-数列全国卷高考真题教师版
2024全国卷真题分类汇编(教师版)(数列)
2024全国卷真题分类汇编(教师版)-数列1.(2024年新课标全国Ⅱ卷)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.2.(2024年高考全国甲卷数学(理))等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.3.(2024年高考全国甲卷数学(理))记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【详解】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13n n a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.(2)111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343n n T n =⋅+⋅+⋅++⋅所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅ ()1313444313n n n --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.4.(2024年新课标全国Ⅰ卷)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k k a a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.。
全国卷数列高考题汇总附答案
数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。
(2015·II)(4)等比数列{a n}满足a1=3,=21,则( )(A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n项和,且,,则________.(2016·I)(3)已知等差数列{a n}前9项的和为27,a10=8,则a100=(A)100 (B)99 (C)98 (D)97(2016·I)(15)设等比数列{a n}满足 a1+a3=10,a2+a4=5,则 a1a2…a n的最大值为__________。
(2016·II)(17)(本题满分12分)S n为等差数列{a n}的前n项和,且a1=1 ,S7=28 记b n=[log a n],其中[x]表示不超过x的最大整数,如[0.9]= 0,[lg 99]=1.(I)求b1,b11,b101;(II)求数列{b n}的前1 000项和.(2016·III)(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,?,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个(2016·III)(17)(本小题满分12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0(I)证明{a n}是等比数列,并求其通项公式;(II )若S n =3132,求λ. (2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
数列(教师版)--2020-2023高考真题数学专题分类汇编
专题六数列--2020-2023高考真题数学专题分类汇编真题卷题号考点考向2023新课标1卷7等差数列等差数列的判定、等差数列的性质20等差数列求等差数列的通项公式及基本量计算2023新课标2卷8等比数列等比数列的性质18等差数列、数列的综合应用求等差数列的通项公式及前n 项和、数列的综合应用(不等式证明)2022新高考1卷17数列的通项公式、数列求和由递推公式求通项公式、裂项相消法求和2022新高考2卷17等差数列、等比数列等差、等比数列的通项公式2021新高考1卷16数列的实际应用错位相减法求和17数列的通项公式、数列求和由递推公式求通项公式、公式法求和2021新高考2卷12等比数列数列的新定义问题17等差数列求等差数列的通项公式、等差数列求和2020新高考1卷14等差数列等差数列的性质、等差数列求和18等比数列、数列求和求等比数列的通项公式、数列求和2020新高考2卷15等差数列求等差数列的通项公式、等差数列求和18等比数列求等比数列的通项公式、等比数列求和【2023年真题】1.(2023·新课标I 卷第7题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C 【解析】【分析】本题考查等差数列的判定、等差数列前n 项和、充分必要条件的判定,属于中档题.结合等差数列的判断方法,依次证明充分性、必要性即可.【解答】解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+,故{}nS n为等差数列,则甲是乙的充分条件,,反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n 两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列,则甲是乙的必要条件,故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+,则11(1)222n S n d da d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n 时,11(1)(1)(2).n S n S n n D -=-+--上两式相减得:112(1)n n n a S S S n D -=-=+-,所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列.则甲是乙的必要条件,故甲是乙的充要条件,故选C .2.(2023·新课标II 卷第8题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()A.120B.85C.85- D.120-【答案】C 【解析】【分析】本题考查等比数列的基本性质,属于中档题.利用等比数列前n 项和之间差的关系可知2S ,42S S -,64S S -,86S S -成等比数列,列出关系式计算即可得解.【解答】解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=-故选.C 3.(2023·新课标I 卷第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n nn nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求.d【答案】解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍),故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n nb d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=,即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍);当12a d =时,(1)n a n d =+,n n b d =,故(3)2n n n d S +=,(1)2n n n T d+=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍);综上:51.50d =方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+-解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d =解法二:由211(1)n n n n nb dn a d dn a d++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}nb 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=,①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取;综上所述,51.50d =【解析】本题第一问考查数列通项公式的求解,第二问考查等差数列有关性质,等差数列基本量的求解,计算量较大,为较难题.4.(2023·新课标II 卷第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【答案】解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-,∴当n 为偶数且5n >时,即6n 时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->,当n 为奇数且5n >时,即7n 时,22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+->∴当5n >时,n S .n T >【解析】本题考查了等差数列的通项公式、前n 项和公式等.(1)由已知432S =,316T =,根据等差数列的前n 项和公式展开,即可得出等差数列的首项15a =,公差2d =,进而得出通项公式2 3.n a n =+(2)由(1)知23n a n =+,可得(4)n S n n =+,数列的通项公式,进而212121n n b b n -+=+,分两情况讨论,当n 为偶数时,n T 中含有偶数项,相邻两项两两一组先求和,得出237.22n T n n =+当n 为奇数时,1n +为偶数,此时11.n n n T T b ++=-最后只需证明0n n T S ->即可.【2022年真题】5.(2022·新高考I 卷第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 【答案】解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②;由②-①得:111322;33n n n n n a n n n a a a a n++++++=-⇒=∴当2n 且*n N ∈时,13211221n n n n n a a a a a a a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- ,又11a =也符合上式,因此*(1)();2n n n a n N +=∈1211(2)2((1)1n a n n n n ==-++,1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ ,即原不等式成立.【解析】本题考查了数列与不等式,涉及裂项相消法求和、等差数列的通项公式、根据数列的递推公式求通项公式等知识,属中档题.(1)利用11n n n a S S ++=-进行求解然后化简可求出{}n a 的通项公式;(2)由(1)可求出1112()1n a n n =-+,然后再利用裂项相消法求和可得.6.(2022·新高考II 卷第17题)已知{}n a 为等差数列,{}n b 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+中元素个数.【答案】解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b =由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m ,故1221000k -,解得210k ,故集合1{|,1500}k m k b a a m =+中元素的个数为9个.【解析】本题考查等差、等比数列的通项公式,解指数不等式,集合中元素的个数问题,属于中档题.【2021年真题】7.(2021·新高考II 卷第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则()A.()()2n n ωω= B.()()231n n ωω+=+C.()()8543n n ωω+=+ D.()21nnω-=【答案】ACD 【解析】【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【解答】解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,,则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则()21ω=,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD 8.(2021·新高考I 卷第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm .【答案】5;3240(3)2nn +⨯-【解析】【分析】本题考查实际生活中的数列问题,由特殊到一般的数学思想.根据题设列举,可以得到折叠4次时会有五种规格的图形.由面积的变化关系得到面积通项公式,从而由错位相减法得到面积和.【解答】解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形.