2019—2020数学模拟试卷(可编辑修改word版)

合集下载

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

2019-2020学年长春市中考数学模拟试卷(有标准答案)(word版)

吉林省长春市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.52.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:3.(填“>”、“=”或“<”)10.(3.00分)计算:a2•a3= .11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为.(写出一个即可)12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.吉林省长春市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3.00分)﹣的绝对值是()A.﹣B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)下列立体图形中,主视图是圆的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故 B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3.00分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.(3.00分)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.【点评】此题考查三角形内角和问题,关键是根据三角形内角和、角平分线的定义和平行线的性质解答.6.(3.00分)《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺).故选:B.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.7.(3.00分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3.00分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y 轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A.4 B.2C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.二、填空题(本大题共6小题,每小题3分,共18分)9.(3.00分)比较大小:>3.(填“>”、“=”或“<”)【分析】先求出3=,再比较即可.【解答】解:∵32=9<10,∴>3,故答案为:>.【点评】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.10.(3.00分)计算:a2•a3= a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3.00分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为 2 .(写出一个即可)【分析】由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【解答】解:∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.12.(3.00分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.13.(3.00分)如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE 剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEF D周长的最小值为20 .【分析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【解答】解:当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°.∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20【点评】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.14.(3.00分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y 轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.三、解答题(本大题共10小题,共78分)15.(6.00分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.16.(6.00分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【解答】解:列表如下:A 1A2BA 1(A1,A1)(A2,A1)(B,A1)A 2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为.【点评】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6.00分)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【分析】利用轴对称图形性质,以及全等四边形的定义判断即可.【解答】解:如图所示:【点评】此题考查了作图﹣轴对称变换,以及全等三角形的判定,熟练掌握各自的性质是解本题的关键.18.(7.00分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.19.(7.00分)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【解答】解:(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为=π.【点评】本题考查了切线的性质、圆周角定理、弧长公式等知识点能熟练地运用知识点进行推理和计算是解此题的关键.20.(7.00分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18 ;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【解答】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点评】本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是 1 立方米,从打开输入口到关闭输出口共用的时间为11 分钟.【分析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【解答】解:(1)每分钟向储存罐内注入的水泥量为15÷3=5分钟;(2)设y=kx+b(k≠0)把(3,15)(5.5,25)代入解得∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为 5.5﹣3=2.5立方米,之后达到总量8立方米需需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】本题为一次函数实际应用问题,考查了一次函数的图象性质以及在实际问题中比例系数k代表的意义.22.(9.00分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.【感知】如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为 2 .【应用】如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为9 .【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】解:感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG,(2)由(1)知,FG=BE,连接CM,∵∠BCE=90°,点M是BE的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S=CG×ME=×6×3=9,四边形CEGM故答案为9.【点评】此题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,判断出CG=BE是解本题的关键.23.(10.00分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt △ABC 中,∠A=30°,AB=4,∴AC=2,∵PD ⊥AC ,∴∠ADP=∠CDP=90°,在Rt △ADP 中,AP=2t ,∴DP=t ,AD=APcosA=2t ×=t , ∴CD=AC ﹣AD=2﹣t (0<t <2);(2)在Rt △PDQ 中,∵∠DPC=60°,∴∠PQD=30°=∠A ,∴PA=PQ ,∵PD ⊥AC ,∴AD=DQ ,∵点Q 和点C 重合,∴AD+DQ=AC ,∴2×t=2,∴t=1;(3)当0<t ≤1时,S=S △PDQ =DQ ×DP=×t ×t=t 2; 当1<t <2时,如图2,CQ=AQ ﹣AC=2AD ﹣AC=2t ﹣2=2(t ﹣1),在Rt △CEQ 中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t ﹣1)×=2(t ﹣1), ∴S=S △PDQ ﹣S △ECQ =×t ×t ﹣×2(t ﹣1)×2(t ﹣1)=﹣t 2+4t ﹣2, ∴S=;(4)当PQ 的垂直平分线过AB 的中点F 时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.24.(12.00分)如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.【分析】(1)求出点B坐标利用待定系数法即可解决问题;(2)利用对称轴公式,求出BE的长即可解决问题;(3)由G2与矩形ABCD恰好有两个公共点,推出抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,利用待定系数法即可解决问题;(4)分两种情形讨论求解即可;【解答】解:(1)由题意E(0,1),A(﹣1,1),B(1,1)把B(1,1)代入y=﹣x2+mx+1中,得到1=﹣+m+1,∴m=.(2)∵抛物线G1的对称轴x=﹣=m,∴AE=ED=2m,∵矩形ABCD的对称中心为坐标原点O,∴AD=BC=4m,AB=CD=2,∴L=8m+4.(3)∵当G2与矩形ABCD恰好有两个公共点,∴抛物线G2的顶点M(﹣m,m2﹣1)在线段AE上,∴m2﹣1=1,∴m=2或﹣2(舍弃),∴L=8×2+4=20.(4)①当最高点是抛物线G1的顶点N(m,m2+1)时,若m2+1=,解得m=1或﹣1(舍弃),若m2+1=9时,m=4或﹣4(舍弃),又∵m≤2,观察图象可知满足条件的m的值为1≤m≤2,②当(2,2m﹣1)是最高点时,,解得2≤m≤5,综上所述,1≤m≤5,∴12≤L≤44.【点评】本题考查二次函数综合题、矩形的性质、待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用数形结合的思想解决问题,属于中考压轴题.。

