10.解三角形
解三角形 习题含答案
第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。
初中数学经典几何模型10-母抱子模型解直角三角形(含答案)
初中数学经典几何模型专题10 母抱子模型解直角三角形【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线E D,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)3、如图,为了测得电视塔AB的高度,在D处用高为1 m的测角仪CD测得电视塔顶端A的仰角为30°,再向电视塔方向前进100 m到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔AB的高度(单位:m)为(C)A.50 3 B.51 C.503+1 D.1014、如图,小明在热气球A上看到横跨河流两岸的大桥BC,测得B,C两点的俯角分别为60°和45°,已知热气球离地面的高度为120 m,且大桥与地面在同一水平面上,求大桥BC的长度.(结果保留整数,3≈1.73)5、某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为m.(精确到0.1m.参考数据:≈1.414,≈1.732)7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:s i n37°≈0.60,c o s37°≈0.80,tan37°≈0.75)9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)专题10 母抱子模型解直角三角形答案【模型展示】【中考真题】1、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在R t△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),又∵DH=1.5,∴CD=2+1.5,在R t△CDE中,∵∠CED=60°,s i n∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.2、如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线E D,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【精典例题】1、如图,一艘轮船在A处时观测得小岛C在船的北偏东60°方向,轮船以40海里/时的速度向正东方向航行1.5小时到达B处,这时小岛C在船的北偏东30°方向.已知小岛C周围50海里范围内是暗礁区.(1)求B处到小岛C的距离(2)若轮船从B处继续向东方向航行,有无触礁危险?请说明理由.(参考数据:≈1.73)解析:(1)由题意得∠CBD=60°,∠CAB=30°,∴∠ACB=30°,∴∠CAB=∠ACB,∴CB=AB=40×1.5=60(海里),∴B处到小岛C的距离为60海里;(2)过点C作CE⊥AD,垂足为点E,∵CE=CB×s i n∠CBE=60×s i n60°=30≈51.96海里,∴CE>50,∴轮船从B处继续向正东方向航行,没有触礁危险.2、金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)解析:过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3.CM=ED,在R t△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=x,在R t△FCD中,CD=3,∠CFD=30°,∴DF=3,在R t△AMC中,∠ACM=45°,∴∠MAC=∠ACM=45°,∴MA=MC,∵ED=CM,∴AM=ED,∵AM=AE﹣ME,ED=EF+DF,∴x﹣3=x+3,∴x=6+3,∴AE=(6+3)=6+9,∴AB=AE﹣BE=9+6﹣1≈18.4米.答:旗杆AB的高度约为18.4米.3、如图,为了测得电视塔AB 的高度,在D 处用高为1 m 的测角仪CD 测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100 m 到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔AB 的高度(单位:m )为( C )A .50 3B .51C .503+1D .1014、(2019·山东菏泽定陶三模)如图,小明在热气球A 上看到横跨河流两岸的大桥BC ,测得B ,C 两点的俯角分别为60°和45°,已知热气球离地面的高度为120 m ,且大桥与地面在同一水平面上,求大桥BC 的长度.(结果保留整数,3≈1.73)解析:如图,作AD ⊥CB 交CB 所在直线于点D .由题意知,∠ACD =45°,∠ABD =60°.在R t △ACD 中,∠ACD =45°,∴CD =AD =120 m . 在R t △ABD 中,∠ABD =60°,∴tan 60°=AD BD ,∴BD =33AD =40 3 m ,∴BC =CD -BD =120-403≈51(m ). 答:大桥BC 的长度约为51 m .5、某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)解析:根据题意可知:∠ABC=90°,CD=10,在R t△ABC中,∠ACB=45°,∴AB=CB,在R t△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.6、某矩形交通指示牌CDEF如图所示,AB的距离为5m,从A点测得指示牌顶端D点和底端C点的仰角分别是60°和45°,则指示牌的高度CD约为m.(精确到0.1m.参考数据:≈1.414,≈1.732)解析:在R t△ADB中,∠DAB=60°,AB=5,∵tan∠DAB=,∴BD=5•tan60°=5,在R t△BAC中,∵∠CAB=45°,∴AB=BC=5,∴CD=BD﹣BC=(5﹣5)m≈3.7(m).故答案为:3.7.7、为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)解析:如图,根据题意可知:DE⊥BE,AB⊥BE,过点D作DC⊥AB于点C,所以四边形DEBC是矩形,∴BC=ED=1.70,DC=EB=15,在R t△ACD中,∠ADC=30°,∴tan30°=,即=,解得AC=5,∴AB=AC+CB=5+1.70≈10.4(米).答:无人机距离地面的高度约为10.4米.8、广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔.如图,广州塔BD附近有一大厦AC高150米,张强在楼底A处测得塔顶D的仰角为45°,上到大厦顶C处测得塔顶D的仰角为37°,求广州塔BD的高.(参考数据:s i n37°≈0.60,c o s37°≈0.80,tan37°≈0.75)解析:如图,过点C作CE⊥BD于点E,即四边形ACEB是矩形∴BE=AC=150,CE=AB,根据题意可知:∠DAB=45°,∴DB=AB=CE,∴DE=DB﹣BE=DB﹣150,在R t△CDE中,∠DCE=37°,∴DE=CE•tan37°,即DB﹣150≈0.75DB,解得DB≈600(米).答:广州塔BD的高约为600米.9、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1:2.求大树BC的高度约为多少米?(≈1.732,结果精确到0.1)解析:作DH⊥AE于点H,作DG⊥BC于点G,如图,则四边形DGCH为矩形,在R t△ADH中,∵,∴AH=2DH,∵AH2+DH2=AD2,∴.∴DH=CG=3m,∴AH=2DH=6m,设BC=xm,则BG=(x﹣3)m,在R t△BAC中,∠BAC=45°,∴AC=BC=xm,∴CH=DG=(x+6)m,在R t△BDG中,∠BDG=30°∵tan30°=,∴,解得,x=≈15.3.答:大树BC的高度约为15.3米.。
解直角三角形的方法和技巧
解直角三角形的方法和技巧直角三角形是三角形中最为基础和重要的一类三角形,因为它具有很多特殊的性质和应用。
解直角三角形的方法和技巧在数学的学习过程中非常重要,本文将为大家介绍10条关于解直角三角形的方法和技巧,并展开详细描述。
一、勾股定理勾股定理是解直角三角形最基本的定理,也是解直角三角形的最快捷的方法。
勾股定理的公式为:a² + b² = c²。
a和b表示直角边,c表示斜边。
当已知a和b的长度时,可以通过计算c的长度来确定直角三角形的大小和形状。
勾股定理非常广泛地应用于工程、科学和数学等领域,可以帮助我们计算物体的大小、距离和位置等。
二、正弦定理正弦定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:a/sinA = b/sinB = c/sinC。
a、b、c分别表示三角形任意两边和斜边,A、B、C表示这些边对应的角度。
如果已知了两个长度和一个角度,则可以通过正弦定理计算第三个长度。
正弦定理的应用十分广泛,可以帮助我们计算三角形的任意边的长度。
三、余弦定理余弦定理也是解直角三角形的一种基本方法,它也是一个三角形中的三角函数,公式为:c² = a² + b² - 2abcosC。
a、b表示三角形中两个边的长度,c表示斜边的长度,C表示斜边对应的角度。
如果已知了两个长度和一个角度,则可以通过余弦定理计算第三个长度。
余弦定理也是应用广泛的一个数学公式,可以帮助我们计算三角形的任意边的长度。
四、正切定理正切定理也是解直角三角形的一种基本方法,它是一个三角形中的三角函数,公式为:tanA = a/b或tanB = b/a。
a、b分别表示三角形中的两个直角边,A、B是它们对应的角度。
通过正切定理可以求得角度的大小或两直角边的比例。
五、特殊直角三角形的知识特殊直角三角形是指那些具有特殊边长和角度的直角三角形。
其中最为常见的是边长为3、4、5的特殊直角三角形。
解三角形练习题及答案
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
备战2023年重庆数学中考二轮复习知识点精练10 解直角三角形(解析版)
