2018届九年级数学下册新人教版 第26章反比例函数26.2.2其他学科中的反比例函数课件(共22张PPT)
人教版九年级数学下第26章反比例函数26.1《反比例函数的图象和性质》的(教案)
1.加强对学生的个别辅导,针对他们在学习过程中遇到的问题,提供有针对性的指导;
2.注重培养学生的直观想象能力,通过丰富的实例和图象,帮助他们更好地理解反比例函数的性质;
3.持续关注学生的反馈,调整教学方法和节奏,确保教学效果;
4.增加课堂互动,鼓励学生提问和发表观点,提高他们的课堂参与度。
2.教学难点
-理解反比例函数图象的双曲线特征,以及如何从数学表达式中理解这一特征。
-理解反比例函数在不同象限内y随x变化的规律,特别是当k<0时,函数值随x的增大而增大。
-将反比例函数的图象和性质应用到实际问题中,尤其是涉及多个反比例函数比较的问题。
举例:
-难点1:解释为何反比例函数的图象是双曲线,可以通过几何画板或动态软件展示,当x接近0时,y值如何变化,从而帮助学生形象理解。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图象性质这两个重点。对于难点部分,如反比例函数图象的双曲线形状和y随x变化的规律,我会通过图象展示和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的反比关系。
首先,我发现学生在初次接触反比例函数时,对于k≠0这个条件容易忽视。在今后的教学中,我需要更加明确地强调这一点,并设计一些相关的练习题,让学生在实际操作中加深理解。
其次,反比例函数的图象和性质是本章节的教学重点,也是学生学习的难点。在讲授过程中,我尝试运用了图象展示、实例分析和对比等方法,帮助学生理解反比例函数的图象特征和性质。但从学生的反馈来看,这部分内容仍然需要进一步加强。我打算在下一节课中增加一些互动环节,让学生自己动手绘制反比例函数图象,以便更好地掌握这些知识点。
新人教版初中数学九年级下册第26章 反比例函数《26.2实际问题与反比例函数》优质课件
1、一定质量的二氧化碳气体,其体积V(m3) 是密度ρ(kg/m3)的反比例函数,请根据下图 中的已知条件求出当密度ρ=1.1kg/m3时,二氧 化碳的体积V的值?
V
5
1.98
ρ
2、 一封闭电路中,电流 I (A) 与电阻 R (Ω)之间的函数 图象如下图,回答下列问题:
(1)写出电路中电流 I (A)与电阻R(Ω)之间的函数关系 式.
练习2:某校冬季储煤120吨,若每天用x吨,经
y天可以用完。 ①请写出y与x之间的函数关系式,画出函数图象。
②当每天的用煤量为1.2 ~1.5吨时,求这些煤可 以用的天数范围。
如图,某玻璃器皿制造公司要制 造一种容积为1升(1升=1立方分米) 的圆锥形漏斗. (1) 漏 斗 口 的 面 积 S 与 漏 斗 的 深 d 有 怎样的函数关系? (2)如果漏斗口的面积为100厘米2, 则漏斗的深为多少?
答:此时所需时间t(h)将减少.
(3)写出t与Q之间的函数关系式; 解:t与Q之间的函数关系式为: t 48
Q
1.某蓄水池的排水管每时排水8m3,6h可将满池水全 部排空.
(3)写出t与Q之间的函数关系式; 解:t与Q之间的函数关系式为: t 48
Q
(4)如果准备在5h内将满池水排空,那么每时的排水 量至少为多少? 解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至 少为9.6m3. (5)已知排水管的最大排水量为每时12m3,那么最少 多长时间可将满池水全部排空?
(1)动力F与动力臂L有怎样的函数关系?
分析:根据动力×动力臂=阻力×阻力臂
解:(1)由已知得F×L=1200×0.5
变形得: F 600 L
(2)当动力臂为1.5米时,撬动石头
九年级数学下册 第26章 反比例函数 26.1 反比例函数 2
解得k 12. y 12 .
x
(2)解:当x=4时,y= 12 3 4
活动三:开放训练 体现应用
例2 已知一个函数y与自变量x满足下表:
x -5
-4
-3
-2
-1
1
2
3
y 1.8
2.25 3
4.5
9
-9
-4.5
-3
(1)判断这个函数是所学的哪种函数? (2)求函数的解析式.
解:(1)∵-5×1.8=-4×2.25=-3×3=-2×4.5=-1×9=1×(9)=2×(-4.5)=3×(-3)=-9, ∴这个函数是反比例函数.
复习回顾 1.我们以前学习过哪些函数?
学过的函数有一次函数、二次函数等
2.你能说出它们的一般形式吗?
(1)一次函数:y=kx+b(k≠0) (2)二次函数:y=ax2+bx+c(a≠0)
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
可用怎样的函数解析式来表示? (1)京沪线铁路全程为1463 km,某次列车 的平均速度v(单位:km/h)随此次列车的全程 运行时间t(单位:h)的变化而变化;
v 1463 t
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
可用怎样的函数解析式来表示? (2)某住宅小区要种植一个面积为1000m2的 矩形草坪,草坪的长y(单位:m)随宽x(单位: m)的变化而变化;
y 1000 x
活动一:创设情境 导入新课
思考:下列问题中,变量间的对应关系
x≠0且y≠0
2、反比例函数的解析式还可以有哪些形式?
