质进行计算即可;(2)先根据二次根式的性质进行化简,然后再进行运算即可.(1)解:22=-56=-1=-(2)=== 19.(1)(2)8﹣【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算即可;【详解】解:(1=(2)原式=4343-+-=8﹣20.0.8【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:△在Rt ABC 中, 2.5,0.7AB AC ==△ 2.4BC =△2CE BC BE =-=△在Rt CDE 中 2.5DE =△ 1.5CD =△0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.21.(-3,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数确定出a 、b 的值,然后写出点的坐标即可.【详解】解:△点P(a ,b)在第二象限,且|a|=3,|b|=8,△a=−3,b=8,△点P 的坐标为(−3,8).22.发生火灾的住户窗口距离地面14米【分析】在Rt△ACB 中,利用勾股定理求出BC 即可解答.【详解】解:由题意,AB=15,AC=DE=9,CD=AE=2,BD△AC ,在Rt△ACB 中,由勾股定理得:12BC ==,△BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.23.(1)见解析;(2)A 2(-2,0),B 2(-1,3),C 2(1,2),(3)P (m -3,-n )【分析】(1)直接利用关于x 轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点2P 的坐标.【详解】解:(1)如图所示:△111A B C 就是所要求作的图形;(2)如图所示:△222A B C 就是所要求作的图形,其顶点坐标为A 2(-2,0),B 2(-1,3),C 2(1,2);(3)如果AC 上有一点(,)P m n 经过上述两次变换,那么对应22A C 上的点2P 的坐标是:2(3,)P m n --.故答案为:(3,)m n --.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.24.4+【解析】【分析】先根据勾股定理求出BD 的长,再根据勾股定理逆定理求得△BCD 是直角三角形,四边形ABCD 的面积是两个直角三角形的面积之和.【详解】△AB=AD ,△BAD =90°,AB =△BD 4,△BD 2+CD 2=42+(2=64,BC 2=64,△BD 2+CD 2=BC 2,△△BCD 为直角三角形,△S四边形ABCD =S △ABD +S △BCD =12×12×=4+25.(1)A (2,0)B (0,4);(2)见解析;(3)S △AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,△0=-2x+4解得:x=2;让x=0时,△y=-2×0+4=4,△一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)S△AOB=11244 22AO BO⨯⨯=⨯⨯=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.26.(1)y1=0.1x+15,y2=0.15x;(2)300分钟;(3)A套餐;(4)A套餐.【解析】【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)由当12y y <时A 套餐更省钱,即当x >300时,A 套餐优惠;否则B 套餐优惠,据此解答即可;(3)令y 1=200和y 2=200元,分别求得x ,选x 较大的实惠.【详解】解:(1)由题意可知,A 套餐的收费方式:10.115y x =+, B 套餐的收费方式为:20.15y x =.(2)由12y y =,得0.1150.15x x +=, 解得300x =,即月通话时间为300分钟时,A ,B 两种套餐收费一样.(3)当12y y <时A 套餐更省钱, 即0.1150.15x x +<,解得300x > 因为500>300分钟时,所以他应选选A 套餐;(4)令y 1=200,有200=0.1x+15,解得:x=1850; 令y 2=200,有200=0.15x ,解得:x≈1333; △1850>1333△应选择A 套餐.。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,无理数是()A.0 B C.﹣2 D.272.下列运算正确的是()3 C±3 D.1A 3 B3.已知ABC的三边长a,b,c满足(a﹣b)(c2﹣a2﹣b2)=0,则ABC的形状是()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形4.已知图形A在y轴的右侧,如果将图形A上的所有点的横坐标都乘﹣1,纵坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称5.如图,等腰直角△OAB的斜边OA在x轴上,且OA=2,则点B坐标为()A.(1,1) B.C.D.(1)6.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.对于一次函数y=﹣2x+4,下列结论中正确的是()A.函数值随自变量的增大而增大B.点(4﹣a,a)在该函数的图像上C.函数的图象与直线y=﹣x﹣2平行D.函数图象与坐标轴围成三角形的周长为8x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤59.以下列长度的线段为边,不能组成直角三角形的是()A.1,1B C.2,3,4 D.8,15,17 10.如图所示的图象分别给出了x与y的对应关系,其中表示y是x的函数的是()A.B.C.D.二、填空题11.若a b<,且a,b是两个连续的整数,则a b+的值是______.12.若y+4,则x2+y2的算术平方根是__________.13.在一次函数y=﹣2x+5图象上有A(x1,y1)和(x2,y2)两点,且x1>x2,则y1________ y2(填“>,<或=”)14.小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.15.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知轿车比货车每小时多行驶10千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,下列说法正确的是__________.△甲乙两地的距离为450千米△点A的实际意义是两车出发2小时相距150千米△x=3时,两车相遇△货车的速度为90千米/小时16.已知长方形ABCD,AB=6,BC=10,M为线段AD上一点且AM=8,点P从B出发以每秒2个单位的速度沿线段BC﹣CD的方向运动,至点D停止,设运动时间为t秒,当AMP为等腰三角形时,t的值为__________.三、解答题17.计算:(1(2|2|.18.如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)画出ABC关于y轴的对称的A 1B1C1.(2)A 1B1C的面积为;(3)y轴上存在一点P使得ABP的周长最小,点P的坐标为,周长最小值为.191(1(2(320.已知等腰三角形ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm.(1)求证:CD△AB;(2)求该三角形的腰的长度.21.学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即每套100元.经洽谈协商:A公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费;B公司的优惠条件是:服装按单价打八折,公司承担运费.如果设参加演出的学生有x人.(1)写出:△学校购买A公司服装所付的总费用y1(元)与参演学生人数x之间的函数关系式;△学校购买B公司服装所付的总费用y2(元)与参演学生人数x之间的函数关系式.(2)若参演学生人数为150人,选择哪个公司比较合算,请说明理由.22.如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,OA=4,OCOA=12.(1)根据题意,写出点A的坐标,点C的坐标;(2)求AC所在直线的表达式;(3)将纸片OABC折叠,使点A与点C重合(折痕为EF),折叠后纸片重叠部分(即△CEF)的面积为;(4)请直接写出EF所在直线的函数表达式.23.如图1,在正方形ABCD中,点E,F分别在正方形ABCD的边BC,CD上,△EAF =45°,连接EF.(1)思路梳理:将ABE绕点A逆时针旋转至ADG,如图1,使AB与AD重合,易证△GAF=△EAF=45°,可证AFG△AFE,故EF,BE,DF之间的数量关系为;(2)类比引申:如图2,在图1的条件下,若点E,F由原来的位置分别变到正方形ABCD 的边CB,DC的延长线上,△EAF=45°,连接EF,猜想EF,BE,DF之间的数量关系为,并给出证明;(3)联想拓展:如图3,等腰Rt ABC,△BAC=90°,△MAN=45°,把△MAN绕点A旋转,在整个旋转过程中AM、AN分别与直线BC交于点D、E,若BD=2,EC=4,则BE的长为.24.根据题意,解答问题:(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D 的坐标.25.【模型建立】(1)如图1,等腰Rt ABC中,△ACB=90°,CB=CA,直线ED经过点C,过点A作AD△ED 于点D,过点B作BE△ED于点E,求证:BEC△CDA.【模型应用】(2)如图2,已知直线l1:y=32x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l1则直线l2的函数表达式为.(3)如图3,将图1四边形放到平面直角坐标系中,点E与O重合,边ED放到x轴上,若OB=2,OC=1,在x轴上存在点M使的以O、A、B、M为顶点的四边形面积为4,请直接写出点M的坐标.(4)如图4,平面直角坐标系内有一点B(3,﹣4),过点B作BA△x轴于点A,BC△y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若CPD 是等腰直角三角形.请直接写出点D的坐标.参考答案1.B2.A3.A4.B5.A6.A7.D8.B9.C10.D11.5【分析】a和b的值,即可求解.【详解】解:△23<,△a=2,b=3,△a+b=5.故答案为:512.5【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式求值,再根据算术平方根的定义解答.【详解】解:根据题意得,3-x≥0且x-3≥0,解得x≤3且x≥3,所以,x=3,y=4,所以,x2+y2=32+42=25,△25的算术平方根是5,△x2+y2的算术平方根是5.故答案为:5.13.<【解析】先根据一次函数的性质判断出函数的增减性,进而可得出结论.【详解】解:△一次函数y=-2x+5中,k=-2<0,△y 随x 的增大而减小.△x 1>x 2,△y 1<y 2.故答案为:<.14.90.50.8 6.3x y x y +=⎧⎨+=⎩【分析】由题意可得等量关系△0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;△0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,由题意得90.50.8 6.3x y x y +=⎧⎨+=⎩, 故答案为:90.50.8 6.3x y x y +=⎧⎨+=⎩. 15.△△△【分析】根据函数图象中的数据和题意,可以直接判断△△△,再根据轿车比货车每小时多行驶10千米和两车3小时相遇,即可计算出货车的速度,从而可以判断△.【详解】解:由图象可得,甲乙两地的距离为450千米,故△正确;点A 的实际意义是两车出发2小时相距150千米,故△正确;x=3时,两车相遇,故△正确;货车的速度为:(450÷3-10)÷2=70(千米/小时),故△错误;故答案为:△△△.16.42【详解】 解:四边形ABCD 是矩形, 6AB CD ∴==,10BC AD ==,90BAD B C D ∠=∠=∠=∠=︒, 当AMP ∆为等腰三角形时,分三种情况: △当PA PM =时,点P 在AM 的垂直平分线上, 取AM 的中点N ,过点N 作NP AM ⊥交BC 于P ,如图1所示:则四边形ABPN 是矩形,142BP AN AM ∴===,422t ∴=÷=;△当8AM AP ==时,如图2所示:在Rt ABP ∆中,由勾股定理得:BP ===,2t ∴=÷=△当8MA MP ==时,过点M 作MH BC ⊥于H ,如图3所示:则四边形ABHM 为矩形,6MH AB ∴==,8BH AM ==,90MHP ∠=︒,在Rt MHP ∆中,由勾股定理得:HP ===,8BP BH HP ∴=-=-,(824t ∴=-÷=-综上所述,t 的值为:42故答案为:42【点睛】本题考查了矩形的判定与性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.17.(1(2)10【解析】【分析】(1(2)化简|2|,再合并同类项即可. 【详解】解:(1=(2|2|+=())9322+-+-=9322-+=10【点睛】本题考查实数的运算,二次根式的混合运算,掌握运算法则是正确计算的前提.18.(1)见解析;(2)7;(3)7(0,)3【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)根据三角形的面积公式求解即可;(3)利用待定系数法求出AB 1所在直线解析式,从而得出点P 坐标,再利用勾股定理可得三角形ABP 周长最小值.【详解】解:(1)如图所示,△111A B C 即为所求.(2)如图所示,连接1A C ,△11A B C 的面积为17272⨯⨯=,故答案为:7;(3)如图所示,连接1AB ,与y 轴的交点即为所求点P ,设1AB 所在直线解析式为y kx b =+,则321k b k b +=⎧⎨-+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩, 2733y x ∴=+, 当0x =时,73y =, 7(0,)3P ∴;12AB ==,AB ==∴故答案为:7(0,)3【点睛】本题主要考查作图—轴对称变换,解题的关键掌握轴对称变换的定义和性质,并据此得出变换后的对称点.19.(1(23)9【解析】【分析】(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.【详解】解:(1)原式(2)原式(3)由(2)可知:原式﹣=﹣=9.【点睛】本题考查了二次根式的混合运算以及分母有理化,观察式子找到规律是解题的关键.20.(1)见解析;(2)253cm【分析】(1)根据勾股定理的逆定理求出△BDC=90°,求出△ADC=90°即可;(2)在Rt△ADC中,由勾股定理得出a2=(a-6)2+82,求出a即可.【详解】解:证明:(1)设AB=AC=a cm,△BC=10cm,CD=8cm,BD=6cm,△BD2+CD2=BC2,△△BDC=90°,即△ADC=90°,△CD△AB;(2)△△ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a-6)2+82,解得:a=253,即AB=253cm.21.(1)△y1=70x+1200;△y2=80x;(2)若参演学生人数为150人,选择A公司比较合算,理由见解析【分析】(1)△根据A 公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费,可以写出学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式;△根据B 公司的优惠条件是:服装按单价打八折,公司承担运费,可以写出学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式;(2)先判断哪家公司比较合算,然后将x=150代入(1)中的两个函数解析式,求出相应的函数值,再比较大小即可说明理由.【详解】解:(1)△由题意可得,学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式是y 1=100x×0.7+1200=70x+1200,故答案为:y 1=70x+1200;△由题意可得,学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式是y 2=100x×0.8=80x ,故答案为:y 2=80x ;(2)若参演学生人数为150人,选择A 公司比较合算,理由:当x=150时,y 1=70×150+1200=11700,y 2=80×150=12000,△11700<12000,△若参演学生人数为150人,选择A 公司比较合算.22.(1)(4,0),(0,2);(2)122y x =-+;(3)52;(4)23y x =- 【分析】(1)由4OA =,12OC OA =.得2OC =,即可得出点A 、C 的坐标; (2)利用待定系数法求函数解析式;(3)由折叠的性质和平行线的性质得CE CF =,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理列方程可得CE 的长,从而求出面积;(4)设AC 与EF 的交点为G ,可知点G 为AC 的中点,再用待定系数法求函数解析式即可.【详解】解:(1)4=OA ,12OCOA =.2OC ∴=,(4,0)A ∴,(0,2)C ;故答案为:(4,0),(0,2);(2)设直线AC 的函数解析式为:y kx b =+,∴240b k b =⎧⎨+=⎩, ∴122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为:122y x =-+;(3)由折叠知:AE CE =,AEF CEF ∠=∠,//BC OA ,AEF CFE ∴∠=∠,CEF CFE ∴∠=∠,CE CF ∴=,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理得:222(4)2x x -+=, 解得52x =,52CE ∴=,115522222CEF S CF OC ∆∴=⨯⨯=⨯⨯=, 故答案为:52;(4)设AC 与EF 的交点为G ,52AE CE ==, 32OE ∴=, 3(,0)2E ∴, 由折叠知,EF 垂直平分AC ,∴点G 为AC 的中点,∴点(2,1)G ,设直线EF 的函数解析式为:y mx n =+, ∴30221m n m n ⎧+=⎪⎨⎪+=⎩,∴23m n =⎧⎨=-⎩, ∴直线EF 的函数解析式为23y x =-,故答案为:23y x =-.23.