对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+ 记231242n n n T +=+++ ,则112312482n n n T ++=+++ ,11111111()224822n n n n n n T T T ++-==++++- 113113322222n n n n n ++++=--=-,得332n nn T +=-,123240(32n nn S S S +∴++=⨯-,故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷第17题)已知数列{}n a 满足11a =,,(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】解:⑴12b a =,且21+1=2a a =,则1=2b ,24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列;故()21331n b n n =+-⨯=-.(2)数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ ,又由题中条件有211a a =+,431a a =+, ,20191a a =+,故可得n a 的前20项的和【解析】本题考查了数列递推关系式运用,等差数列通项公式求法,数列求和,考查了分析和运算能力,属于中档题.(1)结合题干给的递推关系,可以快速的算出1b 和2b ,同时利用1222121213n n n n n b a a a b +++==+=++=+可判断出数列n b 为等差数列,即可求出数列通项公式;(2)n a 的前20项的和可分组求和,求出其对应的偶数项的和,再结合奇数项与偶数项的关系求解即可.10.(2021·新高考II 卷第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.【答案】解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=,设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->,解得1n <或6n >,又n 为正整数,故n 的最小值为7.【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【2020年真题】11.(2020·新高考I 卷第14题、II 卷第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.【答案】232n n-【解析】【分析】本题考查数列的特定项与性质以及等差数列求和.利用公共项构成首项为1,公差为6的等差数列,利用求和公式即可求出答案.【解答】解:数列{21}n -的首项是1,公差为2的等差数列;数列{32}n -的首项是1,公差为3的等差数列;公共项构成首项为1,公差为6的等差数列;故{}n a 的前n 项和S n 为:.故答案为232.n n -12.(2020·新高考I 卷第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S 【答案】解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =,以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===,3263...5b b ===,64100...6b b ===,10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=【解析】本题考查了数列求和及等比数列通项公式,属中档题.(1)根据等比数列通项公式列出方程,求出首项和公比,即可求出通项公式;(2)根据等比数列通项公式,归纳数列{}m b 的规律,从而求出其前100项和.13.(2020·新高考II 卷第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-【答案】解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,1q > ,122a q =⎧∴⎨=⎩,1222.n n n a -∴=⋅=1223(2)a a a a -+ (11)(1)n n n a a -++-35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----【解析】本题考查等比数列的通项公式,前n 项求和公式,考查转化思想和方程思想,属于基础题.(1)根据题意,列方程组32411231208a a a q a q a a q ⎧+=+=⎨==⎩,解得1a 和q ,然后求出{}n a 的通项公式;(2)根据条件,可知12a a ,23a a -,…11(1)n n n a a -+-,是以32为首项,22-为公比的等比数列,由等比数列求和公式,即可得出答案.。
数列专题1教师版(复印4份)
数列专题1——基本概念,基本量,基本公式(2课时) 一体验浙江高考1.(2015,3)已知{〃〃}是等差数列,公差d不为零,前〃项和是S”,若〃广为,火成等比数列,则()A. a x d > 0, dS4 > 0B. a x d < 0, dS4 < 0C. a x d > 0, dS4 < 0D. a l d < 0, dS4 > 0【答案】B.【解析】・・♦等差数列{4} , %,% , 6成等比数列,J) 5(a∣ + 3d) = (”1 + 2d)(cι∣+ 7d)“∣ = — d ,2 5 2工S4=2(q+%) = 2(q+q+3d) = —d , Λ a i d = — J2 <0, dS4 =—d2<0,故选B.考点:1.等差数列的通项公式及其前〃项和;2.等比数列的概念2.(2012,7) 7.设S〃是公差为d(d≠O)的无穷等差数列{〃〃}的前〃项和,则下列命题错误的♦♦是A.若d<(),则数列{S〃}有最大项B.若数列{S“}有最大项,则dV0C.若数列{S“}是递增数列,则对任意的〃∈N*,均有S〃>0D.若对任意的〃wN*,均有S“>0,则数列{S〃}是递增数列【解析】选项C显然是错的,举出反例:一1, 0, 1, 2, 3,….满足数列{S.}是递增数列,但是S〃>()不成立.【答案】C3.(2012,13) 13.设公比为讥q>0)的等比数列{。
〃}的前〃项和为{S“}.若S2 = 3«, + 2 , S4 = 3a4 + 2 ,则q=.【解析】将S2 =3%+2, S4 =3q+2两个式子全部转化成用q ,4表示的式子.*即『+卬/ = 3"+ 2 3两式作差得:4∕+4∕=3αα(∕f,即:2qj-3 = 0,a1 + 44 + aq + a x q = 3qq + 2解之得:q or4=-1(舍去).【答案】I4.(2010, 3)设S〃为等比数列{。
(完整版)历年数列高考题汇编,推荐文档
历年高考真题汇编---数列(含)1、(全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。
有条件可知a>0,故13q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =13n 。
(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-=。
而 12,a =所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅L ①从而 23572121222322n n S n +⋅=⋅+⋅+⋅++⋅L ②①-②得 2352121(12)22222n n n S n -+-⋅=++++-⋅L 。
数列高考真题汇编(二)-教师版
数列真题汇编(二)数列求通项15道1.(2016全国3卷文)已知各项都为正数的数列{a n }满足a 1=1,a n 2−(2a n+1−1)a n −2a n+1=0. (I )求a 2,a 3; (II )求{a n }的通项公式.解:(Ⅰ)由题意得a 2=12,a 3=14. .........5分(Ⅱ)由a n 2−(2a n+1−1)a n −2a n+1=0得2a n+1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n+1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n−1.2.(2016全国1卷文)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n+1+b n+1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n −1. (Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n ,得b n+1=b n 3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1−(13)n 1−13=32−12×3n−1.3.(2018全国1文)已知数列满足,,求的通项公式.解:∵,∴.4.(三星)(全国II )已知a 1=1,S n+1=4a n +2(n ∈N ∗), (1)设b n =a n+1−2a n ,求证:{b n }是等比数列; (2)求a n .备注:题目中 已经将关系式构造好了,三项关系变二项关系后是等比数列;基本类型二求通项{}n a 11a =()121n n na n a +=+{}n a 1112n n nn a b b q n−−===12n n a n −=⋅5.(三星)(全国Ⅰ卷)在数列{a n}中,S n=43a n−13×2n+1+23,S n.求首项{a n}与通项n.备注:S n与a n关系变形之后成类型二解:由题意得S n=2a n+1,解得S6=.又a n+1=S n+1−S n=43a n+1−43a n−13(2n+1−2n),即a n+1=4a n+2n+1,设a n+1+x⋅2n+1=4(a n+x⋅2n),利用待定系数法可得x=1,又a1+2=4≠0,所以数列{a n+2n}是公比为4的等比数列. 所以a n+2n=4×4n−1,即a n=4n−2n.6. (2020全国3卷理)设数列{a n}满足a1=3,a n+1=3a n−4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.【详解】(1)由题意可得a2=3a1−4=9−4=5,a3=3a2−8=15−8=7,由数列{a n}的前三项可猜想数列{a n}是以3为首项,2为公差的等差数列,即a n=2n+1,证明如下:当n=1时,a1=3成立;假设n=k时,a k=2k+1成立.那么n=k+1时,a k+1=3a k−4k=3(2k+1)−4k=2k+3=2(k+1)+1也成立.则对任意的n∈N∗,都有a n=2n+1成立;(2)由(1)可知,a n⋅2n=(2n+1)⋅2nS n=3×2+5×22+7×23+⋯+(2n−1)⋅2n−1+(2n+1)⋅2n,①2S n =3×22+5×23+7×24+⋯+(2n −1)⋅2n +(2n +1)⋅2n+1,② 由①−②得:−S n =6+2×(22+23+⋯+2n )−(2n +1)⋅2n+1 =6+2×22×(1−2n−1)1−2−(2n +1)⋅2n+1=(1−2n)⋅2n+1−2,即S n =(2n −1)⋅2n+1+2.7.(2021全国1卷)已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.【解】(1)b 1=a 2=a 1+1=2,b 2=a 4+a 3+1=a 2+2+1=5 ∵2n 为偶数,∴a 2n+1=a 2n +2,a 2n+2=a 2n+1+1, ∴a 2n+2=a 2n +3即b n+1=b n +3,且b 1=2,∴{b n }是以2为首项,3为公差的等差数列,∴ b n =3n −1. (2)当n 为奇数时,a n =a n+1−1∴{a n }的前20项和为a 1+a 2+...+a 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=[(a 2−1)+(a 4−1)+...+(a 20−1)]+(a 2+a 4+...+a 20)=2(a 2+a 4+...+a 20)−10. 由(1)可知,a 2+a 4+...+a 20=b 1+b 2+...+b 10=2×10+10×92×3=155 ,∴{a n }的前 20项和为2x155 -10 =300.8. (2020全国1文)数列{a n }满足a n+2+(−1)n a n =3n −1,前16项和为540,则a 1= ______________.【详解】a n+2+(−1)n a n =3n −1,当n 为奇数时,a n+2=a n +3n −1;当n 为偶数时,a n+2+a n =3n −1. 设数列{a n }前n 项和为S n , S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70) +(a 1+102)+(a 1+140)+(5+17+29+41) =8a 1+392+92=8a 1+484=540,{}n a 11a =11,,2,n n na n a a n ++⎧=⎨+⋅⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a∴a1=7.故答案为:7.9.(2019全国2卷理)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n−b n+4,4b n+1=3b n−a n−4.(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.