三种形式:
活动三:开放训练 体现应用
人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)
新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.第一部分:基础知识考点1:反比例函数概念(A )y =xk (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0)例题1、判断下列各式哪些是反比例函数? ① 1y x = ;② 12y x =- ;③2x y =- ;④113y x=- ;⑤3x y =例题2、已知函数()271126m m y m x-+=-,当m 取何值时,它是反比例函数,当堂巩固1、反比例函数()0ky k x=≠的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ) (A )10.(B )5.(C )2.(D )0.1.2、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x =B : 2x y =C :12y x =+D :1y x=-3、某工厂先有原料100吨,这些原材料能用的天数y 与每天平均用的吨数x 之间的函数关系为 。
人教版九年级数学下册教案:26.2-实际生活中的反比例函数
-电阻与电流的关系:在电路中,电阻与电流成反比。
二、核心素养目标
1.理解反比例函数的定义,培养数学抽象素养,提升对数学表达式的理解和运用能力;
2.通过分析反比例函数图像和性质,培养逻辑推理和数据分析素养,提高解决实际问题的能力;
3.运用反比例函数解决生活中的问题,培养数学建模素养,增强数学与现实生活联系的认识;
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的定义和图像性质这两个重点。对于难点部分,如图像的绘制和性质理解,我会通过具体例子和图像分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量不同时间下的速度变化,以演示反比例函数的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x (k ≠ 0)的函数,其中x和y成反比。它在描述现实生活中的许多关系时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。比如在物理学中,电阻与电流的关系可以表示为反比例函数。当电阻值固定时,电流与电压成反比。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质以及它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
九年级数学人教版第26章反比例函数整章知识详解
【解析】 v
=
1463 t
九年级数学第26章反比例函数
2.某住宅小区要种植一个面积为1 000m2的矩形草坪, 草坪的长y(单位:m)随宽x (单位:m)的变化而变化.
【解析】
y=
1000 x
或 y·x = 1000
九年级数学第26章反比例函数
3.已知北京市的总面积为1.68×104平方千米,人均占
y
=
6 x
y=
6 x
注意:①列表时自变量取值要均 匀和对称②x≠0③选整数较好计
算和描点.
九年级数学第26章反比例函数
x … -4 -3 -2 -1 1 2 3 4 …
y= 6 x
… -1.5 -2 -3 -6 6 3 2 1.5 …
y=- 6 x
… 1.5 2 3 6 -6 -3 -2 -1.5 …
记住这三种 形式
九年级数学第26章反比例函数
练习:
下列函数中哪些是反比例函数?哪些是一次函数?
y = 3x-1 y = 2x
y
=
3 2x
反比例函数
y = 3x
y=
1 x
1 y = 3x
y
5
y
y50y.4y0.4x
yxy-xx2yx. y
2
2.
6
x
y3x6yx xy3xy 7x6yxx7yy3xxx5xy52225xyyy7152y01x5x.4xxy52
九年级数学第26章反比例函数
二、描点、连线 y
y=-6/x
y=6/x
o x
y= 6 x
y=- 6 x
九年级数学第26章反比例函数
反比例函数的图象
k>0
人教版九年级数学下册26.2 第2课时 反比例函数在跨学科中的应用
解:(1)设 p=Vk. ∵双曲线经过点 A(0.8,120), ∴120=0k.8,即 k=96,∴p=9V6. (2)当 V=1.5 时,p=19.65=64. 即当气体体积为 1.5 m3 时,压强是 64 kPa. (3)当 p=140 时,140=9V6,即 V=2345. ∵p 随 V 的增大而减小, ∴当 p≤140 时,V≥2345, 故为了安全起见,气体的体积应不小于2345 m3.
[全品导学号:28714009]
26.2 实际问题与反比例函数
【归纳总结】 电流、电阻、密度、压强等都是物理学中常见的 量,它们当中许多存在着反比例关系.用数学中的反比例函数知识 来解决物理问题,体现了数学和物理学之间的密切联系.
26.2 实际问题与反比例函数
解:(1)F=1200× l 0.5=60l 0.当 l=1.5 时,F=610.50=400. 动力 F 与动力臂 l 之间的函数解析式为 F=60l 0(l>0),当动力臂 为 1.5 m 时,撬动石头至少需要 400 N 的力. (2)l=620000=3,3-1.5=1.5(m).故动力臂至少要加长 1.5 m.
26.2 实际问题与反比例函数
例 2 小伟欲用撬棍撬动一块石头,已知阻力和阻力臂不变,分 别为 1200 N 和 0.5 m.
(1)动力 F 和动力臂 l 满足怎样的函数解析式?当动力臂为 1.5 m 时,撬动石头至少需要多大的力?
(2)若想使动力 F 不超过题(1)中所用力的一半,则动力臂至少要 加长多少?