精练10--解直角三角形1.如图,某辆自行车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,测得AB=54cm,AC、BC与AB的夹角分别为45°与60°.(1)求点C到AB的距离(结果保留一位小数).(2)若点C到地面的距离CD为30cm,坐垫中轴E与点B的距离BE为4cm(坐垫E 可按轴线BC上下伸缩调节).茜茜根据自己身高比例,坐垫E到地面的距离为70cm 时,乘坐该自行车最舒适.茜茜坐上该自行车,感觉不是很舒适,问:如果要达到最佳舒适高度,茜茜应该如何调节坐垫E的位置?(结果保留一位小数)(参考数据:≈1.4,≈1.7)【解答】解:过点C 作CM⊥AB于点M,则∠CMA=∠CMB=90°,∵∠CAM=45°,∠CBM=60°,∴AM=CM,BM=,∵AB=54(cm),∴CM+=54,∴CM=27(3﹣)≈35.1(cm),∴点C到AB的距离为35.1cm;(2)∵坐垫E到地面的距离为70cm时,乘坐该自行车最舒适,∴点E到AB的距离为70﹣30﹣35.1=4.9(cm),过点E作EN⊥AB于点N,则EN=4.9(cm),∠ENB=90°,∵∠EBN=∠CBM=60°,∴BE==≈5.8(cm)∵原BE为4cm,∴需将BE调长5.8﹣4=1.8(cm).2.某小区拟建设地下停车库入口,将原步行楼梯入口AC改造为斜坡AD.已知入口高AB =3m,坡面AC的坡度i=1:1,新坡面坡角∠ADB=30°.(1)求斜坡底部增加的长度CD为多少米?(保留根号)(2)入口处水平线AE=5m,地下停车库坡道入口上方点E处有悬挂广告牌EF,EF⊥BD,EF=0.5m.若一辆高度为2米的货车沿斜坡AD驶入车库,行进中是否会碰到广告牌的下端F?请说明理由.(参考数据:≈1.4,≈1.7)【解答】解:(1)∵坡面AC的坡度i=1:1,∴AB:BC=1:1,∴BC=AB=3m,∵∠ADB=30°,∴tan∠ADB==tan30°=,∴BD=AB=3m),∴CD=BD﹣BC=(3﹣3)(m),答:斜坡底部增加的长度CD为(3﹣3)米;(2)若一辆高度为2米的货车沿斜坡AD驶入车库,行进中不会碰到广告牌的下端F,理由如下:如图,延长EF交AD于G,过F作FH⊥AD于H,由题意得:∠AEG=90°,AE∥BD,∴∠EAG=∠ADB=30°,∵tan∠EAG==tan30°=,AE=5m,∴EG=AE=(m),∴FG=EG﹣EF=﹣0.5=(﹣)(m),在Rt△FGH中,∠FGH=90°﹣∠EAG=90°﹣30°=60°,∵sin∠FGH==sin60°=,∴FH=FG=×(﹣)=﹣≈2.075(m)>2m,∴若一辆高度为2米的货车沿斜坡AD驶入车库,行进中不会碰到广告牌的下端F.3.如图,在同一剖面内,小明在点A处用测角仪测得居民楼的顶端F的仰角为27°,他水平向右前进了30米来到斜坡的坡脚B处,沿着斜坡BC上行25米到达C点,用测角仪测得点F的仰角为54°,然后,水平向右前进一段路程来到了居民楼的楼底E处,若斜坡BC的坡度为3:4,请你求出居民楼EF 的高度.(测角仪的高度忽略不计,计算结果精确到0.1米.)参考数据:sin27°≈0.45,tan27°≈0.51,sin54°≈0.81,tan54°≈1.38)【解答】解:如图,过点C作CG⊥AD于点G,EH⊥AD于点H,得矩形CGHE,∴CE=GH,CG=EH,在Rt△BCG中,BC=25米,CG:BG=3:4,∴CG=EH=15米,BG=20米,在Rt△AFH中,AH=AB+BC+GH =30+20+GH=50+CE,∵∠F AG=27°,∴FH=AH•tan27°,∴EF+15≈(50+CE)×0.51,在Rt△FCE中,∵∠FCE=54°,∴EF=CE×tan54°≈1.38CE,∴1.38CE+15≈(50+CE)×0.51,解得CE=,∴EF≈1.38CE≈16.7(米),∴居民楼EF的高度约为16.7米.4.如图,在某海域内有一小岛P,在以P为圆心,半径r为6海里的圆形海域内有暗礁,一轮船自东向西航行,它在A处测得小岛P位于北偏西45°的方向上,当这艘轮船行驶4海里后到达B地,此时观测小岛P位于B地北偏西30°的方向上.(1)求A、P之间的距离;(结果精确到0.1海里,参考数据:≈1.41,≈2.45)(2)该轮船由B地继续向西行驶(4﹣4)海里到达C地,此时观测小岛P位于C地北偏西15°的方向上,同时接到总部通知,由于突发状况,该轮船必须驶离东西航线并沿北偏西某航向行驶,那么该轮船由C处开始沿北偏西至少多少度的方向航行才能避开小岛P周围的暗礁安全通过这一海域?【解答】解:(1)过点P作PD⊥AB,交AB的延长线于点D,由题意得,∠BPD=30°,∠P AD=45°,AB=4海里,设PD=x海里,则AD=x海里,∴BD=AD﹣AB=(x﹣4)海里,在Rt△PBD中,∵BD=PD tan30°,∴x﹣4=x,∴x=2(3+),∴P A=PD=x=6+2≈13.4(海里),答:A,P之间的距离约为13.4海里;(2)因为r﹣PD=6﹣2(3+)=6﹣6﹣2≈﹣1<0,所以无触礁的危险;设轮船无触礁危险的新航线为射线CH,作PE⊥CH,垂足为E,当P到CH的距离PE=6海里时,有sin∠PCE=,设CD=y海里,∵BC=(4﹣4)海里,在Rt△PBD中,PD=2(3+)海里,∠BPD=30°,∴BD=PD tan30°,∴y+4﹣4=2(3+)×,解得y=6﹣2,∴CD=(6﹣2)海里,∴PC===4,∴sin∠PCE===,∴∠PCE=60°,∴60°+15°=75°,∴该轮船由C处开始沿北偏西至少75度的方向航行才能避开小岛P周围的暗礁安全通过这一海域.5.如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70°方向,2小时后渔船到达B处,测得小岛C在北偏东45°方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25°继续航行,通过计算说明船是否安全?【解答】解:(1)如图,过点C作CN⊥AD于M,CN ⊥BE于N,由题意得,∠CAD=90°﹣70°=20°,∠CBD=90°﹣45°=45°,AB=14×2=28海里,∵∠CBD=45°,∴CM=BM,在Rt△CAM中,∵tan∠ACM=,∴tan70°=,解得CM≈16,在Rt△BCM中,BC=CM=16≈22.6(海里),答:B处距离小岛C的距离约为22.6海里;(2)在Rt△BCN中,∠CBN=45°+25°=70°,BC=16海里,∴CN=BC•sin∠CBN≈16×0.94≈21.2(海里),∵21.2>20,∴能安全通过,答:能安全通过.6.首钢滑雪大跳台是世界上首个永久性的单板大跳台,其优美的造型,独特的设计给全球观众留下深刻的印象,大跳台场地分为助滑区、起跳台、着陆坡和终点区域4个都分,现将大跳台抽象成如图的简图,FC表示运送运动员上跳台的自动扶梯,CD表示助滑区,Rt△DEH表示起跳台,EB表示着陆坡.已知∠CF A =60°,∠EBF=30°,在助滑区D处观察到顶点C处的仰角是30°,且自动扶梯的速度是2m/s,运送运动员到达跳台顶端C点处需要30秒,BE=24m,DE∥BF,CA、DG、EF都垂直于BF.(1)求大跳台AC的高度是多少米(结果精确到0.1m);(2)首钢滑雪大跳台主体结构采用装配式钢结构体系和预制构件,“助滑区”和“着陆坡”赛道面宽35米,面板采用10mm耐候钢,密度为7850kg/m3,求铺装“助滑区”和“着陆坡”赛道的耐候钢总重量是多少吨(结果精确到1吨).(≈1.41,≈1.73)【解答】解:(1)根据题意可知:AC=2×30=60(m),答:大跳台AC的高度是60米;(2)如图,过点D作DM⊥CA于点M,得矩形AMDG,矩形DGNE,在Rt△ACF中,CF=60m,∠CF A =60°,∴AC=CF•sin60°=60×=30(m),在Rt△EBN中,∠EBN=30°,BE=24m,∴EN=BE=12m,∴AM=DG=EN=12m,∴CM=AC﹣AM=(30﹣12)m,∵DE∥BF,∴∠CDM=∠E=30°,∴CD=2CM=2(30﹣12)=60﹣24≈79.8m,∴耐候钢的体积=79.8×35×10﹣2+24×35×10﹣2=36.33(m3),∴耐候钢总重量=36.33×7850≈285190(吨).答:赛道的耐候钢总重量约为285190吨.7.5G时代,万物互联.互联网、大数据、人工智能与各行业应用深度融合,助力数字经济发展,共建智慧生活.网络公司在改造时,把某一5G信号发射塔MN建在了山坡BC 的平台CD上,已知山坡BC的坡度为1:2.4.眼睛距地面1.6米的小明站在A处测得塔顶M的仰角是37°.向前步行6米到达B处,再延斜坡BC步行6.5米至平台点C处,测得塔顶M的仰角是50°.若A.B、C、D、M、N在同一平面内,且A、B和C、D、N分别在同一水平线上.(1)求平台CD距离地面的高度;(2)求发射塔MN的高度.(结果精确到0.1米.参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【解答】(1)解:如图,过点Q作QP⊥MN 于P,过点F作FE⊥MN于E,∵山坡BC的坡度为1:2.4,BC=6.5米,设CG=x,则BG=2.4x,∴x2+(2.4x)2=6.52,解得x=,∴CG=HN=米,BG=6米,(2)解:∵CG=HN=米,BG=6米,∴AG=12米,由题意知∠MQP=37°,∠MFE=50°,设EF=a米,则PQ=AH=(a+12)(米),∵tan50°=≈1.20,∴ME=1.2a,∵tan37°=≈0.75,∴MP=(a+12),∵ME+EN+NH=MP+PH,∴1.2a+1.6+=(a+2)+1.6,解得a=米,∴MN=1.2a+1.6≈18.9(米).8.如图,为了测量陶行知纪念馆AB的高度,小李在点C处放置了高度为1.5米的测角仪CD,测得纪念馆顶端A点的仰角∠ADE=51°,然后他沿着坡度i=1:2.4的斜坡CF 走了6.5米到达点F,再沿水平方向走4米就到达了纪念馆底端点B.(结果精确到0.1,参考数据:sin51°≈0.78,cos51°≈0.63,tan51°≈1.23)(1)求点D到纪念馆AB的水平距离;(2)求纪念馆AB的高度约为多少米?【解答】解:(1)延长AB交水平线于点M,过F作FN⊥CM 于N,延长DE交AM于H,则四边形HMCD为矩形,∴HM=CD=1.5米,DH=CM,∵斜坡CF的坡度i=1:2.4,∴=,∴CN=2.4FN,∵CF=6.5米,∴BM=FN=2.5(米),CN=6(米),∵MN=BF=4米,∴DH=CM=6+4=10(米),答:点D到纪念馆AB的水平距离为10米;(2)在Rt△ADH中,tan∠ADE=则AH=DH•tan∠ADE=10×tan51°≈12.3(米),∴AB=AM﹣BM=AH+HM﹣BM=12.3+1.5﹣2.5≈11.3(米),答:纪念馆AB的高度约为11.3米.9.2022北京冬奥会已正式闭幕,但因冬奥燃起的冰雪消费热潮仍在持续中国滑雪场、冰雪产业正在逐步形成.