人教版五年级下册数学知识点

合集下载

最全面人教版数学五年级下册知识点归纳总结

最全面人教版数学五年级下册知识点归纳总结

最全面人教版数学五年级下册知识点归纳总结玉河冰剑制作人教版数学五年级下册复提纲日期:4/25/2022一、图形的变换图形变换的基本方式包括平移、对称和旋转。

1、轴对称轴对称图形是指一个图形沿着一条直线对折后两部分完全重合,这条直线叫做对称轴。

1)学过的轴对称平面图形包括长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等,而任意梯形和平行四边形则不是轴对称图形。

2)圆有无数条对称轴。

3)对称点到对称轴的距离相等。

4)轴对称图形的特征和性质包括对应点到对称轴的距离相等,对应点的连线与对称轴垂直,对称轴两边的图形大小、形状完全相同。

2、旋转旋转是指在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化。

旋转中心定点O,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

1)生活中的旋转包括电风扇、车轮、纸风车等。

2)旋转要明确绕点、角度和方向。

3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质包括图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角,旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意顺时针、逆时针、度数。

二、因数和倍数1、整除整除是指被除数、除数和商都是自然数,并且没有余数。

整数包括自然数。

2、因数、倍数当大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例如,12是6的倍数,6是12的因数。

1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法是成对地按顺序找。

1.一个数的倍数无限,最小的倍数是它本身。

我们可以通过依次乘以自然数来求一个数的倍数。

人教版五年级数学下册中知识点、易错点、易错题汇总

人教版五年级数学下册中知识点、易错点、易错题汇总

;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点。

2、性质:对称点到对称轴的距离相等。

3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。

二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。

2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。

3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。

图形旋转后,形状、大小都没有发生变化,只有位置变了。

4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。

5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2、性质:平移不改变图形的形状和大小。

3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。

(2)找出原图形的各关键点。

(3)根据题目要求将各个点依次平移,找出各个点的对应点。

(4)顺次连接平移后的各点。

◆习题:1、图形的变换包括:、、。

其中只是改变原图形位置的变换是、。

2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。

新课标人教版数学五年级下册知识点归纳总结(全)

新课标人教版数学五年级下册知识点归纳总结(全)

最全面人教版五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。

1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

3、对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

五年级数学人教版知识点

五年级数学人教版知识点

五年级数学人教版知识点一、小数乘法。

1. 小数乘整数。

- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:2.5×3表示3个2.5相加的和是多少。

- 计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的小数部分末尾有0,要根据小数的基本性质把0去掉。

例如:0.72×5,先算72×5 = 360,因数0.72有两位小数,所以从360右边起数出两位点上小数点,结果是3.6。

2. 小数乘小数。

- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。

例如:2.1×0.8表示2.1的十分之八是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

例如:1.2×0.8,先算12×8 = 96,因数1.2有一位小数,0.8有一位小数,共两位小数,从96右边起数出两位点上小数点,结果是0.96。

3. 积的近似数。

- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”法求出近似数。

例如:0.78×1.3 = 1.014,保留一位小数,看百分位数字1,舍去,结果约是1.0。

4. 整数乘法运算定律推广到小数。

- 整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

- 交换律:a× b = b× a,例如:0.25×0.4 = 0.4×0.25。

- 结合律:(a× b)× c=a×(b× c),例如:(0.25×0.4)×0.3 = 0.25×(0.4×0.3)。

- 分配律:a×(b + c)=a× b+a× c,例如:2.5×(0.4 + 0.8)=2.5×0.4+2.5×0.8。

人教版五年级下册数学知识点归纳总结(最新版)

人教版五年级下册数学知识点归纳总结(最新版)

五年级(下)各单元重点知识归纳第二单元:因数与倍数一、因数和倍数(1).因数和倍数的意义:如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。

(2).因数与倍数的关系:因数和倍数是两个不同的概念,但又是一对相互依存的概念,不能单独存在。

(3).找一个数的因数的方法:A.列乘法算式:根据因数的意义,有序地写出两个数的乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因数。

B.列除法算式:用此数除以大于(1)等于(1)而小于等于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。

(4).找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。

二、(2)、((3))、(5)的倍数的特征(1). 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

(2).奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,0也是偶数;不是2的倍数的数叫做奇数。

(3).奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

(4).5的倍数的特征:个位上是0或5的数都是5的倍数.(5).3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