(1)BE+FD=EF ;(2)DF=EF+BE ;(3)2+【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFG△△AFE ,根据全等三角形的性质得出EF=FG ,即可得出答案;(2)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFE△△AFG ,根据全等三角形的性质得出EF=FG ,即可得出答案;(3)把△ACE 旋转到ABF 的位置,连接DF ,证明△AFE△△AFG (SAS ),则EF=FG ,△C=△ABF=45°,△BDF 是直角三角形,根据勾股定理即可作出判断.【详解】解:(1)如图1所示:△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△B=90°,△△FDG=180°,点F 、D 、G 共线,△△DAG=△BAE ,AE=AG ,△△FAG=△FAD+△GAD=△FAD+△BAE=90°-45°=45°=△EAF ,即△EAF=△FAG . 在△EAF 和△GAF 中,AF AFEAF GAF AE AG=⎧⎪∠=∠⎨⎪=⎩,△△AFG△△AFE (SAS ).△EF=FG .△EF=DF+DG=DF+BE ,即EF=BE+DF .故答案为:BE+FD=EF ;(2)DF=EF+BE .证明:如图2所示.△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△ABE=90°,△点C 、D 、G 在一条直线上.△EB=DG ,AE=AG ,△EAB=△GAD .又△△BAG+△GAD=90°,△△EAG=△BAD=90°.△△EAF=45°,△△FAG=△EAG -△EAF=90°-45°=45°.△△EAF=△GAF .在△EAF 和△GAF 中,EA GAEAF GAF EF FG=⎧⎪∠=∠⎨⎪=⎩,△△EAF△△GAF (SAS ).△EF=FG .△FD=FG+DG ,△DF=EF+BE ,故答案为:DF=EF+BE ;(3)把△ACE 旋转到ABF 的位置,连接DF ,则△FAB=△CAE .△△BAC=90°,△DAE=45°,△△BAD+△CAE=45°,又△△FAB=△CAE ,△△FAD=△DAE=45°,则在△ADF 和△ADE 中,AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,△△ADF△△ADE (SAS ).△DF=DE ,△C=△ABF=45°.△△BDF=90°.△△BDF 是直角三角形.△BD 2+BF 2=DF 2.△BD 2+CE 2=DE 2.=△BE=BD+DE=2+故答案为:2+24.(1)(2)(3)点D 的坐标为(2,0).【分析】(1)由一次函数解析式求得点A 、B 的坐标,则易求直角△AOB 的两直角边OB 、OA 的长度,所以在该直角三角形中利用勾股定理即可求线段AB 的长度;(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C ,构造直角△MNC ,则在该直角三角形中利用勾股定理来求求点M 与点N 间的距离;(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .在直角△DGN 和直角△MDH 中,利用勾股定理得到关于m 的方程12+(m+2)=42+(3-m )2通过解方程即可求得m 的值,则易求点D 的坐标.【详解】(1)令x=0,得y=4,即A (0,4).令y=0,得x=-2,即B (-2,0).在Rt△AOB 中,根据勾股定理有:AB(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C .根据题意:MC=4-(-1)=5,NC=3-(-2)=5.则在Rt△MCN 中,根据勾股定理有:MN(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .则GD=|m -(-2)|,GN=1,DN 2=GN 2+GD 2=12+(m+2)2MH=4,DH=|3-m|,DM 2=MH 2+DH 2=42+(3-m )2△DM=DN ,△DM 2=DN 2即12+(m+2)=42+(3-m )2整理得:10m=20得m=2,△点D 的坐标为(2,0).25.(1)见解析;(2)510y x =--;(3)(2,0)或(1,0)-;(4)1119(,)33-或(4,7)-或813(,)33- 【分析】(1)根据同角的余角相等可证BCE =∠∠CAD ,从而利用AAS 可证BEC CDA ∆≅∆; (2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可得OAB HBF ∆≅∆,则(3,5)F -,利用待定系数法即可求得函数解析式;(3)由(1)得BOC CDA ∆≅∆,得(3,1)A ,分两种情况,可求出OM 的值,即可得出点M 的坐标;(4)分点P 为直角顶点或点C 为直角顶点时或点D 为直角顶点三种情况,分别画出图形,利用(1)中K 型全等可得点D 的坐标,即可解决问题.【详解】解:证明:(1)AD ED ⊥,BE ED ⊥,90BEC ADC ∴∠=∠=︒,90ACD DAC ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,BCE CAD ∴∠=∠,在BEC ∆和CDA ∆中,BEC ADCBCE DAC BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CDA AAS ∴∆≅∆;(2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可证()OAB HBF AAS ∆≅∆,OA BH ∴=,OB FH =, 直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,3)B ,2OA ∴=,3OB =,5OH ∴=,3FH =,(3,5)F ∴-,设2l 的函数解析式为y kx b =+,将点A ,F 的坐标代入得5k =-,10b =-,∴直线2l 的函数解析式为510y x =--,故答案为:510y x =--;(3)由(1)得BOC CDA ∆≅∆,1OC AD ∴==,2CD OB ==,(3,1)A ∴,12332AOB S ∆=⨯⨯=,1OAM S ∆∴=,2OM ∴=,(2,0)M ∴;当M 点在x 轴的负半轴上时,如下图,12332AOB S ∆=⨯⨯=,1OBM S ∆∴=,1OM ∴=,(1,0)M ∴-;故答案为:(2,0)或(1,0)-;(4)△若点P 为直角顶点时,如图,设点P 的坐标为(3,)m ,则PB 的长为4m +,90CPD ∠=︒,CP PD =,180CPM CDP PDH ∠+∠+∠=︒,90CPM PDH ∴∠+∠=︒,又90CPM DPM ∠+∠=︒,PCM PDH ∴∠=∠,在MCP ∆与HPD ∆中,PCM PDHCMP PHM PC PD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△()MCP HPD AAS ∆≅∆,CM PH ∴=,PM PD =,∴点D 的坐标为(7,3)m m +-+,又点D 在直线21y x =-+上,2(7)13m m ∴-++=-+, 解得:103m =-,即点D 的坐标为1119(,)33-;△若点C 为直角顶点时,如图,设点P 的坐标为(3,)n ,则PB 的长为4n +,CA CD =,同理可证明()PCM CDH AAS ∆≅∆,PM CH ∴=,MC HD =,∴点D 的坐标为(4,7)n +-, 又点D 在直线21y x =-+上,2(4)17n ∴-++=-,解得:0n =,∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为(4,7)-;△若点D 为直角顶点时,如图,设点P 的坐标为(3,)k ,则PB 的长为(4)k +,CD PD =,同理可证明()CDM PDQ AAS ∆≅∆,MD PQ ∴=,MC DQ =,77(,)22k k D +-∴-, 又点D 在直线21y x =-+上,772122k k +-∴-⨯+=-, 解得:53k =-, ∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为813(,)33-,综上所述,点D 的坐标为1119(,)33-或(4,7)-或813(,)33-, 故答案为:1119(,)33-或(4,7)-或813(,)33-. 【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,一次函数图象上点的坐标的特征,作辅助线构造模型,运用分类思想是解题的关键.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在实数:3.14159,1.010010001,4.21,π,227中,无理数有( ) A .1个 B .2个 C .3个 D .4个 2.下列根式中是最简二次根式的是( )AB .CD 3.若()2 1 3m y m x-=-+是关于x 的一次函数,则m 的值为( ) A .1 B .1- C .±1 D .2± 4.以下四组数中,不是勾股数的是( )A .3n ,4n ,5n (n 为正整数)B .5,12,13C .20,21,29D .8,5,75.已知点A (4,3)和点B 在坐标平面内关于x 轴对称,则点B 的坐标是( ) A .(4,3) B .(﹣4,3) C .(4,﹣3) D .(﹣4,﹣3)6.已知,且a ,b 为两个连续的整数,则a+b 等于()A .3B .5C .6D .77.如图,长方体的长为15宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .20B .25C .30D .328.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( )A .23-B .29-C .47-D .27- 9.如图,三级台阶,每一级的长、宽、高分别为8dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为( )A.15 dm B.17 dm C.20 dm D.25 dm10.如图,在平面直角坐标系中,△ABC与△DEF关于直线m:x=1对称,M,N分别是这两个三角形中的对应点.如果点M的横坐标是a,那么点N的横坐标是()A.-a B.-a+1 C.a+2 D.2-a二、填空题11.点M(﹣3,4)到y轴的距离是__.12.已知a+2的平方根是±3,a﹣3b立方根是﹣2,求a+b的平方根为_____.+=_____.13.若已知a、b,则a b14.△ABC中,∠ABC=30°,AB=AC=4,则BC=____.15.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________三、解答题16.计算与解方程(1(π﹣3)0 (2)⎛ ⎝(3 (4)解方程 23(1)471x +-=17.已知2a ﹣1的算术平方根是5,b +1的立方根是﹣2,求3a ﹣b 算术平方根.18.在平面直角坐标系中,已知点()1,24P m m -+,试分别根据下列条件,求出点P 的坐标. (1)点P 在x 轴上;(2)点P 横坐标比纵坐标大3;(3)点P 在过()5,2A -点,且与y 轴平行的直线上.19.如图,在四边形ABCD 中,已知AB =AD =2,BC =3,CD =1,∠A =90°. (1)求BD 的长;(2)求∠ADC 的度数.20.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费. (1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式; (2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由.(3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?21.如图,已知A (0,4),B (﹣2,2),C (3,0).(1)作△ABC 关于x 轴对称的△A 1B 1C 1;(2)求△A1B1C1的面积与A1B1边上的高;(3)在x轴上有一点P,使PA+PB最小,求PA+PB的最小值.22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.23.如图,小亮发现升旗的绳子放下时,末端刚好接触到地面E处,但将绳子末端拉到距离旗杆8米的B处,发现此时绳子末端距离地面2米.求旗杆的高度.24.某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当0<x≤5时,单价y为元.当单价y=8.8时,x的取值范围为.(2)根据函数图象,求第②段函数图象中单价y(元)与购买量(千克)的函数关系式,并写出x的取值范围.(3)促销活动期间,张老师计划去该店购买A种水果10千克,那么张老师共需花费多少钱?参考答案1.A【分析】根据无理数的定义逐一判断即可.【详解】解:3.141 59=4,1.010010001,4.21,227都是有理数;根据无理数的定义得,只有π是无理数.故选A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:含π的式子;开方开不尽的数;以及像0.1010010001…,等有这样有规律但不循环的小数.2.B【分析】最简二次根式应满足的条件:①被开方数的因数或因式的指数小于2;②被开方数的因数或因式是整数.【详解】解:A.C. D.不是最简二次根式故选B.【点睛】此题考查了最简二次根式应满足的条件.3.B【分析】根据一次函数定义求出m 的值即可.【详解】∵()2 1 3m y m x-=-+是一次函数 ∴21m -=∴1m =±∵10m -≠∴1m =-故选B【点睛】本题主要考查了一次函数的定义,掌握一次函数的定义是解题的关键.4.D【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.A、(3n)2+(4n)2=(5n)2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】此题考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.5.C【分析】根据关于x轴对称的点的坐标,纵坐标互为相反数,横坐标相等求出点B的坐标即可.【详解】点A(4,3)关于x轴对称的点的坐标为(4,﹣3),∴B(4,﹣3).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.B【分析】a、b为两个连续整数,若a b,即可得到a=2,b=3,从而求出a+b.【详解】解:∵<b,,∴a=2,b=3,∴a+b=5.【点睛】本题考查估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.7.B【详解】试题解析:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:.(2)如图,BC=5,AC=20+10=30,由勾股定理得,(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴由于25<,故选B .8.A【详解】如图,梯形的面积=1(26)282⨯+⨯=,直线把梯形的面积分成相等的两部分,每部分为4,∴直线2y kx =+一定过(0,2),即点D ,设直线与横轴交于点E ,则1242AE ⨯⨯=, ∴4AE =,即点E 坐标为(3,0),把点(3,0)代入2y kx =+,得23k =-. 故选A .9.B【分析】根据勾股定理求解出最短路程即可.【详解】最短路径17dm故答案为:B .【点睛】本题考查了利用勾股定理求最短路程的问题,掌握勾股定理是解题的关键.10.D【分析】 根据对应点的中点在对称轴上,可得点N 与M 点的关系,根据解方程,可得答案【详解】解:设N 点的横坐标为b ,由△ABC 与△DEF 关于直线m=1对称,点M 、N 分别是这两个三角形中的对应点,得12a b +=, 解得2b a =-.故选:D .【点睛】此题考查坐标与图形变化对称,解题关键在于列出方程11.3.【分析】根据点到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点A 的坐标(﹣3,4),它到y 轴的距离为|﹣3|=3,故答案为:3.【点睛】本题考查了点的坐标,点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值.12.±【分析】先根据平方根,立方根的定义列出关于a 、b 的二元一次方程组,再求出a+b 的值,然后根据平方根的定义求解即可.【详解】∵a+2的平方根是±3,a ﹣3b 立方根是﹣2, ∴2038a ab +=⎧⎨-=-⎩, 解得75a b =⎧⎨=⎩, ∴a+b =12,∴a+b 的平方根为±故答案为:±【点睛】本题考查了平方根,立方根的定义,列式求出a、b的值是解题的关键.13.1【解析】有意义,所以50{50aa-≥-≥,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考点:二次根式.14.8或4.【分析】分两种情况进行解答,一是∠ACB为锐角,另一种∠ACB为钝角,分别画出图形,通过作高,构造直角三角形,利用直角三角形的性质和边角关系进行解答即可.【详解】①当∠ACB为锐角时,如图1,过点A作AD⊥BC,垂足为D,在Rt△ABD中,∵∠ABC=30°,AB=∴AD=12AB=BD=cos30°×AB=6,在Rt△ADC中,DC2,∴BC=BD+DC=6+2=8;②当∠ACB为钝角时,如图2,过点A作AD⊥BC,交BC的延长线于点D,在Rt△ABD中,∵∠ABC=30°,AB=∴AD=12AB=BD=cos30°×AB=6,在Rt△ADC中,DC2,∴BC=BD﹣DC=6﹣2=4;因此BC的长为8或4,故答案为:8或4.