解三角形中两解的情况
高中数学必修五第一章《解三角形》知识点知识讲解
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
解三角形方法大全
(Ⅰ)求A的大小;(Ⅱ)求 的最大值
.
(天津·17)在△ABC中,BC= ,AC=3,sinC=2sinA.( I )求AB的值;( II )求 的值。
(安徽·16)在△ABC中,sin(C-A)=1 , sinB= . I )求sinA的值;( II )设AC= ,求△ABC的面积。
3.如上图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南 的方向上,行驶5km后到达B处,测得此山顶在东偏南 的方向上,仰角为 ,求此山的高度CD.
4. (2009·辽宁卷·17)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离。(计算结果精确到0.01km, 1.414, 2.449)
且
(1)求 的大小;(2)求 的最大值
【例】在 中,角 的对边分别为 ,,
(1)求 的大小;(2)求 的范围
【例】(11全国2)设 的内角 的对边分别为 ,已知 ,
,求
【11江西文】在 中,角 的对边分别是 ,已知
(1)求 的值;(2)若 , ,求边 的值
解三角形
正余弦定理的应用:
1.正弦定理适用于有两个角存在的情况,下图是“边边角”的情况:(a<bsinA无解)
余弦定理: , 其变式为:
2.余弦定理及其变式可用来解决以下两类三角形问题:
(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;
高中数学-解三角形知识点汇总情况及典型例题1.docx
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
高中数学-解三角形知识点汇总情况及典型例题1
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
解直角三角形
解直角三角形直角三角形是指其中一个内角为90度的三角形。
解直角三角形,就是通过已知的信息,求取直角三角形的各边长或者角度的过程。
下面将介绍两种解直角三角形的常用方法:勾股定理和三角函数。
一、勾股定理勾股定理是解直角三角形最基本的方法之一。
它表明,直角三角形的斜边长度的平方等于另外两边长度的平方之和。
设直角三角形的两个边长分别为a和b,斜边长为c,则有勾股定理的表达式为:c² = a² + b²利用勾股定理可以解决以下两种问题:1. 已知两条边的长度,求解第三条边的长度:若直角三角形的两条边分别为3cm和4cm,求解斜边的长度c。
根据勾股定理的表达式可得:c² = 3² + 4²c² = 9 + 16c² = 25c = √25c = 5所以,斜边的长度为5cm。
2. 已知一条边的长度和斜边的长度,求解另一条边的长度:若直角三角形的斜边长度为5cm,一条边的长度为3cm,求解另一条边的长度b。
根据勾股定理的表达式可得:5² = 3² + b²25 = 9 + b²16 = b²b = √16b = 4所以,另一条边的长度为4cm。
二、三角函数除了勾股定理外,三角函数也是解直角三角形的重要方法。
在直角三角形中,正弦、余弦和正切是最常用的三角函数。
下面以解决两个常见的问题为例介绍三角函数的运用。
1. 已知一条边的长度和夹角,求解另一条边的长度:若直角三角形的一条边长为6cm,夹角为30°,求解另一条边的长度a。
根据正弦函数的定义可得:sin(30°) = a / 6a = 6 * sin(30°)a ≈ 3所以,另一条边的长度约为3cm。
2. 已知两条边的长度,求解夹角的大小:若直角三角形的两条边分别为4cm和7cm,求解夹角θ。
根据正弦函数的定义可得:sin(θ) = 4 / 7θ = arcsin(4 / 7)通过计算可得,θ约为42.48°。
解三角形中的多解问题
解三角形中的多解问题解三角形中的多解问题是几何学中一个重要的概念。
在传统的平面几何中,一个三角形的三个角度和三条边是唯一确定的,也即三个已知量可以唯一确定一个三角形。
然而,在某些情况下,给定的条件并不能唯一确定一个三角形,而是存在多个可能的解,这就是多解问题。
多解问题主要存在于两种情况下:一是给定的条件不足以唯一确定一个三角形,二是在解三角形时引入了非唯一解的假设或方法。
这两种情况下,都需要我们进一步分析和探讨,以便获得准确的解答。
首先,让我们探讨第一种情况,即给定的条件不足以唯一确定一个三角形的情况。
一个明显的例子是只给出了三个角度,而未给出任何边长的情况。
根据三角形内角和定理,三角形的三个内角之和始终为180度。
因此,如果我们知道三个角度分别是60度、60度和60度,我们可以确定这是一个等边三角形。
然而,如果我们只知道三个角度分别是60度、60度和120度,由于存在多个三角形可以满足这三个角度,我们就无法唯一确定一个三角形。
在第二种情况下,我们会引入非唯一解的假设或方法来解三角形。
一个典型的例子是使用正弦定理来解直角三角形。
正弦定理表明,在一个任意的三角形ABC中,边长a、b、c和其相对应的角A、B、C之间满足以下关系:a/sin(A) = b/sin(B) = c/sin(C)在一个直角三角形中,我们可以使用正弦定理来解决未知的边长或角度。
然而,在这种情况下,我们通常会得到两个可能的解。
例如,如果我们知道一个直角三角形的两个边长分别为3和4,我们可以使用正弦定理求解第三个边长。
根据正弦定理,我们有:3/sin(A) = 4/sin(90°) = 5/sin(B)通过求解这个方程,我们得到两个可能的解:角A可以是30度或150度,角B可以是60度或120度。
这就是多解问题在解直角三角形时的一个常见情况。
除了上述两种情况,多解问题还可以出现在其他几何学问题中,例如解二次曲线与直线的交点或解三维几何体的重心等。
解三角形题型分类讲解
解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边夹一角).6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). (3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.(4)2sin 2cos ,2cos 2sinCB AC B A =+=+. 二、典型例题题型1、计算问题(边角互换)例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。
重点突破:判断三角形解的个数问题
0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个
)
)
C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a
解三角形最全知识点总结
解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。
高中数学解三角形解题方法
高中数学解三角形解题方法高中数学解三角形的开放型题型的解法研究也是很重要的只有解决了解三角形的难题,数学成绩才会整体上升,高考成绩也会有所提高。