解:(1)由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=l,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1–b1=l,所以{a n−b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.10. (2021全国乙卷理)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【解析】(1)解法一:由2S n +1b n=2得S n=2b n2b n−1,且b n≠0,b n≠12,取n=1,由S1=b1=2b12b1−1得b1=32,由于b n为数列{S n}的前n项积,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n2b n−1=b n,所以2b12b1−1⋅2b22b2−1⋅⋅⋅2b n+12b n+1−1=b n+1,所以2b n+12b n+1−1=b n+1b n,由于b n+1≠0所以22b n+1−1=1b n,即b n+1−b n=12,其中n∈N∗所以数列{b n }是以b 1=32为首项,以d =12为公差等差数列; 解法二:因为b n 为数列{S n }的前n 项积,所以b nb n−1=S n (n ≥2),由2S n+1b n=2可得2b n−1b n+1b n=2(n ≥2),去分母得2b n −2b n−1=1(n ≥2),所以b n −b n−1=12,数列{b n }是公差为12的等差数列.(2)由(1)可得,数列{b n }是以b 1=32为首项,以d =12为公差的等差数列, ∴b n =32+(n −1)×12=1+n2, S n =2b n2bn−1=2+n1+n , 当n=1时,a 1=S 1=32,当n≥2时,a n =S n −S n−1=2+n1+n −1+n n=−1n (n+1),显然对于n=1不成立,∴a n ={32,n =1−1n (n+1),n ≥2.11.(二星)(全国理)若数列{}的前n 项和为S n =,则数列{}的通项公式是=______. 解:当=1时,==,解得=1,当≥2时,==-()=,即=,∴{}是首项为1,公比为-2的等比数列,∴=.12.(2016全国3卷理科)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0, (Ⅰ)证明{a n }是等比数列,并求其通项公式; (Ⅱ)若S 5=3132,求λ。
数列--历届高考真题解析版
数列--历届高考真题一、解答题1.(2019·浙江高考真题)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N L 【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】 【分析】(1)首先求得数列{}n a 的首项和公差确定数列{}n a 的通项公式,然后结合三项成等比数列的充分必要条件整理计算即可确定数列{}n b 的通项公式;(2)结合(1)的结果对数列{}n c 的通项公式进行放缩,然后利用不等式的性质和裂项求和的方法即可证得题中的不等式. 【详解】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =- . 其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n nn n n n b b n n n n n n b n n b b ++++=-++++++-+,故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+. (2)结合(1)中的通项公式可得:2n C ==<=<=,则)122022n C C C +++<+++=L L 【点睛】本题主要考查数列通项公式的求解,,裂项求和的方法,数列中用放缩法证明不等式的方法等知识,意在考查学生的转化能力和计算求解能力.2.(2019·北京高考真题(文))设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得{}n a 的通项公式; (Ⅱ)首先求得n S 的表达式,然后结合二次函数的性质可得其最小值. 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.3.(2019·天津高考真题(文)) 设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a = ,3243b a =+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c bn ⎧⎪=⎨⎪⎩为奇数为偶数求()*112222n na c a c a c n N +++∈L .【答案】(I )3n a n =,3nn b =;(II )22(21)369()2n n n n N +*-++∈【解析】 【分析】(I )首先设出等差数列的公差,等比数列的公比,根据题意,列出方程组,求得33d q =⎧⎨=⎩,进而求得等差数列和等比数列的通项公式;(II )根据题中所给的n c 所满足的条件,将112222n n a c a c a c +++L 表示出来,之后应用分组求和法,结合等差数列的求和公式,以及错位相减法求和,最后求得结果. 【详解】(I )解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , 依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩, 故33(1)3n a n n =+-=,1333n nn b -=⨯=,所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =;(II )112222n n a c a c a c +++L135212142632()()n n n a a a a a b a b a b a b -=+++++++++L L123(1)[36](6312318363)2n n n n n -=⨯+⨯+⨯+⨯+⨯++⨯L 21236(13233)n n n =+⨯⨯+⨯++⨯L ,记 1213233nn T n =⨯+⨯++⨯L ① 则 231313233n n T n +=⨯+⨯++⨯L ②②-①得,231233333n n n T n +=-----+⨯L 113(13)(21)333132n n n n n ++--+=-+⨯=-, 所以122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L22(21)369()2n n n n N +*-++=∈.【点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目. 4.(2019·全国高考真题(理))已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+。
专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。
第2讲数列篇(教师版)
第2讲 数列[考点分析]数列问题是高考的必考内容,主要考查:1.等差等比数列的证明.2.数列求通项.3.数列求和.4.个别时候考查数列不等式问题.在新高考中很多题目开始以开放性题型命题.[特训典例]题型一 等差等比数列的证明例1 (2019全国2卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0, ,. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.[特训跟踪]1、(2021全国卷)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;1434n n n a a b +-=+1434n n n b b a +-=-(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300. 【解析】【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项. (2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++-,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++= 又22211k k a a ++=+,2122k k a a +=+, 故2223k k a a +=+即13n n b b +=+即13n n b b +-= 所以{}n b 为等差数列,故()21331n b n n =+-⨯=-. (2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.2.在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .解 (1)∵a n 是1与a n a n +1的等差中项, ∴2a n =1+a n a n +1,∴a n +1=2a n -1a n, ∴a n +1-1=2a n -1a n -1=a n -1a n ,∴1a n +1-1=a n a n -1=1+1a n -1,∵1a 1-1=1,∴数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1,公差为1的等差数列,∴1a n -1=1+(n -1)=n ,∴a n =n +1n .(2)由(1)得1n 2a n =1n (n +1)=1n -1n +1,∴S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 3.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .[听前试做] (1)证明:当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2.(2)由(1)知1S n =2+2(n -1)=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式,∴a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.题型二 数列求通项和求和例2 (2015·新课标全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.[听前试做] (1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1,n ∈N *.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n3(2n +3). 例3 (2020衡水2调)已知数列{}n a 满足:211231333()3n n n a a a a n N -*+++++=∈. (1)求数列{}n a 的通项公式; (2)设111,3(1)(1)n n n n b a a ++=--数列{}nb 的前n 项和为n S ,试比较n S 与716的大小. 解:(1)数列{}n a 满足211231333()3n n n a a a a n N -*+++++=∈, 所以2n ≥时,212133,3n n n a a a --+++=相减可得113,3n n a -=所以1.3n n a =n=1时,12.3a =综上可得2,1,31, 2.3n nn a n ⎧=⎪⎪=⎨⎪≥⎪⎩(5分)(2)因为111,3(1)(1)n n n n b a a ++=--所以12213.2183(1)(1)33b ==⨯-⨯-2n ≥时,1111111.11231313(1)(1)33n n n n n n b +++⎛⎫==- ⎪--⎝⎭-- 所233413111111182313131313131n n n S +⎡⎤⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦131117.8283116n +⎛⎫=+-< ⎪-⎝⎭ 例4 (2019衡水2调)已知{}n a 是各项都为正数的数列,其前n 项和为n S ,且n S 为n a 与1na 的等差中项. (1)求数列{}n a 的通项公式; (2)设()1,nnnb a -=求{}n b 的前n 项和n T .解:(1)由题意知,12n n nS a a =+,即221,n n n S a a -=① 当n=1时,由①式可得11;S =当2n ≥时,有1,n n n a S S -=-带入①式,得2112()()1,n n n n n S S S S S -----=整理得221 1.n n S S --= 所以{}2nS 是首项为1,公差为1的等差数列,211.nSn n =+-=因为{}n a各项都为正数,所以n S =所以12),n n n a S S n -=-=≥ 又111,a S ==所以n a =(6分)(2)()(1)1,n n nn n b a -===-当n 为奇数时,(11)1n T n=-+-++--=当n 为偶数时,(11)1n T n =-+-+--+=所以{}n b 的前n 项和()1nn T =-(12分)例5 (潍坊市高三下学期第一次模拟) 已知数列{}n a 是等差数列,其前n 项和为n S 。
数列高考真题数列大题教师版
数列一.等差数列、等比数列的基本概念与性质全国Ⅱ卷1.(2014.全国2卷5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的 前n 项和n S =( )(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -2.(2014.全国2卷16)数列{}n a 满足111n n a a +=-,2a =2,则1a =_________.123.(2015.全国2卷5)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11 4.(2015.全国2卷9)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ) .2A .1B 1.2C 1.8D二.数列综合(一)新课标卷1.(2011.全国新课标17)(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n2.(2014.全国3卷17)(本小题满分12分)已知{}n a 是递增的等差数列,2a 、4a 是方程2560x x -+=的根。