【点睛】本题考查直角三角形的性质、直角三角形的边角关系等知识,分类画出相应的图形,作高构造直角三角形是常用的方法.15【分析】先根据勾股定理求得AB,再做△ABD的中位线EF,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE.【详解】解:∵AD是BC边上的高线,AD=6,AB=10,∴∠D=90°,BD8==,∵CE是AB边上的中线,CD=AE,∴152CD AE BE AB====,取BD的中点F,连接CF,∴EF为△ABD的中位线,∴132EF AD==,EF//AD,∴∠EFB=∠D=90°,在Rt △BEF 中,根据勾股定理,4BF ,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,CE ==.【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.16.(1)(2)4;(3)(4)1=3x ,2=-5x【分析】(1)利用立方根,算术平方根及零指数幂的运算进行计算;(2)利用二次根式的混合运算的计算;(3)二次根式的化简,进行计算;(4)利用开平方法解方程.【详解】解:(1(π﹣3)0=(-3+1-(2)⎛ ⎝()3-5=2+2=4(3==(4)解方程 23(1)471x +-=解:23(1)=48x +2(1)=16x +=41x +±=41x +1=3x-41=x +2=-5x【点睛】本题考查了二次根式的混合运算及一元二次方程-直接开平方法,掌握二次根式的化简及运算顺序是本题的解题关键.17.【分析】利用平方根,立方根定义求出a 与b 的值,即可求出所求.【详解】解:∵2a ﹣1的算术平方根是5,b+1的立方根是﹣2,∴2a ﹣1=25,b+1=﹣8,解得:a =13,b =﹣9,∴3a ﹣b =48,48的算术平方根是【点睛】本题是对算术平方根和立方根的考查,熟练掌握算术平方根和立方根知识是解决本题的关键.18.(1)()3,0-;(2)()9,12--;(3)()5,4--【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标-纵坐标=3得m 的值,代入点P 的坐标即可求解;(3)让横坐标为-5求得m 的值,代入点P 的坐标即可求解.【详解】解:(1)∵点P 在x 轴上,∴令2m+4=0,解得m=-2,则 P 点的坐标为(-3,0);(2)∵点P 横坐标比纵坐标大3,∴令m-1-(2m+4)=3,解得m=-8,则P 点的坐标为(-9,-12);(3)∵点P 在过()5,2A -点,且与y 轴平行的直线上,∴令m-1=-5,解得m=-4.则 P 点的坐标为(-5,-4).【点睛】本题考查了点的坐标,用到的知识点为:x 轴上的点的纵坐标为0;平行于y 轴的直线上的点的横坐标相等.19.(1)(2)135°.【分析】(1)首先在Rt △BAD 中,利用勾股定理求出BD 的长;(2)根据等腰直角三角形的性质求出∠ADB =45°,再根据勾股定理逆定理在△BCD 中,证明△BCD 是直角三角形,即可求出答案.【详解】解:(1)在Rt △BAD 中,∵AB =AD =2,∴BD(2)在Rt △BAD 中,∵AB =AD =2,∴∠ADB =45°,在△BCD中,DB2+CD2=8+12=9=CB2,∴△BCD是直角三角形,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=45°+90°=135°.【点睛】此题主要考查了勾股定理以及逆定理的运用,解决问题的关键是求出∠ADB=45°,再求出∠BDC=90°.20.(1)y甲=x+1500,y乙=2.5x;(2)选择乙印刷厂比较合算;(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;x=分别代入两函数解析式,分别计算y甲、y乙的值,比较大小即可;(2)把800y=代入两函数解析式分别求x的值,比较大小即可.(3)令3000【详解】解:(1)由题意可得y甲=x+1500,y乙=2.5x;(2)当x=800时,y甲=2300,y乙=2000,∵y>y乙,甲∴选择乙印刷厂比较合算;(3)当y=3000时,甲:x=1500,乙:x=1200,∵1500>1200,∴选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.21.答案见解析.【分析】(1)依据轴对称的性质,即可作△ABC关于x轴对称的△A1B1C1;(2)依据割补法即可得到△A1B1C1的面积,进而得出A1B1边上的高;(3)连接AB1,交x轴于点P,则BP=B1P,PA+PB的最小值等于AB1的长,运用勾股定理即可得到结论.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=111 452522347 222⨯-⨯⨯-⨯⨯-⨯⨯=∵A1B1=,∴A1B1边上的高;(3)如图所示,连接AB1,交x轴于点P,则BP=B1P,∴PA+PB的最小值等于AB1的长,∵AB1∴PA+PB的最小值等于.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22.(1)y=﹣x+6;(2)S△OAC=12;(3)存在,M的坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7)【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的14时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB 的解析式是y kx b =+,根据题意得:4260k b k b +=⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线的解析式是:y x 6=-+;(2)在y =﹣x+6中,令x =0,解得:y =6,OAC 1S 64122∆=⨯⨯=; (3)设OA 的解析式是y =mx ,则4m =2, 解得:1m 2=, 则直线的解析式是:12y x =, ∵当△OMC 的面积是△OAC 的面积的14时, ∴当M 的横坐标是1414⨯=, 在12y x =中,当x =1时,y =12,则M 的坐标是1(1,)2; 在y x 6=-+中,x =1则y =5,则M 的坐标是(1,5).则M 的坐标是:M 1(1,12)或M 2(1,5).当M 的横坐标是:﹣1,在y x 6=-+中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7);综上所述:M 的坐标是:M 1(1,12)或M 2(1,5)或M 3(﹣1,7).【点睛】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M 点横坐标为±1分别求出是解题关键.23.17米【分析】如图:作BC AE ⊥于点C ,由题意得8BC =,设AE x =,则AB x =,2AC x =-,然后运用勾股定理求得x 即可.【详解】解:作BC AE ⊥于点C ,由题意得8BC =设AE x =,则AB x =,2AC x =-.在Rt ABC ∆中,222AC BC AB +=222(2)8x x -+=解得17x =.答:旗杆的高度是17米.【点睛】本题主要考查了勾股定理的应用,做出辅助线、构造直角三角形成为解答本题的关键. 24.(1)10,x ≥11;(2)y =﹣0.2x +11 (5≤x ≤11);(3)促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【分析】(1)根据观察函数图象的横坐标,纵坐标,可得答案;(2)根据待定系数法,可得函数的解析式;(3)根据(2)的结论解答即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;x ≥11;(2)设②段函数图象的解析式y =kx +b (k 是常数,b 是常数,k ≠0),图象过点(5,10)(11,8.8),510118.8k b k b +=⎧⎨+=⎩, 解得k 0.2b 11=-⎧⎨=⎩, 第②段函数图象的解析式y =﹣0.2x +11 (5≤x ≤11);(3)当x =10时,y =﹣0.2×10+11=9,答:促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【点睛】本题考查了一次函数的应用,(1)观察图象是解题关键;(2)待定系数法是求函数解析式的关键.。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
北师大版 八年级数学上册期中考试试卷及答案
北师大版八年级数学上册期中考试试卷及答案一、选择题(每小题2分,共30分)1. 以下哪个数是有理数?A. √2B. -πC. 0.8D. e答案:C2. 解方程3x - 5 = 10的解是A. 5/3B. 5/2C. 15/3D. 0答案:A3. 已知正方形边长为x,其面积是多少?A. x^2B. 2xC. x/2D. 4x答案:A4. 三角形的内角和为A. 60°B. 90°C. 180°D. 360°答案:C5. 将一个圆的直径减小一半,其面积变为原来的多少?A. 1/2B. 1/4C. 1/8D. 1/16答案:D二、填空题(每小题3分,共30分)1. 一对兔子每个月都能生一对兔子,从第二个月开始生育,那么第6个月会有___对兔子。
答案:52. √(9x^2)的值是___。
答案:3x3. 在三角形ABC中,AB=BC,且∠ABC=75°,则∠CBA的度数为___。
答案:105°4. soh cah toa中的to a代表的是___。
答案:tan5. 一个长方形的长是3x-5,宽是2x+1,面积是___。
答案:6x^2 - 7x - 5三、解答题(共40分)1. 简化表达式:3(2x - 5) + 4(3x + 2)。
答案:18x - 72. 用因式分解法解方程:2x^2 + 7x = 15。
答案:x = 1,x = -7/23. 计算正方形的对角线长,若边长为6cm。
答案:对角线长约为 8.49 cm4. 解方程2m + 7 = 5m - 3。
答案:m = 5四、应用题(共20分)某商品原价120元,现在打7折出售,打折后的价格为多少元?答案:84元五、附加题(共20分)已知x = -2,计算y的值,其中y = 2x + 5。
答案:y = 1六、解答题(共60分)1. 计算:√2 + √8 + √32。
答案:6√22. 三个角的度数分别为40°、50°和x°,这三个角互不相等,求x的值。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,是无理数的是( )A B C .0.575757 D .4π 2.下面四组数中是勾股数的一组是( )A .6,7,8B .5,8,18C .1.5,2,2.5D .21,28,35 3.下列根式中,是最简二次根式的是( )A B C D 4.下列计算正确的是( )A = BC .(2=6D 55.若一次函数4y kx =-的图象经过点(2,4)-,则k 等于( )A .–4B .4C .-2D .26.一次函数43y x =-的图象经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限7.已知点A(a +2,5),B(-4,1-2a),若AB 平行于x 轴,则a 的值为( ) A .-6 B .2 C .3 D .-28.对于一次函数y =﹣2x+4,下列结论错误的是( )A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 29.ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A :∠B :∠C=1:2:3C .a 2=c 2﹣b 2D .a :b :c=3:4:610.一次函数y 1=ax +b 与一次函数y 2=bx -a 在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题11___________1212=______,8是___的立方根.13.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是_______.14.若点P(﹣2,y)与Q(x,3)关于y轴对称,则x=_____,y=_____.15.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为_____.16.如图,已知直线l 1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将AOB 的面积平分的直线l2的表达式为_______.17.一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=________.三、解答题18.计算题:(1)(2)|1﹣(π﹣2021)0﹣1419.如图,矩形纸片ABCD 的长AD =6cm ,宽AB =2cm ,将其折叠,使点D 与点B 重合,求折叠后DE 的长?20.如图所示,直线AB 与x 轴交于A ,与y 轴交于B .(1)请直接写出A ,B 两点的坐标:A ,B ;(2)求直线AB 的函数表达式;(3)当x =5时,求y 的值.21.如图是由边长为1个单位长度的小正方形组成的网格,ABC 的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)ABC的面积为;(4)点P在y轴上,且ABP的面积等于ABC的面积,则点P的坐标为.22.甲、乙两人从学校出发,沿相同的线路跑向公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)图中b的值为;(3)乙最早出发时跑步的速度为米/秒,乙在途中等候甲的时间为秒;(4)乙出发秒后与甲第一次相遇.23.如图,Rt∠ABC中,∠C=90°,D为AC边上一点,连接BD,将∠ABC沿BD折叠,顶点C恰好落在边AB上的点E处,若AC=2,BC=1,求CD的长.24.已知:一次函数图象如图,(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S∠OAP =2,求点P的坐标.25.甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分.(2)求线段AB的表达式,并写出自变量x的取值范围.(3)求乙比甲早几分钟到达终点?26.如图1,直线y=1x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.2(1)直线BC的函数表达式为;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.∠若∠MBC=90°,请直接写出点P的坐标;∠若PQB的面积为94,请直接写出点M的坐标;∠若点K为线段OB的中点,连接CK,如图2,若在线段OC上有一点F,满足∠CKF=45°,请直接写出点P的坐标.参考答案1.D2.D3.C4.B5.A6.B7.D8.D9.D10.D11.<【分析】利用作差法比较两个数的大小.【详解】解:∠1<3<4∠1<2∠1-11 <1∠01.2故答案为:<.12.9± 2512【分析】根据平方根和立方根的性质和定义,对上式进行一一计算,从而求解.【详解】=9,,∠4的平方根是±2;∠83=512,∠8是512的立方根,故答案为:9,±2,512.13【分析】先根据勾股定理求出OB的长,进而可得出结论.【详解】解:=∠点A在原点的右边,∠点A14.23【分析】让纵坐标相等,横坐标互为相反数列式求值.【详解】∠P(-2,y)与Q(x,3)关于y轴对称,∠-2+x=0,y=3,解得x=2,y=3.故答案为2,3.15.(4,-2)【分析】直接利用已知点确立平面直角坐标系进而得出C点的坐标.【详解】如图所示:C点的坐标为:(4,﹣2).故答案为(4,﹣2).16.y=2x【分析】根据坐标轴上点的坐标特征求出A(2,0),B(0,4),则AB的中点为(1,2),所以l2经过AB的中点,直线l2把∠AOB平分,然后利用待定系数法求l2的解析式.【详解】解:如图,当y=0,-2x+4=0,解得x=2,则A(2,0);当x=0,y=-2x+4=4,则B(0,4),∠AB的中点坐标为(1,2),∠直线l2把∠AOB面积平分∠直线l2过AB的中点,设直线l2的解析式为y=kx,把(1,2)代入得2=k,解得k=2,∠l2的解析式为y=2x,故答案为:y=2x.【点睛】本题考查了待定系数法求一次函数的解析式,明确直线l2过AB的中点是解题的关键.17.【解析】【详解】如图所示:设DE=x,则AD=8-x,根据题意得:12(8-x+8)×2×2=2×2×5,解得:x=6,∠DE=6,∠∠E=90°,由勾股定理得:CD=故答案为:【点睛】考点:勾股定理的应用18.(1)3;(2)0【解析】【分析】(1)首先化简二次根式,再计算减法,最后计算乘法;(2)先去绝对值,计算零指数幂,化简二次根式,再算乘法,最后计算加减.【详解】解:(1)=(=3;(2)()01120214π+--1114+-⨯11+=0【点睛】此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键. 19.103cm【解析】【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】解:由折叠的性质得:BE=DE ,设DE 长为x cm ,则AE=(6-x )cm ,BE=x cm ,∠四边形ABCD是矩形,∠∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(6-x)2+22=x2,解得:x=103,即DE长为103cm.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.20.(1)(4,0);B(0,2);(2)y=-0.5x+2;(3)-0.5【解析】【分析】(1)从函数图象可直接写出两点坐标;(2)把A,B两点代入函数解析式即可求出k的值,从而求出其解析式;(3)把x=5代入函数解析式即可求出y的值.【详解】解:(1)A(4,0);B(0,2);(2)把b=2,以及A(4,0)代入y=kx+b,得到:0=4k+2,解得:k=-0.5,所以解析式:y=-0.5x+2;(3)当x=5时,y=-0.5.