下面是小编为大家整理的关于高中数学解三角形解题方法,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学解三角形解题方法解三角形,要求记忆三角函数公式,不仅要熟练记忆,牢牢掌握解三角形的解题技巧,还要能够将已经掌握的知识灵活运用。
开放型题型更是需要结合题目要求开拓新思路,以一个全新的思考方式去思考解决问题,这也就是开放型题型的新颖之处,也是开放型题型的难点。
一般开放型题型在题目阅读中增加了难度,相应来说,解题的难度就会减少,那么只要能够读懂题目,了解题目要求,理清楚解题的思路就可以轻松的完成三角函数题目的解答。
但是对于高中生来说对于解三角形函数的了解已经很深入了,只是高中生一般就掌握了解三角形的基本解题思路,对照相应的题型进行练习解答,这么一来,高中生也就变成了解题机器,只会一种思路,一种思考方式,不会变通,如果在这时候遇到了开放型题型,就会完全傻了眼。
这时候,在大形势趋向于开放型题型,高中生只能在自己掌握的知识基础上,多练练开放型题型,运用自己了解的三角函数知识根据开放型题型的题目要求去解答问题。
高中生对于三角函数的知识已经掌握的很熟练了,只是对于这些开放型题型就是缺少练习,多找一些开放型题型来练习,增加高中生对开放型题型题目的理解程度,因为题目要求难度增加,对应的解题难度就会减少,这样一来只要能够多练习开放型题型,熟练掌握解题思路,能够读懂题目要求,就会很简单的解答这方面的问题。
2高中数学解三角形的技巧正弦定理●教学目标。
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
解三角形两个解的条件
解三角形两个解的条件在解三角形这个奇妙的数学世界里呀,有一种情况特别有趣,那就是三角形有两个解的时候。
这就像是你走在一个有两条岔路的小路上,两条路好像都能通向某个地方,但又不太确定到底哪条路才是你真正要走的。
咱们先来说说解三角形的基本情况吧。
解三角形就是根据三角形的一些已知条件,比如边和角的大小,去求出其他未知的边和角。
通常呢,我们会用到正弦定理和余弦定理这些厉害的工具。
正弦定理就像是一把万能钥匙,在很多情况下都能帮我们打开解三角形的大门。
那什么时候会出现两个解呢?这可就有点微妙了。
当我们已知两边和其中一边的对角时,就有可能出现两个解的情况。
这就好比你知道从一个地方到另一个地方有两条路的长度,还知道其中一条路和某个方向的夹角,这时候可能就有两种走法能到达目的地。
比如说,我们有一个三角形,已知边\(a\)、边\(b\)和角\(A\)。
如果\(a\lt b\),而且\(a\gt b\sin A\),这时候三角形就会有两个解。
这怎么理解呢?就像是你手里拿着两根不一样长的棍子\(a\)和\(b\),你知道其中一根棍子\(a\)和某个方向的夹角\(A\),如果短的那根棍子\(a\)比长棍子\(b\)乘以\(\sin A\)这个数值要大,那就有两种搭法能组成三角形,就像搭积木一样。
咱们可以再深入一点看看这个情况。
如果\(a = b\sin A\)呢,这时候三角形就只有一个解,就像是你只能走一条路,没有其他选择。
这就好像你拿着两根棍子,短棍子\(a\)刚好等于长棍子\(b\)乘以\(\sin A\),那你只能按照一种方式把它们组合起来。
要是\(a\lt b\sin A\)呢,这就糟糕了,三角形根本就不存在,就像你想搭一个东西,但是材料根本就不够,怎么搭都搭不起来呀。
那在实际解题的时候怎么判断有没有两个解呢?这就需要我们非常细心啦。
我们要先把已知的边和角按照正弦定理列出来,然后再根据边和角的大小关系去判断。
可不能马虎哦,就像走在岔路口,得仔细看看路标一样。
中考数学复习《解直角三角形》 知识讲解
《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
解三角形判断有几个解
解三角形判断有几个解解三角形判断有几个解:a小于b,sinA无解;a小于等于b,无解;a=b,sinA一解;a大于b,一解;其余的两解。
已知条件:一边和两角一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。
已知条件:两边和夹角一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。
已知条件:三边一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。
已知条件:两边和其中一边的对角一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。
(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;②若b>a,且b>a>bsinA有两解;③若a<bsinA则无解。
正弦定理a/sinA=b/sinB=c/sinC=2R2R在同一个三角形中是恒量,R是此三角形外接圆的半径。
变形公式1a=2RsinA,b=2RsinB,c=2RsinC2sinA:3asinB=bsinA,asinC=csinA,bsinC=csinB4sinA=a/2R,sinB=b/2R,sinC=c/2R面积公式5S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h原始公式余弦定理a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC注:勾股定理其实是余弦定理的一种特殊情况。
变形公式cosC=a2+b2-c2/2abcosB=a2+c2-b2/2accosA=c2+b2-a2/2bc感谢您的阅读,祝您生活愉快。
解三角形中两解的情况教学总结
解三角形中两解的情况教学总结三角形中两解的情况是指一个三角形有两组不同的解,即可以构成两个不同的三角形。
首先,我们需要明确三角形的边与角的关系。
根据三角形的定义,三角形是由三条边组成的,并且任意两边之和大于第三边。
此外,三角形的内角和为180度。
接下来,我们将讨论三角形中两解的情况,并给出一些解题的方法和步骤。
1.解题方法:-使用余弦定理-使用正弦定理-使用辅助线2.使用余弦定理:余弦定理是解决三角形中两解的常用方法,可以帮助我们找到两组满足条件的角度值。
a² = b² + c² - 2bc*cosAb² = a² + c² - 2ac*cosBc² = a² + b² - 2ab*cosC首先,我们要给出一个已知条件,例如给定两边和一个角度;然后,使用余弦定理计算第三边的长度;最后,使用正弦函数计算另一个角度。
3.使用正弦定理:正弦定理也可以帮助我们找到两组满足条件的角度值。
a/sinA = b/sinB = c/sinC根据已知条件,可以计算出一个角的正弦值,然后使用反正弦函数计算角的度数。
最后,使用三角形的内角和为180度的性质,计算出另一个角的度数。
4.使用辅助线:在一些情况下,我们可以通过引入辅助线来解决三角形中两解的问题。
例如,当我们有一个已知条件,例如两条边和一个角的度数,并且可以通过引入一个辅助线将这个已知条件转化为已知两边和一个角的情况,我们就可以使用余弦定理或正弦定理来计算另一个角度的解。
5.教学总结:-理解三角形的定义和基本性质是解决三角形中两解问题的基础。