三、质数和合数(1).质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

(2).质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。

(3).分解质因数:把一个合数用质数相乘的形式表示出来,就是分解质因数。

(4).分解质因数的方法:A:“树枝”图式分解法;B:短除法分解。

第三单元:长方体和正方体一、长方体(正方体)的特征(1).长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点(2).正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。

人教版五年级下册数学复习知识要点整理

人教版五年级下册数学复习知识要点整理

一图形的变换1、轴对称:把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(考点,判断一个图形是否是轴对称图形)2、轴对称图形的特点:①对应点在对称轴的两边②对应点到对称轴的距离相等(考点:画对称轴,注意用尺画虚线;画一个图形的轴对称图形,注意根据对应点到对称轴的距离相等,先找对应点,再连线。

例题见书本P4 例2)3、旋转:在平面内,一个图形绕着一个顶点或轴的运动叫做旋转。

(考点:钟面上指针的旋转;画一个图形的旋转后的图形。

注意,找到中心点,看清题意要求顺时针还是逆时针,钟面上一大格是30度,画图时找3、6、9、12时四个时刻的指针方向的边。

例题见书本P5 例3 例4)4、平移:一个图形沿着一条直线的运动称为平移。

二因数和倍数1、3×7=21,3和7是21的因数,21是3和7的倍数,不能说谁是倍数,谁是因数.2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

4、自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。

最小的奇数是1,最小的偶数是0。

任何一个自然数,不是奇数,就是偶数。

5、个位上是0,2,4,6,8的数都是2的倍数.6、个位上是0或5的数,是5的倍数。

7、一个数各位上的数的和是3的倍数,这个数就是3的倍数。

8、个位上是0的数既是2的倍数,又是5的倍数。

9、能同时被2、3、5整除(同时有因数2、3、5)的最小数是30,最大的两位数是90,最小的三位数是120.10、100以内的质数:二三五七和十一,(2、3、5、7、11)十三后面是十七,(13、17)还有十九别忘记,(19)二三九, 三一七,(23、29、31、四一,四三,四十七,(41、43、47)五三九, 六一七, (53、59、61、67)七一,七三,七十九, (71、73、79)八三,八九,九十七。

人教版数学五年级下册知识点归纳总结

人教版数学五年级下册知识点归纳总结
宽、高。(所以,对于同一个物体,体积大于容积。)
【注意】长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
被浸没物体的体积等于
上升那部分水的体积
计算方法
①容器的底面积×上升那部分水的高度。
猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察
到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,
高=棱长总和÷4-长-宽h=L÷4-a-b
正方体的棱长总和=棱长×12L=a×12
正方体的棱长=棱长总和÷12a=L÷12
4、长方体或正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
计量容积一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,
也可以写成L和mL。
1升=1立方分米1毫升=1立方厘米1升=1000毫升
(1 L = 1 dm
31 mL = 1 cm31 L=1000mL)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、
小单位大单位
÷进率