(I )求{}n a 的通项公式; (II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 错位相减 【解析】:(I )方程2560x x -+=的两根为2,3,由题意得22a =,43a =,设数列{}n a 的公差为 d ,,则422a a d -=,故d=12,从而132a =, 所以{}n a 的通项公式为:112n a n =+ …………6 分 (Ⅱ)设求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为S n ,由(Ⅰ)知1222n nn a n ++=, 则:23413451222222n n n n n S +++=+++++ 34512134512222222n n n n n S ++++=+++++ 两式相减得 341212131112311212422224422n n n n n n n S ++++++⎛⎫⎛⎫=++++-=+-- ⎪ ⎪⎝⎭⎝⎭ 所以1422n n n S ++=- ………12分(三)全国Ⅱ卷1.(2013.全国2卷17)(本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2. 解:(1)设{a n }的公差为d. 由题意,211a =a 1a 13, 即(a 1+10d)2=a 1(a 1+12d). 于是d(2a 1+25d)=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =2n (a 1+a 3n -2)=2n(-6n +56)=-3n 2+28n. 2.(2016全国卷2.17)(本小题满分12分) 等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=;当n =6,7,8时,2334,35n n b +≤<=; 当n =9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.(三)全国III 卷1、(2016全国卷3.17)(本小题满分12分)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式. 试题解析:(Ⅰ)由题意得41,2132==a a . .........5分考点:1、数列的递推公式;2、等比数列的通项公式. 2、(2017新课标Ⅲ文数)设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.综合题1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列;(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得143n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a .所以{}n a 是首项为1,公比为43的等比数列. 7分(2)解:因为14()3n n a -=,由1(1,2,)n n n b a b n +=+=,得114()3n n n b b -+-=. 9分由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b=1)34(3341)34(1211-=--+--n n ,(2≥n ),当n=1时也满足,所以1)34(31-=-n n b .2.(本小题满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式.2.设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。
数列--2023高考真题分类汇编完整版
数列--高考真题汇编第一节数列的通项公式与性质1.(2023新高考II 卷18)已知{}n a 为等差数列,6,2,n n n a n b a n -⎧⎪=⎨⎪⎩为奇数为偶数.记n S ,n T 分别为{}n a ,{}n b 的前n 项和.若432S =,316T =.(1)求{}n a 的通项公式;(2)求证:当5n >时,n n T S >.【解析】(1){}n a 为等差数列,设公差为d .312312362616T b b b a a a =++=-++-=,所以17a d +=①,又432S =,所以可得12316a d +=②,联立①②解得15,2a d ==,所以()1123n a a n d n =+-=+,*n ∈N .(2)由(1)得()21142n n n S a n d n n -=+=+.当n 为偶数时,()()13124......n n n T b b b b b b -=+++++++()()1312466...622...2n n a a a a a a -=-+-++-++++()()59...2132711...23n n n =++++-+++++()()521723223222n nn n n ++++=-+⨯23722n n =+.当5n >时,()()2223741022222n n n n n n n T S n n n -=+-+=-=->,即n n T S >.当n 为奇数时,1n -为偶数,()()21371123622n n n T T b n n n -=+=-+-++-235522n n =+-.当5n >时,()()()222353154525022222n n n n T S n n n n n n -=+--+=--=+->,即n n T S >.综上所述,当5n >时,n n T S >.第二节等差数列与等比数列1.(2023全国甲卷理科5)已知正项等比数列{}n a 中,11a =,n S 为{}n a 前n 项和,5354S S =-,则4S =()A.7B.9C.15D.30【解析】由题知()23421514q q q q q q ++++=++-,即34244q q q q +=+,即32440q q q +--=,()()()2120q q q -++=.{}n a 为正项等比数列,0q >,所以解得2q =,故4124815S =+++=.故选C.2.(2023全国甲卷文科5)记n S 为等差数列{}n a 的前n 项和.若2610a a +=,4845a a =,则5S =()A.25B.22C.20D.15【分析】解法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;解法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【解析】解法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选C.解法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选C.3.(2023全国甲卷文科13)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.4.(2023全国乙卷理科15)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出52q =-,最后得55712a a q q q =⋅==-.【解析】设{}n a 的公比为()0q q ≠,因为24536a a a a a =,而4536a a a a =,所以211a a q ==,因为9108a a =-,则()289151118a q a q a q q ⋅=⋅=-,则()()3315582q q==-=-,则52q =-,则55712a a q q q =⋅==-,故答案为2-.5.(2023全国乙卷文科18)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =.(1)求{}n a 的通项公式;6.(2023新高考I 卷7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.7.(2023新高考I 卷20)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记n S ,nT 分别为数列{}n a ,{}n b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【解析】(1)()21311332(1)n a a a d a d a d a nd d -===+⇒=⇒=>,则3123312349,6,n n b S a a a d T d d d +++==++===,则296212730(21)(3)0d d d d d d+=⇒-+=⇒--=,故*3,3,n d a n n ==∈N .(2)若{}n b 为等差数列,设公差为r ,则()()()2200000000(1)n n b nr n n a nd b nr drn db ra n a b a nd +=+⇒+=++=++++故0000110dr db ra a b =⎧⎪+=⎨⎪=⎩,(101d r >⇒<<)()()999999000019910099()992n S T a nd b nr a b d r =⨯-=+--=-+-=∑,0050()1a b d r -+-=.①00a =时,00111,1,50()1501db dr d r b d d d⎛⎫==-=+⇒-=+ ⎪⎝⎭25150510(5051)(1)0. 50d d d d d ⇒--=⇒-+=⇒=②00b =时,00111,1,50()1501ra dr a d r r r r ⎛⎫==+-=⇒+-= ⎪⎝⎭250510(5051)(1)01r r r r r d ⇒+-=⇒+-=⇒==.矛盾.综上,5150d =.8.(2023新高考II 卷8)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()A.120B.85C.85- D.120-【解析】由6221S S =,得()2422121q q S S ++=,即42200q q +-=,解得24q =或25q =-(舍),则416q =.因为4844S S q S -=,所以()()484117585S q S =+=⨯-=-.故选C.9.(2023天津卷6)已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则4a 的值为()A .3B .18C .54D .152【分析】由1n n n a S S -=-得出公比的值,再由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程,求解方程组确定首项的值,然后结合等比数列通项公式即可求得4a 的值.【解析】因为122n n a S +=+,所以有122n n a S -=+,两式相减得()1122n n n n n a a S S a +--==-,即13n n a a +=,所以3q =.又由题意可得:当1n =时,2122a a =+,即1122a q a =+,解得可得12a =,则34154a a q ==.故选C.10.(2023北京卷14)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:株)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,11a =,512a =,9192a =.则7a =;数列{}n a 所有项的和为.【分析】方法一:根据题意结合等差、等比数列的通项公式列式求解,d q ,进而可求得结果;方法二:根据等比中项求73,a a ,再结合等差、等比数列的求和公式运算求解.【解析】解法一:设前3项的公差为d ,后7项公比为0q >,则4951921612a q a ===,且0q >,可得2q =,则53212a a d q =+=,即123d +=,可得1d =,空1:可得43733,48a a a q ===,空2:()716293121233232338412a a a -=+++⨯+⋅⋅⋅+⨯=+-+=++ .解法二:空1:因为{},37n a n ≤≤为等比数列,则227591219248a a a ==⨯=,且0n a >,所以748a =;又因为2537a a a =,则25373a a a ==;空2:设后7项公比为0q >,则2534a q a ==,解得2q =,可得()1339334567189236,21a qa a a a a q a a a a a a a a +-==++++++++=-3192238112-⨯==-,所以93126381384a a a a =+-+=++ .故答案为:48;384.第三节数列求和2.(2023全国甲卷理科17)已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =.(1)求{}n a 的通项公式.(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【解析】(1)因为2n n S na =.当1n =时,112a a =,即10a =.当3n =时,()33213a a +=,即32a =.