-熟练掌握余弦定理和正弦定理的应用,能够根据已知条件计算出三角形的边和角度。
-灵活运用辅助线,将已知条件转化为已知两边和一个角的情况,从而解决三角形中两解的问题。
-在解题过程中,要注意根据实际情况判断是使用余弦定理还是正弦定理,或者使用辅助线来解决问题。
人教课标版高中数学必修5《解三角形》章末总结
人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr (S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A>90° A=90° A<90° a>b 一解 一解 一解 a=b无解 无解 一解a<ba>bsinA 两解 无解 无解 a=bsinA 一解a<bsinA无解9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1..(2011江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c例2..(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==。
解三角形(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)
考向22 解三角形【2022·全国·高考真题(理)】记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.【2022·全国·高考真题】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值.解答三角高考题的策略:(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”. (2)寻找联系:运用相关公式,找出差异之间的内在联系. (3)合理转化:选择恰当的公式,促使差异的转化.两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,利用正弦定理解三角形时可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角”定理及几何作图来帮助理解.1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b >a b ≤解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”; (4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C π++=.1.基本定理公式(1)正余弦定理:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理公式==2sin sin sinCa b c R A B = 2222cos a b c bc A =+-;2222cosB b c a ac =+-; 2222cosC c a b ab =+-.常见变形(1)2sin a R A =,2sinB b R =,2sinC c R =;(2)sin 2a A R =,sinB 2b R =,sinC 2cR =;222cosA 2b c a bc +-=; 222cosB 2c a b ac +-=; 222cosC 2a b c ab+-=.111sin sin sin 222S ABC ab C bc A ac B ∆===1()42abc S ABC a b c r R ∆==++⋅(r 是三角形内切圆的半径,并可由此计算R ,r .) 2.相关应用 (1)正弦定理的应用①边化角,角化边::sin :sin :sin a b c A B C ⇔= ②大边对大角大角对大边sin sin cos cos a b A B A B A B >⇔>⇔>⇔<③合分比:b 2sin sin sin sin sin sin sin sin sin sin sin B sin a bc a b b c a c a cR A B C A B B C A C A C+++++=======+++++(2)ABC △内角和定理:A B C π++=①sin sin()sin cos cos sin C A B A B A B =+=+cos cos c a B b A ⇔=+ 同理有:cos cos a b C c B =+,cos cos b c A a C =+. ②cos cos()cos cos sinAsinB C A B A B -=+=-; ③斜三角形中,tan tan tan tan()1tan tan A BC A B A B+-=+=-⋅tan tan tanC tan tan tanC A B A B ⇔++=⋅⋅④sin()cos 22A B C +=;cos()sin 22A B C+= ⑤在ABC ∆中,内角A B C ,,成等差数列2,33B AC ππ⇔=+=. 3.实际应用 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角:相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). ②北偏西α,即由指北方向逆时针旋转α到达目标方向. ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比.1.(2022·青海·模拟预测(理))在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b kab +=,则△ABC 的面积为22c 时,k 的最大值是( )A .2B .5C .4D .252.(2022·全国·高三专题练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形3.(2022·青海·海东市第一中学模拟预测(理))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,222sin 3sin 2sin A B a C +=,则cos C 的最小值为______.4.(2022·上海·位育中学模拟预测)如图所示,在一条海防警戒线上的点、、A B C 处各有一个水声监测点,B C 、两点到点A 的距离分别为 20 千米和 50 千米.某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A C 、同时接收到该声波信号,已知声波在水中的传播速度是 1.5 千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B C 、到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线AC 的距离.(结果精确到 0.01 千米).5.(2022·全国·模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2cos tan sin C AB C-=,a b <. (1)求角B ;(2)若3a =,7b =,D 为AC 边的中点,求BCD △的面积.6.