人教版初一数学下册实际问题与二元一次方程组(代入消元法2)

合集下载

七年级数学人教版下册课件8.3实际问题与二元一次方程组

七年级数学人教版下册课件8.3实际问题与二元一次方程组
题中有哪些等量关系?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?

人教版七年级下册数学代入法解二元一次方程组 说课稿

人教版七年级下册数学代入法解二元一次方程组 说课稿

《代入法解二元一次方程组》说课稿各位老师,各位评委大家下午好。

我是XX号选手。

今天我所讲的课题是《代入法解二元一次方程组》。

主要从以下几个方面进行说明,即教材分析、教学任务分析、教学方法分析。

其中教学方法分析亦是代入消元法的构建过程。

一、教材分析(一)教材地位与作用《代入法解二元一次方程组》是人教版七年级下册第八章第二节的内容。

本节主要内容是在上节已认识二元一次方程组和二元一次方程组的解等概念的基础上,来探究解方程组的第一种方法——代入消元法。

并初步体会“将未知数的个数由多化少、逐一解决”、“由未知向已知转化、用已知解决未知”的化归思想。

代入法解二元一次方程组,既是前面学习一元一次方程的解法的一个延伸,又是为后续学习加减消元法、利用方程组来解决实际问题、求一次函数图像的交点等重要内容奠定基础,同时蕴含着丰富的函数与方程思想。

因此本节课在中学数学体系中处于重要地位。

(二)学情分析八年级的学生已具备了整体代入的认识能力,并初步掌握了逻辑推理能力的认知基础;也掌握了一元一次方程求解的方法与策略;学习了代数式,体验了整体代入思想的数学基础;加上对待事物有自己的见解;探究新鲜事物的欲望强的年龄特征。

这些都为顺利完成本节课的教学任务打下了知识、能力基础。

二、说教学任务(一)教学目标根据2011年义务教育数学课程标准的要求,及本教材的地位和作用,结合初中学生的认知特点确定教学目标如下:(1)知识目标:学生熟悉的掌握利用代入消元法解二元一次方程组。

(2)能力目标:通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想。

(3)情感目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考、独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点勇气。

(二)教学重难点根据本节课内容特点和学生现有知识水平,本节课的教学重难点:1.重 点:代入消元法的构建过程;2.难 点:进一步理解利用代入消元法解方程组是所体现的化归思想。

8-3-2 实际问题与二元一次方程组(2)(教学课件)七年级数学下册(人教版)

8-3-2 实际问题与二元一次方程组(2)(教学课件)七年级数学下册(人教版)
xm2
新校舍面积=被拆除旧校舍面积×4
校舍总面积=20000×(1+30%)
ym2
例1.某校现有校舍20000m2,计划拆除部分旧校舍,改建新校舍,使校舍总面
积增加30%.若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆
除多少旧校舍,建造多少新校舍?(单位为m2)
解:设拆除旧校舍为xm2,新建校舍为ym2,
例3.甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中
甲先花了1小时修理工具,之后甲每小时比以前多加工10件,乙由于体力消
耗较大,每小时比原来少加工1件,结果在后5小时内,甲比乙多加工了15
总产量的大小与种植面积、单位面积的产量
有关.
据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把
一块长200m、宽100m的长方形土地上种植这两种作物,怎样把这块地分为
两个长方形,使甲、乙两种作物的总产量的比是3:4?
3.①要表示种植面积需假设哪些量?②要表
示单位面积产量呢?
①可假设这两块地的长分别为xm、ym,
DEFC和ABFE,设CF、BF的长分别为xm、ym,甲种作物每平方米产量为a,
则乙种作物每平方米产量为2a.根据题意可得,方程组
x y 100
x y 100
化简,得

100 xa :(100 y 2a) 3 : 4
2x 3 y
x 60
解这个方程组,得
1.能够根据具体的数量关系,列出二元一次方程组解决简单的实际问题;
(重点)
2.学会利用二元一次方程组解决几何图形等问题.(重点、难点)
用二元一次方程组解决实际问题的步骤:
数量关系

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

人教版七年级数学下册8.3实际问题与二元一次方程组(2)导学案(集体备课)

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.3.1实际问题与二元一次方程组(2)课型新授主备学校初审人终审人主备人合作H日队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。