当2n ≥时,()1121n n S n a --=-,所以()()11212n n n n n S S na n a a ---=--=,化简得()()121n n n a n a --=-.当3n ≥时,13 (1122)n n a a an n -====--,即1n a n =-.当1,2n =时都满足上式,所以1n a n =-,n ∈*N .(2)因为122n n n a n +=,所以231111123...2222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2311111112...122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相减得,2311111221111111 (1222222212)nn n n n T n n ++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-11122nn ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,即()1222n n T n ⎛⎫=-+ ⎪⎝⎭,n ∈*N .第四节数列的综合与应用1.(2023天津卷19)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和1212n n ii a--=∑.(2)已知{}n b 为等比数列,对于任意*k ∈N ,若1221k k n -≤≤-,则1k n k b a b +<<,(i )当2k ≥时,求证:2121k k k b -<<+;(ii )求{}n b 的通项公式及其前n 项和.【分析】(1)由题意得到关于首项、公差的方程,解方程可得13,2a d ==,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n 项和公式计算.(2)(i )利用题中的结论分别考查不等式两侧的情况,当1221k k n -≤≤-时,k n b a <,2.(2023北京卷10)数列{}n a 满足()()311661,2,3,4n n a a n +=-+= ,则()A.若13a =,则{}n a 是递减数列,且存在常数0M ,使得n a M >恒成立B.若15a =,则{}n a 是递增数列,且存在常数6M ,使得n a M <恒成立C.若17a =,则{}n a 是递减数列,且存在常数6M >,使得n a M >恒成立D.若19a =,则{}n a 是递增数列,且存在常数0M >,使得n a M <恒成立【分析】思路1:利用数学归纳法可判断ACD 正误,利用递推公式可判断数列性质,从而判断B 的正误;思路2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性.思路3:利用数形结合,画图分析各选项合理性.【解析】解法一:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤,证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立;设当n k =时,63k a -≤-成立,则()31276,4164k k a a +⎛⎫-∈-∞- ⎪⎝=⎭-,故136k a +≤--成立,由数学归纳法可得3n a ≤成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<,故{}n a 为减数列,注意1063k a +-≤-<故()()()()23111666649644n n n n n a a a a a +-=≤-,结合160n a +-<,所以()16694n n a a +--≥,故119634n n a +-⎛⎫-≥ ⎪⎝⎭,故119634n n a +-⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则19634n M -⎛⎫-> ⎪⎝⎭,故16934n M --⎛⎫> ⎪⎝⎭,故9461log 3Mn -<+,故n a M >恒成立仅对部分n 成立,故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<,证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立;设当n k =时,56k a ≤<成立,则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即由数学归纳法可得156k a +≤<成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()201416n a --<,60n a -<,故10n n a a +>-,故1n n a a +>,故{}n a 为递增数列,若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时,可用数学归纳法证明:061n a <-≤即67n a <≤,证明:当1n =时,1061a <-≤,此时不等关系成立;设当n k =时,67k a <≤成立,则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤,由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为递减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664nn a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭,若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164n M ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时,可用数学归纳法证明:63n a -≥即9n a ≥,证明:当1n =时,1633a -=≥,此时不等关系成立;设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立.由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为递增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()116349946nnn a a +⎛⎫⎛⎫-= ⎪ ⎝⎭⎝>⎪⎭-,所以19463nn a +⎛+⎫⎪⎝⎭≥,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,n 的个数有限,与D 选项矛盾,故D 错误.故选B.解法二:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-,令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x '>,得06x <<-或6x >+令()0f x '<,得23236633x -<<+;所以()f x在,63⎛-∞- ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛-+ ⎝⎭上单调递减,令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到234653<-<,237683<+<,所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >,对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <,假设当n k =时,3k a <,当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<,综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列,因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-,令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯,所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-,假设存在常数0M ≤,使得n a M >恒成立,取[]4m M =-+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- ,上式相加得,[][]()14333M a a M M M -+<--+≤+-=,则[]4m M a a M -+=<,与n a M >恒成立矛盾,故A 错误;对于B ,因为15a =,当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<,假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<,所以()3116664k k a a +=-+<,又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >,假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-,所以()3116654k k a a +=-+≥,综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()11312164n n a --⎛⎫+ ⎪⎝⎭=,假设当n k =时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当1n k =+时,所以())()13113131223111666441166644k k k k a a --+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦-+=+=,综上,()()113121624n n n a --⎛⎫+⎪=≥ ⎝⎭.易知1310n -->,则()113121014n --⎛⎫<< ⎪⎝⎭,故()()()11312166,724n n n a --⎛⎫+∈≥ =⎪⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列,假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*0001,m m m m -<≤∈N ,则()0142log 6133m mM ->=+,故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即()1312164m M -⎛⎫+ ⎪⎭<⎝,所以1m a M +<,故n a M >不恒成立,故C 错误;对于D ,因为19a =,当1n =时,()32116427634a a ==->-,则29a >,假设当n k =时,3k a ≥,当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上,9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-,令()()32192649942g x x x x x =-+-≥,则()239264g x x x =-+',因为()g x '开口向上,对称轴为96324x -=-=⨯,所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ''≥=⨯-⨯+>,所以()()321999926949042g x g ≥=⨯-⨯+⨯->,故110n n a a +-->,即11n n a a +>+,假设存在常数0M >,使得n a M <恒成立,取[]1m M =+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ ,上式相加得,[][]1191M a a M M M +>+>+->,则[]1m M a a M +=>,与n a M <恒成立矛盾,故D 错误.故选B.解法三(蛛网图):令()()31664f x x =-+,则()1n n a f a +=.故可利用数形结合判断{}n a 的单调性.首选()()31664f x x =-+关于()6,6中心对称,又由()()23604f x x '=-可知()f x 在R 上单调递增.再令()31664x x =-+,即()()36460x x ---=,得()()()6480x x x ---=,解得14x =,26x =,38x =.在同一坐标系下画出y x =和()y f x =的图像如下图所示.对于选项A ,当13a =时,如图(a )所示,{}n a 是单调递减数列,且130a =>.当2n 时,0n a <,当n →+∞时,n a →-∞.故不存在0M ,使n a M >恒成立.故A 错误.对于选项B ,当15a =时,如图(b )所示,{}n a 是单调递增数列,且当n →+∞时,6n a →.故取6M =,可使得na M 恒成立.B 正确.图(a )图(b )对于选项C ,当17a =时,如图(c )所示,图(c ){}n a 是单调递减数列.当n →+∞时,6n a →.故不存在6M >使得n a M >恒成立,C 错误.对于选项D ,当19a =时,如图(d )所示.图(d ){}n a 是单调递增数列,且当n →+∞时,n a →+∞.故不存在6M >,使n a M <恒成立.D 错误.故选B.【评注】本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.3.