【点睛】本题考查的是用待定系数法求一次函数的解析式,通过函数图象可直接求出两点坐标,从而求出函数解析式,体现了数形结合的重要作用.21.(1)A(3,4),B(0,2);(2(3)112;(4)(0,173)或(0,53)【解析】【分析】(1)根据点的位置直接写出坐标;(2)利用勾股定理结合点的坐标计算;(3)利用割补法计算即可;(4)根据∠ABC 的面积得到∠ABP 的面积,再设P (0,a ),根据三角形面积公式列出方程,解之即可.【详解】解:(1)由图可知:A (3,4),B (0,2);(2)(3)S ∠ABC=11134234131222⨯-⨯⨯-⨯⨯-⨯⨯=112;(4)由题意可得:S ∠ABP=112,∠点P 在y 轴,则设P (0,a ), ∠1113222a ⨯⨯-=, 解得:173a =或53a =-,∠点P 的坐标为(0,173)或(0,53-).22.(1)900,1.5;(2)400;(3)2.5,100;(4)150【解析】【分析】(1)根据函数图象可以得到甲跑的路程和甲的速度;(2)根据所求甲的速度,可得b 值;(3)根据函数图象和题意,可以得到乙跑步的速度及乙在途中等候甲的时间;(4)根据函数图象可以分别求得甲乙的函数关系式,然后联立组成二元一次方程组,即可解答本题.【详解】解:(1)由函数图象可得,在跑步的全过程中,甲共跑了900米,甲的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)由图象可得,a=500×1.5=750,c=750-150=600,∠b=600÷1.5=400,(3)由图象可得,甲跑500秒的路程是:500×1.5=750米,甲跑600米的时间是:(750-150)÷1.5=400秒,乙跑步的速度是:750÷(400-100)=2.5米/秒,乙在途中等候甲的时间是:500-400=100秒,即乙跑步的速度是2.5米/秒,乙在途中等候甲的时间是100秒;(4)∠D(600,900),A(100,0),B(400,750),∠OD的函数关系式是y=1.5x,AB的函数关系式是y=2.5x-250,根据题意得,1.52.5250 y xy x=⎧⎨=-⎩,解得x=250,250-100=150(秒),即乙出发150秒时第一次与甲相遇.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23【解析】【分析】依据翻折的性质得到BE=BC,再根据勾股定理解答即可.【详解】解:由折叠及对称性可得:BE=BC=1,DE=DC,∠DEA=∠C=90°.在Rt∠ABC中,根据勾股定理,可得:=1.在Rt∠ADE中,根据勾股定理,AD2=DE2+AE2,即22221CD CD-=+-()),解得:.【点睛】本题主要考查的是勾股定理和翻折的性质,熟练掌握勾股定理和翻折的性质是解题的关键.24.(1)y=﹣x+1;(2)P点坐标为(﹣3,4)或(5,﹣4).【解析】【分析】(1)利用待定系数法求一次函数解析式;(2)先计算出函数值为0所对应的自变量的值得到A点坐标,设P(t,-t+1),根据三角形面积公式得到12×1×|-t+1|=2,然后解绝对值方程求出t即可得到P点坐标.【详解】(1)设一次函数解析式为y=kx+b,把(﹣2,3)、(2,﹣1)分别代入得2321k bk b-+=⎧⎨+=-⎩,解得11kb=-⎧⎨=⎩,所以一次函数解析式为y=﹣x+1;(2)当y=0时,﹣x+1=0,解得x=1,则A(1,0),设P(t,﹣t +1),因为S∠OAP=2,所以12×1×|﹣t+1|=2,解得t=﹣3或t=5,所以P点坐标为(﹣3,4)或(5,﹣4).【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.25.(1)60,80;(2)y=﹣20x+320 (4≤x≤16);(3)乙比甲早6分钟到达终点.【解析】【分析】(1)根据线段OA ,求出甲的速度,根据图可知:乙在点A 处开始追甲,在点B 处追上甲,乙的速度=,计算求值即可;(2)根据图示,设线段AB 的表达式为:y =kx+b ,把把(4,240)、(16,0)代入得到关于k 、b 的二元一次方程组,解之即可得到答案;(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】解:(1)由线段OA 可知:甲的速度为:2404=60(米/分), 乙的步行速度为:()24016460164+-⨯-=80(米/分), 故答案为:60;80;(2)根据题意得:设线段AB 的表达式为:y =kx+b ()416x ≤≤,把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩,解得20320k b =-⎧⎨=⎩, 即线段AB 的表达式为:()20320416y x x =-+≤≤;(3)在B 处甲乙相遇时,与出发点的距离为:240+(16﹣4)×60=960(米),与终点的距离为:2400﹣960=1440(米), 相遇后,到达终点甲所用的时间为:144060=24(分), 相遇后,到达终点乙所用的时间为:144080=18(分), 24﹣18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象结合题意分析出两个人的运动过程,求出速度、路程、时间等因素解决问题.26.(1)132y x =-+;(2)∠39,24⎛⎫- ⎪⎝⎭;∠2⎛⎫ ⎪⎝⎭或⎛⎫ ⎪ ⎪⎝⎭;∠9,010⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)∠设点M(m ,0),则点P(m ,132x +),则OM m =-,由B (0,3),C (6,0),则3OB =,6OC =,6MC m =-,再由勾股定理得222BM BC MC +=,222BM OM OB =+,222BC OC OB =+则()222223636m m +++=-,由此求解即可; ∠设点M(m ,0),则点P(m ,132x +),Q(m, 132x -+)过点B 作BD∠PQ 于点D ,则113322PQ m m m =-+--=,BD OM m ==,再由2119==224PQB S PQ BD m ⋅=△进行求解即可;∠过点K 以KC 为直角边作等腰直角∠KHC ,延长KF 交HC 于T ,过点H 作HG∠y 轴于G ,∠KHG∠∠CKO 得到KG=OC ,HG=OK ,由此求出3922H ⎛⎫-- ⎪⎝⎭,,再由∠HKC=90°,HK=CK ,∠TKC=45°,得到HT=CT ,即T 为HC 的中点,则99,44T ⎛⎫- ⎪⎝⎭,设直线KT 的解析式为11y k x b =+,求出直线KT 的解析式为5332y x =-+,则直线KT 与x 轴的交点坐标为即为所求. 【详解】解:(1)对于132y x =+与x 轴、y 轴的交点, ∠A (-6,0),B (0,3),∠点C 与点A 关于y 轴对称,∠C(6,0),设直线BC 的函数解析式为y kx b =+,则360b k b =⎧⎨+=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∠直线BC 的函数解析式为132y x =-+; 故答案为:132y x =-+;(2) ∠设点M(m ,0),则点P(m ,132x +),∠OM m =-,∠B (0,3),C (6,0),∠3OB =,6OC =,∠6MC m =-,∠∠MBC=90º,∠∠BMC 是直角三角形,∠222BM BC MC +=,∠222BM OM OB =+, 222BC OC OB =+,∠()222223636m m +++=-, 解得32m =-, ∠39,24P ⎛⎫- ⎪⎝⎭; 故答案为:39,24⎛⎫- ⎪⎝⎭;∠如图1,设点M(m ,0),则点P(m ,132x +),Q(m ,132x -+),过点B 作BD∠PQ 于点D , ∠113322PQ m m m =-+--=, ∠BD OM m ==,∠2119==224PQB S PQ BD m ⋅=△,解得2m =±∠M ⎫⎪⎪⎝⎭或2M ⎛⎫- ⎪⎝⎭;故答案为:⎫⎪⎝⎭或⎛⎫ ⎪ ⎪⎝⎭; ∠如图所示,过点K 以KC 为直角边作等腰直角∠KHC ,延长KF 交HC 于T ,过点H 作HG∠y 轴于G ,∠∠CKH=∠HGK=∠KOC=90°,KC=KH ,∠∠HKG+∠KHG=∠HKG+∠CKO ,∠∠KHG=∠CKO ,∠∠KHG∠∠CKO (AAS ),∠KG=OC ,HG=OK ,∠B (0,3),C (6,0),∠OB=3,KG=OC=6,∠K 是OB 的中点, ∠1322HG OK OB ===, ∠92OG KG OK =-=, ∠3922H ⎛⎫-- ⎪⎝⎭,, ∠∠HKC=90°,HK=CK ,∠TKC=45°,∠HT=CT ,即T 为HC 的中点, ∠99,44T ⎛⎫- ⎪⎝⎭, 设直线KT 的解析式为11y k x b =+, ∠111329944b k b ⎧=⎪⎪⎨⎪+=-⎪⎩,∠115332k b ⎧=-⎪⎪⎨⎪=⎪⎩,∠直线KT 的解析式为5332y x =-+,∠直线KT 与x 轴的交点坐标为9,010⎛⎫⎪⎝⎭,∠F 的坐标为9,010⎛⎫⎪⎝⎭.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数:3.14,﹣2,0.1010010001…,0,﹣π,17,0.6,其中无理数有( ) A .1个 B .2个 C .3个 D .4个2 )A .3与4之间B .5与6之间C .6与7之间D .28与30之间 3.下列各点位于平面直角坐标系内第二象限的是( )A .(3,1)-B .(3,0)-C .(3,1)-D .(0,1) 4.一次函数21y x =+的图象经过点( )A .()1,2--B .()1,1--C .()0,1-D .()1,1 5.下列各式中,正确的是( )A 7=-B 3=±C .2(4=D =6.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米7.直线y=2x+2沿y 轴向下平移6个单位后与x 轴的交点坐标是( )A .(-4,0)B .(-1,0)C .(0,2)D .(2,0) 8.下列一次函数y 随x 的增大而增大是( )A .y =-2xB .y =x -3C .y =-5xD .y =-x +39.已知点(-4,y 1),(2,y 2)都在直线y =2x 3-+b 上,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定 10.等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形底边上的高为( )A .B .CD .11.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是( )A .B .C .D . 12.如图,在平面直角坐标系中,点 A 1、A 2、A 3、A 4、A 5、A 6 的坐标依次为 A 1(0,1), A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…按此规律排列,则点 A 2020的坐标是()A .(1009,1)B .(1009,0)C .(1010,1)D .(1010,0)二、填空题13.已知点(),5A x -与点()2,B y 关于x 轴对称,则x y +=______.14.比较大小:15.ABC 的三边长为a 、b 、c ,且a 、b 满足a 2﹣=0,则c 的取值范围是______.16.化简11=________.17.如图,某港口P 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A ,B 处,且相距20海里,如果知道甲船沿北偏西40︒方向航行,则乙船沿_____方向航行.18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(15;(2)3)(3(4)20.先化简,再求值:22()()(2)3x y x y x y x ++-+-,其中:2x =-2y = 21.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,4),B (-4,1),C (-1,2).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)请直接写出点C 关于y 轴的对称点C'的坐标: ;(3)△ABC 的面积= ;(4)在y 轴上找一点P ,使得△PAC 周长最小,并求出△PAC 周长的最小值.22.如图,一架梯子AB 斜靠在一竖直的墙OA 上,这时AO =3m ,△OAB =30°,梯子顶端A 沿墙下滑至点C ,使△OCD =60°,同时,梯子底端B 也外移至点D .求BD 的长度.(结果保留根号)[补充:直角三角形中,30°所对的直角边是斜边的一半]23.判断下面各式是否成立(1=(2=(3=探究:△_____△用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明24.如图,在△ABC中,△ADC=△BDC=90°,AC=20,BC=15,BD=9,求AD的长.25.阅读理解△23<,△112<<1的整数部分为1,小数2.解决问题:已知a3的整数部分,b3的小数部分,求32a b的平方根.()(4)26.如图,一次函数y1=x+2的图象是直线l1,一次函数y2=kx+b的图象是直线l2,两条直线相交于点A(1,a),已知直线l1和l2与x轴的交点分别是点B,点C,且直线l2与y轴相交于点E(0,4).(1)点A坐标为,点B坐标为.(2)求出直线l2的表达式;(3)试求△ABC的面积.参考答案1.B【解析】【分析】π无理数常见的三种类型:△开方开不尽的数,△无限不循环小数,△含有π的数,如分数2是无理数,因为π是无理数.【详解】解:在所列的实数中,无理数有0.1010010001⋯,π-共2个,故选:B.【点睛】本题主要考查的是无理数的定义,解题的关键是熟练掌握无理数的常见类型.2.B【解析】【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】25<△56<<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键.3.A【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【详解】解:A 、(3,1)-,在第二象限,故此选项正确;B 、(3,0)-,在x 轴上,故此选项错误;C 、(3,1)-,在第四象限,故此选项错误;D 、(0,1),在y 轴上,故此选项错误;故选A .【点睛】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.4.B【解析】【分析】根据分别将A,B,C,D 代入y=2x+1中即可判断.【详解】解:A .把1x =-代入21y x =+得:211y =-+=-,即A 项错误,B .把1x =-代入21y x =+得:211y =-+=-,即B 项正确,C .把0x =代入方程21y x =+得:1y =,即C 项错误,D .把1x =代入方程21y x =+得:213y =+=,即D 项错误,故选B .【点睛】本题主要考查了一次函数上点的坐标特点,代入过程中注意计算正确性是关键.5.D【解析】【详解】解:A,故A错误;B,故B错误;C、()2 =2,故C错误;D==D正确;故选D.6.B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7.D【解析】【分析】根据图象平移规律:上加下减求得平移后的直线解析式,再令y=0求解方程即可解答.【详解】解:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,由2x-4=0得:x=2,即图像与x轴的交点坐标为(2,0),故选:D.考点:一次函数的性质【点睛】本题考查一次函数图象的平移、一次函数与坐标轴的交点问题,掌握平移规律是解答的关键.8.B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、△正比例函数y=-2x中,k=-2<0,△此函数中y随x增大而减小,故本选项不符合题意;B、△一次函数y=x-3中,k=1>0,△此函数中y随x增大而增大,故本选项符合题意;C、△正比例函数y=-5x中,k=-5<0,△此函数中y随x增大而减小,故本选项不符合题意;D、一次函数y=-x+3中,k=-1<0,△此函数中y随x增大而减小,故本选项不符合题意.故选:B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9.A【解析】【分析】先根据一次函数的解析式得出函数的增减性,进而可得出结论.【详解】解:△一次函数y=23x-+b中,k=23-<0,△y随x的增大而减小.△-4<2,△y1>y2.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.10.C【解析】【分析】由等腰三角形的周长为10cm,其中一边长为2cm,没有说明是腰还是底,分类讨论,只有一种成立,2为底,由等腰三角形底边上的高具有三线合一性质,可求出BD,再由勾股定理可求AD即可.【详解】等腰三角形的周长为10cm,其中一边长为2cm,当2为腰时,二腰长为4,底长为10-4=6,由于6>2+2,不能构成三角形,当2为底时,腰为(10-2)÷2=4,4+4>2,可以构成三角形,则AB=AC=4,BC=2,△AB=AC,AD△BC,BC=1,△BD=CD=12在Rt△ABD中,由勾股定理的故选择:C.【点睛】本题考查等腰三角形底边上的高,会分类讨论三角形成立的条件,会用三角形三线合一的性质,会用勾股定理解决问题是解题的关键.11.C【解析】【分析】根据是一次函数y=kx+b的图象经过一、三、四象限得出k,b的取值范围解答即可.【详解】解:因为一次函数y=kx+b 的图象经过一、三、四象限,可得:k >0,b <0,所以-b >0,-k <0,则直线y=-bx -k 的图象经过一、三、四象限,故选:C .【点睛】本题考查了一次函数的性质,关键是根据一次函数y=kx+b 的图象经过一、三、四象限得出k ,b 的取值范围.12.D【解析】【分析】根据图形可得:移动4次,图形完成一个循环,从而可得出点A2020的坐标.【详解】解:()()()()()()1234560,1,1,1,1,0,2,0,2,1,3,1,,A A A A A A∴ 2020÷4=505,所以点2020A 的坐标为(505×2,0),则点2020A 的坐标是(1010,0).