如图,是某度假村兴建的专业滑雪场地,小南在观景台A处向前走15米到达观景点B处,测得滑雪场顶端E的仰角为22°,沿着坡度为1:2.4的斜坡走了26米到达坡底C处,然后往前走93米到达滑雪场底端D处.A、B、C、D、E、M、N在同一平面内,ED⊥MD,BN⊥MD,AM⊥MD,AB∥MD.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(1)求观景台A 处到坡底C的水平距离CM;(2)求滑雪场顶端E到CD的距离ED的长(结果精确到1米).【解答】解:(1)延长AB 交DE于F,∵ED⊥MD,BN⊥MD,AM⊥MD,AB∥MD,∴AM∥BN∥FD,BF⊥EF,∴四边形AMNB和四边形BNDF是平行四边形,∴▱AMNB和▱BNDF是矩形,在Rt△BCN中,=,BC=26,BN2+CN2=BC2,设BN=x,CN=2.4x,∴x2+(2.4x)2=262,解得:x=10,∴BN=10,CN=24,∵四边形AMNB是矩形,AB=15,∴MN=AB=15,∴CM=MN+CN=15+24=39(米),答:观景台A处到坡底C的水平距离CM为39米;(2)∵四边形BNDF是矩形,BN=10,CD=93,CN=24,∴FD=BN=10,BF=DN=CN+CD=24+93=117,在Rt△BEF中,tan∠EBF==tan22°,∴EF=BF•tan22°≈117×0.40=46.8,∴ED=EF+FD=56.8≈57(米).答:滑雪场顶端E到CD的距离ED的长约为57米.10.如图,梯形ABCD是一个拦河坝的截面图,坝高5米,背水坡AD的坡度为1:1.2.为了提高河坝抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽1米,新的背水坡EF 的坡角α为30°,河坝总长400米.(1)求大坝底端AF需加宽多少米?(精确到0.1米,参考数据:≈1.73,≈1.41)(2)某工程队每天加固150立方米,工程队能否在30天内完成河坝加固?(体积=底面积×高)【解答】解:(1)过点D作DG⊥AB于G,过点E作EH⊥AB于H,则四边形EHGD为矩形,∴HG=ED=1米,∵坡AD的坡度为1:1.2,DG=5米,∴AG=5×1.2=6米,∴AH=AG﹣GH=6﹣1=5(米),在Rt△EFH中,∠F=30°,∴FH===5≈8.65(米),∴AF=FH﹣AH=8.65﹣5=3.65≈3.7(米),答:大坝底端AF需加宽约为3.7米;(2)需加固的土方量为:×(1+3.7)×5×400=4700(立方米),工程队每天加固150立方米,工程队30天内完成的土方量为:150×30=4500(立方米),∵4500<4700,∴工程队不能在30天内完成河坝加固,答:工程队不能在30天内完成河坝加固.11.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈0.4)【解答】解:(1)过B作BF⊥AD于F.在Rt△ABF中,sin∠BAF=,则BF=AB sin∠BAF=3sin37°≈3×=1.8(米).答:真空管上端B到AD的距离约为1.8米;(2)在Rt△ABF中,cos∠BAF=,则AF=AB cos∠BAF=3×cos37°≈2.25(米),∵BF⊥AD,CD⊥AD,BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=1.3米,在Rt△EAD中,tan∠EAD=,则AD=≈=3.25(米),∴BC=DF=AD﹣AF=3.25﹣2.25≈1.0(米),答:安装热水器的铁架水平横管BC的长度约为1.0米.12.如图所示,已知BC是水平面,AB、AD、CD是斜坡.AB的坡角为42°,坡长为200米,AD的坡角为60°,坡长为100米,CD的坡比i=1:2.(1)求坡顶A到水平面BC的距离;(2)求斜坡CD的长度.(结果精确到1米,参考数据:sin42°≈0.70,≈1.73)【解答】解:(1)过点A作AE⊥BC于E,在Rt△ABE中,∠B=42°,AB=200米,则AE=AB•sin B≈200×0.70=140(米),答:坡顶A到水平面BC的距离约为140米;(2)过点D作DF⊥BC于F,DG⊥AE于G,则四边形EFDG为矩形,∴GE=DF,在Rt△AGD中,∠ADG=60°,AD=100米,则AG=AD•sin∠ADG=100×≈86.5(米),∴DF=GE=AE﹣AG=53.5(米),∵CD的坡比i=1:2,∴DF:FC=1:2,∴DF:CD=1:3,∴CD=3DF=160.5≈161(米),答:斜坡CD的长度约为161米.13.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB =10m,请你根据以上数据计算GH的长.(参考数据sin67,cos67°,tan67°,cos37°,sin37°,tan37°)【解答】解:延长CD交AH于点E,则CE⊥AH,如图所示.设DE=xm,则CE=(x+2)m,在Rt△AEC和Rt△BED中,tan37°=,tan67°=,∴AE=,BE=.∵AE﹣BE=AB,∴﹣=10,即﹣=10,解得:x=8,∴DE=8m,∴GH=CE=CD+DE=2m+8m=10m.答:GH的长为10m.。
解三角形常用知识点归纳与题型总结-解三角形题型归纳总结
解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒. 2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.(2) 二倍角公式 sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+==(3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
解三角形知识点总结及典型例题
解三角形知识点总结及典型例题三角形作为几何学的基础概念之一,是学习几何学不可或缺的部分。
在解三角形的过程中,我们需要掌握一些基本的知识点和技巧。
本文将对解三角形的相关知识点进行总结,并配以典型例题进行说明。
一、三角形的基本概念三角形由三条边和三个角组成。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
根据角的大小,三角形可以分为钝角三角形、直角三角形和锐角三角形。
二、重要的定理1. 三角形内角和定理:三角形的内角和等于180°。
利用这个定理,我们可以求解一些已知角的三角形问题。
2. 角平分线定理:角平分线将一个角分为两个大小相等的角。
利用这个定理,我们可以求解一些已知角平分线的三角形问题。
3. 直角三角形的性质:直角三角形的两个直角边平方和等于斜边的平方。
这个定理被广泛应用于解决直角三角形的各类问题。
三、解三角形的方法1. 已知两边和夹角如果我们已知三角形的两边和夹角,我们可以利用余弦定理求解第三边的长度。
余弦定理的数学表达式如下:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b为已知边的长度,C为已知夹角的度数。
2. 已知两边和对应的角如果我们已知三角形的两边和对应的角,我们可以利用正弦定理求解第三角的长度。
正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
3. 已知三边如果我们已知三角形的三边,我们可以利用余弦定理或正弦定理求解其中一个角的大小。
然后,再利用三角形的内角和定理求解其他角的大小。
四、典型例题1. 已知三角形ABC,AB = 8 cm,BC = 6 cm,AC = 10 cm。
求角A、角B和角C的度数。
解:根据余弦定理,cosA = (8² + 10² - 6²) / (2 × 8 × 10) = 0.6cosB = (6² + 10² - 8²) / (2 × 6 × 10) = 0.8cosC = (8² + 6² - 10²) / (2 × 8 × 6) = 0.7通过查表或使用计算器,我们可以得到:角A ≈ 53.13°,角B ≈ 36.87°,角C ≈ 90°2. 在直角三角形ABC中,∠B = 90°,AB = 5 cm,BC = 12 cm。
解三角形最全知识点总结
解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。
专题10 解三角形问题(解析版)
专题10 解三角形问题【高考真题】1.(2022·全国甲理) 已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小 值时,BD =________. 1.答案 3-1 解析 设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2-2BD AD cos∠ADB =m 2+4+2m ,在△ACD中,AC 2=CD 2+AD 2-2CD AD cos ∠ADC =4m 2+4-4m ,所以AC 2AB 2=4m 2+4-4m m 2+4+2m =4(m 2+4+2m )-12(1+m )m 2+4+2m=4-12(m +1)+3m +1≥4-()44233211m m ≥=-+⋅+,当且仅当m +1=3m +1,即m =3-1时,等号成立,所以当ACAB取最小值时,m =3-1.故答案为3-1.【知识总结】 1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2abcos C . 3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .【同类问题】题型一 三角形中基本量的计算1.(2021·全国乙)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac , 则b = .1.答案 22 解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac=3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).2.(2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.2.答案 (1)75° 解析 由正弦定理,得sin B =b sin Cc =6×323=22,结合b <c 得B =45°,则A =180° -B -C =75°.3.(2017·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A .π12B .π6C .π4D .π33.