(2023北京卷21)已知数列{}{},n n a b 的项数均为()2m m >,且{},1,2,,i i a b m ∈ ,{}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}1,2,,k m ∈ ,定义{}{}max ,0,1,,k i k r i B A k m =∈ ,其中,max M 表示数集M 中最大的数.(1)若12a =,21a =,33a =;11b =,23b =,33b =,求0123,,,r r r r 的值;(2)若11a b ,且112,1,2,,1ii i rr r i m +-+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q r s m ∈ ,满足0,0p q m r s m ≤<≤≤<≤,使得p s q r A B A B +=+.【分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意分析求解;(2)根据题意分析可得11i i r r +-≥,利用反证可得11i i r r +-=,再结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法分析证明.【解析】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========,当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =;当1k =时,则01111,,,2,3i B A B A B A i <≤>=,故11r =;当2k =时,则222,0,1,,i B A i B A ≤=>故21r =;当3k =时,则3,0,1,2,i B A i ≤=,33,B A >故32r =;综上所述:00r =,11r =,21r =,32r =.(2)由题意可知:n r m ≤,且n r ∈N ,因为1,1n n a b ≥≥,则111,1n n A a B b ≥=≥=,当且仅当1n =时,等号成立,所以010,1r r ==,又因为112i i i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-=,可得11i i r r +-≥,反证:假设满足11i i r r +->的最小正整数为j ,11j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-,又因为11j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>,假设不成立,故11n n r r +-=,即数列{}n r 是以1为公差的等差数列,所以01,n r n n n =+⨯=∈N .(3)(i )若m m A B =,则取0,p r q s m ====即可.(ii )若m m A B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数,反证,假设存在正整数K ,使得K S m ≥,则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-.①若存在正整数N ,使得0N N N r S A B =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;(iii )若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数,反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;综上所述,存在0,0p q m r s m ≤<≤≤<≤使得p s q r A B A B +=+.【评注】方法点睛:对于一些直接说明比较困难的问题,可以尝试利用反证法分析证明.。
2014-2019全国理数高考真题之数列-教师用卷(1)
努力的你,未来可期!2014-2019全国理数高考真题之数列一、选择题(本大题共10小题)1. 国1(2019-9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A. a n =2n −5B. a n =3n −10C. S n =2n 2−8nD. S n =12n 2−2n【答案】A解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n 2−4n , 故选:A .2. 国3(2019-5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A. 16 B. 8 C. 4 D. 2 【答案】C 【解答】解:设等比数列{a n }的公比为q(q >0), 则由前4项和为15,且a 5=3a 3+4a 1,有{a 1+a 1q +a 1q 2+a 1q 3=15a 1q 4=3a 1q 2+4a 1,∴{a 1=1q =2, ∴a 3=22=4,故选C .3. 国1(2018-4)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A. −12B. −10C. 10D. 12 【答案】B【解析】解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2, ∴3×(3a 1+3×22d)=a 1+a 1+d +4a 1+4×32d ,把a 1=2,代入得d =−3 ∴a 5=2+4×(−3)=−10. 故选:B .4. 国1(2017-4)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A. 1 B. 2 C. 4 D. 8 【答案】C 【解答】解:S n 为等差数列{a n }的前n 项和,设公差为d , ∵a 4+a 5=24,S 6=48,∴{a 1+3d +a 1+4d =246a 1+6×52d =48, 解得a 1=−2,d =4,∴{a n}的公差为4.故选C.5.国1(2017-12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂,那么该款软件的激活码是()A. 440B. 330C. 220D. 110【答案】A【解析】【分析】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.由题意求得数列的每一项,及前n项和S n=2n+1−2−n,及项数,由题意可知:2n+1为2的整数幂.只需将−2−n消去即可,分别即可求得N的值.【解答】解:由题意可知,数列可看作:第一项20,第二项:20,21,第三项:20,21,22,…,第n项:20,21,22,…,2n−1,根据等比数列前n项和公式,求得每项和分别为:21−1,22−1,23−1,…,2n−1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+⋯+n=(1+n)n,2所有项数的和为S n=21−1+22−1+23−1+⋯+2n−1=(21+22+23+⋯+−n=2n+1−2−n,2n)−n=2(1−2n)1−2由题意可知:2n+1为2的整数幂.只需将−2−n消去即可,+2=3,不满足N>100,则①1+2+(−2−n)=0,解得:n=1,总共有(1+1)×12+3=18,不满足N>100,②1+2+4+(−2−n)=0,解得:n=5,总共有(1+5)×52+4=95,不满足N>③1+2+4+8+(−2−n)=0,解得:n=13,总共有(1+13)×132100,+5=440,满④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有(1+29)×292足N>100,∴该款软件的激活码440.故选A.6.国2(2017-3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A. 1盏B. 3盏C. 5盏D. 9盏【答案】B【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,努力的你,未来可期!∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381=a(1−27)1−2=127a,解得a=3,则这个塔顶层有3盏灯.故选B.7.国3(2017-9)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A. −24B. −3C. 3D. 8【答案】A【解答】解:∵设等差数列{a n}的公差为d,(d≠0),由题意得a1=1,∵a2,a3,a6成等比数列,∴a32=a2⋅a6,∴(a1+2d)2=(a1+d)(a1+5d),解得d=−2,∴{a n}前6项的和为S6=6a1+6×52d=6×1+6×52×(−2)=−24.故选A.8.国1(2016-3)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A. 100B. 99C. 98D. 97【答案】C【解答】解:设{a n}的公差为d,∵等差数列{a n}前9项的和为27,S9=9(a1+a9)2=9×2a52=9a5.∴9a5=27,a5=3,又∵a10=8=a5+(10−5)d=3+5d,∴d=1,∴a100=a5+95d=98.故选C.9.国3(2016-12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A. 18个B. 16个C. 14个D. 12个【答案】C【解析】【分析】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个.故选C.10.国2(2015-4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A. 21B. 42C. 63D. 84【答案】B【解析】解:∵a1=3,a1+a3+a5=21,∴a1(1+q2+q4)=21,∴q4+q2+1=7,∴q4+q2−6=0,∴q2=2,∴a3+a5+a7=a1(q2+q4+q6)=3×(2+4+8)=42.故选:B.二、填空题(本大题共7小题,共35.0分)11.国1(2019-14)记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=________.【答案】1213【解答】解:在等比数列中,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.12.国3(2019-14)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则S10S5=______.【答案】4【解析】解:设等差数列{a n}的公差为d,则由a1≠0,a2=3a1可得,d=2a1,∴S10S5=10(a1+a10)5(a1+a5)=2(2a1+9d) 2a1+4d=2(2a1+18a1)2a1+8a1=4,努力的你,未来可期!故答案为:4.13. 国1(2019-14)记S n 为数列{a n }的前n 项和,若S n =2a n +1,则S 6=_____. 【答案】−63 【解答】解:S n 为数列{a n }的前n 项和,S n =2a n +1,① 当n =1时,a 1=2a 1+1,解得a 1=−1, 当n ≥2时,S n−1=2a n−1+1,②, 由①−②可得a n =2a n −2a n−1, ∴a n =2a n−1,∴{a n }是以−1为首项,以2为公比的等比数列, ∴S 6=−1×(1−26)1−2=−63,故答案为−63.14. 国2(2017-15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑1S knk=1=______.【答案】2nn+1【解析】解:等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10, 由S 4=4(a 1+a 4)2=2(a 2+a 3)=10,可得a 2=2,数列的公差为1,首项为1,a n =n, S n =n(n+1)2,1S n=2n(n+1)=2(1n −1n+1),则∑1S kn k=1=2[1−12+12−13+13−14+⋯+1n −1n+1]=2(1−1n+1)=2nn+1. 故答案为2nn+1.15. 国3(2017-14)设等比数列{a n }满足a 1+a 2=−1,a 1−a 3=−3,则a 4=______.【答案】−8 【解析】解:设等比数列{a n }的公比为q ,∵a 1+a 2=−1,a 1−a 3=−3, ∴a 1(1+q)=−1,a 1(1−q 2)=−3, 解得a 1=1,q =−2. 则a 4=(−2)3=−8. 故答案为−8.16. 国1(2016-15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1·a 2·…·a n的最大值为______.【答案】64 【解答】解:等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,设公比为q , 可得a 2+a 4=q (a 1+a 3)=5,解得q =12, a 1+q 2a 1=10,解得a 1=8,则a 1·a 2·⋯·a n =a 1n q 1+2+3+⋯+(n−1) =8n·(12)n(n−1)2=23n−n 2−n 2=27n−n 22,当n =3或n =4时,a 1·a 2·⋯·a n 取得最大值:2122=26=64, 故答案为64.17. 国2(2015-16)设数列{a n }的前n 项和为S n ,且a 1=−1,a n+1=S n+1S n ,则S n =______.