故选:D .【点睛】本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律.13.7【解析】【分析】直接利用关于x 轴对称点的性质得出x ,y 的值进而得出答案.【详解】点(),5A x -与点()2,B y 关于x 轴对称,2x ∴=,5y =则257x y +=+=.故答案为7.【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的符号是解题关键. 14.>【解析】【分析】把根号外的因式移入根号内,再比较即可.【详解】△>,△33,故答案为:>.【点睛】本题考查了比较二次根式的大小,把根号外的因式移入根号内再比较,是解题的关键. 15.2<c <6【解析】【分析】根据非负数的性质得到2a =,4b =,再根据三角形三边的关系得26c <<.【详解】解:2440a a -++=,△()220a -=,2a ∴=,4b =,所以26c <<,故答案为:26c <<【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出a ,b 的值,熟练掌握三角形的三边关系.16【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11+=【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.17.北偏东50°(或东偏北40°)【解析】【分析】由题意易得12AP =海里,PB=16海里,40APN ∠=︒,则有222AP BP AB +=,所以△APB=90°,进而可得50BPN ∠=︒,然后问题可求解.【详解】解:由题意得:112=12AP =⨯海里,PB=1×16=16海里,40APN ∠=︒,20AB =海里, △222400AP BP AB +==,△△APB=90°,△50BPN ∠=︒,△乙船沿北偏东50°(或东偏北40°)方向航行;故答案为北偏东50°(或东偏北40°).【点睛】本题主要考查勾股定理的逆定理及方位角,熟练掌握勾股定理的逆定理及方位角是解题的关键.18.1-【解析】【分析】先利用勾股定理求解BC 的长,可得BA 的长,从而可得A 到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC=BA BC=,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)1;(2)2;(3)1;(4)10-【解析】【分析】根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.【详解】解:(1)原式5=,5,=-,65=;1=--,(2)原式1392=;2(3)原式=-=+-,324=;1(4)原式=,46=+-,10=-.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式,解题的关键是掌握二次根式的混合运算.20.xy ;1.【解析】【分析】根据完全平方公式、多项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:22()()(2)3x y x y x y x ++-+-222222223x xy y x xy xy y x =+++-+--xy =,当2x =-2y =时,原式(()22222431=--=--=-=.【点睛】本题考查了整式的混合运算-化简求值,二次根式的混合运算,解答本题的关键是明确整式化简求值的方法.21.(1)见解析;(2)(1,2).(3)4 (4)【解析】【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再顺次连接即可得;(2)由关于y 轴的两点的横坐标互为相反数,纵坐标相等可得;(3)割补法求解可得;(4)作点C 关于y 轴的对称点C′,连接AC′交y 轴于点P ,P 即为所求,此时PA+PC 最小,再根据勾股定理计算可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)点C(-1,2)关于y轴的对称点C′的坐标为(1,2),故答案为(1,2).(3)△ABC的面积=3×3-12×1×3-12×1×3-12×2×2=4,故答案为4.(4)如图,作点C关于y轴的对称点C′,连接AC′交y轴于点P,P即为所求,此时PA+PC 最小,,,△△PAC周长的最小值为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义与性质、最短路线问题及勾股定理等知识点.22.3m)【解析】【分析】先在Rt△OAB中,OA=3m,△OAB=30°,求出梯子AB的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出△AOB△△DOC,即可求出BD长.【详解】解:在Rt△ABO中,△AO=3m,△OAB=30°,12BO AB ∴=AO ∴=OB ∴=△AB =△△OCD =60°,△△ODC =30°,在△AOB 和△DOC 中,OAB ODC AOB DOC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△AOB△△DOC (AAS ),△OA =OD ,OC =OB ,△BD =OD ﹣OB =3m ).【点睛】本题考查了勾股定理解直角三角形,三角形全等的性质与判定,求出BO 的长是解题的关键.23.都正确△)2n ≥,证明见解析. 【解析】【分析】(1)△利用已知即可得出命题正确,同理即可得出其他正确性,= △利用△的方法,可以得出规律,并加以证明即可.【详解】解:△上面三题都正确,=,=;=,△)2n =≥,=. 【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 24.16【解析】【分析】在Rt△BDC 中,与Rt△ACD 中,由勾股定理即可得出结果.【详解】解:△ADC =△BDC =90°,在Rt△BDC 中,由勾股定理得:CD =12,在Rt△ACD 中,由勾股定理得:AD 16.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.25.4±【解析】【分析】a 、b 的具体数值,然后再代入式子(-a)3+(b+4)2求值,最后再根据平方根的定义进行求解即可.【详解】<5,3<2,3的整数部分为14,即a=1,4,△(-a)3+(b+4)2=-1+17=1616的平方根是±4,即(-a)3+(b+4)2的平方根是±4.【点睛】本题考查了无理数的估算,阅读题,通过阅读材料找到解决此类问题的方法是关键. 26.(1)()1,3,()2,0-;(2)23y x =-+;(3)152【解析】【分析】(1)将点A 的坐标代入到直线1l 的解析式,即可求得a 的值,进而求得A 的坐标,进而令10y =,即可求得点B 的坐标; (2)将点,E A 的坐标代入2l ,待定系数法求解析式即可;(3)根据,,A B C 的坐标,三角形的面积公式求解即可【详解】解:(1)一次函数y 1=x+2过点A (1,a ),123a ∴=+=()1,3A令10y =,即20x +=,解得2x =-,0()2B ∴-故答案为:()1,3,()2,0-(2)一次函数y 2=kx+b 过点E (0,4)()1,3A则34k bb =+⎧⎨=⎩解得13k b =-⎧⎨=⎩∴直线l 2的表达式为23y x =-+ (3)令20y =,即30x -+= 解得3x =()3,0C ∴()1115323222ABC A S BC y ∴=⨯⨯=--⨯=⎡⎤⎣⎦△。
北师大版八年级数学上册期中测试卷(含答案_可打印)
八年级数学上册期中测试题一、填空题(每空2分,共48分)1.(1)在ABCD 中,∠A=44°,则∠B= ,∠C= 。
(2)若ABCD 的周长为40cm , AB:BC=2:3, 则CD= , AD= 。
2.已知一个Rt △的两边长分别为3和4,则第三边长的平方是 。
3.化简∶32 = ,83= 。
4.一条线段AB 的长是3cm ,将它沿水平方向平移4cm 后,得到线段CD ,则CD 的长是 。
5. 如下左图所示,图形①经过 变化成图形②,图形②经过 变化成图形③,图形③经过 变化成图形④。
(填平移、旋转或轴对称)6.如上右图所示,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短距离为________ cm 。
(π取3) 7.π-的绝对值是_______,2的相反数是_______,33的倒数是_______。
8. 5的平方根是_____,32的算术平方根是_____,-8的立方根是_____。
9.已知菱形的两条对角线长为6cm 和8cm ,则它的周长为_________ cm ,面积是 cm 2。
10.正方形的对角线长是18cm ,则正方形的边长是 。
11.若实数a 、b 满足,02)2(2=-+-a b a 则b+2a= 。
12.如下左图在平行四边形ABCD 中,如果AB=5,AD=9,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF=____________。
13.有一块边长为24米的正方形绿地,如上右图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字为: 。
① ② ③ ④二、选择题(每小题3分,共24分)14.下列说法中,正确的有( )①无限小数都是无理数; ②无理数都是无理限小数; ③带根号的数都是无理数; ④-2是4的一个平方根。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()A B.π C.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5 B.1,1,2C.1,2,3 D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0 B.1 C.2 D.0或﹣25的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,△ACB=90°,AB=10,BC=6,CD△AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则△EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足y=,则2x﹣y=___.三、解答题19.计算:﹣2|(1)﹣(π﹣3.14)021)(2(3)()(3)220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,△B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC 沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且AB=(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】解:3=,△无理数是π-13、5; 故选B .【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:△点A 的坐标为(﹣4,﹣3),△点A 在第三象限;故选C .【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题的关键.3.A【解析】【分析】根据勾股定理的逆定理:若a 、b 、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A 、△2220.30.40.5+=,△能构成直角三角形,故此选项符合题意;B 、△2221122+=≠,△不能构成直角三角形,故此选项不符合题意;C 、△2221253+=≠,△不能构成直角三角形,故此选项不符合题意;D 、△22291633725+=≠,△不能构成直角三角形,故此选项不符合题意;故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理. 4.C【解析】【分析】根据正比例函数的概念:形如y=kx ,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】 解:由题意得:11,0m m -=≠,△2m =;故选C .【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】△4<5<9,△23,△2+11<3+1,即31<4.故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小. 6.D【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:△点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:△圆柱的高等于12cm,底面上圆的周长等于18cm,△AC=9cm,BC=12cm,△15cmAB==,△蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:△正比例函数y=kx中,y的值随着x值的增大而减小,△k<0,△一次函数y=kx+k与y轴的交点在y轴的负半轴,△一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:△3>0,﹣4<0,△点P(3,﹣4)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB=10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,△这个正数为()222125⨯+=或(-15)²=225 ,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,△y 随x 的增大而增大,△点A (﹣2,y 1),B (3,y 2)在一次函数y =2x ﹣3的图象上,△12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 14.(2,3)【解析】【分析】由题意易证BC△AD ,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC△AD ,△点B 与点C 的纵坐标相等,设点(),3C x ,△AD =5,△BC =5,△352x =-+=,△C (2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BCCD AB ⋅=,由此即可得到答案.【详解】解:△在△ABC 中,△ACB =90°,AB =10,BC =6,△8AC ==,△CD△AB , △11=22ABC S AC BC AB CD ⋅=⋅△, △ 4.8AC BCCD AB ⋅==,故答案为:4.8.16.45°【分析】如图,连接EF ,由题意易得△AHE△△EGF ,则有△AEH=△EFG ,AE=EF ,然后可得△AEH+△FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF ,△AH=EG=2,△AHE=△EGF=90°,EH=FG=1,△△AHE△△EGF ,△△AEH=△EFG ,AE=EF ,△△EFG+△FEG=90°,△△AEH+△FEG=90°,△△AEF=90°,△△AEF是等腰直角三角形,△△EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A1B1=1,△△B1A1A2为等腰直角三角形,△A1A2=1,A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,A2019的横坐标为22018,纵坐标为0,即点A2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:△实数x ,y 满足y =,且50,50x x -≥-≥,△50x -=,解得:5x =,△y=8,△22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:△AB =5,BD =3,AD =4,△22225,9,16AB BD AD ===,△222AB BD AD =+,△90ADB ADC ∠=∠=︒,在Rt△ADC 中,AC=8,△DC ==【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键. 21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+, 由题意得:14.515b k b =⎧⎨+=⎩, △0.514.5k b =⎧⎨=⎩, △一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,△0.5614.517.5y =⨯+=,△当所挂物体的质量为6千克时弹簧的长度为17.5cm .【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式. 22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P【解析】(1)分别作出点A 、B 、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D ,然后连接DB 1,交y 轴于点P ,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,△设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩, △直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,△()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,△12y y >,△当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==∠∠,先利用勾股定理求出15AC =,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==∠∠,△=180=90CB D AB D ''-∠∠△△B=90°,AB=9,BC=12,△15AC =,△6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+, △()222126x x -=+, 解得92x =, △92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+ 【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB△△COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,△()0,4B ,△OB=4,在Rt△AOB 中,AB =2OA ==,△()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)△点C 为OB 的中点,OB=4,△2OC =,△OC OA =,△90AOB COP ∠=∠=︒,DP AB ⊥,△90BAO ABO BAO CPO ∠+∠=∠+∠=︒,△ABO CPO ∠=∠,又△△AOB=△COP=90°,△△AOB△△COP (AAS ),△OP=OB=4,△()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:△240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩, △直线CP 的解析式为122y x =-+. 