教学目标1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;3.体会列方程组比列一元一次方程容易。

教学重点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题教学难点通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1)长方形的面积公式?当宽相同时,面积比等于当长相同时,面积比等于----------------2)回顾列方程解决实际问题的基本思路?复习长方形面积公式和上节课所学知识。

方面公。

长形积式互助释疑3分鼓励学生提出问题小组内互相帮助解决.探究出招8分据统计资料,甲、乙两种作物的单位面积产量的比是1:2.现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物先独立分析问题中的数量关的总「( 2”是( 什么;(( 物的彳 设如的数二V解这,Vi 把这f种—(*量的比是3 : 4?1) "甲、乙两种作物的单位面积产量比是1 : -什么意思?2) “甲、乙两种作物的总产量比为3 : 4”是 思?3) 本题中有哪些等量关系?4) 如下图,一种种植方案为:甲、乙两种作冲植区域分别为长方形AEFD 和BCFE. 此时= ato , BE=ym,根据问题中涉及长度、产量 宣关系,列方程组D二C系,列出方程 组,得 出问题 的解 答,然 后再在 小组内 互相交 流与评 价。

个方程组,得丁 =——•史长方形土地的长边上离夬土地分为两块长方形土 一种作物,较小的一块土土5)你还能设计其他种植方EB:地——X —►一端约— 地.较大白 也种____案吗?试―处,一块吐 M 乍物.成看展示交流小组展示3分组长负责,组员在小组内展示。

人教版数学七年级下册8.3实际问题与二元一次方程组(教案)

人教版数学七年级下册8.3实际问题与二元一次方程组(教案)
五、教学反思
在今天的课堂中,我发现学生们对于将实际问题转化为二元一次方程组的过程普遍感到有些困难。这让我意识到,我们需要在接下来的课程中,更加侧重于培养学生们从生活情境中抽象出数学模型的能力。我打算在下一节课中,通过更多的生活实例,让学生们感受数学与现实世界的紧密联系。
另外,消元法的运算过程也是学生们的一个难点。在讲授过程中,我发现有些学生对于如何选择方程进行消元感到困惑。为了帮助学生更好地掌握这一方法,我计划在下一节课中,设计一些更具针对性的练习题,让学生们在实际操作中逐步熟悉消元法。
人教版数学七年级下册8.3实际问题与二元一次方程组(教案)
一、教学内容
人教版数学七年级下册8.3节,本节课我们将探讨实际问题与二元一次方程组的应用。具体内容包括:
1.利用二元一次方程组解决实际问题,如速度与时间、价格与数量等情境问题。
2.理解并掌握方程组的概念,学会列出方程组并求解。
-举例:小华和小明同时从同一地点出发,相向而行,小华的速度是每小时4公里,小明的速度是每小时5公里,经过2小时后,他们相距13公里。求他们出发时相距多少公里?
2.强化学生对二元一次方程组的概念理解,提高学生分析问题和建立方程组的能力,发展他们的逻辑思维和数学抽象素养。
3.通过消元法求解方程组的过程,训练学生的运算能力和推理能力,培养他们严谨的数学态度和精确的数学表达。
4.增进学生在小组合作中交流与协作的能力,激发他们的团队精神和批判性思维,提升数学交流素养。
-举例:以小华和小明相向而行的案例为例,学生需要能够列出方程组(如:4x + 5y = 13,其中x表示小华行驶的距离,y表示小明行驶的距离),并应用消元法求解。
2.教学难点
-识别并突破以下难点内容,帮助学生深入理解二元一次方程组的求解和应用:

七年级数学下册《代入消元法解二元一次方程组》教案、教学设计

七年级数学下册《代入消元法解二元一次方程组》教案、教学设计
(3)讲解:详细讲解代入消元法的步骤和原理,通过典型例题演示解题过程,让学生明确代入、替换的方法。
(4)实践:让学生独立完成练习题,巩固代入消元法的应用,教师巡回指导,解答学生的疑问。
(5)总结:引导学生总结代入消元法的解题步骤和注意事项,提高学生的归纳总结能力。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生在小组合作中的表现,了解学生的学习效果。
1.学生对方程组的理解程度,部分学生可能对方程组的结构及解法仍存在疑惑,需要教师耐心引导和讲解。
2.学生在解题过程中可能遇到代入、替换等操作上的困难,教师应适时给予指导和鼓励,帮助学生克服困难,提高解题能力。
3.学生的自主学习能力尚在培养中,需要教师在教学过程中注重引导,激发学生的学习兴趣和探究欲望。
(三)情感态度与价值观
1.培养学生面对数学问题时的积极态度,增强学生解决问题的信心和决心。
2.通过代入消元法的学习,让学生体会到数学的简洁美和逻辑美,提高学生对数学学科的兴趣。
3.引导学生关注生活中的数学问题,认识到数学在现实生活中的重要作用,培养学生的应用意识。
4.培养学生勇于探索、不断创新的精神,激发学生的学习潜能。
(2)教师巡回指导,解答学生的疑问。
(3)学生互相讨论,交流解题方法。
(4)教师对学生的解题过程进行评价,指出存在的问题。
2.设计意图:让学生在练习中巩固代入消元法的应用,提高解题能力。
(五)总结归纳
1.教学内容:引导学生总结本节课所学知识,提高归纳总结能力。
教学过程:
(1)教师提问:本节课我们学习了什么内容?请简要概括。
2.难点:
(1)理解代入消元法的原理,明确代入、替换的步骤。
(2)能够根据方程组的特点选择合适的代入方法,提高解题效率。

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计

人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(4)巩固练习:设计不同难度的练习题,让学生独立完成,巩固所学知识。
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。

人教版数学七年级下册 运用二元一次方程组解决实际问题

人教版数学七年级下册 运用二元一次方程组解决实际问题

二 元
应用
和差倍分、几何面积、工程、配套等...
一 次
审题:弄清题意和题目中的_数__量__关__系_

程 组

的题
应步
用骤
设元:用字__母__表示题目中的未知数 列方程组:根据_2_个等量关系列出方程组 解方程组:代__入__法__、__加__减__法__ 检验作答
1.(扬州中考)《孙子算经》是我国古代经典数学名著,其
中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三
十五头,下有九十四足.问鸡兔各几何?”,该如何解
决呢? 解:设鸡有 x 只,兔有 y 只.
由题意,得
x y35, 2x4 y94.
解此方程组得
x23,
y
12.
答:鸡有 23 只,兔有 12 只.
2. 有甲、乙两数,甲数的 3 倍与乙数的 2 倍之和等于 47, 甲数的 5 倍比乙数的 6 倍小 1,这两个数分别是多少?
知识点1:和差倍分问题 合作探究
探究一:养牛场原有 30 只大牛和 15 只小牛,1 天 约用饲料 675 kg;一周后又购进 12 只大牛和 5 只小 牛,这时 1 天约用饲料 940 kg. 饲养员李大叔估计每 只大牛 1 天约需饲料 18 ~ 20 kg,每只小牛 1 天约需 饲料 7 ~ 8 kg. 你认为李大叔估计的准确吗?
x = 45, 解此方程组得
y = 15.
60 cm
答:每块小长方形地砖的长和宽分别是 45 cm,15 cm.
4. A 地至 B 地的航线长 9750 km,一架飞机从 A 地 顺风飞往 B 地需 12.5 h,它逆风飞行同样的航线需 13 h,求飞机的平均速度与风速.
解:设飞机的平均速度为 x km/h,风速为 y km/h.

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代入消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a)理解代入消元法的步骤:选择一个方程解出一个变量,然后将其代入另一个方程中,从而得到一个一元一次方程,最后求解得到两个变量的值。
-举例:解方程组2x + 3y = 5和x - y = 1,先从第二个方程解出x = y + 1,然后代入第一个方程得到2(y + 1) + 3y = 5。
b)学会判断何时使用代入消元法:当一个方程已经解出了某个变量的值,或者方程中某个变量的系数为1或-1时,适合使用代入消元法。
-举例:如果问题涉及到两个人共同完成一项工作,需要根据两人的工作效率和时间来构建方程组。
d)难点4:理解代入消元法与其他消元方法的区别
-学生需要理解代入消元法与加减消元法的区别,以及何时使用哪种方法更有效。
-举例:对于方程组x + y = 3和2x - y = 1,使用加减消元法更为简便。
四、教学流程
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
一、教学内容
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案:
1.理解代入消元法的概念及原理;
2.学会运用代入消元法解二元一次方程组;
3.能够根据具体问题,选择合适的消元方法求解;
4.掌握代入消元法在不同类型二元一次方程组中的应用。

人教版数学七年级下册《消元—解二元一次方程组》二元一次方程组(第2课时加减法)