答案 B 解析 由题意得sin(A +C )+sin A (sin C -cos C )=0,∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝⎛⎭⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝⎛⎭⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理asin A =c sin C ,得2sin3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6. 4.(2018·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A .π2B .π3C .π4D .π64.答案 C 解析 因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C4=12ab sin C , 所以tan C =1.又C ∈(0,π),故C =π4.5.(2020·全国Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( )A .19B .13C .12D .235.答案 A 解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.6.(2020·全国Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.6.答案 -14 解析 在△ABD 中,∵AB ⊥AD ,AB =AD =3,∴BD =6,∴FB =BD =6.在△ACE中,∵AE =AD =3,AC =1,∠CAE =30°,∴EC =32+12-2×3×1×cos 30°=1,∴CF =CE =1.又∵BC =AC 2+AB 2=12+32=2,∴在△FCB中,由余弦定理得cos ∠FCB =CF 2+BC 2-FB 22×CF ×BC =12+22-622×1×2=-14.7.(2016·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a=1,则b =________. 7.答案2113 解析 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.8.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 8.答案 D 解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去. 9.在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为 .9.答案 1或5 解析 因为在△ABC 中,∠B =3π4,AB =32,AC =35,由正弦定理可得ACsin B= AB sin ∠ACB ,所以sin ∠ACB =AB ·sin B AC =32×2235=55,又BC ⊥CD ,所以∠ACB 与∠ACD互余,因此cos ∠ACD =sin ∠ACB =55,在△ACD 中,AD =210,AC =35,由余弦定理可得cos ∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD ,所以CD 2-6CD +5=0,解得CD=1或CD =5.10.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( ) A .cos ∠BAC =-66B .S △ABC =35 C .BE =2D .AD =5 10.答案 AD 解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B+cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sinB =12×2×6×53=25;C 项,由角平分线性质可知AE EC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝⎛⎭⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B =4+9-2×2×3×23=5,∴AD =5.题型二 三角形的面积11.(2014·福建)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 11.答案 23 解析 在△ABC 中,由正弦定理得23sin60°=4sin B,解得sin B =1,所以B =90°,所以S △ABC=12×AB ×23=12×42-232×23=23.12.(2019·全国Ⅱ)△ABC 的内角内角A ,B ,C 所对的边分别是a ,b ,c .若b =6,a =2c ,B =π3,则△BDC的面积是________. 12.答案3解析 由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23, 3c c ==-(舍去),所以243a c ==,113sin 43236322ABC S ac B ==⨯=△13.(2018·全国Ⅰ)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为__________. 13.答案233解析 已知b sin C +c sin B =4a sin B sin C ⇒2sin B sin C =4sin A ·sin B sin C ,所以sin A =12,由b 2+c 2-a 2=8>0知A 为锐角,所以cos A =32,所以32=b 2+c 2-a 22bc =4bc ,所以bc =83=833,所以S △ABC =12bc sin A =12×833×12=233. 14.(2017·浙江)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC的面积是________,cos ∠BDC =________. 14.答案152104解析 在△ABC 中,AB =AC =4,BC =2,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14,则sin ∠ABC =sin ∠CBD =154,所以S △BDC =12BD ·BC sin ∠CBD =152.因为BD =BC =2,所以∠BDC =12∠ABC ,则cos ∠BDC =cos ∠ABC +12=104.15.(2013·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2B .3+1C .23-2D .3-115.答案 B 解析 因为B =π6,C =π4,所以A =7π12.由正弦定理得b sin π6=csin π4,解得c =22.所以三角形的面积为12bc sin A =12×2×22sin 7π12.因为sin 7π12=sin ⎝⎛⎭⎫π3+π4=32×22+22×12=22⎝⎛⎭⎫32+12,所以12bc sin A =22×22⎝⎛⎭⎫32+12=3+1,故选B .16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________. 16.答案 52 解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53.又由5cos C =sin B =sin(A+C )=sin A cos C +cos A sin C =53cos C +23sin C 知,cos C >0,并结合sin 2C +cos 2C =1,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =c sin C ,得c =3.故△ABC 的面积S =12ac sin B =52.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(2b -a )cos C =c cos A ,c =3,sin A +sin B =26sin A sin B ,则△ABC 的面积为( )A .338B .2C .32D .33417.答案 D 解析 因为(2b -a )cos C =c cos A ,由正弦定理得,(2sin B -sin A )cos C =sin C cos A ,化简得2sin B cos C =sin B ,又sin B ≠0,因为C ∈(0,π),所以cos C =12,所以C =π3.又由sin A+sin B =26sin A sin B ,可得(sin A +sin B )·sin C =32sin A sin B ,由正弦定理可得(a +b )c =32ab ,所以a +b =2ab .因为c 2=a 2+b 2-2ab cos C ,所以2(ab )2-3ab -9=0,所以ab =3(负值舍去),所以S △ABC =12ab sin C =334.18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b -3c =2a cos C ,sin C =32,则 △ABC 的面积为( ) A .32 B .34 C .32或34D .3或3218.答案 C 解析 因为2b -3c =2a cos C ,所以由正弦定理可得2sin B -3sin C =2sin A cos C ,所以2sin(A +C )-3sin C =2sin A cos C .所以2cos A sin C =3sin C ,又sin C ≠0,所以cos A =32,因为A ∈(0°,180°),所以A =30°,因为sin C =32,所以C =60°或120°.当C =60°时,A =30°,所以B =90°,又a =1,所以△ABC 的面积为12×1×2×32=32;当C =120°时,A =30°,所以B =30°,又a =1,所以△ABC 的面积为12×1×1×32=34,故选C .19.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin(B +A )+sin(B -A )=2sin2A ,且c =6,C =π3,则△ABC 的面积是( )A .3B .33C .3或1D .3或3319.答案 A 解析 ∵在△ABC 中,C =π3,∴B =2π3-A ,B -A =2π3-2A ,∵sin(B +A )+sin(B -A )=2sin2A ,∴sin C +sin ⎝⎛⎭⎫2π3-2A =2sin 2A ,即sin C +32cos 2A +12sin 2A =2sin 2A ,整理得3sin ⎝⎛⎭⎫2A -π6=sin C =32,∴sin ⎝⎛⎭⎫2A -π6=12.