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。

因数和倍数是相互依存的。

例如:38=24,3和8是24的因数,24是3和8的倍数。

2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。

5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。

(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。

6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。

例如:写出30以内4的倍数。

41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。

二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。

2、个位上是0或5的数都是5的倍数。

3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。

4、同时是2、5的倍数的数末尾必须是0。

最小的两位数是10,最大的两位数是90。

同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。

最小的两位数是30,最大的两位数是90。

三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。

如:0、2、4、6、8、10、12、14、16…都是偶数。

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册各单元知识点总结班级。

姓名:第一单元:观察物体1.有几个大小相同的小正方体组成的立体图形,从同一个方向观察,看到的图形可能相同也可能不同。

根据一个方向看到的图形摆立体图形,有多种摆法。

2.从同一个方向观察物体最多只能看到三个面。

几何视图一般是根据三个方向观察到的形状进行绘制。

3.根据两个方向观察到的形状能够确定所用小正方体的个数。

根据三个方向观察到的形状摆小正方体的结果只有一种。

第二单元:因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

因数和倍数是相互依存的,不能单独存在。

2.注意:为了方便,在研究因数和倍数时,我们所说的数指的是自然数(一般不包括0)。

3.找因数的方法:①乘法②除法;找倍数的方法:逐次乘自然数。

4.①一个数的最小因数是1,最大因数是它本身。

一个数的最小倍数是它本身,没有最大的倍数。

②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

一个数的最大因数和最小倍数是相等的,都是它本身。

③1是所有非自然数的因数,也是任一自然数(除0外)的最小因数。

④一个数的因数至少有1个,这个数是1.⑤一个数的因数都小于等于它本身,一个数的倍数都大于等于它本身。

5.因数≤它本身,倍数≥它本身,最大的因数=最小的倍数=它本身。

一个数的倍数一定比它的因数大这种说法是错误的。

一个数越大,它的因数个数就越多;一个数越小,它的因数个数就越少,这种说法也是错误的。

6.2的倍数特征:个位上是2、4、6、8的数都是2的倍数。

自然数中,是2的倍数的数叫做偶数(也是偶数),不是2的倍数的数叫奇数。

7.5的倍数特征:个位上是0或5的数,都是5的倍数。

8.3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

个位上是3、6、9的数都是3的倍数,是错误的说法。

9.2和5的倍数特征:个位上是0的数,既是2的倍数,也是5的倍数(就是10的倍数)。

(完整版)人教版五年级数学下册知识点归纳总结

(完整版)人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。

2、不可能一次看到长方体或正方体相对的面。

注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。

2)站在任意一个位置,最多只能看到长方体的3个面。

3)从不同的位置观察物体,看到的形状可能是不同的。

4)从一个或两个方向看到的图形是不能确定立体图形的形状的。

5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

人教版五年级下册数学 第一单元知识点归纳

人教版五年级下册数学   第一单元知识点归纳

第一单元-观察物体三
1.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置观察最多能看到3个面。

2.正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。

3.观察物体,先要确定观察的方向(上、正、左、右),再确定观察的形状,并把它画下来。

4.摆立体图形时,可根据从正面看到的平面图形摆出底层,再根据从正面看出的摆出前排的图形,然后根据从左面看对后排进行订正,最后从不同方向观察所摆图形是否符合原图形。

5.数正方体的个数时,为了既不遗漏又不重复,可分层数;观察漏在外面的面,应弄清从哪几个方向看到的是什么图形,再计算。

注意点
1.这里所说的正面、左面和上面,都是相对于观察者而言的。

2.站在任意一个位置,最多只能看到长方体的3个面。

3.从不同的位置观察物体,看到的形状可能是不同的。

4.从一个或两个方向看到的图形是不能确定立体图形的形状的。

5.同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6.如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结五年级下册数学重点知识总结第一单元《因数和倍数》因数和倍数的意义:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数数和商的倍数,除数和商是被除数的因数。

(2)如果a×b=c(a、b、c都不为的整数),那么a、b就是c的因数,c就是a、b的倍数。

数与倍数的关系:因数和倍数是相互依存的。

找一个数的因数的方法:用这个数除以1、2、3…..能整除时,所得的商和除数就是这个数的因数。

找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与1、2、3…..相乘,所得积就是这个数的倍数。

一个数倍数的特征:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数因数的特征:因数的个数是有限的,最小的因数是1,最大的因数是它本身。

注:一个数最小倍数和最大因数都是它本身2、3、5的倍数的特征2的倍数的特征:个位上是、2、4、6、8的数都是2的倍数。

5的倍数的特征:个位上是或5的数都是5的倍数.。

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数既是2又是5的倍数的特征:个位上是数都是2、5的倍数.。

同时是2、3、5倍数的特征:(1)个位上是的数,(2)个数各位上的数的和是3的倍数。

按是不是2的倍数可分为:奇数和偶数偶数:是2的倍数的数叫做偶数,(或个位上是、2、4、6、8的数),最小的偶数是。

奇数:不是2的倍数的数叫做奇数。

(或个位上是1、3、5、7、9的数)最小的奇数是1.注:自然数中除了偶数就是奇数。

数的奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

质数和合数按因数的个数把自然数(除外)可分为:质数、1、合数三类质数:一个数,假如只要1和它本身两个因数,如许的数叫做质数(或素数);合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

人教版数学五年级下册:全册知识点归纳

人教版数学五年级下册:全册知识点归纳

人教版数学五年级下册:全册知识点归纳五年级上册知识点概念总结1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。

但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化(1)小数化成分数原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数用分母去除分子。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数先把百分数改写成分数,能约分的要约成最简分数。