人教版数学七年级下册《消元—解二元一次方程组》二元一次方程组(第2课时加减法)
用加减消元法解方程组: 5x-6y=33.
如果用加减法消去 x应如何解?解得 的结果一样吗?
4y=-2,
x=6, 所以这个方程组的解是
系数复杂的类型
归纳总结
用加减法解方程组的一般步骤:
化系 加减 求解 写解
把系数化为相同或相反 消去一个元 分别求出两个未知数的值 写出原方程组的解
练习 1.用加减法解下列方程组:
综合运用
6.顺丰旅行社组织200人到花果岭和云水洞旅游,到花果岭的 人数比到云水洞的人数的2倍少1,到两地旅游的人数各是多 少?
综合运用
7.小方、小程两人相距6km,两人同时出发相向而行,1h相 遇;同时出发同向而行,小方3h可追上小程.两人的平均速 度各是多少?
综合运用
8.一种商品有大小盒两种包装,3大盒、4小盒共装108瓶, 2大盒、3小盒共装76瓶,大盒与小盒每盒各装多少瓶?
解:①-②,得 2x=4-4 x=0
解:①-②,得 2x=4+4 x=4
解 ①-②,得 -2x=12 x =-6
解 ①-②,得 8x=16 x =2
归纳总结 上面这些方程组的特点是什么?解这类方程组基本思路是什么?主 要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路:
主要步骤:加减 求解 写解
加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

七年级数学下册8.2代入消元法解二元一次方程组教案新版新人教版

8.2代入消元法解二元一次方程组一、教材分析本课内容是在学生掌握了二元一次方程组的有关概念之后讲授的,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。

学完之后可以帮我们解决一些实际问题,也是为了今后学习函数等知识奠定了基础二、教学目标1、知识与技能(1)会用代入消元法解二元一次方程组;(2)能初步体会解二元一次方程组的基本思想——“消元”2、过程和方法(1)培养学生基本的运算技巧和能力。

(2)培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新问题。

3、情感态度与价值观鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生合作交流意识与探究精神。

三、教学重难点教学重点用代入法来解二元一次方程组。

教学难点代入消元法和化二元为一元的转化思想。

四、教学过程设计1、提出问题、引入新课引例:(问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?)教师提出问题,学生独立完成学生根据已有的经验可以通过列一元一次方程求解后,得出结论。

如此导入新课的意图是,通过提出问题,引发学生思考,体会方程在解决实际问题中作用与价值。

2、探究新知在上述问题中,我们也可以设出两个未知数,列出二元一次方程组,那么怎样求解二元一次方程组呢?教师提出问题后,将学生分成小组讨论。

教师深入学生的讨论中,引导学生观察所列二元一次方程组⎩⎨⎧=+=+40222y x y x 与2x+(22-x)=40的内在联系。

例如,从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上结合板书显示,暴露知识发生过程,(1) y=22-x(2)用22-X 替换方程2X+Y=40中的Y ,即把Y=22-X代入2X+Y=40引导学生回答以下问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。

人教版初一数学下册代入消元──解二元一次方程组

人教版初一数学下册代入消元──解二元一次方程组

《代入消元──解二元一次方程组》教学设计(第2课时)通渭县平襄初级中学马三丽一、内容和内容解析1.内容代入消元法解二元一次方程组2.内容解析二元一次方程组是解决含有两个未知数问题的有力工具,也是解决后续一些数学问题的基础。

其解法将为解决这些问题的工具。

如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等.解二元一次方程组就是要把二元化为一元。

而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,化归思想在本节中有很好的体现。

本节课的教学重点:会用代入消元法解一些简单的二元一次方程组,并能用二元一次方程组解决一些简单的实际问题,体会解二元一次方程组的思路是消元.本节教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

二、目标和目标解析1.教学目标(1)会用代入消元法解一些简单的二元一次方程组(2)理解解二元一次方程组的思路是消元,体会化归思想2.教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想本节教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