(2022·河南省杞县高中模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+. (1)求角A 的大小;(2)若23a =,6b c +=,求ABC 的面积.7.(2022·全国·高三专题练习)在ABC 中,内角,,A B C 对应的边分别为,,a b c ,6AB AC ⋅=,向量()cos ,sin s A A =与向量()4,3t =-互相垂直. (1)求ABC 的面积; (2)若7b c +=,求a 的值.1.(2022·全国·高三专题练习)已知在ABC 中,30,2,1B a b ===,则A 等于( )A .45B .135C .45或135D .1202.(2022·河南·南阳中学模拟预测(文))ABC 中,若5,6AB AC BC ===,点E 满足21155CE CA CB =+,直线CE 与直线AB 相交于点D ,则CD 的长( ) A 810B 15C 10D 303.(2022·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若2222a b c bc -=且cos sin =b C a B ,则ABC 是( )A .等腰直角三角形B .等边三角形C .等腰三角形D .直角三角形4.(2022·四川省宜宾市第四中学校模拟预测(文))如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .6B .406C .20(13)+海里D .40海里5.(多选题)(2022·福建·福州三中高三阶段练习)ABC 中,角,,A B C 的对边分别为,,a b c ,且2,sin 2sin a B C ==,以下四个命题中正确的是( ) A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .M 是BC 中点,MA MB ⋅的最大值为3D .当2A C =时,ABC 236.(多选题)(2022·广东·华南师大附中三模)已知圆锥的顶点为P ,母线长为2,底面圆直径为3A ,B ,C 为底面圆周上的三个不同的动点,M 为母线PC 上一点,则下列说法正确的是( )A .当A ,B 为底面圆直径的两个端点时,120APB ∠=︒ B .△P AB 3C .当△P AB 面积最大值时,三棱锥C -P AB 62+D .当AB 为直径且C 为弧AB 的中点时,MA MB +157.(多选题)(2022·河北·沧县中学模拟预测)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( ) A .222<+a b ab B .22++>ab a b C .224++≥a b cD .22++≤a b c 8.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,O 为其外心,220OA OB OC ++=,若2BC =,则OA =________.9.(2022·河北·高三期中)已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,2a b cp ++=,则ABC 的面积()()()S p p a p b p c =---,该公式称作海伦公式,最早由古希腊数学家阿基米德得出.若ABC 的周长为15,()()()sin sin :sin sin :sin sin 4:6:5A B B C C A +++=,则ABC 的面积为___________________.10.(2022·全国·高三专题练习(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2224a b c +=,则tan B 的最大值为______.11.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ; ②测量A ∠、B 、BC ; ③测量C ∠、AC 、BC ; ④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.12.(2022·青海·海东市第一中学模拟预测(理))如图,在平面四边形ABCD 中,已知BC =2,3cos 5BCD ∠=-.(1)若45CBD ∠=︒,求BD 的长; (2)若5cos ACD ∠=AB =4,求AC 的长.13.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)2223S a c b =+-. (1)求角B 的大小;(2)若22a b c =,求sin C .14.(2022·上海浦东新·二模)已知函数()()sin cos f x t x x t R =-∈ (1)若函数()f x 为偶函数,求实数t 的值;(2)当3t =时,在ABC 中(,,A B C 所对的边分别为a 、b 、c ),若()223f A c ==,,且ABC 的面积为23a 的值.15.(2022·全国·高三专题练习)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c+的最小值.16.(2022·青海·海东市第一中学模拟预测(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,221cos 2a b bc ac B -+=.(1)求角A ;(2)若sin 3sin b A B =,求ABC 面积的最大值.17.(2022·上海金山·二模)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知2sin 30b A a -=,且B 为锐角.(1)求角B 的大小;(2)若333c a b =+,证明:ABC 是直角三角形.18.(2022·湖南·湘潭一中高三阶段练习)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)sin (2)sin 2sin a c A c a C b B -+-=. (1)求B ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围.19.(2022·上海黄浦·二模)某公园要建造如图所示的绿地OABC ,OA 、OC 为互相垂直的墙体,已有材料可建成的围栏AB 与BC 的总长度为12米,且BAO BCO ∠=∠.设BAO α∠=(02πα<<).(1)当4AB =,3πα=时,求AC 的长;(结果精确到0.1米)(2)当6AB =时,求OABC 面积S 的最大值及此时α的值.20.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形ABCD 的区域进行绿化,在此绿化区域中,分别以DCB ∠和DAB ∠为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与BD 相切.(1)若437AD =,337AB =,37BD =(长度单位:米),求种植花卉区域的面积; (2)若扇形的半径为10米,圆心角为135︒,则BDA ∠多大时,平行四边形绿地ABCD 占地面积最小?1.(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1B 2C 5D .33.