又A ∈⎝⎛⎭⎫0,2π3,∴2A -π6=π6或5π6,解得A =π6或π2.当A =π6时,B =π2,tan C =c a =6a =3,解得a =2,∴S △ABC =12ac sin B =3;当A =π2时,B =π6,tan C =c b =6b =3,解得b =2,∴S △ABC =12bc =3.综上,△ABC的面积是3.20.托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为 .20.答案 93 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积S =12BC ·AC sin 30°+12CD ·AC sin 30°=14(BC +CD )·AC =34AC 2=93. 题型三 三角形中的最值(范围)问题21.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 21.答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.22.在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 22.答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . 23.在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 23.答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =12b 2+c 22bc ≥2 12b 2·c22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. 24.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.24.答案6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C=a 2+b 2-c 22ab=a 2+b 2-a +2b 242ab=34a 2+12b 2-2ab 22ab≥2 ⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab=6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. 25.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( )A .2B .98C .1D .7825.答案 B 解析 ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sinB ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 26.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时,角B 的值为________.26.答案 π6 解析 由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C =12sin(A +B )=12(sin A cos B +cos A sin B ),整理得sin A cos B =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0.所以tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =21tan B +3tan B ≤223=33,当且仅当1tan B =3tan B ,即tan B =33时,tan(A -B )取得最大值,所以B =π6. 27.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B的最大值是__________.27.答案 3-22 解析 依题意得a 2+b 2-c 2=-2ab ,则2ab cos C =-2ab ,所以cos C =-22, 所以C =3π4,A =π4-B ,所以sin2A tan 2B =cos2B tan 2B =(1-tan 2B )tan 2B 1+tan 2B .令1+tan 2B =t ,其中t ∈(1,2),则有(1-tan 2B )tan 2B 1+tan 2B=(2-t )(t -1)t =-⎝⎛⎭⎫t +2t +3≤3-22,当且仅当t =2时取等号.故sin 2A tan 2B 的最大值是3-22.28.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 28.答案2+12解析 解法1 因为sin C =2cos A cos B ,所以,sin(A +B )=2cos A cos B ,化简得tan A +tan B=2,cos 2A+cos 2B=cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B =1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1=6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为分母(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B=t (t >0),则cos 2A +cos 2B =4t t 2-8t +32=4t +32t -8≤4232-8=2+12(当且仅当t =42时取等号).解法2 由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A+cos 2B =2dd 2-4d +8=2d +8d -4≤228-4=2+12,当且仅当d =22时等号成立. 解法3 因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin(2C +π4)≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号.29.设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan Ctan A =_____;tan B 的最大值为________. 29.答案 -3 33 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos Acos C,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C=-1+tan C tan A 1tan A -tan C =23-tan C+(-tan C ),因为π2<C <π,所以3-tan C +(-tan C)≥23-tan C×(-tan C)=23(当且仅当tan C=-3时取等号),从而tan B≤223=33,即tan B的最大值为33.30.在锐角△ABC中,角A,B,C的对边分别为a,b,c.若a=2b sin C,则tan A+tan B+tan C的最小值是()A.4B.33C.8D.63 30.答案C解析由a=2b sin C得sin A=2sin B sin C,∴sin(B+C)=sin B cos C+cos B sin C =2sin B sin C,即tan B+tan C=2tan B tan C.又三角形中的三角恒等式tan A+tan B+tan C=tan A tan B tan C,∴tan B tan C=tan Atan A-2,∴tan A tan B tan C=tan A·tan Atan A-2,令tan A-2=t,得tan A tan B tan C=(t+2)2t=t+4t+4≥8,当且仅当t=4t,即t=2,tan A=4 时,取等号.。
专题10 解三角形
[点评] 应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定 理更方便、简捷. 跟踪练习 1: 已知在△ABC 中,a=7,b=3,c=5,求三角形中的最大角及角 C 的正弦值. [解析] ∵a>c>b,∴角 A 为最大角 b2+c2-a2 1 由余弦定理有 cosA= =- , 2bc 2 ∴A=120°,∴sinA= 3 , 2
6+ 2 6- 2 或 A=120°,C=15°,c= . 2 2
2 2
故 A=60°,C=75°,c=
2
方法二:由余弦定理有 b =a +c -2accosB, 即( 2) =( 3) +c -2 3ccos45°, 整理得 c - 6c+1=0,解得 c= 又 cosA=
2 2 2 2
6+ 2 6- 2 或 c= . 2 2
(二)课前自主预习
知识梳理 1. 正弦定理和余弦定理
精锐教育网站:
-1-
精锐教育² 考试研究院
中国领先的个性化教育品牌
2.解三角形的类型 在△ABC 中,已知 a、b 和 A 时,解的情况如下:
3.解三角形的常见类型及解法 在三角形的 6 个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示. 已知条件 一边和两角 (如 a,B,C) 两边和夹角 (如 a,b,C) 三边(a,b,c) 两边和其中一边的对角 (如 a,b,A) 应用定理 正弦定理 余弦定理 正弦定理 余弦定理 正弦定理 余弦定理 一般解法 由 A+B+C=180°,求角 A;由正弦定理求出 b 与 c. 在有解时只有一解 由余弦定理求第三边 c;由正弦定理求出小边所对的角;再由 A +B+C=180°求出另一角. 在有解时只有一解 由余弦定理求出角 A、B;再利用 A+B+C=180°,求出角 C. 在有解时只有一解 由正弦定理求出角 B;由 A+B+C=180°,求出角 C;再利用正 弦定理或余弦定理求 c. 可有两解,一解或无解
解三角形问题常见类型及解法
=
3 3, 14
3
∴B≈21°47′.
即乙船应按东偏北 45°+21°47′=66°47′的角度
以 21 海里/时的速度航行.
3
b
得 b4-6b2+9=0 解得 b= 3 。
五、解三角形的实际应用
[理论阐释] 有关斜三角形的实际问题,其解题的一般步骤是:
(1)准确理解题意,分清已知与所求,尤其要理解应用 题中的有关名词和术语; (2)画出示意图,并将已知条件在图形中标出; (3)分析与所研究问题有关的一个或几个三角形,合理 运用正弦定理和余弦定理求解。
此船不改变航向,继续往南航行,有无触礁的危险?