数学
新课标(RJ) 九年级下册
26.2 实际问题与反比例函数
第2课时 反比例函数在跨学科中的应用
新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)
新人教版九年级数学下册第26章反比例函数全面复习(分知识点总结题型讲解)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. (五)充分利用数形结合的思想解决问题.第一部分:基础知识考点1:反比例函数概念(A )y =xk(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1(k ≠0)例题1、判断下列各式哪些是反比例函数? ① 1y x = ;② 12y x =- ;③2x y =- ;④113y x=- ;⑤3x y =例题2、已知函数()271126m m y m x-+=-,当m 取何值时,它是反比例函数,当堂巩固1、反比例函数()0ky k x=≠的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( ) (A )10.(B )5.(C )2.(D )0.1.2、下列关系式中,哪个等式表示y 是x 的反比例函数( )A :23y x =B : 2x y =C :12y x =+D :1y x=-3、某工厂先有原料100吨,这些原材料能用的天数y 与每天平均用的吨数x 之间的函数关系为 。
人教版九年级数学下册第26章全章教案
第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数1.理解反比例函数的概念;(难点)2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式;(重点) 3.能根据实际问题中的条件建立反比例函数模型.(重点)一、情境导入1.京广高铁全程为2298km ,某次列车的平均速度v (单位:km/h)与此次列车的全程运行时间t (单位:h)有什么样的等量关系?2.冷冻一个物体,使它的温度从20℃下降到零下100℃,每分钟平均变化的温度T (单位:℃)与冷冻时间t (单位:min)有什么样的等量关系?问题:这些关系式有什么共同点? 二、合作探究探究点一:反比例函数的定义 【类型一】 反比例函数的识别下列函数中:①y =32x ;②3xy =1;③y =1-2x ;④y =x2.反比例函数有( ) A .1个 B .2个 C .3个 D .4个 解析:①y =32x 是反比例函数,正确;②3xy =1可化为y =13x,是反比例函数,正确;③y =1-2x 是反比例函数,正确;④y =x2是正比例函数,错误.故选C.方法总结:判断一个函数是否是反比例函数,首先要看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断,其形式为y =kx (k 为常数,k ≠0),y =kx -1(k 为常数,k ≠0)或xy =k (k 为常数,k ≠0).变式训练:见《学练优》本课时练习“课堂达标训练”第3题 【类型二】 根据反比例函数的定义确定字母的值已知函数y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,求m 的值.解析:由反比例函数的定义可得 2m 2+3m -3=-1,2m 2+m -1≠0,然后求解即可.解:∵y =(2m 2+m -1)x 2m 2+3m -3是反比例函数,∴⎩⎪⎨⎪⎧2m 2+3m -3=-1,2m 2+m -1≠0,解得m =-2.方法总结:反比例函数也可以写成y =kx -1(k ≠0)的形式,注意x 的次数为-1,系数不等于0.变式训练:见《学练优》本课时练习“课后巩固提升”第3题 探究点二:用待定系数法确定反比例函数解析式 【类型一】 确定反比例函数解析式已知变量y 与x 成反比例,且当x =2时,y =-6.求: (1)y 与x 之间的函数解析式; (2)当y =2时,x 的值.解析:(1)由题意中变量y 与x 成反比例,设出函数的解析式,利用待定系数法进行求解.(2)代入求得的函数解析式,解得x 的值即可.解:(1)∵变量y 与x 成反比例,∴设y =kx (k ≠0),∵当x =2时,y =-6,∴k =2×(-6)=-12,∴y 与x 之间的函数解析式是y =-12x;(2)当y =2时,y =-12x=2,解得x =-6.方法总结:用待定系数法求反比例函数解析式时要注意:①设出含有待定系数的反比例函数解析式,形如y =k x (k 为常数,k ≠0);②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出解析式.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型二】 解决与正比例函数和反比例函数有关的问题已知y =y 1+y 2,y 1与(x -1)成正比例,y 2与(x +1)成反比例,当x =0时,y =-3;当x =1时,y =-1.求:(1)y 关于x 的关系式; (2)当x =-12时,y 的值.解析:根据正比例函数和反比例函数的定义得到y 1,y 2的关系式,进而得到y 的关系式,把所给两组数据代入即可求出相应的比例系数,也就求得了所要求的关系式.解:(1)∵y 1与(x -1)成正比例,y 2与(x +1)成反比例,∴设y 1=k 1(x -1)(k 1≠0),y 2=k 2x +1(k 2≠0),∵y =y 1+y 2,∴y =k 1(x -1)+k 2x +1.当x =0时,y =-3;当x =1时,y =-1,∴⎩⎪⎨⎪⎧-3=-k 1+k 2,-1=12k 2,∴k 1=1,k 2=-2,∴y =x -1-2x +1; (2)把x =-12代入(1)中函数关系式得y =-112.方法总结:能根据题意设出y 1,y 2的函数关系式并用待定系数法求得等量关系是解答此题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 探究点三:建立反比例函数模型及其相关问题写出下列问题中两个变量之间的函数表达式,并判断其是否为反比例函数. (1)底边为3cm 的三角形的面积y cm 2随底边上的高x cm 的变化而变化;(2)一艘轮船从相距s km 的甲地驶往乙地,轮船的速度v km/h 与航行时间t h 的关系; (3)在检修100m 长的管道时,每天能完成10m ,剩下的未检修的管道长y m 随检修天数x 的变化而变化.解析:根据题意先对每一问题列出函数关系式,再根据反比例函数的定义判断其是否为反比例函数.解:(1)两个变量之间的函数表达式为:y =32x ,不是反比例函数;(2)两个变量之间的函数表达式为:v =st,是反比例函数;(3)两个变量之间的函数表达式为:y =100-10x ,不是反比例函数.方法总结:解决本题的关键是根据实际问题中的等量关系,列出函数解析式,然后根据解析式的特点判断是什么函数.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 三、板书设计1.反比例函数的定义:形如y =kx(k 为常数,k ≠0)的函数称为反比例函数.其中x 是自变量,自变量x 的取值范围是不等于0的一切实数.2.反比例函数的形式: (1)y =kx (k 为常数,k ≠0);(2)xy =k (k 为常数,k ≠0); (3)y =kx -1(k 为常数,k ≠0).3.确定反比例函数的解析式:待定系数法. 4.建立反比例函数模型.让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景.