(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,3AM =则AC =___________,cos MAC ∠=___________.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =___________.5.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________. 6.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 7.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,360B =︒,223a c ac +=,则b =________.8.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.9.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A B A B =++. (1)若23C π=,求B ; (2)求222a b c +的最小值.10.(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.11.(2022·北京·高考真题)在ABC 中,sin 23C C =.(1)求C ∠;(2)若6b =,且ABC 的面积为63ABC 的周长.12.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积;(2)若2sin sin A C =b .13.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+14.(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少?(长度精确到0.1m ,面积精确到0.01m²)15.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 22A B C =2b =(I )求a 的值;(II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.16.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.17.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:2c b =;条件②:ABC 的周长为423+; 条件③:ABC 3318.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.。
解三角形中两解的情况
解三角形中两解的情况
三角形是三角形的一个重要概念,它是不可分割的,由三条边和三个内角组成。
解三角形是指对三角形进行全面研究,寻找其所有可能的解决方案。
由于三角形是一个受整体影响的几何体,所以要解三角形,首先要了解三角形的几个基本要素。
这些要素包括其三条边的边缘是什么?三个角的夹角是多少?三角形的内部可以有多种形状?还有,三角形的外部可以有多种形状以及外观等?在掌握了这些基本要素之后,就可以根据量形三角形所提供的数据,用几何公式来求解三角形的边长和角度,以及其他形状特征等情况下,三角形的解决方案有哪些?
一般来说,当外部与内部三角形可以完全由自身提供的数据解决时,一般只有一种可能的解决方案,这种情况下,可以由正方形、长方形和其他几何体的两个角来定义三角形的边长和夹角,因此,可以求得三角形的一种解决方案。
但是当三角形中有两种可能解决方案时,通常需要添加更多的数据。
除了已知数据,还需要使用多三角函数或特定几何公式求解三角形的夹角、面积和三角形内部形状特性。
这样,就可以在考虑了扩展性的情况下求解三角形的两种可能解决方案。
另外,可以将解三角形的问题视为一个具有相同边角的多边形问题。
这样,就可以使用同样的方法解决,即利用多项式公式求解多边形的三角形的两个可能的解决方案。
因此,要解三角形,要知道三角形的基本特性,以及如何实现扩展,并通过多项式公式求解三角形的两种可能解决方案。
解三角形题型分类讲解
解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形 2、正弦定理适用情况: 1已知两角及任一边2已知两边和一边的对角需要判断三角形解的情况 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论 4、余弦定理适用情况: 1已知两边及夹角;2已知三边. 5、常用的三角形面积公式1高底⨯⨯=∆21ABC S ; 2B ca A bc C ab S ABC sin 21sin 21sin 21===∆两边夹一角.6、三角形中常用结论1,,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); 2sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). 3在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.42sin 2cos ,2cos 2sin C B A C B A =+=+.二、典型例题题型1、计算问题边角互换例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。
,则此三角形的解的情况是 A. 有一解 B. 两解 C. 无解 D.有解但个数不确定 例2.在ABC ∆中,分别根据下列条件解三角形,其中有两解的是 A 、7=a ,14=b ,︒=30A ; B 、25=b ,30=c ,︒=150C ; C 、4=b ,5=c ,︒=30B ;D 、6=a ,3=b ,︒=60B ;例3. 在△ABC 中,b sin A <a <b ,则此三角形有 A.一解B .两解C.无解D.不确定例4,在ABC ∆中,a=x, b=2, B=45°,若三角形ABC 有两个解,则x 的取值范围____________.例5.在ABC ∆中有几个?则满足此条件的三角形,45),0(3,a o A b =∠>==λλλ 题型3、判断三角形形状例1 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +⋅-=-⋅+,判断该三角形的形状;答案:等腰三角形或直角三角形例2 △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形例3. △ABC 中,a,b,c 分别为角A,B,C 的对边,若πsin π=πcos π=πcos π,则△ABC 为 A.锐角三角形 B.等腰直角三角形C.等边三角形D.任意三角形例4. 在ABC ∆中,已知3b =2√3πsin π,且cos π=cos π,角A 是锐角,则ABC ∆的形状是_________________.例5. 在ABC ∆中,若sin π=2sin πcos π,且sin π2=sin π2+sin π2, 则ABC ∆的形状是_________________.