【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间 【解析】【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】21 解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ; 故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,△甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,△乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y x y x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩, △甲追上乙用了4小时的时间.。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试卷含答案试题一:选择题(共50小题,每小题2分,共100分)1. 已知正方形的边长为8cm,其对角线长度为x cm,下列等式中正确的是:A. $x = 8$B. $x = 4\sqrt{2}$C. $x = 4\sqrt{3}$D. $x = \sqrt{2} + \sqrt{3}$2. 若$m$是一个正整数,$m$的9倍再加上5可以被9整除,则$m$的值为:A. 0B. 1C. 2D. 33. 下列选项中,不等于$\frac{5}{6}$的是:A. $\frac{9}{12}$B. $\frac{10}{15}$C. $\frac{4}{5}$D. $\frac{25}{30}$4. 若$x = 2$,则$2x^2 - x - 3$的值为:A. 3B. 4C. 5D. 65. 若$y = 4x - 3$,则当$x = 2$时,$y$的值为:A. 1B. 2C. 5D. 8...试题五:解答题(共5题,每题10分,共50分)1. 设$a = -2$,$b = 3$,求$|a + b| - |a - b|$的值。
解:将$a$和$b$的值带入表达式中,得到:$|-2 + 3| - |-2 - 3| = |1| - |-5| = 1 - 5 = -4$所以,$|a + b| - |a - b|$的值为-4。
2. 若函数$y = kx - 3$关于直线$x = 2$对称,求常数$k$的值。
解:因为函数关于直线$x = 2$对称,所以点$(2, y)$和点$(4, y')$关于直线$x = 2$对称,即点$(2, y)$和点$(4, y')$的横坐标对称。
则根据对称性质可得:$2 + 2 = 4$将函数$y = kx - 3$带入,得到:$k \cdot 2 - 3 = k \cdot 4 - 3$整理得到:$-k = -2$解得$k = 2$所以,常数$k$的值为2。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为( ) A .(2,15) B .(2,5) C .(5,9) D .(9,5) 2.下列各线段的长,能构成直角三角形的是( )A .2,3,4B .5,12,13C .4,6,9D .5,11,13 3.下列运算中,正确的是( )A ±3B 2C .(﹣2)0 =0D .2﹣1 =﹣24.在2,13-,π,0,227,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是( )A .1B .2C .3D .45.在下列各组数中,互为相反数的是( )A .2与B .-2与12-C .D .26.下列根式中不是最简二次根式的是( )A B C D7.点A 关于y 轴的对称点1A 坐标是()2,1--,则点A 的坐标是( )A .()1,2--B .()2,1C .()2,1-D .()2,1- 8.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x≤5)的函数表达式为( ) A .y =﹣0.3x +6 B .y =﹣0.3x ﹣6 C .y =0.3x +6 D .y =0.3x ﹣6 9.下列运算正确的是( )A B .=﹣32C .=D 1100= 10.点A (﹣3,2)关于y 轴的对称点的坐标为( )A .(3,2)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,3)二、填空题11.2( 2.5)-的平方根是__________.12.比较大小:(用<、>或=来表示)13.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为_____.14.如图,在水塔O 的东北方向8m 处有一抽水站A ,在水塔的东南方向6m 处有一建筑物工地B ,在AB 间建一条直水管,则水管的长为______.15.如图,数轴上点B 表示的数为2,过点B 作BC OB ⊥于点B ,且1CB =,以原点O 为圆心,OC 为半径作弧,弧与数轴负半轴交于点A ,则点A 表示的实数是_______.16.若函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,则m =_____.1750b -=,则()2a b -的值是_____.18.已知AB∥x 轴,A (-2,4),AB = 5,则B 点横纵坐标之和为______.三、解答题19.计算:1183;-;(2)1023)2);(1+2-1)2 ;(5)(1-(6)20.已知一个正数的平方根是a+3和2a-15.(1)求a的值;(2)求这个正数.21.如图在平面直角坐标系中,∥ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C (﹣3,1)(1)在图中作∥A′B′C′使∥A′B′C′和∥ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.22.如图,圆柱外底面A点处有一只蚂蚁,想去壁外点P处吃蜂蜜,已知底面圆的直径AB为16πcm,圆柱高为12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.23.已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过点A(2,-4)且与y轴平行的直线上.24.已知y=(k﹣1)x IkI+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.25.如图,a,b,c是数轴上三个点A,B,C所对应的实数.a b b c--26.如图,在四边形ACBD中,AC=6,BC=8,AD=BD=DE是∥ABD的边AB上的高,且DE=4,求∥ABC的边AB上的高.参考答案1.C【解析】【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【详解】∥(2,15)表示2排15号可知第一个数表示排,第二个数表示号∥5排9号可以表示为(5,9),故选:C .【点睛】本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列 2.B【解析】【分析】根据题意利用判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方进行分析即可.【详解】解: A 、22223134+=≠,故A 选项构成不是直角三角形;B 、22251216913+==,故B 选项构成是直角三角形;C 、22246529+=≠,故C 选项构成不是直角三角形;D 、22251114613+=≠,故D 选项构成不是直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B【解析】【分析】根据算术平方根、立方根、零指数幂和负整数指数幂的运算法则分析每个选项的计算正确与否即可求解.【详解】解:A3,原计算错误,不符合题意;B2,原计算正确,符合题意;C、(﹣2)0=1,原计算错误,不符合题意;D、2﹣1 =1,原计算错误,不符合题意,2故选:B.【点睛】本题考查算术平方根、立方根、零指数幂和负整数指数幂,熟练掌握运算法则是解答的关键.4.B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有π,0.1212212221…(相邻两个1之间的2的个数逐次加1),共2个.故选:B.【点睛】本题考查了对无理数的定义的应用,能正确理解无理数的定义是解此题的关键.5.C【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A、都是2,故A错误;B、互为倒数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、都是2,故D错误.故选:C.【点睛】本题考查了实数的性质,利用只有符号不同的两个数互为相反数判断是解题关键. 6.C【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.故选C .7.D【解析】【分析】直角坐标系中,点关于y 轴对称的特点是,横坐标变为相反数,纵坐标不变,据此解题即可.【详解】根据题意,A 关于y 轴的对称点1A 坐标是()21--,, 则点A 的坐标是()21-,, 故选:D .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,难度较易,掌握相关知识是解题关键. 8.C【解析】【分析】用初始的水位高度加上升的高度得到水库的水位高度,从而得到y 与x 的关系式.【详解】解:∥初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,∥水库的水位高度y 米与时间x 小时(0≤x≤5)的函数关系式为y=0.3x+6,故选:C .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.9.D【解析】【分析】根据二次根式的有关运算以及立方根和平方根的定义,对选项逐个判断即可.【详解】解:A=,选项错误,不符合题意;B、33()22=--=,选项错误,不符合题意;C、=±D1100,选项正确,符合题意;故选:D【点睛】此题考查了二次根式的有关运算以及立方根和平方根的求解,解题的关键熟练掌握相关运算法则.10.A【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(-x,y),进而得出答案.【详解】解:点A(﹣3,2)关于y轴的对称点的坐标为(3,2),故选:A【点睛】此题主要考查了关于y轴对称点的性质,正确把握对称点横、纵坐标的关系是解题关键.11. 2.5±【解析】【分析】先计算出2( 2.5)-的值,再根据平方根的定义即可得出答案.【详解】2(2.5)52 6.=-,则6.25的平方根为 2.5±.故答案为: 2.5±.【点睛】本题主要考查的是平方根的定义,注意一个正数的平方根有两个,它们互为相反数;0的平方根还是0;负数没有平方根.12.>【解析】【分析】【详解】解:∥162025<<,∥45<,∥5>故答案为:>.【点睛】本题考查了无理数的大小比较,正确的估算是解题的关键.13.5【解析】【分析】设斜边长为x ,根据勾股定理即可求解.【详解】解:设斜边长为x ,根据题意可得,2916x =+,解得5x =(负值已舍),故答案为:5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.14.10m【解析】【分析】由题意可得三角形AOB是直角三角形,且AB是斜边,所以由勾股定理即可算得AB的值.【详解】解:已知东北方向和东南方向刚好是一直角,∥∥AOB=90°,又∥OA=8m,OB=6m,∥AB=10(m).故答案为:10m.【点睛】本题考查勾股定理的应用,在判断三角形为直角三角形及三角形直角边和斜边的基础上利用勾股定理求解是解题关键.15.【解析】【分析】直接利用勾股定理得出CO的长,再利用数轴得出答案.【详解】解:BC OB⊥,∴∠=︒,90OBC∴∆是直角三角形,OBCBC=,OB=,12∴==OC∴点A表示的实数是:故答案为:【点睛】此题主要考查了实数与数轴,正确数形结合分析是解题关键.16.5【解析】【分析】直接利用正比例函数的定义进而得出答案.【详解】解:∥函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,∥50m -= ,20m -≠ ,解得:m =5.故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键.17.16【解析】【分析】根据算术平方根与绝对值的非负性可求出a 、b 的值,然后代入求解即可.【详解】解:50b -=,∥10,50a b -=-=,解得:1,5a b ==,∥()()221516a b -=-=;故答案为16.【点睛】本题主要考查算术平方根与绝对值的非负性,熟练掌握算术平方根与绝对值的非负性是解题的关键.18.-3或7【解析】【分析】由AB∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的左边或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∥AB∥x 轴,∥B 点的纵坐标和A 点的纵坐标相同,都是4,又∥A (-2,4),AB = 5,∥当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.19.(2)0(3)2+(4)13- (5)-15+23【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先计算负整数指数幂,零次幂,化简二次根式,再合并即可;(3)先计算二次根式的乘法,再合并同类二次根式即可;(4)先计算算术平方根,立方根,再合并即可;(5)先计算二次根式的乘法,再合并同类二次根式即可;(6)先计算二次根式的除法运算,再合并即可.(1)解:原式=13⨯ (2)原式=131110;22-+=-+=(3)原式=22+=+(4)原式=11 22;33 --=-(5)原式=112(31)11415---=--+=-+(6)原式=3 3.20.(1)4;(2)49【分析】(1)根据平方根的性质“正数有两个平方根,互为相反数”列出方程,解方程即可;(2)求出a+3和2a-15,即可求出这个正数.【详解】(1)依题意得:(a+3)+( 2a-15)=0解得:a=4;(2)当a=4时,a+3=7,2a-15=-7,∥这个正数为(±7)2=49.21.(1)见解析(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1)【分析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A′,B′,C′,顺次连接即可;(2)根据点的位置写出坐标即可.(1)解:∥A′B′C′如图,(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).【点睛】本题考查作图−轴对称变换,坐标与图形,解题的关键是掌握轴对称的性质.22.蚂蚁从A 点爬到P 点的最短距离为10cm【解析】【分析】把圆柱的侧面展开,连接AP ,利用勾股定理即可得出AP 的长,即蚂蚁从A 点爬到P 点的最短距离.【详解】∥圆柱底面直径AB =16πcm 、母线BC =12cm ,P 为BC 的中点, ∥圆柱底面圆的半径是8πcm ,BP =6cm , ∥如图:AB =12×2×8π=8(cm ),在Rt∥ABP 中,AP ==10(cm ),∥蚂蚁从A 点爬到P 点的最短距离为10cm .【点睛】本题考查的是勾股定理求最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.23.(1)(6,0)(2)(-12,-9)(3)(2,-2)【解析】【分析】(1)直接利用x 轴上点的坐标特点为纵坐标为零,进而得出答案;(2)利用点P 的纵坐标比横坐标大3,进而得出答案;(3)利用经过()2,4A -且平行于y 轴,则其横坐标为2,进而得出答案.(1)解:点()24,1P m m +-,点P 在x 轴上,10m ∴-=,解得:1m =,则246m +=,故()6,0P ;(2) 解:点P 的纵坐标比横坐标大3,()1243m m ∴--+=,解得:8m =-,故()12,9P --;(3) 解:点P 在过()2,4A -点且与y 轴平行的直线上,242m ∴+=,解得:1m =-,12m ∴-=-,故()2,2P - .【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.24.(1)k =﹣1;(2)y =﹣9;(3)x =32-.【解析】【分析】(1)直接利用一次函数的定义得出k 的值即可;(2)利用(1)中所求,再利用x=3时,求出y 的值即可;(3)利用(1)中所求,再利用y=0时,求出x 的值即可.【详解】解:(1)由题意可得:|k|=1,k ﹣1≠0,解得:k =﹣1;(2)当x=3时,y=﹣2x﹣3=﹣9;(3)当y=0时,0=﹣2x﹣3,解得:x=32 -.