因为反比例函数这一部分内容与正比例函数相似,在教学过程中,以学生学习的正比例函数为基础,在学生之间创设相互交流、相互合作、相互帮助的关系,让学生通过充分讨论交流后得出它们的相同点,在此基础上来揭示反比例函数的意义.26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质1.会用描点的方法画反比例函数的图象;(重点) 2.理解反比例函数图象的性质.(重点,难点)一、情境导入已知某面粉厂加工出了4000吨面粉,厂方决定把这些面粉全部运往B 市.则所需要的时间t (天)和每天运出的面粉总重量m (吨)之间有怎样的函数关系?你能在平面直角坐标系中画出这个图形吗?二、合作探究探究点一: 反比例函数的图象 【类型一】 反比例函数图象的画法作函数y =4x的图象.解析:根据函数图象的画法,进行列表、描点、连线即可. 解:列表:描点、连线:方法总结:作图的一般步骤为:①列表;②描点;③连线;④注明函数解析式. 变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型二】 反比例函数与一次函数图象位置的确定在同一坐标系中(水平方向是x 轴),函数y =kx和y =kx +3的图象大致是( )解析:A.由函数y =kx 的图象可知k >0与y =kx +3的图象中k >0且过点(0,3)一致,故A 选项正确;B.由函数y =kx 的图象可知k >0与y =kx +3的图象中k >0且过点(0,3)矛盾,故B 选项错误;C.由函数y =kx 的图象可知k <0与y =kx +3的图象中k <0且过点(0,3)矛盾,故C 选项错误;D.由函数y =kx 的图象可知k >0与y =kx +3的图象中k <0且过点(0,3)矛盾,故D 选项错误.故选A.方法总结:解答此类问题时,通常先根据双曲线图象所在的象限确定k 的符号,再确定一次函数的系数及经过的点是否也符合图案,如果符合,可能正确;如果不符合,一定错误.变式训练:见《学练优》本课时练习“课后巩固提升” 第2题 【类型三】 实际问题中函数图象的确定若按x L/min 的速度向容积为20L 的水池中注水,注满水池需y min.则所需时间y min与注水速度x L/min 之间的函数关系用图象大致可表示为( )解析:∵水池的容积为20L ,∴xy =20,∴y =20x(x >0),故选B.方法总结:解答此类问题要先根据题意列出反比例函数关系式,然后依据实际情况确定函数自变量的取值范围,从而确定函数图象.【类型四】 反比例函数图象的对称性若正比例函数y =-2x 与反比例函数y =kx图象的一个交点坐标为(-1,2),则另一个交点坐标为( )A .(2,-1)B .(1,-2)C .(-2,-1)D .(-2,1)解析:∵正比例函数y =-2x 与反比例函数y =kx 的图象均关于原点对称,∴两函数的交点也关于原点对称.∵一个交点的坐标是(-1,2),∴另一个交点的坐标是(1,-2).故选B.方法总结:反比例函数y =kx (k ≠0)的图象既是轴对称图形又是中心对称图形,对称轴是一、三(或二、四)象限角平分线所在的直线,对称中心是坐标原点.变式训练:见《学练优》本课时练习“课后巩固提升”第6题 探究点二:反比例函数的性质【类型一】 根据解析式判定反比例函数的性质已知反比例函数y =-2x ,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象分布在第二、四象限D .若x >1,则-2<y <0解析:A.(-1,2)满足函数解析式,则图象必经过点(-1,2),命题正确;B.在第二、四象限内y 随x 的增大而增大,忽略了x 的取值范围,命题错误;C.命题正确;D.根据y =-2x的图象可知,在第四象限内命题正确.故选B. 方法总结:解答此类问题要熟记反比例函数图象的性质. 变式训练:见《学练优》本课时练习“课后巩固提升”第1题 【类型二】 根据反比例函数的性质判定系数的取值范围在反比例函数y =1-kx的每一条曲线上,y 都随x 的增大而减小,则k 的值可以是( )A .-1B .3C .1D .2解析:∵反比例函数y =1-kx 的图象在每一条曲线上,y 都随x 的增大而减小,∴1-k>0,解得k <1.故选A.方法总结:对于函数y =kx ,当k >0时,其图象在第一、三象限,在每个象限内y 随x的增大而减小;当k <0时,在第二、四象限,在每个象限内y 随x 的增大而增大,熟记这些性质在解题时能事半功倍.变式训练:见《学练优》本课时练习“课后巩固提升”第4题 三、板书设计1.反比例函数的图象:双曲线既是轴对称图形又是中心对称图形. 2.反比例函数的性质:(1)当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y值随x值的增大而减小;(2)当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y值随x值的增大而增大.通过引导学生自主探索反比例函数的性质,全班学生都能主动地观察与讨论,实现了在学习中让学生自己动手、主动探索、合作交流的目的.同时通过练习让学生理解“在每个象限内”这句话的必要性,体会数学的严谨性.第2课时 反比例函数的图象和性质的综合运用1.使学生进一步理解和掌握反比例函数及其图象与性质;(重点)2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法;(重点)3.探索反比例函数和一次函数、几何图形以及图形面积的综合应用.(难点)一、情境导入如图所示,对于反比例函数y =kx (k >0),在其图象上任取一点P ,过P 点作PQ ⊥x轴于Q 点,并连接OP .试着猜想△OPQ 的面积与反比例函数的关系,并探讨反比例函数y =kx (k ≠0)中k值的几何意义.二、合作探究探究点一:反比例函数解析式中k 的几何意义如图所示,点A 在反比例函数y =kx的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.解析:先设点A 的坐标,然后用点A 的坐标表示△AOC 的面积,进而求出k 的值. 解:∵点A 在反比例函数y =k x 的图象上,∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.方法总结:过双曲线上任意一点与原点所连的线段与坐标轴和向坐标轴作垂线所围成的直角三角形的面积等于|k |的一半.变式训练:见《学练优》本课时练习“课堂达标训练”第1题 探究点二:反比例函数的图象和性质的综合运用 【类型一】 利用反比例函数的性质比较大小若M (-4,y 1)、N (-2,y 2)、P (2,y 3)三点都在函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1解析:∵k <0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y 随x 的增大而增大.∵M (-4,y 1)、N (-2,y 2)是双曲线y =kx (k <0)上的两点,∴y 2>y 1>0.∵2>0,P (2,y 3)在第四象限,∴y 3<0.故y 1,y 2,y 3的大小关系为y 2>y 1>y 3.故选B.方法总结:反比例函数的解析式是y =kx (k ≠0),当k <0时,图象在第二、四象限,且在每个现象内y 随x 的增大而增大;当k >0,图象在第一、三象限,且在每个象限内y 随x 的增大而减小.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题 【类型二】 利用反比例函数计算图形的面积如图,直线l 和双曲线y =kx(k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积是S 1,△BOD 的面积是S 2,△POE 的面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3解析:如图,∵点A 与点B 在双曲线y =k x 上,∴S 1=12k ,S 2=12k ,S 1=S 2.