点拨判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;角化边二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状;边化角题型4、求范围或最值问题例1、在锐角ABC ∆中,BC=1,B=2A,则ππcos π的值等于______,AC 的取值范围为________.例2、在ABC ∆中,∠A 60=︒,BC=3,则ABC ∆的两边AC+AB 的取值范围是____________.例3、在ABC ∆中,∠B 60=︒,AC=√3,,则AB+2BC 的最大值————————. 例4、在ABC ∆中,∠B 60=︒,AC=√3,则ABC ∆的周长的最大值为_________________.例5、△ABC 中,a,b,c 分别为角A,B,C 的对边,且a cos π+12π=π. 1.求角A 的大小2若a=1,求三角形ABC 的周长l 的取值范围. 题型5、面积问题例1、ABC ∆的一个内角为0201,并且三边构成公差为4的等差数列,则ABC ∆的面积为 答案:15√3例2.设在ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且b=3,c=1, △ABC 的面积为2,求cosA 与a 的值;例3:在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==; Ⅰ求sin C 的值;Ⅱ求ABC ∆的面积.例4:C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量π⃗⃗⃗⃗ =(π,√3π)与π⃗⃗⃗⃗ =(cos π,sin π)平行. I 求A ;II 若7a =,2b =求C ∆AB 的面积例5.在ABC ∆中,角A,B,C 所对的边分别为a,b,c 且满足 1求△ABC 的面积;2若c =1,求a 的值.例6.在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=b .Ⅰ求角A 的大小;Ⅱ若a=6,b+c=8,求△ABC 的面积.例7:ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =I 求C ;II 若c ABC △=求ABC △的周长. 题型六、边化角,角化边注意点:①换完第一步观察是否可以约分,能约分先约分②怎么区分边化角还是角化边呢 若两边都是正弦首先考虑角化边,若sin,cos 都存在时首先考虑边化角例1:在△ABC 中,角A,B,C 所对的边分别为a,b,c,且满足csinA=acosC . Ⅰ求角C 的大小;例2在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则错误!的值为_____________.例3 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -错误!a sin C =b sin B .1求B ;2若A =75°,b =2,求a ,c .例4在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. I 证明:sin sin sin A B C =;II 若22265b c a bc +-=,求tan B .例5在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. I 证明:A =2B ;II 若△ABC 的面积2=4a S ,求角A 的大小.例6ABC ∆的内角C B A ,,所对的边分别为c b a ,,. I 若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; II 若c b a ,,成等比数列,求B cos 的最小值. 题型七、三角变换与解三角形的综合问题 例1. 在△ABC 中,AC=6, cos π=45 ,π=π4 (1) 求AB 的长(2) 求cos (π−π6)的值变式练习. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且b sin 2π=πsin π 1,求角C2.若sin (π−π3)=35 ,求sin π的值2. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且tan π=2 ,tan π=3 1.求角A 的大小 2若c=3,求b 的长.题型八、解三角形与平面向量结合例1. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ABC ∆的面积为S, 3ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2π. 1求sin π的值 2若C=π4 ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =16 求b 的值变式练习1.在锐角ABC ∆中,向量m =(cos (π+π3),sin (π+π3)),π=(cos π,sin π),且π⊥π 1.求A-B 的值2.若cos π=35,ππ=8,求ππ的长2. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且m =(π−π,π+π),π=(π−π,π),且π∥π 1求B2若b =√13, cos (π+π6)=3√3926,求a.题型九、以平面图形为背景的解三角形问题例1.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,a =b (sin π+cos π). 1.求∠ABC2若∠A=π2,D 为三角形ABC 外一点,DB=2, DC=1,求四边形ABCD 面积的最大值;变式练习.如图,在平面四边形ABCD 中,DA ⊥AB, DE=1, EC=√7, EA=2,∠ADC =2π3,且∠CBE, ∠BEC,∠BCE 成等差数列. 1求sin ∠πππ 2 求BE 的长4、如图,在梯形ABCD 中,已知A D∥BC,AD=1,BD=2√10,∠πππ=π4,tan ∠ADC=-2,求: 1CD 的长 2三角形BCD 的面积课时达标训练1、在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,1.设ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,求证三角形ABC 是等腰三角形2.设向量S=(2sin π,−√3),π=(cos 2π ,cos π),且π∥π,sin π=13,求sin (π3−π)的值.2、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知a>b,a=5,c=6,sin π=35. 