小学五年级下册数学主要内容

小学五年级下册数学主要内容

小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全人教版五年级(下册)数学知识点一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同.3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度.旋转只改变物体的位置,不改变物体的形状、大小.二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数.2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找.3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数.4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数.个位上是0或5的数,是5的倍数.一个数各位上的数的和是3的倍数,这个数就是3的倍数.5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数.6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2.一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4.三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点.正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点.2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积.5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6 用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积.8、长方体的体积=长×宽×高用字母表示:V=abh 长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)正方体的体积=棱长×棱长×棱长用字母表示:V= a×a×a9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为100010、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率.12、容积:容器所能容纳物体的体积.13、容积单位:升和毫升(L和ml)1L=1000ml 1L=1000立方厘米1ml=1立方厘米14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高.四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位.3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0).4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.由整数部分和分数部分组成的分数叫做带分数.5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变.把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变.6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质.7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数.8、互质数:公因数只有1的两个数叫做互质数.两个数互质的特殊判断方法:①1和任何大于1的自然数互质.②2和任何奇数都是互质数.③相邻的两个自然数是互质数.④相邻的两个奇数互质.⑤不相同的两个质数互质.⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数.9、最简分数:分子和分母只有公因数1的分数叫做最简分数.10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数.12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数.②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积.14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大.15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数.五、分数的加法和减法1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减.2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算.3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算.六、打电话1、逐个法:所需时间最多;2、分组法:相对节约时间;3、同时进行法:最节约时间.1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数.不能单独说谁是倍数或因数2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的.5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的.6. 个位上是0,2,4,6,8的数,都是2的倍数,也是偶数.7. 自然数中,是2的倍数的数叫做偶数(0也是偶数).不是2的倍数的数叫奇数.8. 个位上是0或者5的数,都是5的倍数.9. 个位是0的数,既是2的倍数,又是5的倍数.10. 一个数各位上的和是3的倍数,这个数就是3的倍数.11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数.1既不是质数,也不是合数.12. 整数按因数的个数来分类:1,质数,合数.整数按是否是2的倍数来分类:奇数,偶数13. 将合数分解成几个质数相乘的形式就叫做分解质因数.分解质因数用短除法,把36分解质因数是14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是12015. 奇数加奇数等于偶数.奇数加偶数等于奇数.偶数加偶数等于偶数.16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b 差的因数.17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴19. 长方体有6个面.每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同).20. 长方体有12条棱,分为三组,相对的4条棱长度相等.21. 长方体有8个顶点.22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高23. 正方体有6个面, 6个面都是正方形,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×425. 正方体棱长之和:棱长×1226. 长方体(正方体)6个面的总面积,叫做它的表面积.27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×228. 正方体表面积=棱长×棱长×629. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m330. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m331. 长方体所含体积单位的数量就是长方体的体积.长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”.34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.例如:表示把单位“1”平均分成7份,表示这样的3份.其中表示一份的数叫做分数单位.35. 米表示(1)把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)(2)把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米36. 当整数除法得不到整数的商时,可以用分数表示除法的商.在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线.(除数不能为0)区别:分数是一种数,除法是一种运算37. 分子比分母小的分数叫真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1.38. 带分数包括整数部分和分数部分.假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变.带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变.39. A是B的几分之几用A÷B40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.这叫做分数的基本性质.41. 几个数公有的因数,叫做这几个数的公因数.其中最大的一个叫做这几个数的最大公因数.通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数.42. 如果两个数的公因数只有1,这两个数是互质数.两个连续自然数;两个质数;1和其他自然数一定是互质数.43. 分子和分母只有公因数1的分数叫做最简分数.把一个分数化成和它相等,但分子分母比较小的分数,叫做约分.44. 几个数公有的倍数,叫做这几个数的公倍数.其中最小的一个叫做这几个数的最小公倍数.通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数.45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分.46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数.47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数.48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积.49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数.50. 分数化成小数:用分子除以分母化成小数.小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数.。