【部编】2019-2020学年一年级上学期小学数学同步综合练习七单元真题模拟试卷(16套试卷)-创新套卷word版,可

【部编】2019-2020学年一年级上学期小学数学同步综合练习七单元真题模拟试卷(16套试卷)-创新套卷word版,可

【部编】2019-2020学年一年级上学期小学数学同步综合练习七单元真题模拟试卷(16套试卷)-创新套卷word版,可打印特别说明:本套试卷搜集了考点及专项复习练习知识点,内容详尽全面,仅供参考。

全套试卷共16卷【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(①)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(①)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(②)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(②)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(③)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(③)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(④)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(④)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(一)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(一)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(三)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(三)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(二)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(二)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(四)-创新套卷word版,可打印【部编】2019-2020学年同步综合练习一年级上学期小学数学七单元真题模拟试卷卷(四)-创新套卷word版,可打印【部编】2019-2020学年一年级同步综合练习上学期小学数学七单元真题模拟试卷卷(①)-创新套卷word版,可打印时间:60分钟满分:100分一、基础练习(40分)1. 写出下面各钟面上的时间。

2019-2020年初三第一次模拟考试数学试卷(word版,含答案)

2019-2020年初三第一次模拟考试数学试卷(word版,含答案)

保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑胶板:①
正三角形; ② 正
四边形;③ 正五边形;④ 正六边形,可以选择的是


A. ②③④
B.
①②③
C. ①②④ D. ①③④
10. 如图, 四边形 ABCD为⊙ O的内接四边形, E 是 BC延长线上的一点, 已知 BOD 100 ,
则 DCE 的度数为(
六、解答题( 10× 2=20 分)
25.设 x i (i 1, 2 ,3 , , n ) 为任意代数式, 我们规定: y max x1 , x2 , , xn 表示 x1 ,x2 ,
, xn 中的最大值,如 y max 1,2 2
(1)求 y max x , 3 ;
(2)借助函数图像,解决以下问题:
向红色区域的概率是
.
17.在平行四边形 ABCD中,E 为 BC延长线上一点, AE交 CD于点 F,若 AB=7,CF=3,则 AD CE
的值为







第 16 题
第 17 题
18. 当 2 x 2 时,下列函数中,函数值 y 随自变量 x 增大而增大的是
(只
填写序号)① y 2x ;② y 2 x ;③ y
A .(— 4,— 3) B .( 4, 3 ) C .(— 4, 3 ) D .( 4,— 3)
3.若 x1, x2 是一元二次方程 x 2 4 x 1 0 的两个根,则 x1 +x2 的值是(

A. 1
B. 1
C. 4
D .4
4.下列图象中,表示直线 y x 1的是


5. 在一次中学生田径运动会上,参加男子跳高的

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

吉林省长春市103中学2019-2020学年第一学期八年级数学期中模拟试题(word版,无答案)

吉林省长春市103中学2019-2020学年第一学期八年级数学期中模拟试题(word版,无答案)

八年级数学试卷(满分120分,时间90分钟)一、选择题(每题3分,共24分)1. 下列四副图案中,不是轴对称图形的是(▲)2.如图,ΔABC≌ΔADE,AB=AD,AC=AE,∠B=28º,∠E=95º,∠EAB=20º,则∠BAD为(▲)A.75ºB. 57ºC. 55ºD. 77º3.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为(▲)A.10 B.6 C.4 D.24. 如图,已知AB=AD,那么添加下列一个条件后,仍无法判定....△ABC≌△ADC的是(▲)A.∠B=∠D=90° B.∠BCA=∠DCAC.∠BAC=∠DAC D.CB=CD5.在下列说法中正确有(▲)①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;DEBC第2题③两角、一边分别相等的两个三角形全等;④两边、一角对应相等的两个三角形全等.A .1条B .2条C .3条D .4条6.如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=5,BC=8,则△EFM的周长是(▲)A .21B .18C .13D .157.如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关A. EF>BE+CFB. EF=BE+CFC. EF<BE+CFD. 不能确定 ( )8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是(▲) A .6 B .7 C .8 D .9二、填空题(每题3分,共30分)9.等腰三角形的一个底角为30°,则它的顶角等于 ▲ 。