1求b 和sin π的值 2求sin (2π+π4)的值3、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.a =mb cos π,π为常数. 1若m=2,且cos π=√1010,求cos π的值;2若m=4,求tan (π−π)的最大值.4、如图,在梯形ABCD 中,已知A D∥BC,AD=1,BD=2√10,∠πππ=π4,tan ∠ADC=-2,求: 1CD 的长 2三角形BCD 的面积 5、已知函数fx=√32πππ2π−cos π−121求fx 的最小值,并写出取得最小值时自变量x 的取值集合;2设ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且c=√3,π(π)=0,若ππππ=2ππππ,求a,b 的值;6. 在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知2cosB=2c-b. 1若cosA+C=5√314,求cosC 的值;2若b=5,ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−5,求三角形ABC 的面积; 3若O 是三角形ABC 外接圆的圆心,且cos πsin πππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +cos πsin πππ=πππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 求π的值⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ .解三角形基础练习1、满足︒=45A ,6=c ,2=a 的ABC ∆的个数为m ,则m a 为 .2、已知35,5==b a ,︒=30A ,解三角形;3、在ABC ∆中,已知4=a cm ,x b =cm ,︒=60A ,如果利用正弦定理解三角形有两解,则x 的取值范围是A 、4>xB 、40≤<xC 、3384≤≤x D 、3384<<x 4、在ABC ∆中,若),(41222c b a S -+=则角=C . 5、设R 是ABC ∆外接圆的半径,且B b a C A R sin )2()sin (sin 222-=-,试求ABC ∆面积的最大值;6、在ABC ∆中,D 为边BC 上一点,33=BD ,135sin =B ,53cos =∠ADC ,求AD . 7、在ABC ∆中,已知,,a b c 分别为角C B A ,,的对边,若cos cos a Bb A=,试确定ABC ∆形状;8、在ABC ∆中,,,a b c 分别为角C B A ,,的对边,已知cos 2cos 2cos A C c aB b--=1求sin sin C A;2若1cos ,2,4B b ==求ABC ∆的面积;1、在ABC ∆中,若bc a c b c b a 3))((=-+++,且C B A cos sin 2sin =,则ABC ∆是A 、等边三角形B 、钝角三角形C 、直角三角形D 、等腰直角三角形2、ABC ∆中若面积S=)(41222c b a -+则角=C3、清源山是国家级风景名胜区,山顶有一铁塔AB ,在塔顶A 处测得山下水平面上一点C 的俯角为α,在塔底B 处测得点C 的俯角为β,若铁塔的高为h m ,则清源山的高度为 m ; A 、)sin(cos sin βαβα-hB 、)sin(sin cos βαβα-hC 、)sin(sin sin βαβα-hD 、)sin(cos cos βαβα-h4、ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值;5、在ABC ∆中,,,a b c 分别为角A B C 、、的对边,且满足sin cos c A a C = 1求角C 的大小2cos()4A B π-+的最大值,并求取得最大值时角B A ,的大小;正弦定理、余弦定理水平测试题一、选择题1.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2=错误!ac,则角B的值为或错误!或错误!2.已知锐角△ABC的面积为3错误!,BC=4,CA=3,则角C的大小为A.75° B.60° C.45°D.30°3.2010·上海高考若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABCA.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为5.2010·湖南高考在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<b C.a=b D.a与b大小不能确定二、填空题6.△ABC中,a、b、c分别是角A、B、C所对的边,已知a=错误!,b=3,C=30°,则A=7.2010·山东高考在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b=2,sin B+cos B=错误!,则角A的大小为________.8.已知△ABC的三个内角A,B,C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为________.三、解答题9.△ABC中,内角A、B、C的对边长分别为a、b、c.若a2-c2=2b,且sin B =4cos A sin C,求b.10.在△ABC中,已知a2+b2=c2+ab.1求角C的大小;2又若sin A sin B=错误!,判断△ABC的形状.11.2010·浙江高考在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,且S=错误!a2+b2-c2.1求角C的大小;2求sin A+sin B的最大值.12.2015高考新课标2,理17本题满分12分ABC∆中,D是BC上的点,AD平分BAC∠,ABD∆面积是ADC∆面积的2倍.Ⅰ求sinsinBC∠∠;Ⅱ若1AD=,DC=求BD和AC的长.。
高中数学-解三角形知识点汇总及典型例题
解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
三角形有两解的条件公式
三角形有两解的条件公式三角形是初中数学中的重要概念之一,学习三角形不仅可以帮助我们提高数学能力,还可以培养我们的逻辑思维能力。
在三角形的研究中,有一种情况是三角形有两解,这是怎么回事呢?本文将详细介绍三角形有两解的条件公式。
一、什么是三角形有两解?在初中数学中,我们知道,三角形的三边之间有一定的关系,即任意两边之和大于第三边。
如果一个三角形的三边已知,那么我们就可以根据这个关系求出这个三角形的周长和面积。
但是,有时候我们只知道一个三角形的两个角和一条边的长度,这时候我们就需要用到三角形的正弦定理、余弦定理等知识来求出其他的边和角。
但是,当我们用这些公式求解时,有时候会出现一个三角形有两解的情况。
什么是三角形有两解呢?就是说,当我们已知一个三角形的两个角和一条边的长度时,我们用正弦定理、余弦定理等公式计算出的另外两条边的长度可能会有两个不同的值,这时候就会出现一个三角形有两解的情况。
二、三角形有两解的条件公式那么,三角形有两解的条件是什么呢?其实,三角形有两解的条件非常简单,只需要记住一个公式即可。
这个公式就是:sin A / a = sin B / b其中,A和B分别表示已知的两个角,a和b分别表示已知的边长。