【点睛】本题考查一次函数的定义,正确把握一次函数的定义是解题关键.25.3b【解析】【分析】利用数轴可得出a-b>0,c>0,b-c<0,a+b<0,进而取绝对值开平方得出即可.【详解】由数轴可得:c>0,a﹣b>0,a+b<0,b﹣c<0,a b b c-+--=c﹣a+b+a+b+b﹣c=3b.【点睛】此题主要考查了数轴与实数,涉及算术平方根和立方根,得出各项符号并利用绝对值的性质化简是解题关键.26.∥ABC的边AB上的高为4.8.【解析】【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出∥ABC是直角三角形,再求出面积,进一步得到∥ABC的边AB上的高即可.【详解】∥DE是AB边上的高,∥∥AED=∥BED=90°,在Rt∥ADE中,由勾股定理,得AE2==.同理:在Rt∥BDE中,由勾股定理得:BE=8,∥AB=2+8=10,在∥ABC中,由AB=10,AC=6,BC=8,得:AB2=AC2+BC2,∥∥ABC是直角三角形,设∥ABC的AB边上的高为h,则12×AB×h=12AC×BC,即:10h=6×8,∥h=4.8,∥∥ABC的边AB上的高为4.8.。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.在实数0.3,02π123454545…中,无理数有()A .2个B .3个C .4个D .5个2.平面直角坐标系中,点P(3,-4)位于A .第一象限B .第二象限C .第三象限D .第四象限3.下列二次根式中,是最简二次根式的是()AB C .D 4.下列说法正确的是()A .-81的平方根是±9B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个非负数的平方根都不大于这个数D .3是9的平方根5.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是()A .4mB mC .+1)mD .+3)m6.如图,在平面直角坐标系中,点P 的坐标为()3,4-,以点O 为圆心,以OP 长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标为()A .5B .-3C .-4D .-57.如图,学校(记作A )在蕾蕾家(记作B )南偏西25°的方向上,且与蕾蕾家的距离是4km ,若∠ABC =90°,且AB =BC ,则超市(记作C )在蕾蕾家的()A .南偏东65°的方向上,相距4kmB .南偏东55°的方向上,相距4kmC .北偏东55°的方向上,相距4kmD .北偏东65°的方向上,相距4km8123)A .1与2B .2与3C .3与4D .4与59.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 21,则点C 所对应的实数是()A .12B .22C .221D .22110.如图,在Rt ABC 中,CA =CB =2,M 为CA 的中点,在AB 上存在一点P ,连接PC 、PM ,则 PMC 周长的最小值是()A 5B 3C 5D 3二、填空题1133的倒数为____________.12.函数y=kx 的图像经过点P(3,-1),则k 的值为______________.1319x x --有意义,那么代数式()219x x --______.14.一艘轮船以16/km h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12/km h 的速度向东南方向航行,它们离开港口1小时后相距__________.15.已知点()3,M a 和(),4N b 关于x 轴对称,则()2021a b +的值为______.16.如图,Rt △ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.17.如图,直线y ,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,…,按照此做法进行下去,点n A 的坐标为__.三、解答题18.计算:(2)190(220.若y -1与x +2成正比例,且当x =2时,y =5.(1)求y 与x 的函数关系式;(2)如果点(),5m 在该函数图象上,求m 的值.21.在正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,点A 的坐标是(4,4),请解答下列问题:(1)将△ABC 向下平移5单位长度,画出平移后的△A1B1C1并写出点A 对应点A1的坐标;(2)画出△A1B1C1关于y 轴对称的△A2B2C2并写出A2的坐标;(3)求S △ABC .22.已知610a ,小数部分为b ,试求())12106b a -+的值.23.如图所示,一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?24.如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式22(3)40a b c -+--=,(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.25.先阅读一段文字,再回答下列问题:已知在平面内两点坐标()111,P x y ,()222,P x y ,其两点间距离公式为12PP =,例如:点()3,2和()4,0同时,当两点所在的直线在坐标轴上或平行于x 轴或垂直于x 轴距离公式可简化成1221PP x x =-或1221PP y y =-.(1)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-1,则A ,B 两点的距离为______.(2)已知()A 3,5,()2,1B --,试求A ,B 两点的距离;(3)已知一个三角形各顶点坐标为()0,6A ,()3,2B -,()3,2C ,你能断定此三角形的形状吗?参考答案1.B 【解析】【分析】根据无理数的定义判断即可.【详解】2π故选:B .【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.D【解析】【分析】首先清楚的是,平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.然后根据p点横纵坐标正负判断所在象限.【详解】因为平面直角坐标系中,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.点p(3,-4),横纵坐标正负情况为正负,所以位于第四象限.故选D.【点睛】本题考查了点的象限,解题关键是知道直角坐标系每个象限点的横纵坐标正负情况,通过横纵坐标的正负情况,判断所在象限.3.C【解析】【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;不是最简二次根式;C.D.不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.4.D【解析】【分析】对于A,根据负数的平方根的性质判断即可;对于B,根据正数的平方根的性质判断;对于C,以分数为例,判断即可;对于D,根据平方根的定义判断即可.【详解】因为负数没有平方根,所以A不符合题意;因为1的平方根是±1,所以B不符合题意;因为14的平方根是12±,而1142<,所以C不符合题意;因为3是9的一个平方根,所以D符合题意.故选:D.【点睛】本题主要考查了平方根的定义和性质,理解平方根的性质是解题的关键.5.C【解析】【分析】首先根据勾股定理求得折断的树高,继而即可求出折断前的树高.【详解】解:根据勾股定理可知:折断的树高米,则这棵大树折断前的树高=()米.故选:C.【点睛】考查了利用勾股定理解应用题,关键在于把折断部分、大树原来部分和地面看作一个直角三角形,利用勾股定理求解.6.D【解析】【分析】首先根据勾股定理求出OP,进而得出OA的长,再根据点A的位置得出答案.【详解】根据勾股定理,得5OP==,∴OA=OP=5.∵点A在x轴的负半轴,∴点A的横坐标是-5.故选:D.本题主要考查了平面直角坐标系内点的坐标,根据勾股定理求出线段的长是解题的关键.7.A【解析】【分析】直接利用方向角的定义得出∠2的度数,进而确定超市(记作C)与蕾蕾家的位置关系.【详解】解:如图所示:由题意可得:∠1=25°,∠ABC=90°,BC=AB=4km,则∠2=65°,故超市(记作C)在蕾蕾家的南偏东65°的方向上,相距4km.故选:A.【点睛】本题主要考查了方向角的定义,正确根据图形得出∠2的度数是解题关键.8.A【解析】【分析】先化简,然后再利用“夹逼法”估算无理数的大小即可.【详解】∵1<3<4,∴12.故选:A.9.D【解析】设点C 所对应的实数是x ,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C 所对应的实数是x .则有x 1),解得.故选D .【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x 的方程是解答此题的关键.10.C【解析】【分析】作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小,根据PCM ∆周长PC PM CM PD PM CM =++=++,求出DM 即可解决问题.【详解】解:作点C 关于直线AB 的对称点D ,连接DM 交AB 于点P ,此时PCM ∆周长最小.CA CB = ,90ACB ∠=︒,45BAC B BAD ∴∠=∠=∠=︒,在Rt ADM ∆中,90DAM ∠=︒ ,2AD =,1AM =,DM ∴∴此时PCM ∆的周长为1PC PM CM PM PD CM ++=++=.故选:C .【点睛】本题考查轴对称-最短问题,勾股定理等知识,解题的关键是利用轴对称找到点P 位置,属于中考常考题型.11【解析】【分析】根据倒数的定义计算即可求解.【详解】解:1=1【点睛】本题考查了倒数的定义,二次根式的乘除,熟练进行二次根式的乘除运算是解题关键.12.1 3-【解析】【详解】解:将点P(3,-1)代入函数y=kx,13k-=,解得:k=1 3-.故答案为:1 3-.【点睛】本题考查了求正比例函数得函数表达式,把点代入函数表达式是解答本题的关键.13.8【解析】【分析】首先根据算术平方根的性质确定x的取值范围,再将待求式去掉根号,最后计算可得答案.【详解】∴x-1≥0,9-x≥0,解得1≤x≤9,即9-x≥0.则198x x x=-+-=.故答案为:8.【点睛】本题主要考查了算术平方根的性质,理解算术平方根双重非负性是解题的关键.14.20km【解析】【分析】根据题意,画出图形,且东北和东南的夹角为90°,根据题目中给出的1小时和速度可以计算AC,BC的长度,在直角△ABC中,已知AC,BC可以求得AB的长.【详解】作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×1=16km,BC=12×1=12km.则==20km,故答案为:20km.【点睛】本题考查了勾股定理在实际生活中的应用,根据题意画出图形,确定△ABC为直角三角形,并且根据勾股定理计算AB是解题的关键.15.-1【解析】【分析】根据关于x 轴的对称点的特点可得答案.【详解】解:∵点()3,M a 和(),4N b 关于x 轴对称,∴a=-4,b=3,∴()2021a b +=()202111-=-,故答案为:-1【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.16.30【解析】【分析】根据勾股定理可得:AB=13,根据图形可得:阴影部分的面积=以BC 为直径的半圆的面积+以AC 为直径的半圆的面积+△ABC 的面积-以AB 为直径的半圆的面积,由此进行计算即可.【详解】Rt △ABC 中,AC =5,BC =12,∴,∴S 阴影=2221121511135122222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=30,故答案为30.17.1(2,0)n -【解析】【分析】先根据y =和1A 坐标求出1B 点坐标,再根据1B 点坐标求出点2A 坐标,以此类推,找出规律即可得到答案.【详解】解:由题意,点1A (1,0),11A B x ⊥轴,∴点1B 的横坐标是1,代入到y =得1B ,12OB ∴=,点2A 是以原点O 为圆心,1OB 长为半径画弧与x 轴的交点,212OA OB ∴==,∴点2A 的坐标是(2,0),同理可得2(2,B ,3(4,0)A ,以此类推可得点n A 的坐标是1(2,0)n -,故答案为:1(2,0)n -.【点睛】本题考查一次函数的应用,用了类比推理、数形结合的数学方法,平时需要多加练习这种题型.18.(1)(2)【解析】【分析】对于(1)==,再根据二次根式加减法法则计算;对于(2),根据乘法分配律计算即可.(1)原式=+=(2)原式⨯+⨯=.【点睛】本题主要考查了二次根式的计算,掌握二次根式运算的法则是解题的关键.191【解析】【分析】先化简二次根式,再算二次根式的乘法和零指数幂,最后算加减法即可.【详解】解:原式=13+=11+.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的运算法则和二次根式的性质,是解题的关键.20.(1)3y x =+(2)2【解析】【分析】(1)根据y -1与x +2成正比例列关系式1(2)y k x -=+,将x =2时,y =5,代入求解即可;(2)将x =m ,y =5代入(1)中所求函数关系式,求解即可.(1)解: y -1与x +2成正比例,∴设1(2)y k x -=+,将x =2时,y =5,代入得:51(22)k -=+,解得1k =,∴12y x -=+,移项得3y x =+,故y 与x 的函数关系式为:3y x =+;(2)点(),5m 在该函数图象上,∴53m=+,解得2m=,故m的值是2.【点睛】本题考查待定系数法求一次函数关系式、函数上点的坐标,属于基础题,注意(1)中求出12y x-=+后要移项合并同类项.21.(1)如图所示见解析,点A1的坐标(4,﹣1);(2)如图所示见解析,A2(﹣4,﹣1);(3)2.【解析】【分析】(1)根据网格结构找出点A、B、C向下平移5个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A1、B1、C1关于点y轴对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据三角形的面积公式求出△ABC的面积.【详解】(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标(4,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形;A2(﹣4,﹣1);(3)S△ABC=12×2×2=2.【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,以及三角形的面积计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.-1【解析】【分析】的整数部分,从而得到的整数部分a 、小数部分b ,然后将a 、b 代入计算即可.【详解】解:∵3<4,∴−4<<−3,∴2<<3,∴a=2,小数部分为−2=.∴())126b a -+=()14226--=()1226=()14106-=-1【点睛】本题主要考查估算无理数的大小,二次根式的混合运算,求出a 、b 的值是解题关键.23.能,理由见解析【解析】【分析】首先根据题意确定相应线段,再根据勾股定理求出CD 的长,进而求出CH 的长,再判断即可.【详解】能通过,理由如下:根据题意可知DH=2.3米.卡车关于中线对称更容易通过,所以OD=0.8米.在Rt △OCD 中,根据勾股定理,得0.6CD =(米),∴CH=CD+DH=0.6+2.3=2.9>2.5,∴卡车能通过此门.【点睛】本题主要考查了勾股定理的应用,构造直角三角形是解决这一类问题的常用方法.24.(1)a =2,b =3,c =4;(2)S 四边形ABOP =3﹣m ;(3)存在,点P (﹣3,12)【解析】【分析】(1)根据几个非负数和的性质得到a-2=0,b-3=0,c-4=0,分别解一元一次方程得到a=2,b=3,b=4;(2)根据三角形的面积公式和四边形ABOP 的面积=S △AOP+S △AOB 进行计算;(3)若S 四边形ABOP≥S △AOP ,则-m+3≥2×1212×2×(-m ),解得m≥-3,则m=-1,-2,-3,然后分别写出P 点的坐标.【详解】解:(1)由已知22(3)0a b -+-+,可得:a =2,b =3,c =4;故答案为:a =2,b =3,c =4.(2)∵S △ABO =12×2×3=3,S △APO =12×2×(﹣m )=﹣m ,∴S 四边形ABOP =S △ABO+S △APO =3+(﹣m )=3﹣m ,即S 四边形ABOP =3﹣m ;故答案为:S 四边形ABOP =3﹣m .(3)因为S △ABC =12×4×3=6,∵S 四边形ABOP =S △ABC∴3﹣m =6,则m =﹣3,所以存在点P(﹣3,12)使S四边形ABOP=S△ABC.故答案为:存在,P(﹣3,12).25.(1)6(3)等腰三角形【解析】对于(1),直接根据平行与y轴的两点之间的距离公式计算即可;对于(2),根据任意两点之间的距离公式计算即可;对于(3),分别根据两点之间的距离公式求出三边长,再判断即可.(1)根据题意可知5(1)6AB=--=.故答案为:6;(2)∵点A(3,5),点B(-2,-1),∴AB==所以A,B;(3)△ABC是等腰三角形,理由如下:∵点A(0,6),点B(-3,2),点C(3,2),∴5AB==,6BC==,5AC==,∴AB=AC,∴△ABC是等腰三角形.。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是( )A .﹣53B .|﹣2|CD .2.下列语句中正确的是( )A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∵a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是( )A .5B .5-和15C .D .--(- 4.下列一次函数y 随x 的增大而增大是( )A .y =-2xB .y =x -3C .y =-5xD .y =-x +3 5.