【答案】−1n【解析】解:∵a n+1=S n+1S n , ∴S n+1−S n =S n+1S n , ∴1S n−1Sn+1=1,又∵a 1=−1,即1S 1=−1,∴数列{1S n}是以首项是−1、公差为−1的等差数列,∴1S n=−n ,∴S n =−1n ,故答案为:−1n .通过S n+1−S n =a n+1可知S n+1−S n =S n+1S n ,两边同时除以S n+1S n 可知1S n−1Sn+1=1,进而可知数列{1S n}是以首项、公差均为−1的等差数列,计算即得结论.本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(本大题共8小题,共96.0分)18. 国2(2019-19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n −b n +4,4b n+1=3b n −a n −4.(1)证明:{a n +b n }是等比数列,{a n −b n }是等差数列; (2)求{a n }和{b n }的通项公式.【答案】(1)证明:∵4a n+1=3a n −b n +4,4b n+1=3b n −a n −4, ∴4(a n+1+b n+1)=2(a n +b n ),4(a n+1−b n+1)=4(a n −b n )+8, 即a n+1+b n+1=12(a n +b n ),a n+1−b n+1=a n −b n +2;努力的你,未来可期!又a 1+b 1=1,a 1−b 1=1,∴{a n +b n }是首项为1,公比为12的等比数列, {a n −b n }是首项为1,公差为2的等差数列;(2)解:由(1)可得:a n +b n =(12)n−1,a n −b n =1+2(n −1)=2n −1, ∴a n =(12)n +n −12,b n =(12)n −n +12. 【解析】本题主要考查了等差、等比数列的定义和通项公式,考查学生的计算能力和推理能力,属于简单题. (1)定义法证明即可;(2)由(1)结合等差、等比的通项公式可得.19. 国2(2018-17)记S n 为等差数列{a n }的前n 项和,已知a 1=−7,S 3=−15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【答案】解:(1)∵等差数列{a n }中,a 1=−7,S 3=−15, ∴a 1=−7,3a 1+3d =−15,解得a 1=−7,d =2, ∴a n =−7+2(n −1)=2n −9;(2)∵a 1=−7,d =2,a n =2n −9,∴S n =n2(a 1+a n )=12(2n 2−16n)=n 2−8n =(n −4)2−16, ∴当n =4时,前n 项的和S n 取得最小值为−16.20. 国3(2018-17)等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【答案】解:(1)∵等比数列{a n }中,a 1=1,a 5=4a 3. ∴1×q 4=4×(1×q 2), 解得q =±2,当q =2时,a n =2n−1,当q =−2时,a n =(−2)n−1,∴{a n }的通项公式为,a n =2n−1,或a n =(−2)n−1. (2)记S n 为{a n }的前n 项和. 当a 1=1,q =−2时,S n =a 1(1−q n )1−q=1−(−2)n 1−(−2)=1−(−2)n3,由S m =63,得S m =1−(−2)m3=63,m ∈N ,无解;当a 1=1,q =2时,S n =a 1(1−q n )1−q=1−2n 1−2=2n −1,由S m =63,得S m =2m −1=63,m ∈N , 解得m =6.21. 国2(2016-17)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28,记b n =[lga n ],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1000项和.【答案】解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.所以a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=⋯=b9=0,b10=b11=b12=⋯=b99=1.b100=b101=b102=b103=⋯=b999=2,b1000=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.22.国3(2016-17)-已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=3132,求λ.【答案】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,S n−1=1+λa n−1,两式相减,得a n=1+λa n−1−λa n−1=λa n−λa n−1,即(λ−1)a n=λa n−1,∵λ≠0,a n≠0.∴λ−1≠0.即λ≠1,即a na n−1=λλ−1,(n≥2),∴{a n}是等比数列,公比q=λλ−1,当n=1时,S1=1+λa1=a1,即a1=11−λ,∴a n=11−λ·(λλ−1)n−1;(2)若S5=3132,则S5=1+λ[11−λ·(λλ−1)4]=3132,即(λ1−λ)5=3132−1=−132,则λ1−λ=−12,得λ=−1.23.国1(2015-17)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式;(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和.【答案】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3,两式相减得a n+12−a n2+2(a n+1−a n)=4a n+1,即2(a n+1+a n)=a n+12−a n2=(a n+1+a n)(a n+1−a n),∵a n>0,∴a n+1−a n=2,努力的你,未来可期!∵a 12+2a 1=4a 1+3, ∴a 1=−1(舍)或a 1=3,则{a n }是首项为3,公差d =2的等差数列, ∴{a n }的通项公式a n =3+2(n −1)=2n +1; (Ⅱ)∵a n =2n +1,∴b n =1a n a n+1=1(2n+1)(2n+3)=12(12n+1−12n+3),∴数列{b n }的前n 项和T n =12(13−15+15−17+⋯+12n+1−12n+3) =12(13−12n+3)=n3(2n+3).24. 国1(2014-17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n −1,其中λ为常数.(Ⅰ)证明:a n+2−a n =λ(Ⅱ)是否存在λ,使得{a n }为等差数列?并说明理由.【答案】(Ⅰ)证明:∵a n a n+1=λS n −1,a n+1a n+2=λS n+1−1,∴a n+1(a n+2−a n )=λa n+1∵a n+1≠0,∴a n+2−a n =λ.(Ⅱ)解:假设存在λ,使得{a n }为等差数列,设公差为d . 则λ=a n+2−a n =(a n+2−a n+1)+(a n+1−a n )=2d , ∴d =λ2. ∴a n =1+λ(n−1)2,a n+1=1+λn 2,∴λS n =1+[1+λ(n−1)2] [1+λn2]=λ24n 2+(λ−λ24)n +2−λ2, 根据{a n }为等差数列的充要条件是{λ≠02−λ2=0,解得λ=4. 此时可得S n =n 2,a n =2n −1.因此存在λ=4,使得{a n }为等差数列.也可以先考虑前3项成等差数列,得出λ,再进一步验证即可.【解析】(Ⅰ)利用a n a n+1=λS n −1,a n+1a n+2=λS n+1−1,相减即可得出; (Ⅱ)假设存在λ,使得{a n }为等差数列,设公差为d.可得λ=a n+2−a n =(a n+2−a n+1)+(a n+1−a n )=2d ,d =λ2.得到λS n =λ24n 2+(λ−λ24)n +2−λ2,根据{a n }为等差数列的充要条件是{λ≠02−λ2=0,解得λ即可. 本题考查了递推式的意义、等差数列的通项公式及其前n 项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.25. 国2(2014-17)已知数列{a n }满足a 1=1,a n+1=3a n +1.(Ⅰ)证明{a n +12}是等比数列,并求{a n }的通项公式; (Ⅱ)证明:1a 1+1a 2+⋯+1a n<32.【答案】证明(Ⅰ)a n+1+12a n +12=3a n +1+12a n +12=3(a n +12)a n +12=3,∵a 1+12=32≠0,∴数列{a n +12}是以首项为32,公比为3的等比数列; ∴a n +12=32×3n−1=3n 2,即a n =3n −12;(Ⅱ)由(Ⅰ)知1a n=23n −1,当n ≥2时,∵3n −1>3n −3n−1,∴1a n=23n −1<23n −3n−1=13n−1,∴当n =1时,1a 1=1<32成立,当n ≥2时,1a 1+1a 2+⋯+1a n<1+13+132+⋯+13n−1=1−(13)n1−13=32(1−13n )<32.∴对n ∈N +时,1a 1+1a 2+⋯+1a n<32.【解析】本题考查的是数列的递推关系式、等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即b n+1b n=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n }的通项公式;(Ⅱ)将1a n进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.。
玩转高考真题--数列篇
豊圍韋(2020・全国卷III)设数列{a ”}满足a 1 = 3,a ”+1 = 3a n -4n .冋考引航玩转高考真题——数列篇苏玖(1)计算a 2, a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S ”.思维延伸:本题是递推数列问题,(1)利用递推公式得出a 2,a 3,猜想得出{a ”}的通 项公式,利用待定系数法构造等比数列,求出通项公式.(2)由错位相减法求解即可.主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,难度不大.改编本题的递推关系中的变量n 可以改为常数,于是改编为:—1 如设数列{a ”}满足 a 1 = 4,a ”+] = 3a n -2 .(1)求{a ”}的通项公式;(2)求数列{2” a ”}的前n 项和S ”.利用待定系数法a n +1+2 = 3(a ” +2),求出2的值,再用等比数列的通项公式求出 a ”,最后利用分组求和方法求出S ”.若将上题中的常量“2”改为“一次函数kn + b ”的形式,于是改编为:]改编 设数列{a ”}满足a 1 = -1, a n +1 = 2a n + 2n -1. ^^2(1) 求{a ”}的通项公式;(2) 求数列{2” a ”}的前n 项和S n .利用待定函数法求解,可以设a n +i+ a(n +1) + b = 2(a n + an + b ),比较系数可以求 出系数a ,b ,由等比数列定义求出通项公式,再利用分组求和法求出结果.改编3若将“一次函数”改编为“二次函数类a ” + bn + c ”,于是改编为:设数列{a ”}满足a 1 = 1, a n +1 = 2a n - 2n 2,求{a ”}的通项公式.仍然利用待定系数函数法求解本题,可以设a ”增加函数a ” + bn + c 后 构成类似等比数列问题,即可求出通项公式.做中悟道:从一道全国高考递推数列题出发,经过改变递推关系式演变出几类求递推数列通项公式问题,蕴含着丰富的数学思想方法.策略一:将变量“4n”改为常量“2”,改编为常规的递推数列问题,如改编题1,考查了待定系数法及错位相减法;策略二:将变量的一次单项式“4n”改编为“一次多项式2n-1或二次单项式2n2”,如改编题2,3,考查了待定函数法(一次函数或二次函数),函数与方程思想,分组求和法;策略三:将高考引航变量“4n”改编为指数函数“2””,如改编4,5,6,考查了累加求和法、构造法、裂项求和法、两次错位相减法等;策略四:将递推关系改编为分式形式,利用取倒数构造等差数列,最后与2020年新高考山东卷第18题接轨,考查二项式定理应用、构造法、分类讨论思想.点拨解析---------------------------------------------------------------真题:略.改编1:由a=4,a*=3a n-2,得a2=10,设a*+2=3(a n+几),即a n+1=3a n+2几,令22=-2,即2=-1,因此1=3(a n-1)•而a-1=3,所以数列{a n-1}是以3为首项,3为公比的等比数列,所以a”-1=3n,即a n=3n+1(”e N*).(2)数列{2”a”}的通项公式为2”a”=6”+2n(”e N*),利用分组求和的方法可得S”=+2(2n-1),即S n=6+2"+1-16(”e N*).改编2.(待定系数法)因为a”+i=2a”+2n-1,设a”+1+a(n+1)+b=2(a”+a”+b),即a”*]=2a”+a”+b-a,与a*=2a”+2n-1对比系数得a”+b-a=2n-1对一'切”e N*都成立,所以a=2且b-a=-1,即a=2且b=1,所以数列{a”}递推公式转化为a”+1+2(n+1)+1=2(a”+2n+1).因为a x+2x1+1=2,所以数列{a”+2n+1}是首项为2,公比为2的等比数列,因此a”+2n+1=2",即a n=2"—2n—1.