【解析】船继续向南航行,有无触礁的可能取决于 A 到直线 BC 的距
离是否大于 38 海里。于是我们只要先算出 AC (或 AB )的大小,再
算出 A 到 BC 所在直线的距离,将它与 38 海里比较即可得到答案。
在△ ABC中,BC 30 , B 30 , ACB 135 ,
所以 BC= CD sin∠BDC = s sinβ . sin∠CBD sin(α+β)
在 Rt△ABC 中,
AB=BC·tan∠ACB = s tanθsinβ . sin(α+β)
(二)遇险问题 如图,已知海中一小岛 A 周围 38 海里内有暗礁,一船正
在向南航行,在 B 处测得小岛 A 在船的南偏东 30 ,航 行 30 海里后,在 C 处测得小岛在船的南偏东 45,如果
对于解斜三角形的实际应用问题要理解题意,分清已 知与所求,根据题意画出示意图,抽象或构造出三角形, 明确先用哪个公式定理,先求出哪些量,确定解三角形的 方法,在演算过程中要算法简练、算式工整、计算正确, 还要注意近似计算的要求。对于实际应用问题中的有关名 词、术语要理解清楚,如坡度、俯角、仰角、视角、方向 角、方位角等。
三年高考(2017-2019)理数真题分项版解析——专题10 解三角形(解析版)
专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,cos25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin 4C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=, 故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C +=,可得()cos 60C ︒+=.由于0120C ︒︒<<,所以()sin 602C ︒+=,故()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)()82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos 02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△.因此,△ABC 面积的取值范围是⎝⎭. 【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .【答案】(1(2)5. 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3+. 【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC 的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B -. 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cosA =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-= 【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =. 【解析】(1)由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2)2. 【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =.由正弦定理得sin sin a b A B =⇒7sin A∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2), ∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A =11()2727-+⨯=14.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC 边上的高为2.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化; 第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.【答案】(1)b sin A (2)26.【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A(2)由(1)及a c <,得cos A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =. (2)由题设可得π2CAD ∠=, 所以π6BAD BAC CAD ∠=∠-∠=.故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=.因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A ∠=60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】(1)14;(2)【解析】(1)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ===. (2)因为7a =,所以3737c =⨯=. 由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. (1)根据正弦定理sin sin a cA C=求sin C 的值; (2)根据条件可知7,3,a c ==根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2S bc A =进行求解即可.。
解三角形
形状判断
勾股定理 勾股定理只适用于直角三角形(外国叫“毕达哥拉斯定理”) a ²+ b ²= c ², 其 中 a 和 b 分 别 为 直 角 三 角 形 两 直 角 边 , c 为 斜 边 。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;7,24,25;10,24,26等等。
感谢观看
意义
传统的平面几何学通常只能讨论边与边、边与面积、面积与面积、角与角之间的数量关系,却无法讨论角和 边、角和面积之间的数量关系。如果我们能够讨论角和边之间的数量关系,然后讨论边与面积之间的数量关系, 我们就可以讨论角与面积之间的数量关系。对于角和边之间的定量关系,虽然我们也有诸如“30°的角所对的直 角边为斜边的一半”这样的定理,再用勾股定理也可以求出60°的角所对的直角边为斜边的(根号3)/2倍,但这 些都仅仅是针对“特殊值”加以讨论,从而很难推广到一般性(任意值)的讨论 。
a ²= b ²+ c ²- 2 b c c o s A b ²= a ²+ c ²- 2 a c c o s B c ²= a ²+ b ²- 2 a b c o s C 注:勾股定理其实是余弦定理的一种特殊情况 。
p=(a+b+c)/2(公式里的p为半周长) 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 已知三条中线求面积 方法一:已知三条中线Ma,Mb,Mc, 则S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 ; 方法二:已知三边a,b,c ; 则S= √[p(p-a)(p-b)(p-c)];其中:p=(a+b+c)/2 ;
解三角形答案
解三角形1. 在△ABC中,已知A=75°,B=45°,则AC=.【答案】2【解析】在△ABC中,由正弦定理可知,000sin[180-(7545)]AB+=0sin45AC,即=0sin45AC,解得AC=2.2.已知△ABC中,a=1,b=2,B=45°,则角A等于.30°3.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,bc,则△ABC最小的内角为.【答案】π6【解析】,所以C<B<A,又因为cos C=222-2a b cab+=,所以角C=π6.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a+2c=2b,sin B=2sin C,则cos A=.【答案】【解析】由sinB=sin C,得b=c.又因为a+c=2b,所以a=c,所以cosA=222-2b c abc+222=.5.在△ABC中,已知sinsin sinb a Ba B A+=-,且2sinAsinB=2sin2C,则△ABC的形状为.【答案】直角三角形【解析】由题意知,sinsin sinb a Ba B A+=-=-bb a,所以b2-a2=ab.又2sin Asin B=2sin2C,所以2ab=2c2,所以b2=a2+c2,即△ABC为直角三角形.6. 在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,22a bc-=3,则c=.【答案】4【解析】方法一:由tanA=7tanB ,可得sin cos A A =7sin cos BB ,即sinAcosB=7sinBcosA ,所以sinAcosB+sinBcosA=8sinBcosA ,即sin(A+B)=sinC=8sinBcosA.由正、余弦定理可得c =8b ×222-2b c a bc +,即c 2=4b 2+4c 2-4a 2,又22-a b c =3,所以c 2=4c ,即c =4.方法二:由tanA=7tanB ,得sinAcosB=7sinBcosA ,再由余弦定理可得a ×222-2a c b ac +=7×b ×222-2b c a bc +,解得c 2=4b 2+4c 2-4a 2,以下同方法一.7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cosB=3,sin(A+B)= 9ac求sin A 和c 的值.【解答】在△ABC 中,由得因为A+B+C=π,所以sin C=sin(A+B)= 因为sin C<sin B ,所以C<B ,C 为锐角,所以cos C=,因此sin A=sin(B+C)=sin Bcos C+cos Bsin C=×+×=.由sin aA =sin c C ,可得a =sin sin c A C=9,又acc =1.【点评】本题考查了两角和差的三角函数、正弦定理及函数与方程思想,在正确理解题意的情况下,准确计算是关键.解答本题的一个易错点是忽视对角的范围的讨论,使解答陷入误区.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知222222sin 2sin sin C b a c A C c a b --=---.(1) 求角B 的大小;(2) 设T=sin 2A+sin 2B+sin 2C ,求T 的取值范围.【分析】(1) 观察已知条件中的等式,思路有二,一是左边利用正弦定理角化边,二是右边利用余弦定理边化角.(2) 此种问题往往转化为关于某一个角的三角函数求值域问题.【解答】(1) 在△ABC 中,sin 2sin -sin CA C =222222----b a c c a b =-2cos -2cos ac B ab C =cos cos c B b C =sin cos sin cos C B B C .因为sin C≠0,所以sin Bcos C=2sin Acos B-sin Ccos B ,所以2sin Acos B=sin Bcos C+sin Ccos B=sin(B+C)=sin A.因为sin A ≠0,所以cos B=12. 因为0<B<π,所以角B=π3.(2) T=sin 2A+sin 2B+sin 2C=12(1-cos 2A)+34+12(1-cos 2C) =74-12(cos 2A+cos 2C)=74-14πcos2cos -223A A ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ =74-11cos222A A ⎛⎫⎪⎪⎝⎭ =74-12cosπ23A ⎛⎫+ ⎪⎝⎭. 因为0<A<2π3,所以0<2A<4π3,所以π3<2A+π3<5π3,所以-1≤cos π23A ⎛⎫+ ⎪⎝⎭<12, 所以32<T ≤94,即T ∈3924⎛⎤ ⎥⎝⎦,.9.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos 2cos 2cos A C c aB b--=.(Ⅰ)求sin sin CA的值;(Ⅱ)若1cos ,24B b ==,求ABC ∆的面积S .解:(I )由正弦定理,设,sin sin sin a b ck A B C === 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B ---== 所以cos 2cos 2sin sin .cos sin A C C AB B --=即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=, 所以sin 2sin C A =因此sin 2.sin C A =(II )由sin 2sin CA =得2.c a =由余弦定理22222212cos cos ,2,4144.4b a c ac B B b a a =+-==+-⨯及得4=a解得a=1。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
解三角形练习题和答案
解三角形练习题【1】1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是()A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2.在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -=4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于.5.在△ABC 中,已知边10c =, cos 4cos 3A bB a ==,求边a 、b 的长。
6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小; (2)若3a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x⑴求)(x f 的最大值及此时x 的值;⑵求)(x f 在定义域上的单调递增区间。
2023年中考数学【填空题】讲练必考重点10 解三角形
【填空题】必考重点10 解三角形解三角形是指已知三角形的部分边和角,求出三角形中其他未知的边和角。