∵点P 在双曲线的上方,∴S 3>12k ,∴S 1=S 2<S 3.故选D.方法总结:在反比例函数的图象上任选一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |2,且保持不变. 变式训练:见《学练优》本课时练习“课后巩固提升” 第2题【类型三】 反比例函数与一次函数的交点问题函数y =1-k x的图象与直线y =-x 没有交点,那么k 的取值范围是( ) A .k >1 B .k <1C .k >-1D .k <-1解析:直线y =-x 经过第二、四象限,要使两个函数没有交点,那么函数y =1-k x的图象必须位于第一、三象限,则1-k >0,即k <1.故选B.方法总结:判断正比例函数y =k 1x 和反比例函数y =k 2x在同一直角坐标系中的交点个数可总结为:①当k 1与k 2同号时,正比例函数y =k 1x 与反比例函数y =k 2x有2个交点;②当k 1与k 2异号时,正比例函数y =k 1x 与反比例函数y =k 2x没有交点. 【类型四】 反比例函数与一次函数的综合问题如图,已知A (-4,12),B (-1,2)是一次函数y =kx +b 与反比例函数y =m x(m <0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值;(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.解析:(1)观察函数图象得到当-4<x <-1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求出一次函数解析式,然后把A 点或B 点坐标代入y =m x可计算出m 的值;(3)设出P 点坐标,利用△PCA 与△PDB 的面积相等列方程求解,从而可确定P 点坐标.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值;(2)把A (-4,12),B (-1,2)代入y =kx +b 中得⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎨⎧k =12,b =52,所以一次函数解析式为y =12x +52,把B (-1,2)代入y =m x中得m =-1×2=-2; (3)设P 点坐标为(t ,12t +52),∵△PCA 和△PDB 的面积相等,∴12×12×(t +4)=12×1×(2-12t -52),即得t =-52,∴P 点坐标为(-52,54). 方法总结:解决问题的关键是明确反比例函数与一次函数图象的交点坐标所包含的信息.本题也考查了用待定系数法求函数解析式以及观察函数图象的能力.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.反比例函数中系数k 的几何意义;2.反比例函数图象上点的坐标特征;3.反比例函数与一次函数的交点问题.本节课主要是要注重提高学生分析问题与解决问题的能力.数形结合思想是数学学习的一个重要思想,也是我们学习数学的一个突破口.在教学中要加强这方面的指导,使学生牢固掌握基本知识,提升基本技能,提高数学解题能力.26.2 实际问题与反比例函数第1课时 实际问题中的反比例函数1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;(重点)2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.(难点)一、情境导入小明和小华相约早晨一起骑自行车从A 镇出发前往相距20km 的B 镇游玩,在返回时,小明依旧以原来的速度骑自行车,小华则乘坐公交车返回A 镇.假设两人经过的路程一样,自行车和公交车的速度保持不变,且自行车速度小于公交车速度.你能找出两人返回时间与所乘交通工具速度间的关系吗?二、合作探究探究点:实际问题与反比例函数【类型一】 反比例函数在路程问题中的应用王强家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v 米/分,所需时间为t 分钟.(1)速度v 与时间t 之间有怎样的函数关系?(2)若王强到单位用15分钟,那么他骑车的平均速度是多少?(3)如果王强骑车的速度最快为300米/分,那他至少需要几分钟到达单位?解析:(1)根据速度、时间和路程的关系即可写出函数的关系式;(2)把t =15代入函数的解析式,即可求得速度;(3)把v =300代入函数解析式,即可求得时间.解:(1)速度v 与时间t 之间是反比例函数关系,由题意可得v =3600t; (2)把t =15代入函数解析式,得v =360015=240.故他骑车的平均速度是240米/分; (3)把v =300代入函数解析式得3600t=300,解得t =12.故他至少需要12分钟到达单位. 方法总结:解决问题的关键要掌握路程、速度和时间的关系.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型二】 反比例函数在工程问题中的应用在某河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y (天)与每天完成的工程量x (m/天)的函数关系图象如图所示.(1)请根据题意,求y 与x 之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15米,问该工程队需用多少天才能完成此项任务?(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?解析:(1)将点(24,50)代入反比例函数解析式,即可求得反比例函数的解析式;(2)用工作效率乘以工作时间即可得到工作量,然后除以工作效率即可得到工作时间;(3)工作量除以工作时间即可得到工作效率.解:(1)设y =k x .∵点(24,50)在其图象上,∴k =24×50=1200,所求函数表达式为y =1200x; (2)由图象可知共需开挖水渠24×50=1200(m),2台挖掘机需要工作1200÷(2×15)=40(天);(3)1200÷30=40(m),故每天至少要完成40m.方法总结:解决问题的关键是掌握工作量、工作效率和工作时间之间的关系.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型三】 利用反比例函数解决利润问题某商场出售一批进价为2元的贺卡,在销售中发现此商品的日售价x (元)与销售量y (张)之间有如下关系:(1)猜测并确定y 与x (2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W 元,试求出W 与x 之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大利润.解析:(1)要确定y 与x 之间的函数关系式,通过观察表中数据,可以发现x 与y 的乘积是相同的,都是60,所以可知y 与x 成反比例,用待定系数法求解即可;(2)代入x =10求得y 的值即可;(3)首先要知道纯利润=(日销售单价x -2)×日销售数量y ,这样就可以确定W 与x 的函数关系式,然后根据销售单价最高不超过10元,就可以求出获得最大日销售利润时的日销售单价x .解:(1)从表中数据可知y 与x 成反比例函数关系,设y =k x(k 为常数,k ≠0),把点(3,20)代入得k =60,∴y =60x; (2)当x =10时,y =6010=6,∴日销售单价为10元时,贺卡的日销售量是6张; (3)∵W =(x -2)y =60-120x ,又∵x ≤10,∴当x =10时,W 取最大值,W 最大=60-12010=48(元).