五年级数学下册全部内容

五年级数学下册全部内容

五年级数学下册内容包括:
1. 分数乘法:包括分数乘整数、整数乘分数、分子和分母的约分、倒数的认识。

2. 长方体(一):包括长方体的认识、长方体的表面积、长方体的体积。

3. 长方体(二):包括长方体的表面积、体积单位间的进率、容积和容积单位。

4. 小数的乘法:包括小数乘整数、小数乘小数、积的近似数、连乘和乘加。

5. 小数的除法:包括小数除以整数、一个数除以小数、商的近似数、循环小数、连除和除加。

6. 轴对称:包括轴对称图形、画对称轴。

7. 复式折线统计图:包括复式折线统计图的特点、制作复式折线统计图。

8. 数学好玩:包括图形中的规律、探索活动。

9. 总复习:包括数与代数、空间与图形、统计与概率。

具体内容可能会因教材版本和地区而有所不同,请参考相应教材或咨询当地教育机构以获取准确信息。

五年级下册数学 易错知识点及易错题练习解析 人教版

五年级下册数学  易错知识点及易错题练习解析  人教版

小学数学人教版五年级下册易错知识点及易错题练习解析一、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

2、因数和倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

3、奇数:不能被2整除的数,也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

5、质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

“1”既不是质数,也不是合数。

二、分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个物体、一个计量单位或是一些物体等都可以看作一个整体。

一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4、分数的基本性质分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

(1)几个数的公因数只有1,就说这几个数互质。

(2)求两个数的最大公因数的方法。

(3)最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

7、约分和通分(1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

8、比分数的大小分母相同,分子大,分数就大;分子相同,分母小,分数才大。

三、分数的加减法1、同分母分数加、减法的计算分母不变,分子相加、减。

计算的结果能约分的要约分成最简分数。

2、异分母分数加、减法的计算先通分,然后按照通分母分数加、减法进行计算。

人教版小学生五年级数学知识点总结(8篇)

人教版小学生五年级数学知识点总结(8篇)

人教版小学生五年级数学知识点总结(8篇)还在苦恼没有小学五年级的知识点总结吗?在日常的学习中,是不是听到知识点,就立刻清醒了?知识点就是掌握某个问题/知识的学习要点。

下面是小编给大家整理的人教版小学生五年级数学知识点总结,仅供参考希望能帮助到大家。

人教版小学生五年级数学知识点总结篇11、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2长方形面积=长×宽字母公式:S=ab2、正方形周长=边长×4 字母公式:C=4a正方形面积=边长×边长字母公式:S=a23、平行四边形的面积=底×高字母公式: S=ah4、三角形的面积=底×高÷2 字母公式: S=ah÷2(三角形的'底=面积×2÷高; 三角形的高=面积×2÷底)5、梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底) )注明:求三角形的底或高和梯形的上下底或高时,可根据公式列方程求解。

这样容易列出方程,也好理解。

6、三角形面积公式推导:平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。

平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。

7、两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元图形的变换一、平移物体或图形平移后本身的形状、大小和方向都不会改变。

二、轴对称1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

3、对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形三、旋转1、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。

2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。

第二单元因数和倍数1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、整数与自然数的关系:整数包括自然数。

一、因数和倍数所指的是整数,不包括0。

因为0和任何数相乘都等于0;0除以任何数都等于0。

1、如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、因数和倍数是相互依存的,不能单独存在。

二、因数1、一个数的因数的个数是有限的。

一个数的最小因数是1,最大的因数是它本身。

2、一个数的因数的求法:成对地按顺序找。

三、倍数1、一个数的倍数的个数是无限的。

一个数的最小倍数是它本身,没有最大的倍数。

2、一个数的倍数的求法:依次乘以自然数。

四、2、5、3的倍数的特征1、2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。

2、偶数与奇数:①自然数中,是2的倍数的数叫做偶数(0也是偶数);最小的偶数是0。

②不是2的倍数的数叫做奇数;最小的奇数是1。

3、5的倍数的特征:个位上是0或5的数,都是5的倍数。

4、3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

五、质数和合数1、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),最小的质数是2。

2、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,最小的合数是4。

3、1既不是质数,也不是合数。

4、质数只有两个因数;而合数至少有三个因数。

六、1、按是否是2的倍数来分:分为奇数和偶数两类;自然数分类按因数的个数来分:分为质数、合数和1三类。

2、奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数质数×质数=合数3、100以内的质数表:(共25个)2、3、5、7 11、13、17、19 23、29 31、37 41、43、47 53、59 61、67 71、73、79 83、89 97第三单元 长方体和正方体一、长方体和正方体的认识1、长方体和正方体都是立体图形。

正方体也叫立方体。

2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(长、宽、高都各有4条,分别平行并且相等)3、长方体的特征:① 面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。