(2)因为a”=2"-2n-1,所以2”a”=4"-(2n+1)x2".4"+1-4分组求和法,41+42+…+4"=,由真题(2)知数列{(2n+1)x2"}的前”项和为(2n-1)2"+1+2,所4"+1+2以S"=—+(2n-1)2"+1.改编3.因为a”+i=2a”-2”?,设a*-a(”+1)2一b(”+1)-c=2(a”-a”?一b”-c),即 a”+i=2a”一an2+(2a一b)n+a+b一c,与a”+i=2a”一2”?只寸比得-a”2+(2a一b)n+a+b一c=-Z”?只寸一'切”e N*都成立,所以a=2且2a—b=0且a+b—c=0,所以a=2,b=4,c=6.所以递推关系式化为a”+i-2(”+1)2—4(”+1)—6=2(a”-2”-4”-6).因为a-2x12-4X1-6=-11,所以数列{a"-2n2-4n-6}是首项为-11,公比为2的等比数列,即a”—2/-4n-6=-11x2"-1,所以数列{a”}的通项公式为a”=-11x2"-1+2^+4n+6.2”}以2为首项和公差的等差改编4.因为%+严2a”+2",两边同时除以2”+1,得=*+1,所以数列数列,所以a”=”x2”-1.(2)因为m”=”x2"-1,所以S"=12x20+22x21+32x22+…+”x2"-1,①因此2S"=12x21+22x22+32x23+…+(”-1)2x2"-1+”x2",②①一②得(1-2)S"=1+(22-12)x2+(32-22)x22+…+[”?-(n-1)2]x2"-1-”x2",即-S”=1+3x2 +5x22+…+(2”-1)x2"-1-”x2".令T=3x2+5x22+…+(2”-1)x2"-1(”M2),③因此2T n=3x22+5x23+…+(2”-1)x2",④③-④得,-T=3x2+2x22+…+2x2"-1-(2n-1)x2"=2+22+23+...+2"-(2n-1)x2"=2(2一1)-(2”-1)x2" =-(2”-3)x2"-2,所以T”=(2n-3)x2"+2(n M2),所以-S”=1+(2n-3)x2"+2-”x2",故S"=(/-2n+3)x2"-3(”e N*).改编5.因为a””=2a”+2"+1,两边同时除以2”+1,得姑=牛+2+£,n +1 1累加求和得,a =玉+ 口 +丄x ]1 +丄+…+2 2 2 4 I 2所以 a n = (n +1)- 2n —1 -1 ( n e N * ).(2) S ” = 2-20 + 3x 21 + 4x 22 + …+ (n +1)-2n —1 -n ,3 3n -1+1 n n +1 当n 为奇数时,S n - 2 三+ 口 -乙二■” 3 3 3令 T = 2x 20 + 3x 21 + 4x 22 + …+ (n +1)x 2n —1,利用错位相减法求得,T n — n • 2n .所以 S ” = n • 2n — n ( n e N * ).改编 6.因为 a ,+I = * a * +(2 一 ”一 1),两边同时乘酸可得 2n +1 a ,+I = 2"a , +(?n ]”一 1),即酸 a ,+I = 2"a ”+2〔2^—r - 士]累加求和法得,2乜=21 q + 2[右-右+占- + +…+ 士-±],(”22) 21即 2n a n = -2 + 2 - 2n —1,当 ” =1 时也满足,所以 a n = - 2"-y ?"一 ])( ” e N )•丄」,两边取倒数得丄=丄+3,所以数列 是首项为1,公差为3的等差数列,2 + 3a n 色+1 a n 2 21 3 2因此——1 + 3 x (n -1),即 a n —^― ( n e N * ).a n 2 ” 3n -1(2)设a n e 改编7.因为a n +12”+i 1 2 1,即关于n 的不等式的整数解的个数为b m ,2 3n -1 22m +1 2 +1化简得 W n < .3 3当 m 为奇数时,2m +1 — (3 -1)m +1 能被 3 整除,2m +1 +1 — (3 -1)m +1 +1 被 3 除余 2, (2m +1 +1 2 \ 2m +1 2m +1所以不等式正整数解的个数为b m = I —上-2 I- —1 +1 — —1 ;\ 3 3) 3 3当m 为偶数时,2m +1 +1 — (3 -1严+1能被3整除,2m +1 — (3 -1)m +1被3除余2,2m +1 +1 ] 2m +1 1 I 2m _1所以不等式正整数解的个数为b m = - — I —1 + 1 | = 土二■3 I 3 3 丿 3所以b m —-2m +1―1, m 为奇数,32m _1m 为偶数.321 + 22 + 23 + …+ 2 2n +1 一 2所以当n 为偶数时,S n = 2 + 2 + 2 + + 2 2 2根据高考真题和上述改编题的过程,请你再提出3道改编题.改编提示:改编a n 前面的系数,或者改编a n 后面的变量为指数函数形式,或者尝试将递推关系改编为分式形式,但是取倒数后变为改编题1的形式等.改编1 :设数列{an }满足a 】—4, a n +i — 2a n -3 .(1)求{a n }的通项公式;(2)求数列{na n }的前n 项和S n . 改编 2 :设数列{an }满足 a 1 — 1,a n +1 — 3a n + 2n .(1)求{a n }的通项公式;(2)求数列{an }的前n 项和S n .改编3 :设数列{an }满足a 1 — 1,a n +1-丄」,求{a n }的通项公式.3 + 2a n 扫码看答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2017年全国卷数列真题1、(2015全国1卷17题)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=错误!未定义书签。
,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.试题解析:(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4na ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列, 所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 2、(2015全国2卷4题)已知等比数列{}n a 满足a1=3,135a a a ++ =21,则357a a a ++= ( )A .21 B.42 C .63 D .84【解析】设等比数列公比为q ,则2411121a a q a q ++=,又因为13a =,所以4260q q +-=,解得22q =,所以2357135()42a a a a a a q ++=++=,故选B.考点:等比数列通项公式和性质.3、(2015全国2卷16题)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)nS n n =---=-,所以1n S n=-. 考点:等差数列和递推关系.4、(2016全国1卷3题)已知等差数列{}n a 前9项的和为27,108a =,则100a = ( )(A)100 (B)99 (C)98 (D)97试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+= 故选C.考点:等差数列及其运算5、(2016全国2卷15题)设等比数列{}n a 错误!未定义书签。
满足a 1+a 3=10,a2+a 4=5,则a 1a 2 …an 的最大值为 . 【答案】64试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4时,12n a a a 取得最大值6264=. 考点:等比数列及其应用6、(2016全国2卷17题)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设的公差为,, ∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,;ﻩ 当时,; 当时,.∴. 7、(2016全国3卷17题)已知数列{}n a 错误!未定义书签。
的前n 项和1n nS a λ=+错误!未定义书签。
,错误!未定义书签。
其中0λ≠. (I )证明{}n a 错误!未定义书签。
是等比数列,并求其通项公式;(II )若53132S =,求λ.{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=由01≠a ,0≠λ得0≠n a ,所以11-=+λλn n a a .因此}{n a 是首项为λ-11,公比为1-λλ的等比数列,于是1)1(11---=n n a λλλ.(Ⅱ)由(Ⅰ)得n n S )1(1--=λλ,由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321, 解得1λ=-.考点:1、数列通项na 与前n 项和为nS 关系;2、等比数列的定义与通项及前n 项和为nS .【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明1n n a q a +=(常数);(2)中项法,即证明212n n n a a a ++=.根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解.8、(2017年国1卷4题)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A.1ﻩB.2 C .4ﻩD.8【答案】C【解析】45113424a a a d a d +=+++=61656482S a d ⨯=+=联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①②ﻫ3⨯-①②得()211524-=d 624d =4d =∴选C9、(2017年国1卷12题)几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330ﻩC .220 D.110 【答案】A【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.ﻫ设第n组的项数为n ,则n 组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第n 组的和为122112nn-=--ﻫn 组总共的和为()2122212n n n n --=---若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥ﻫ()2log 3k n =+ﻫ→295n k ==,ﻫ则()2912954402N ⨯+=+=ﻫ故选A10、(2017全国2卷3题)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏 B.3盏 C .5盏 D .9盏【命题意图】本题主要考查等比数列通向公式n a 及其前n 项和n S ,以考查考生的运算能力为主目的.【解析】一座7层塔共挂了381盏灯,即7381S =;相邻两层中的下一层灯数是上一层灯数的2倍,即2q =,塔的顶层为1a ;由等比前n 项和()()1111n n a q S q q-=≠-可知:()171238112n a S -==-,解得13a =.11、(2017全国2卷15题)等差数列{}n a 的前n 项和为n S ,33a = ,410S = ,则11nk kS==∑ .【命题意图】本题主要考查等差数列通向公式n a 及其前n 项和以及叠加法求和, 【解析】∵ 410S =,2314a a a a +=+ ,∴ 235a a += ∵ 33a =,∴ 22a = ∴ n a n = ∵ ()12n n n a a S +=∴ ()21n S n n =+ ∴ ()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭∴11122111ni n n Sn n =⎛⎫=-=⎪++⎝⎭∑ ∴112,1ni nnn N Sn *==∈+∑ 【知识拓展】本题不难,属于考查基础概念,但有一部分考生会丢掉n N *∈这个条件,此处属于 易错点.12、(2017全国3卷9题)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A.24-ﻩB .3- ﻩﻩC .3ﻩﻩD.8【答案】A 【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为.ﻩ则2326a a a =⋅,即()()()211125a d a d a d +=++又∵11a =,代入上式可得220d d +=ﻩﻩ又∵0d ≠,则2d =-ﻩﻩ∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A. 13、(2017全国3卷14题)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a 为等比数列,设公比为.121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =, ()3341128a a q ∴==⨯-=-.数列属于高考必考考点,一般占10分或12分,即两道小题或一道大题,其中必有一道小题属于基础题,一道中档偏上题或压轴题,大题在17题出现,属于基础题型,高考所 占分值较大,在高中教学中列为重点讲解内容,也是大部分学生的难点,主要是平时教学题型难 度严重偏离高考考试难度,以及研究题型偏离命题方向,希望能引起注意;考试主线非常明晰, 1.等差数列通向公式n a 及其前n 项和n S ;2. 等比数列通向公式n a 及其前n 项和n S .。