方法总结:本题考查了根据实际问题列反比例函数的关系式及求最大值,解答此类题目的关键是准确理解题意.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】 反比例函数的综合应用如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.已知第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系式(写出x 的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?解析:(1)首先根据题意,材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例函数关系.将题中数据代入可求得两个函数的关系式;(2)把y =12代入y =4x +4得x =2,代入y =168x得x =14,则对该材料进行特殊处理所用的时间为14-2=12(分钟).解:(1)设加热停止后反比例函数表达式为y =k 1x ,∵y =k 1x过(12,14),得k 1=12×14=168,则y =168x ;当y =28时,28=168x,解得x =6.设加热过程中一次函数表达式为y =k 2x +b ,由图象知y =k 2x +b 过点(0,4)与(6,28),∴⎩⎪⎨⎪⎧b =4,6k 2+b =28,解得⎩⎪⎨⎪⎧k 2=4,b =4,∴y =⎩⎪⎨⎪⎧4+4x (0≤x ≤6),168x(x >6); (2)当y =12时,y =4x +4,解得x =2.由y =168x,解得x =14,所以对该材料进行特殊处理所用的时间为14-2=12(分钟).方法总结:现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.反比例函数在路程问题中的应用;2.反比例函数在工程问题中的应用;3.利用反比例函数解决利润问题;4.反比例函数与一次函数的综合应用.本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题.将实际问题置于已有的知识背景之中,用数学知识重新解释“这是什么”,使学生逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.第2课时 其他学科中的反比例函数1.能够从物理等其他学科问题中建构反比例函数模型;(重点)2.从实际问题中寻找变量之间的关系,利用所学知识分析物理等其他学科的问题,建立函数模型解决实际问题.(难点)一、情境导入问题:某校科技小组进行野外考察,途中遇到一片十几米宽的湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成任务.问题思考:(1)请你解释他们这样做的道理;(2)当人和木板对湿地的压力一定时,随着木板面积S (m 2)的变化,人和木板对地面的压强p (Pa)将如何变化?二、合作探究探究点:反比例函数在其他学科中的应用【类型一】 反比例函数与电压、电流和电阻的综合已知某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式为U =IR ,且电路的电压U 恒为6V.(1)求出电流I 关于电阻R 的函数表达式;(2)如果接入该电路的电阻为25Ω,则通过它的电流是多少?(3)如图,怎样调整电阻箱R 的阻值,可以使电路中的电流I 增大?若电流I =0.4A ,求电阻R 的值.解析:(1)根据电流I (A)是电阻R (Ω)的反比例函数,设出I =U R(R ≠0)后把U =6V 代入求得表达式即可;(2)将R =25Ω代入上题求得的函数关系式即可得电流的值;(3)根据两个变量成反比例函数关系确定答案,然后代入0.4A 求得R 的值即可.解:(1)∵某电路的电压U (V),电流I (A)和电阻R (Ω)三者之间有关系式U =IR ,∴I =U R,代入U =6V 得I =6R ,∴电流I 关于电阻R 的函数表达式是I =6R; (2)∵当R =25Ω时,I =625=0.24A ,∴电路的电阻为25Ω时,通过它的电流是0.24A ; (3)∵I =6R,∴电流与电阻成反比例函数关系,∴要使电路中的电流I 增大可以减小电阻.当I =0.4A 时,0.4=6R,解得R =15Ω. 方法总结:明确电压、电流和电阻的关系是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题【类型二】 反比例函数与气体压强的综合某容器内充满了一定质量的气体,当温度不变时,容器内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.(1)求出这个函数的解析式;(2)当容器内的气体体积是0.6m 3时,此时容器内的气压是多少千帕?(3)当容器内的气压大于240kPa 时,容器将爆炸,为了安全起见,容器内气体体积应不小于多少m 3?解析:(1)设出反比例函数关系式,根据图象给出的点确定关系式;(2)把V =0.6m 3代入函数关系式,求出p 的值即可;(3)因为当容器内的气压大于240kPa 时,容器将爆炸,可列出不等式求解.解:(1)设这个函数的表达式为p =k V .根据图象可知其经过点(2,60),得60=k 2,解得k =120.则p =120V; (2)当V =0.6m 3时,p =1200.6=200(kPa); (3)当p ≤240kPa 时,得120V ≤240,解得V ≥12.所以为了安全起见,容器的体积应不小于12m 3.方法总结:根据反比例函数图象确定函数关系式以及知道变量的值求函数值或知道函数值的范围求自变量的范围是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题【类型三】 反比例函数与杠杆知识的综合公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆原理”,小明利用此原理,要制作一个杠杆撬动一块大石头,已知阻力和阻力臂不变,分别为1200N 和0.5m.(1)动力F 与动力臂l 有怎样的函数关系?当动力臂为1.5m 时,撬动石头至少要多大的力?(2)若想使动力F 不超过(1)题中所用力的一半,则动力臂至少要加长多少?解析:(1)根据“动力×动力臂=阻力×阻力臂”,可得出F 与l 的函数关系式,将l =1.5m 代入可求出F ;(2)根据(1)的答案,可得F ≤200,解出l 的最小值,即可得出动力臂至少要加长多少.解:(1)Fl =1200×0.5=600N ·m ,则F =600l .当l =1.5m 时,F =6001.5=400N ; (2)由题意得,F =600l≤200,解得l ≥3m ,故至少要加长1.5m. 方法总结:明确“动力×动力臂=阻力×阻力臂”是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型四】 反比例函数与功率知识的综合某汽车的输出功率P 为一定值,汽车行驶时的速度v (m/s)与它所受的牵引力F (N)之间的函数关系如下图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为2400N 时,汽车的速度为多少?(3)如果限定汽车的速度不超过30m/s ,则F 在什么范围内?解析:(1)设v 与F 之间的函数关系式为v =P F,把(3000,20)代入即可;(2)当F =1200N 时,求出v 即可;(3)计算出v =30m/s 时的F 值,F 不小于这个值即可.解:(1)设v 与F 之间的函数关系式为v =P F ,把(3000,20)代入v =P F,得P =60000,∴。
2018_2019学年九年级数学下册第26章反比例函数26.1反比例函数26.1.1反比例函数课件(新版)新人教版
复习回顾
1.我们以前学习过哪些函数?