通常利用勾股定理、相似三角形的性质或者锐角三角函数的边角关系进行求解,是江苏省各地市中考的必考点,考查形式多样,既有选择题、填空题,也会考查解答题,选择和填空考查时,难度中等或者偏难,综合题考查时难度中等。
接此类题目时,要善于运用勾股定理、相似三角形的对应边成比例的性质求三角形的边长,能够运用锐角三角函数的基本知识进行边角互化,从而解出三角形。
【2022·江苏南通·中考母题】如图,B 为地面上一点,测得B 到树底部C 的距离为10m ,在B 处放置1m 高的测角仪BD ,测得树顶A 的仰角为60︒,则树高AC 为___________m (结果保留根号).【考点分析】本题考查了解直角三角形,解直角三角形的应用—仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.【思路分析】在Rt ADE △中,利用tan 10∠===AE AE ADE DE AE =1m 即为AC 的长.【2022·江苏常州·中考母题】如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠=______.【考点分析】本题考查了锐角三角函数、矩形、等腰三角形形、勾股定理、平行线的性质,解题的关键是构造直角三角形求解.【思路分析】过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD【2022·江苏南通·中考母题】如图,点O 是正方形ABCD 的中心,AB =Rt BEF △中,90,︒∠=BEF EF 过点D ,,BE BF 分别交,AD CD 于点G ,M ,连接,,OE OM EM .若1,tan 3=∠=BG DF ABG ,则OEM △的周长为___________.【考点分析】本题主要考查了正方形的性质,解直角三角形,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形斜边中线的性质以及三角形中位线定理,综合性较强,能够作出合适的辅助线,构造出全等三角形是解题的关键.【思路分析】连接BD ,则BD 过正方形ABCD 的中心点O ,作FH ⊥CD 于点H ,解直角三角形可得BG=AG =13AB ,然后证明△ABG ≌△HFD (AAS ),可得DH =AG =13AB =13CD ,BC =HF ,进而可证△BCM ≌△FHM (AAS ),得到MH =MC =13CD ,BM =FM ,然后根据等腰三角形三线合一求出DF =FM ,则BG =DF =FM =BM =出OM 、EM 和OE 即可解决问题.【2022·江苏无锡·中考母题】△ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F .如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =________°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是________.【考点分析】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.【思路分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC=∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.1.(2022·江苏无锡·模拟预测)如图,在平面直角坐标系中,矩形ABCD 的边4AB =,6BC =,若不改变矩形ABCD A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动,当点A 移动到某一位置时,点C 到点O 的距离有最大值,则此时点A 的横坐标为______ .2.(2022·江苏·阳山中学一模)在Rt ABC △中,90C ∠=︒,有一个锐角为60°,AB =4,若点P 在线段AB上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为______.3.(2022·江苏·无锡市天一实验学校三模)如图,平面内几条线段满足10AB BC ==.AB 、CD 的交点为E ,现测得AD BC ⊥,AD DE =,3tan 4DAE ∠=,则CD 的长度为___________.4.(2022·江苏苏州·二模)如图,在ABC 中,90ACB ∠=︒,5AB =,4BC =.将ABC 绕点A 旋转得AB C ''△,连接B C ',B ′B ,则B CB '△面积的最大值为________.5.(2022·江苏镇江·二模)如图,在等腰直角△ABC 中,90ACB ∠=︒,点D 在△ABC 内部,连接BD 、CD ,将△BDC 绕点C 逆时针旋转90°得到△AEC ,点M 在边AE 上,若=90BDC ∠︒,24AC CD ==,则线段BM 的最小值为______.6.(2022·江苏苏州·一模)如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,2AC =,点P 是边AB 上的一动点.A B C ABC ''△△≌,将A B C ''△绕点C 按逆时针方向旋转,点E 是边A C '的中点,则PE 长度的最小值为______.7.(2022·江苏·宜兴市实验中学二模)如图,在Rt ABC △中,90C ∠=︒,4AC BC ==.矩形DEFG 的顶点D 、E 、F 分别在边BC 、AC 、AB 上,若3tan 4DEC ∠=,则当EC =______时,矩形DEFG 面积的最大值=______.8.(2022·江苏南通·二模)某校航模小组打算制作模型飞机,设计了如图所示的模型飞机机翼图纸,图纸中AB CD ∥,均与水平方向垂直.根据图中数据,机翼外缘CD 的长为______cm .(结果取整数,参考sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)9.(2022·江苏·靖江市教师发展中心二模)如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF △,90D ∠=︒,连接AD ,则AD 的最小值为______.10.(2022·江苏泰州·二模)如图,在等边ABC 外侧作直线AD ,点C 关于直线AD 的对称点为M ,连接CM ,BM .其中BM 交直线AD 于点E .若60120CAD <∠<︒︒,当3BE =,4ME =时,则等边ABC 的边长为______.11.(2022·江苏·无锡市河埒中学二模)如图,已知正方形ABCD 的边长为4,P 是CD 边上的一点,连接BP ,以BP 为一边在正方形内部作45PBQ ∠=︒,过点A 作AE BP ∥,交BQ 的延长线于点E ,则BP BE ⋅=______.12.(2022·江苏宿迁·二模)如图,在ABC 中,21530AC A B =∠=︒∠=︒,,,则ABC 的面积为_______.13.(2022·江苏常州·二模)如图,在Rt ABC 中,90ACB ∠=︒,3sin 5B =.D 是边BC 的中点,点E 在AB 边上,将BDE △沿直线DE 翻折,使点B 落在同一平面内点F 处,线段FD 交边AB 于点G ,若FD AB ⊥时,则AE BE=______.14.(2022·江苏南京·一模)如图Rt △ABC 中,∠BAC =90°,AB =2,AC =4,点P 为BC 上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 的最小值为 _____.15.(2022·江苏常州·模拟预测)如图,正方形ABCD 的边长是3.BP CQ =,连接AQ 、DP 交于点O ,并分别与边CD 、BC 交于点F 、E ,连接AE ,下列到结论:①DF CE =;②2OQ OA OF =⋅;③AOD OECF S S ∆=四边形;④222AO OE BC +=;⑤当1BP =时,1an 136t OAE ∠=,其中正确结论是:__.16.(2022·江苏·无锡市天一实验学校二模)如图,将两块三角板OAB (∠OAB =45°)和三角板OCD (∠OCD =30°)放置在矩形BCEF 中,直角顶点O 重合,点A 、D 在EF 边上,AB =6.(1)若点O 到BC ,则点O 到EF 的距离为_________;(2)若BC =3AD ,则△OCD 外接圆的半径为_________.17.(2022·江苏·苏州草桥中学一模)如图,将Rt ACB 绕斜边AB 的中点O 旋转一定的角度得到Rt FAE ,已知3AC =,2BC =,则cos CAE ∠=________.18.(2022·江苏徐州·二模)如图,在等边三角形ABC 中,2AB =,点D ,E ,F 分别是边BC ,AB ,AC 边上的动点,则DEF 周长的最小值是______.19.(2022·江苏南通·一模)如图,△ABC 中,90ACB ∠=,3sin 5B =,将△ABC 绕顶点C 逆时针旋转,得△DCE ,点D ,点E 分别与点A ,点B 对应,边CE , DE 与边AB 相交,交点分别为点F ,点G ,若32AF BF =,则EG BC的值为_________.20.(2022·江苏无锡·一模)如图,在四边形ABCD 中,AD CD ==6CB AB ==,90BAD BCD ∠=∠=︒,点E 在对角线BD 上运动,⊙O 为△DCE 的外接圆,当⊙O 与AD 相切时,⊙O 的半径为__________;当⊙O 与四边形ABCD 的其它边相切时,其半径为__________.21.(2022·江苏无锡·一模)如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是BC 的中点,连接AD ,过点C 作CF ⊥AD 交AB 于F ,则△ABD 的面积为______,BF =______.22.(2022·江苏无锡·一模)一个含30度角的三角板和一个含45度角的三角板按如图所示的方式拼接在一起,经测量发现,AC =CE AB 中点O ,连接OF .∠FCE 在∠ACB 内部绕点C 任意转动(包括边界),则CE 在运动过程中扫过的面积为____;在旋转过程中,线段OF 的长度最小时,两块三角板重叠部分的周长为____.23.(2022·江苏·靖江市实验学校一模)在△ABC 中,∠BAC =120°,D 为BC 的中点,AE =6,把AD 绕点A 逆时针旋转120°,得到AF ,若CF =7,∠ACF =∠AEC ,则AC =________.24.(2022·江苏连云港·一模)如图,在矩形ABCD 和Rt BEF △中,6,5,4AB BC BE BF ====,将BEF △绕着点B 顺时针旋转,连接,CE AF ,当BCE ∠最大时,ABF △的面积为___________.25.(2022·江苏·常州市武进区前黄实验学校一模)如图,矩形ABCD中,3AB=,4BC=,点E是矩形ABCD对角线AC上的动点,连接DE,过点E作EF DE⊥交BC所在直线与点F,以DE、EF为边作矩形DEFG,当92DEFGS=矩形时,则AE长为______.【填空题】必考重点10 解三角形解三角形是指已知三角形的部分边和角,求出三角形中其他未知的边和角。
解三角形经典例题及解答
正弦、余弦定理知识回顾:1、直角三角形中,角与边的等式关系:在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义,有sin a A c=,sin b B c=,又s i n 1c C c==,从而在直角三角形ABC 中,sin sin sin a b cA B C==. 2、当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c bC B=, 从而sin sin a bA B =sin c C=. 3、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即sin sin a bA B =sin c C=. 4、理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B=,sin a A =sin c C . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 5、知识拓展sin sin a b A B =2sin cR C==,其中2R 为外接圆直径. 6、勾股定理:7、余弦定理:三角形中 平方等于 减去 的两倍,即=2a ;=2b ;=2c 。
8、余弦定理的推论:=A cos ;=B cos ; =C cos 。
9、在,反之成立;则中,若,222c b aABC +<∆ 典型例题:例1、在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.例2、(1)在△ABC 中,已知1 求cosB.(2)在△ABC 中,已知a=、B=1500求b.(3)在△ABC 中,已知a=8, b=B=300求c.例3、在C A a c B b ABC ,,1,60,30和求中,===∆解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b ∴222=+=c b a例4、C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=a Ac C C c A a1360sin 75sin 6sin sin ,75600+=====∴CBc b B C 时,当, 例5、 在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 证明:将ac b c a B 2cos 222-+=,bca cb A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-=22a b a bab b a-==-=左边,∴)cos cos (aA bB c a b b a -=- 例6、 在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++例7、 在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin CB AC B A =++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
(十)解三角形
【命题解读】
考向1:利用正、余弦定理解三角形(知三求二)
分析定位:根据三角形中已知的边和角,
利用三角函数的诱导公式以及同角、和差角、二倍角公式进行必要的转化,恰当选择正、余弦定理求出未知的边和角,要充分理解和掌握正、余弦定理的公式结构及使用的条件.