也就是说,如果一个三角形的两个角和一条边的长度已知,且满足上述公式,那么这个三角形就有两个解。
三、三角形有两解的证明为什么上述公式可以判断一个三角形是否有两解呢?这里给出一个简单的证明:假设已知一个三角形的两个角A和B以及边a,我们用正弦定理可以求出另外两条边的长度,分别为b1和b2,即:b1 = a * sin B / sin Ab2 = a * sin (180°-A-B) / sin A我们将上述两个式子代入三角形的条件中,得到:a + b1 > b2a + b2 > b1将b1和b2的式子带入上面的不等式中,得到:a + a * sin B / sin A > a * sin (180°-A-B) / sin Aa + a * sin (180°-A-B) / sin A > a * sin B / sin A移项并化简,得到:sin A / a = sin B / b1sin A / a = sin (180°-A-B) / b2也就是说,当sin A / a = sin B / b1时,三角形有两解;当sin A / a = sin (180°-A-B) / b2时,三角形有两解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形中两解的情况
例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;
(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解析:(1)根据三角形内角和定理,
0180()=-+C A B 000180(32.081.8)=-+066.2=;
根据正弦定理,
00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,
sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A (2)根据正弦定理,
sin 28sin40sin 0.8999.20
==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B
①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,
sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,
00000
180()180(40116)24=-+≈-+=C A B ,0
sin 20sin2413().sin sin40==≈a C c cm A
例2 )在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos
25A =,3AB AC ⋅=. (I )求ABC ∆的面积; (II )若6b c +=,求a 的值.
解 (1)因为25cos 25A =,234cos 2cos 1,sin 255
A A A ∴=-==,又由3A
B A
C ⋅= 得cos 3,bc A =5bc ∴=,1sin 22
ABC S bc A ∆∴== (2)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得
2222cos 20a b c bc A =+-=,25a ∴=
例3 .在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .
解:由正弦定理sinA=2
3245sin 3sin =⋅= b B a ,因为B=45°<90°且b<a,所以有两解A=60°
或A=120.
(1)当A=60°时,C=180°-(A+B)=75°, c=2
2645sin 75sin 2sin sin +=⋅= B C b , (2)当A=120°时,C=180°-(A+B)=15 °,c=2
2645sin 15sin 2sin sin -=⋅= B
C b ;
在△ABC 中,a =8,b =7,B =60°,求c .
解 方法1 (用正弦定理) ∵a sin B =8sin60°=43,∴a sin B <b <a .∴本题有两个解.
由正弦定理及sin C =sin(A +60°),得.)
60sin(60sin 7sin 8︒+=︒=A c A ∴sin A =
734,cos A =±71.∴c =︒
︒+60sin )60sin(7A .∴c 1=5,c 2=3. 方法2 (用余弦定理)
由b 2=a 2+c 2-2ac cos B ,得72=82+c 2-2·8c cos60°.
整理得c 2-8c +15=0.解得c 1=5,c 2=3.
在解三角形中涉及到对边对角问题一般用正弦定理,由正弦值定角的原则是大边对大角。
在三角形的6个元素中要知三个(除三角外)才能求解,常见类型及其解法见下表:
3. 三角形解的个数的确定
已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解,两解、无解的情况,这时应结合“三角形中大边对大角”及几何图形帮助理解,此时一般用正弦定理,但也可用余弦定理。
(1)利用正弦定理讨论:若已知 a 、 b 、 A ,由正弦定理sin sin a b A B =得
sin sin b A
B a =。
若sin 1B >,无解;若sinB =1,一解;若sinB<1,两解。
(2)利用余弦定理讨论:已知a 、b 、A ,由余弦定理2222cos a b c bc A =+-,这可
以看作关于c 的一元二次方程。
若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形一解;若方程有两不同正数解,则三角形有两解。
4. 三角形形状的判定方法
判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:2sin a R A =,2223cos a b c ab C +-=等),利用三角变换得出三角形内角之间的关系进行判断。
此时注意一些常见的三角等式所体现的内角关系。
如:sinA =sinB ⇔A =B ; sin
(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A+B =2π
等;二是利用正弦定理、余弦定理,化角为边,如222
sin ,cos 22a b c a A A R bc +-==等,通过代数恒等变换,求出三条边之间的
关系进行判断。
例1. 在△ABC
中,已知45,a b B ===求边c 。
解析:解法1(用正弦定理) a A b B sin sin = ∴==⨯=sin sin sin A a B b 3452
32 又 b a B A A <∴<∴=,,或60120
当A =60°时,C =75° ∴===+c b C B sin sin sin sin 27545622
当A =120°时,C =15°
∴===-c b C B sin sin sin sin 21545622 解法二: b a c ac B 2222=+-cos ∴=+-2323452c c cos
即c c 2
610-+= 解之,得c =±622
(注:可编辑下载,若有不当之处,请指正,谢谢!)。