学过的函数有一次函数、二次函数等
2.你能说出它们的一般形式吗?
(1)一次函数:y=kx+b(k≠0) (2)二次函数:y=ax2+bx+c(a≠0)
活动一:创设情境
导入新课
思考:下列问题中,变量间的对应关系
可用怎样的函数解析式来表示? (1)京沪线铁路全程为1463 km,某次列车 的平均速度v(单位:km/h)随此次列车的全程 运行时间t(单位:h)的变化而变化;
三种形式:
活动三:开放训练
体现应用
例1 已知y是x的反比例函数,并且当x=2时,y=6 (1)写出y关于x的函数解析式; (2)当x=4时,求y的值。 k 解:(1)∵ y是x的反比例函数 y . x , 把x=2,y=6代入上式得:
6 k . 2
12 3 4
解得k 12.
12 y . x
(1)本课时主要学习了反比例函数的哪些知识?如何获得反比例函数的概念? (2)反比例函数解析式三种形式分别是什么?自变量和函数的取值范围是什 么? (3)如何根据已知条件求反比例函数的解析式?
【知识网络】
独立作业
作业题 习题26.1 复习巩固 1. 2.
知识的升 华
祝你成功!
内部文件,请勿外传
可用怎样的函数解析式来表示?
(3)已知北京市的总面积为1.68×104平方 千米,人均占有的土地面积S(单位:平方千 米/人)随全市总人口n(单位:人)的变化而 变化。
1.68 10 S n
4
活动二:实践探究
交流新知
问题:观察各个函数解析式有什么共同特点? 1.68 10 1463 1000 S y v n x t k 都是 y = 的形式,其中k是常数。 x
新人教版九年级下册第二十六章“反比例函数”教材分析简介
新人教版九年级下册第二十六章“反比例函数”教材分析简介预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数。
新人教版九年级数学下册《26章反比例函数26.2实际问题与反比例函数反比函数在物理学中的应用》教案_10
26.2.2反比例函数在物理学中的应用一、学生知识状况分析:本节课是学生学习了反比例函数的图象及性质之后的“反比例函数的应用”。
用函数模型处理实际问题,体现了数形结合的思想法。
二、教学三维目标:1.经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
2.体会数学与现实生活的紧密联系,增强应用意识,提升使用代数方法解决问题的水平。
3.激发学生在已有知识的基础上,进一步探索新知识的欲望。
在探索过程中培养和发展学生学习数学的主动性,提升应用数学的水平。
三、数学核心素养:1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。
2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和使用知识解决问题的成功体验,有学好数学的自信心。
四、教学过程:第一环节:复习回顾反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
第二环节:情境导入;第三环节:应用与拓展;小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200N 和0.5m.(1).动力F与动力臂l有怎样的函数关系?当动力臂为 1.5m时撬动石头至少需要多大的力?(2).若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?学生思考:在我们使用撬棍时为什么动力臂越长就越省力?第四环节:随堂练习;一司机驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h 到达目的地。
(1).当他按原路匀速返回时,汽车的速度v与时间t有怎样的函数关系?(2).如果该司机必须在4h之内回到甲地,那么返程时的平均速度不能小于多少?学生练习教师巡视,多媒体展示学生的步骤。
第五环节:知识小结;今天这节课学习了什么?你掌握了什么?学生:这节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中物理量之间的关系,建立反比例函数模型,进而用反比例函数的相关知识解决实际问题.五.课堂小结:师:今天你学会了什么?生:今天学习了反比例函数的应用,学习了两个类型: 1.杠杆原理 2.行程问题六.作业:课本第16页第6题。
人教版初三下册数学第26章知识点:第1节反比例函数
人教版初三下册数学第26章知识点:第1
节反比例函数
一般地,如果两个变量x、y之间的关系可以表示成y=k/x 或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下几点:
(1)k是常数,且k不为零;
(2)k/x中分母x的指数为1,如y=kx-2不是反比例函数。
(3)自变量x的取值范围是x≠0一切实数.
(4)自变量y的取值范围是y≠0一切实数。
以上就是为大家整理的人教版初三下册数学第26章知识点:第1节反比例函数,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
九年级数学下册 第26章 反比例函数 26.1 反比例函数 26.1.2 反比例函数的图象和性质(1
活动三:分类拓展,归纳性质
1.反比例函数的图象是双曲线;
2.图象性质见下表:
y= k
K>0
K<0
x
图 象
当k>0时,函数图象
的两个分支分别在第
性
一、三象限,在每个 象限内,y随x的增大
质
而减小.
当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
活动二:画图探究,得到图象
12
同理可得y= x 的图象
活动三:分类拓展,归纳性质
思考:比较y= 6 与y= 12 的图象他们有什
x
x
么共同特征?他们之间有什么共同关系?
答案: (1)函数图象分别位于第一、第三象限; (2)在每个象限内,y随x的增大而减小.
活动三:分类拓展,归纳性质
自选k值画函数图象(k=2、-2和3、-3)
-2
x
-3
-4 -5
-6
活动二:画图探究,得到图象
步骤三:连线
有两条曲线共同组 -6 -5
成一个反比例函数 的图象,叫双曲线, 且图象关于原点成 中心对称。
y
6 5 4 3 2 1
-4 -3 -2 -1 0 1 -1 -2 -3 -4 -5
-6
y
=
6 x
234 5
在图象旁边 写上函数解
析式
6x
按自变量从小到大的顺序,用两条光滑的曲线连 接起来.
y 6 画出反比例函数 x 的函数图象.