相对的面完全相同。

② 棱:有12条棱。

相对的棱长度相等。

③ 顶点:有8个顶点。

4、正方体的特征:① 面:有6个面都是正方形,6个面完全相同。

② 棱:有12条棱。

12条棱的长度相等。

③ 顶点:有8个顶点。

相同点不同点 面 棱 长方体 都有6个面, 12条棱, 8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等 正方体6个面都是正方形。

12条棱都相等。

5、正方体是特殊的长方体。

6、长方体的棱长总和=(长+宽+高)×47、正方体的棱长总和=棱长×12长方体 正方体8、少要8个小正方体才能拼成一个稍大的正方体。

二、长方体和正方体的表面积1、表面积:长方体或正方体6个面的总面积,叫做它的表面积2、长方体的表面积:①长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面。

②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。

3、正方体的表面积正方体的表面积=棱长×棱长×6用字母表示: S= 6a24、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是100 1m2 =100dm2 1 dm2 =100 cm25、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸等都只有5个面;水管、烟囱等都只有4个面。

6、长方体或正方体每截断一次会增加两个截面,所以这时的两个物体的表面积大于原来物体的表面积。

7、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

三、长方体和正方体的体积1、体积:物体所占空间的大小叫做物体的体积。

(就是看物体含有多少个体积单位)2、常用的体积单位有:立方米(m3)、立方分米(dm3)、立方厘米(cm3)①棱长是1 cm的正方体,体积是1 cm3②棱长是1 dm的正方体,体积是1 dm3③棱长是1 m的正方体,体积是1 m3相邻两个体积单位之间的进率是1000 1 m3 =1000 dm3 1 dm3=1000 cm3 3、长方体的体积长方体的体积=长×宽×高用字母表示:V=abh4、正方体的体积正方体的体积=棱长×棱长×棱长用字母表示:V= a3(读作:a的立方,表示3个a相乘)5、底面积: 长方体或正方体底面的面积叫做底面积。

6、长方体和正方体的体积统一公式:长方体或正方体的体积 = 底面积 × 高 用字母表示: V=Sh7、容积: 容器所能容纳物体的体积,叫做它的容积。

8、容积单位有: 升(L )、 毫升(ml ) 1 L = 1000 ml9、容积单位和体积单位的关系: 1 L = 1 dm 3 1 ml = 1 cm 310、容积的计算:长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

(所以物体的体积大于它的容积)。

11、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

12、排水法:(计算不规则物体的体积)13、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

被浸没物体的体积等于上升那部分水的体积① 容器的底面积×上升那部分水的高度。

计算方法 ② 放入物体后的体积—原来水的体积第四单元 分数的意义和性质一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

被除数÷除数 = 除数被除数 用字母表示:a÷b= b a (b≠0)。

4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。

二、真分数和假分数1、真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。

② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③ 由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

三、分数的基本性质1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

四、约分1、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。

3、互质数:公因数只有1的两个数叫做互质数。

4、两个数互质的特殊判断方法:① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③相邻的两个自然数是互质数。

④相邻的两个奇数互质。

⑤不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

5、求最大公因数的方法:①倍数关系:最大公因数就是较小数。

②互质关系:最大公因数就是1③一般关系:从大到小看较小数的因数是否是较大数的因数。

6、最简分数:分子和分母只有公因数1的分数叫做最简分数。

7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)五、通分1、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数。

2、两个数的公倍数和它们的最小公倍数之间的关系:几个数的公倍数是它们最小公倍数的倍数。

3、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(通分时,公分母一般为几个数的最小公倍数)。

4、求最小公倍数的方法:①倍数关系:最小公倍数就是较大数。

②互质关系:最小公倍数就是它们的乘积。

③一般关系:大数翻倍(从小到大看较大数的倍数是否是较小数的倍数)。

5、分数的大小比较:① 同分母分数,分子大的分数就大,分子小的分数就小;② 同分子分数,分母大的分数反而小,分母小的分数反而大。

③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。

6、约分和通分的依据都是分数的基本性质。

六、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……, 去掉小数点作分子,能约分的必须约成最简分数;2、 分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留两位小数。

)3、判断分数是否能化成有限小数的方法:① 判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;② 把分数的分母分解质因数:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数; 如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

4、21= 0.5 5.2041= 5.7043= .2051= .4052= .6053= .8054=25.1081= 75.3083= 25.6085= 75.8087= 625.00161= 4.00251= 2.00501=第五单元 分数的加法和减法一、同分母分数加、减法1、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

相关文档
最新文档