例1(2008年海南宁厦卷第17题)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =︒∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CBE ∠的值;
(Ⅱ)求AE .
分析:从所求结论出发,利用分析法,分别 找出不同三角形内的边角关系.
解:(Ⅰ)因为9060150BCD =︒+︒=
︒∠,CB AC CD ==, 所以15
CBE =︒∠
,cos cos(4530)CBE =︒-︒=
∠
(Ⅱ)在ABE △中,2AB =,由正弦定理
2sin(4515)sin(9015)
AE =︒-︒︒+︒.
故2sin 30cos15AE ︒
=
︒
12⨯
=
=
总结:若题目中没有图形,则应根据题意画出图形,并借助图形分析解题,主要考查考生数形结合以及运算求解能力.
考向2:利用边角互化求解边与角的取值范围(大多数是边化角,转化成三角函数进行求解) 分析定位:正、余弦定理能巧妙地实现边与角的互化,从而转化成某个内角的三角函数或方程,解题中需要注意各种条件对角的取值范围的限制,如锐角、钝角、最小角等. 例2(2015年全国Ⅰ卷第17题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,
2sin 2sin sin B A C =.
(Ⅰ)若a b =,求cos B ;
(Ⅱ)若90B =︒
,且a = 求ABC ∆的面积. 分析:从条件出发,利用正弦定理进行角化边.
解:(Ⅰ)因为2sin 2sin sin B A C =,根据正弦定理得ac b 22
=,
又因为a b =,所以c b 2=,即4
1
42cos 22222==-+=
c c ac b c a B . (Ⅱ)因为90B =︒
,且a =
,所以222b c =+,
而由(Ⅰ)得ac b 22
=,所以02222
=+-c c ,解得2=c ,
所以ABC ∆的面积为
12
1
=ac . 总结:考生必须熟练掌握正、余弦定理及其应用,主要考查考生的运算求解能力. 【备考启示】
解三角形的题目常考常新,命题素材丰富,其主要解题思路是“先画图后求解”,这是解三角形的本质,而“正、余弦定理,三角形面积公式,平面几何中的重要定理,三角函数公式”等只是三角形中边角关系代数化的工具,开启了用代数方法研究三角形问题的新思路,最终要解决的是三角形的角度、边长、面积等问题.
当其在第17题出现时,已成为解答题能否取得较高分数的分水岭,与广东卷的三角题相比,全国卷更突出思维含量,减少运算量.对恒等变形、逻辑推理、数据处理以及遇到障碍时绕过障碍重新选择思路等方面的能力要求较高,同时还有函数与方程思想,考生的个性心理品质的考查.如:
2010年全国卷第16题:在ABC ∆中,D 为BC 边上一点,3BC BD =
,AD =
135ADB ∠=︒
,若AC =,则BD = .
分析:先根据题意把图画出来,然后在不同三角形来求解. 设x BD =,则x CD 2=, 在ABD ∆中,x x AB 222
2
++=, 在ACD ∆中,x x AC 4242
2
-+=,
由AC =
,得222AB AC =,整理得0142=--x x ,解得25+=x .
为此,考生备考时,要增强以下两方面能力,
(1)图形分析能力,特别是四边形要分割成三角形时,要明白怎么分割或怎么构造,
A
B
C
D
在哪个三角形内进行解决;
(2)正、余弦定理运用能力,多角度观察和理解正、余弦定理.如:
2016年全国Ⅱ卷第15题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若
4cos 5A =
,5cos 13
C =,1a =,则b = . 此题其实是已知两角及一角对边,求另一边,但这两角并没有直接给出,也不是特
殊角,因此,要先求出A sin 、C sin ,然后再用正弦定理进行求解. 【十年真题】
(A )组
1.(2013年全国Ⅱ卷第4题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,
π6B =
,π
4
C =,则ABC ∆的面积为
(A )2 (B 1 (C )2 (D 1
2.(2016年全国Ⅰ卷第4题)ABC ∆的内角A ,B ,
C 的对边分别为a ,b ,c .已知a =, 2c =,2
cos 3
A =
,则b =
(A (B (C )2 (D )3 3.(2016年全国Ⅲ卷第9题)在ABC ∆中,π
4
B =
,BC 边上的高等于BC 31,则=A sin
(A )
103 (B )1010 (C )5
5
(D )10103 4.(2013年全国Ⅰ卷第10题)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,
223cos cos 20A A +=,7a =,6c =,则b =
(A )10
(B )9 (C )8
(D )5
5.(2011年全国卷第15题)ABC ∆中,120B =︒,7AC =,5AB =,则ABC ∆的面积 为_________.
6.(2016年全国Ⅱ卷第15题)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若
4cos 5A =
,5cos 13
C =,1a =,则b = . 7.(2017年全国Ⅰ卷第11题)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知
sin sin (sin cos )0B A C C +-=
,a =2,c C =
B
(A )
π12
(B )
π6
(C )
π4
(D )
π3
8.(2017年全国Ⅱ卷第16题)△ABC 的内角A,B,C 的对边分别为a,b,c,若A c C a B b cos cos cos 2+=,则B= .
9.(2017年全国Ⅲ卷第15题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,
c.已知C =60°,b c =3,则A =_________.
10.(2007年海南宁厦卷第17题)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .
11.(2008年海南宁厦卷第17题)如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =︒∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CBE ∠的值;
(Ⅱ)求AE .
12.(2009年全国卷第17题)如图,为了解某海域海底构造,在海平面内一条直线上的,,A B C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求DEF ∠的余弦值.
13.(2012年全国卷第17题)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,
A c C a c cos sin 3-=.
(Ⅰ)求A ;
(Ⅱ)若2a =,ABC ∆,b c .
14.(2013年全国Ⅱ卷第17题)四边形ABCD 的内角A 与C 互补,
2,3,1====DA CD BC AB .
(Ⅰ)求C 和BD ;
(Ⅱ)求四边形ABCD 的面积.
15.(2015年全国Ⅰ卷第17题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,
2sin 2sin sin B A C =.
(Ⅰ)若a b =,求cos B ;
(Ⅱ)若90B =︒,且a = 求ABC ∆的面积.
16.(2015年全国Ⅱ卷第17题)
ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,2BD DC =. (Ⅰ)求
sin sin B C
∠∠ ;
(Ⅱ)若60BAC ∠=︒,求B ∠.
(B )组
17.(2010年全国卷第16题)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,
135ADB ∠=︒,若AC =,则BD = .
18.(2014年全国Ⅰ卷第16题)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角
60MAN ∠=︒,C 点的仰角45CAB ∠=︒
以及75MAC ∠=︒,从C 点测得
60MCA ∠=︒.已知山高100BC m =,则
山高MN m.。