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是( )A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是( )A B =C .3+D 2÷=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为( )A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则∵OA 2A 2018的面积是( )A .504m 2B .10092m 2 C .10112m 2 D .1009m 2 二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________. 18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3) ⎛ ⎝(4) 2(11)1)-20.阅读下列计算过程:==1==2==试求:(1(2⋅⋅⋅(321.在∵ABC中,∵C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF∵DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当∵POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得∵MOC的面积是∵AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的∵ABC和∵A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∵ACB=∵A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】解:∵47=283=272827∵33故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11-+=故答案为:【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∵点P的纵坐标为-1,∵点P到y轴的距离是3,∵点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解:a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)(2)-6;(3;(4)-【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2==(2)==6=-;(3) ⎛ ⎝434⎛= ⎝⎭=(4)2(11)1)-15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)-【解析】【分析】(1(2 (3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=(2=== (3⋅⋅⋅1199+1 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∵EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∵AD BD =,∵()EAD GBD AAS ≅,∵ED GD =,AE BG =,又∵DF DE ⊥,∵DF 是线段EG 的垂直平分线,∵EF FG =,∵90C ∠=︒,//BG AC ,∵90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+, ∵222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∵y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∵x =500当x =500时,y =-6×500+48000=45000∵造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0) 或(0) 或(-0) ;(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把∵MOC 的面积是∵AOC面积的2倍的数量关系转化为∵MOA 的面积与∵AOC 面积的数量关系即可求解.【详解】解: (1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∵点C 的坐标为(4,4).(2) 如图, 分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∵P 1(8,0);OC 为腰,当OC=OP 2= OP 3时,∵C (4,4), 22442,2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x= =解得x=4,∵P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∵点A 的坐标为(6,0),∵OA=6,∵S ∵OAC=12× 6× 4=12.设M (x ,y ),当M 在x 轴下方时∵MOC 的面积是∵AOC 面积的2倍, ∵∵MOA 的面积等于∵AOC 的面积,1166422y ⨯⨯=⨯⨯, ∵4y =,∵y=−4,∵4212x -=-+,∵x=8,∵M (8,−4)当M 在x 轴上方时∵MOC 的面积是∵AOC 面积的2倍,∵∵MOA 的面积等于∵AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯ ∵12y =∵y=12时,∵12212x =-+,∵x=0,∵M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x -20),即y=2.6x -12; (2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x -16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∵CAB′=90°,根据勾股定理计算.【详解】解:∵∵ACB=∵AC′B′=90°,AC=BC=6,∵CAB=45°,∵∵ABC和∵A′B′C′全等,∵∵C′AB′=∵CAB=45°,∵∵CAB′=90°,答:B'C的长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学上册期中考试试卷时间:120分钟总分:150分一、精心选一选((本大题共10小题,每小题4分,满分40分)1、9的算术平方根是()A. 3B. ±3C. 3D. ±32、在下列各数中无理数有(),4,-π,3π,3.1415,2.010101…(相邻两个1之间有1个0),-0.333…,576.0123456…(小数部分由相继的正整数组成)。
A. 3个 B. 4个 C. 5个 D. 6个3、如图,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走()A. 80米B. 90米C. 100米D. 110米4、已知从多边形的一个顶点引出的对角线把多边形分为10个三角形,则此多边形内角和是( )A.14400B.18000C.21600D.162005、下列命题中,正确的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线互相垂直平分且相等D.等腰梯形的对角线互相平分6、以下五家银行行标中,是轴对称图形又是中心对称的有()A.1个B.2个C.3个D.4个 7、体育课上,刘老师在篮球场上放置三个 不在同一直线上的A ,B ,C 三个篮球, 现将篮球D 放置其中,使A ,B ,C ,D 四个篮球组成 一个平行四边形,试问 篮球D 在图中位置有( )A. 1处B. 2处C. 3处D. 4处 8、下列四个图形中,不能通过图形平移得到的是( )9、如图,等腰梯形ABCD 中,AD ∥BC ,AD=5, AB=6,BC=8,且AB ∥DE , △DEC 的周长是( )A.3B.12C.15D.1910、如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处。
如果∠BAF=60ο,则∠DAE 等于( ) A.15 B.30 C.45D.60二、细心填一填(本大题共10小题,每小题3分,满分30分) 11、化简:(1)27= ,(2)3125= ,(3)51= _ ____。
12、若362=x 则=x ;若2783-=x ,则=x ; 211x=x =(-),则 。
13、 如图所示一棱长为3cm 的正方体,把所有的面均分成3⨯3个小正方形。
其边长都为1cm , 假设一只蚂蚁每秒爬行2cm ,则它从下底面 点A 沿表面爬行至侧面的B 点,DCBAABDC10米祝贺你已经答完多半的题目,一定要安排好剩余的答题目时间表!最少要用 秒钟。
14、△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着 点逆时针方向 旋转 度可得到△ 。
15、菱形的面积为24㎝2,一对角线长为6㎝,则另一对角线长为 ,边长为 ,一组对边的距离为 。
16、A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形 的选法有______种。
17、要把一个菱形判定为正方形,可添加的条件为_______________(只写一个条件). 18、如图所示是某工厂厂房屋顶的人字架 (等腰三角形),它的跨度BC =12米, 中柱AD 为2.5米,中柱AD ⊥BC , 且垂足D 为BC 的中点,又知厂房长10米,为防雨,需在房顶铺满油毡。
(每卷油毡宽1米,长10米) 如果你是该厂采购,需购买___ ____卷油毡。
19、如图,四边形ABCD 是边长为1的正方形, P 是ABCD 的边CD 上的任意一点,且PE ⊥DB 于点E ,PF ⊥AC 于点F ,则PE+PF= 。
20、如图,在梯形ABCD 中,AD ∥BC ,并且AB=8,AD=3,CD=6,并且∠B+ ∠C=900,则梯形面积S 梯形ABCD = 。
三、耐心做一做:(本大题共8题,共80分) 21、化简(每小题5分,共20分)(1)(23-2)2 (2)(3+2)(3-2)EDC B A(3)31227-(4)1 83222 +-+22、(本小题8分)作出图中字母“H”先向右平移3格,再把平移所得的图案绕它的左下角的顶点顺时针旋转900的图23、(本小题8分)如图,是利用四边形的不稳定性制作的凉衣架。
已知其中每个菱形的边长为20㎝,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为203㎝,求∠124、(本小题8分)小明和小东经常在一块等腰三角形的草坪上玩耍,一天他们发现了一个有趣的现象:如图的草坪是等腰△ABC ,AB =AC ,他们两人同在BC 边上一点P ,然后小明沿AC 平行线PE(点E 在AB 上)、EA 走向A 处,小东沿BA 的平行线PF(F 点在AC 上)、FA 走向A 处,当他两个步行速度一样时,他们同时到达A 点,并且在BC 边上不断改变P 点位置。
在步行速度一定时,到达A 处的时间也完全一样,你知道为什么吗? 说说你理由。
25、(本小题8分)农村家庭打地基时,不像城市房基有专门仪器测量,他们往往采用土方法,先用绳子拉成四边形分别量出房基的长a 和宽b (如图)。
如果测得AD =BC ,AB =CD ,能保证房基是矩形吗?请你用学过的知识说明。
如果不能保证是矩形,请说明还需要什么工序才能保证房基是矩形?(说出两种方法)26、(本小题10分)已知:如图,在四边形ABCD中,AB=CD,BC=AD,E、F是对角线AC上的两点,且AE=CF。
试说明BE=DF。
27、(本小题8分)我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x 轴于点A”,请根据图形回答下列问题:(1)线段OA的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式,体现了的数学思想方法。
(将下列符合的选项序号填在横线上)A . 数形结合 B. 代入 C. 换元 D. 归纳8、(本小题10分)如图1,图2,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F . (1)如图1,当点E 在AB 边的中点位置时:①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ; ②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ; ③请说明你的上述两个猜想的正确性。
(2)如图2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系。
ACD F 图1N FFACDF 图2请再仔细检查一遍,看看有没有错的、漏的,别留下什么遗憾哦!答案一、1、A 2、B 3、C 4、B 5、C 6、B 7、C 8、D 9、C 10、A二、11、、±6;-23;2,0 1314、C; 060;BCD 15、2006 16、4 17、对角线相等(只填一个则可) 18、7 19、220、192521、解:(1)原式=222+-⨯分分分(2)原式=222---------------------------------------------2分=3-4-------------------------------------------------4分 =-1--------------------------------------------------5分(3)原式--------------------------------------------2分--------------------------------------------------4分=1-----------------------------------------------------5分(4) 原式=2+-------------------------------2分=1122-----------------------------------------------5分 22、解:连结DQ ,AE由图知DQ=2AB=403,则DF=203 ------------------------------2分 ∵四边形ADEF 是菱形∴AE ⊥DF ,DO=OF ,AO=OE--------4分 则DO=103在Rt △ADO 中,∠ADO=900,AD=20㎝,DO=103根据勾股定理得:AO=2220(103) =10㎝---------------6分∴AE=2AO=20㎝ ∴AD=DE=AE∴△ADE 是等边三角形∴∠1=600----------------------------------------------8分 23、解:画图略平移正确--------------------4分;旋转正确-----------------------8分 24、解:∵PE ∥ACPF ∥AB ∴四边形AEPF 是平行四边形--------4分 ∴PE =AF PF =AE-------------------------------------------8分∵小明和小东的速度相等∴小明和小东会同时到达点A----------------------------------10分25、解:不能保证四边形ABCD 是矩形---------------------------------2分 ∵AD=BC ,AB =CD ∴四边形ABCD 是平行四边形--------------4分方法1:AC =BD(对角线相等的平行四边形是矩形)-----------------7分方法2:∠A =900(有一个角是直角的平行四边形是矩形---------10分 26、解:连结BD,设AC 与BD 相交于O∵AB=CD BC=AD∴四边形ABCD 是平行四边形(两组对边分别相等的四边形是平行四边形)--------------------------------------------------3分∴OA=OC ,OB=OD(平行四边形的对角线互相平分)------5分 ∵AE=CF∴OE=OF------------------------------------------6分∴四边形BFDE 是平行四边形(对角线互相平分的四边形是平行四边形)--------------------------------------------------8分∴BE=DF(平行四边形的对边相等)--------------------10分27、(1)解:∵222OB 11=+=2--------------------------------------------1分∴∴----------------------------------------------2分(2)解:数轴上的点和实数一一对应关系------------------------------4分 (3)解:A---------------------------------------------------------6分 28、(1)①DE =EF-----------------------------------------------------1分②NE=BF------------------------------------------------------2分③解:∵四边形ABCD 是正方形 ∴AD =AB ,∠DAE =∠CBM =900∵点N 、E 分别为AD 、AB 的中点 ∴DN =12AD ,AE =12AB ∴DN =EB------------------------------------------------3分 在R t ANE 中,∠ANE =∠AEN =450 ∴∠DNE =1350∵BF 平分∠CBM ∴∠FBM =450 ∴∠EBF =135∴∠DNE =∠EBF-------------------------------------------4分∵∠FBM +∠DEA =900 ∠ADE +∠DEA =900∴∠FBM =∠ADE--------------------------------------------5分 ∴△DNE ≌△EBF ∴DE =EF NE =BF------------------------6分(2)在AD 上截取AN =AE ,连结NE ,证法同上类似---------------10分。