步骤一:列表
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(伏),R指用电器的电阻(欧姆).
新知讲解
例2.在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R
=5欧姆时,电流I=2安培. (1)求I与R之间的函数关系式; (2)当电流I=0.5时,求电阻R的值. 解:(1)设I= R . ∵当电阻R=5欧姆时,电流I=2安培,∴U=10.∴I与R之
小组展示 争先恐后
1组
2组
3组
4组
解析一览
1、2组
做一做下面的题目,看谁做得又快又准确。
3、4组
一定质量的氧气,它的密度ρkg/m3
生活中做拉面的过程就渗透着数学知识,
是它的体积Vm3的反比例函数.当
V=10m3时,ρ=1.43kg/m3,则ρ与V的函 数关系是
14.3 v
一定体积的面团做成拉面,面条的总长度y
一定质量的氧气,它的密度ρkg/m3
生活中做拉面的过程就渗透着数学知识,
是它的体积Vm3的反比例函数.当
V=10m3时,ρ=1.43kg/m3,则ρ与V的函 数关系是 .
一定体积的面团做成拉面,面条的总长度y
(cm)是面条粗细(横截面面积)x(cm2) 反比例函数,其图象如图所示,则y与x之间 的函数关系式为 取值范围) (写出自变量的
新知讲解
阻力×阻力臂=动力×动力臂
Hale Waihona Puke 阻力阻力臂 动力臂动力
新知讲解
小组讨论 什么是“杠杆原理”?已知阻力与阻力臂不变,设动力为F,动力臂为L,当F
变大时,L怎么变?当F变小时,L又怎么变?在第(2)问中,根据(1)的答案,
可得F≤200,要求出动力臂至少要加长多少,就是要求L的什么值?由此判断我们 在使用撬棍时,为什么动力臂越长就越省力?
自主学习反馈
1.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知250度近视眼镜镜 片的焦距为0.4米,则眼镜度数y与镜片焦距x之间的函数关系式
y 100 x
.
2.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛和0.5 米,那么动力F和动力臂之间的函数关系式是
F 600 L动
.
新知讲解
一 反比例函数在力学中的应用
合作探究 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米. (1)动力F 与动力臂 L 有怎样的函数关系? 当动力臂为 1.5 米时,撬动石头至少需要多 大的力? (2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少加长多少?
26.2.2 其他学科中的反比例函数
九年级下册
学习目标
1
体验现实生活与反比例函数的关系,通过解决“杠杆原理”实际问 题与反比例函数关系的探究; 掌握反比例函数在其他学科中的运用,体验学科的整合思想 .
2
自主学习
自主学习任务:阅读课本 14页- 15页,掌握下列知识要点。
1、解决“杠杆原理”实际问题与反比例函数关系的探究 2、反比例函数在其他学科中的运用,体验学科的整合思想
10 间的函数关系式为I= R
U
10 (2)当I=0.5安培时,0.5= ,解得R=20(欧姆). R
新知讲解
做一做 在公式 I
U R
中,当电压U一定时,电流I与电 阻R之间的函数关系可用图象大致
表示为( D )
A.
B.
C.
D.
1、2组
分层教学 做一做下面的题目,看谁做得又快又准确。
3、4组
(cm)是面条粗细(横截面面积)x(cm2) 反比例函数,其图象如图所示,则y与x之间 的函数关系式为 取值范围)
y 128 ( x 0) x
.
(写出自变量的
随堂检测
1.用一根杠杆撬一块重力为10000N的大石头,如果动力臂为160cm,阻力臂为20cm,
则至少要用________ 1250N 的力才能把石头撬动.
p/Pa 6000 5000 4000 3000 2000 1000 O
0.1 0.2
0.3 0.4 0.5 0.6
S/ m
2
新知讲解
二 反比例函数与电学的结合
合作探究 一个用电器的电阻是可调节的,其范围为 110~220欧姆,已知电压为 220 伏, 这个用电器的电路图如图所示.
(1)输出功率P与电阻R有怎样的函数关系?
新知讲解
练一练
1. 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛
和0.5米,那么动力F和动力臂L之间
600 的函数解析是________ . L F
2. 小强欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1000牛顿 500 牛顿. 和0.5米,则当动力臂为1米时,撬动石头至少需要的力为________
2.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压p(kPa)是气体 体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将
爆炸.为了安全起见,气球的体积应( C )
(2)用电器输出功率的范围多大? U
新知讲解
小组讨论
根据物理知识可以判断:当用电器两端的电压一定时,用电器的输出功率 与它的电阻之间呈什么关系?这一特征说明用电器的输出功率与它的电阻之间 满足什么函数关系? 【反思小结】解答该类问题的关键是确定两个变量之间的函数关系,然后利用 待定系数法求出它们的关系式,进一步根据题意求解答案.其中往往要用到电 学中的公式PR=U2,P指用电器的输出功率(瓦),U指用电器两端的电压
新知讲解
(2)当木板面积为0.2m2时,压强是多少?
解:当S=0.2m2时,p=
=3000(Pa) .
答:当木板面积为0.2m2时,压强是3000Pa. (3)如果要求压强不超过6000Pa,木板面积至少要多大? 解:当 p≤6000 Pa时,S≥0.1m2.
新知讲解
(4) 在直角坐标系中,作出相应的函数图象. 图象如下
新知讲解
典例精析 例1.某校科技小组进行野外考察,利用铺垫木板的方式通过一片烂泥湿地,你能 解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2) 的变化,人和木板对地面的压强p (Pa)将如何变化?
如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么? 解:由p= 得p= p是S的反比例函数,因为给定一个S的值,对应的就有唯 一的一个p值和它对应,根据函数定义,则p是S的反比例函数.