三、教学过程设计1.复习旧知回忆一下怎样用代入消元法解二元一次方程组,一般步骤是什么?2.创设情景,引入新课教科书例2 根据市场调查,某种消毒液的大瓶装(500 g )和小瓶装( 250 g )两种产品的销售数量(按瓶计算)比为2︰5.某厂每天生产这种消毒液22.5 t ,这些消毒液应该分装大、小瓶两种产品各多少瓶?问题1 例2中有哪些未知量?问题2 例2中有哪些等量关系?问题3 如何用二元一次方程组表示上面的两个等量关系?3.加深认识,巩固提高4.归纳总结,知识升华师生活动,共同回顾本节课的学习过程,并回答以下问题1. 代入消元法解二元一次方程组有哪些步骤?2. 解二元一次方程组的基本思路是什么?的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组(代入消元法2) --人教版七下第八章“(代入消元法2)”教学设计
史美玲备课时间:5.12
授课时间:5.16
课型:新授课
教学目标:
1.会根据已知条件确定配套问题中两个量之间的数量关系。

2.运用二元一次方程组解决配套问题。

3.熟练利用代入法解二元一次方程组。

教学重点:准确确定配套问题中两个量之间的数量关系,列出二元一次方程组解决配套问题。

教学难点:准确确定配套问题中两个量之间的数量关系,列出二元一次方程组解决配套问题。

教学流程:
一、引入课题
1.如图,已知1个螺栓与1个螺母配成一套。

如果下面的螺栓与螺母刚好配套,则螺栓的数量与螺母的数量比是多少?现有x个螺栓,y个螺母,若它们刚好配套,则x,y的数量比是多少?
2.如果1个螺栓与2个螺母配成一套,那么螺栓的数量与螺母的数量比是多少?现有x个螺栓,y个螺母,若它们刚好配套,则x,y的数量比是多少?
设计意图:创设问题情境,吸引学生的注意力。

提出问题,使学生独立思考,产生疑问,激发学生的求知欲。

使学生理解配套问题中的两个量之间的数量关系,为本节课解决配套问题做好铺垫。

二、新课
例:某车间加工螺栓和螺母,已知1个螺栓与1个螺母恰好配套。

若1名工人每天平均可以加工螺栓120个或螺母96个,该车间共有工人81名。

问加工螺栓的工人和加工螺母的工人各有多少名时,才能使每天加工出来的零件刚好配套?
问题:已知1个螺栓与1个螺母恰好配套,要想使每天加工出来的零件刚好配套,那么加工螺栓的数量与加工螺母的数量之间有什么关系?
问题:x名工人加工螺栓的数量是多少?y名工人加工螺母的数量是多少?
∆变式:将问题改为“应怎样分配人力,才能使每天加工出来的零件刚好配套?”该如何解决呢?
三、练习
∆变式:某车间有60名工人,生产由一个螺栓及两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配几人生产螺栓,几人生产螺母才能使每天生产出的螺母与螺栓刚好配套?
∆变式:制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现有12立方米木材,问应该用多少木材制作桌面?多少木材制作桌腿?
∆变式:机械厂加工车间有85名工人,平均每人每天加工16个大齿轮或10个小齿轮,已知2个大齿轮与3个小齿轮刚好配成一套,问需要分别安排多少名工人生产大齿轮、小齿轮,才能使每天加工的大小齿轮配套?
四、拓展
∆某服装厂生产一批某种款式的秋装,已知每2m的某种布料可做上衣的衣身3个或衣袖5只。

现计划用132m这种布料生产这批秋装,应分别用多少布料做衣身和衣袖才能使做的衣身和衣袖恰好配套?
问题:要使所做的衣身和衣袖恰好配套,那么所做的衣身个数与衣袖只数有什么关系?
问题:每2m的布料可做上衣的衣身3个,那么x m的布料可做衣身多少个?
问题:每2m的布料可做上衣的衣袖5只,那么y m的布料可做衣袖多少只?
五、小结
本节课我们学习了利用二元一次方程组解决配套问题,一定要弄清配套问题中两个量之间的倍数关系,列出方程组,进而利用代入消元法解出方程组。

六、作业
A类
1.某车间有49名工人,平均每人每天可加工15根机轴或12个轴承。

已知每根机轴要配2个轴承,则应怎样安排工人加工机轴和轴承,才能使每天加工的机轴和轴承配套?
2.已知1 m3的木材可做50张桌面或300条桌腿。

现有10m3的木材,请你安排一下,使生产出的桌面与桌腿刚好配套(按1张桌面配4条桌腿配套)。

如果每张方桌卖104元,那么这批方桌可卖多少元?
B类
家具厂共有28名工人,2名工人一天可以加工3张桌子,3名工人一天可以加工10把椅子。

按1张桌子配4把椅子,现在应如何安排工人,可使生产的桌椅刚好配套?。

相关文档
最新文档