2019-2020年中考数学模拟试题及答案(最新整理)

2019-2020年中考数学模拟试题及答案(最新整理)

S22019-2020 年中考数学模拟试题及答案一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为().A.5 B.6 C.7 D.82.下列运算正确的是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.()2=x6D.-3(2x-4)=-6x-123.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,54.如图,边长为6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()S1A.16 B.17 C.18 D.195.河堤横断面如图所示,堤高BC=6 米,迎水坡AB 的坡比为 1:,则AB 的长为()A.12 B.4 米C.5 米D.6 米6.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:k g/m2)与体积V(单位:m3)满足函数关系式ρ=k(kV为常数,k≠0),其图象如图所示,则k的值为()ρAO V第 5 题A.9 B.-9 C.4 D.-4X|k|B|1.c|O|m7.如图,▱A B C D的顶点A、B、D在⊙O上,顶点C在⊙O的直径B E上,∠A D C=54°,连接A E,则∠A E B的度数为()A、36°B、46°C、27°D63°8.将△D A E沿D E折叠,使点A落在对角线B D上的点A′处,则A E的长为.10A 、 10B 、 3C 、D 639.2013 年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是()y y y yOx Ox OA.B.C.x OD.x(第9 题图)10.如图,在等腰直角∆ABC 中,∠ACB =90O,O 是斜边AB 的中点,点D、E 分别在直角边AC、BC 上,且∠DOE = 90O,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)∆ABC 的面积等于四边形CDOE 面积的 2 倍;(3)CD +CE = 2OA ;(4)AD2+BE2= 2OP ⋅O C .其中正确的结论有()CED PA O B图 12图图A.1个B.2 个C.3 个D.4 个第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.已知实数a ,b 满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是12.如图6,R t△A B C的斜边A B=16,R t△A B C绕点O顺时针旋转后得到Rt∆A'B'C',则Rt∆A'B'C'的斜边A'B'上的中线C'D 的长度为.13.在一只不透明的口袋中放入红球 6 个,黑球 2 个,黄球n 个.这些球除颜色不同外,1其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球3总数n=.14.若一个一元二次方程的两个根分别是R t△A B C的两条直角边长,且S△A B C=3,请写出一个符合题意的一元二次方程.15.已知反比例函数y=6 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半x轴上一点,连接A O、A B,且A O=A B,则S△A O B=.16.如图,在⊙O中,过直径 AB 延长线上的点 C 作⊙O的一条切线,切点为 D,若A C=7,A B=4,则 s i n C的值为.DAO B C第16 题w W w.X k b1.c O m17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20c m,到屏幕的距离为60c m,且幻灯片中的图形的高度为6c m,则屏幕上图形的高度为c m.18.如图在,平面直角坐标系中R,t△O A B的顶点A在x轴的正1半轴上顶,点B的坐标(为3,3 ),点C的坐标为(,0),点P为2斜边OB 上的一动点,则PA+PC 的最小值为.三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.(2)先简化,再求值:,其中x= .20.(本题满分 8 分)东营市某学校开展课外体育活动,决定开高A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.⑴样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;⑵请把条形统计图补充完整;⑶若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?21.(本题满分 9 分) 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.新课标第一网(2)若BD2=BE ⋅BC 试判断直线CD 与⊙O 的位置关系,并说明理由.22.(本题满分9分)如图,△A B C中,A B=B C,A C=8,t a n A=k,P为A C边上一动点,设P C=x,作 PE∥AB 交 BC 于 E,PF∥BC 交 AB 于 F.(1)证明:△P C E是等腰三角形;(2)E M、F N、B H分别是△P E C、△A F P、△A B C的高,用含x和k的代数式表示E M、F N,并探究 EM、FN、BH 之间的数量关系;(3)当 k=4 时,求四边形 PEBF 的面积 S 与 x 的函数关系式.x 为何值时,S 有最大值?并求出 S 的最大值.23.(本题满分 10 分) 某工厂投入生产一种机器的总成本为 2000 万元.当该机器生产数量至少为 10 台,但不超过 70 台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25 台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)z351555 75 a24.(本题满分 10 分)x(单位:台)102030y(单位:万元/台)605550如图一艘海上巡逻船在A 地巡航,这时接到B 地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C地有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上.A地位于B地北偏调西75°方向上.A B两地之间的距离为12海里.求A.C两地之间的距离. (参考数据: 2 ≈l. 41, 3 ≈1.73, 6 ≈2.45.结果精确到0.1.)(m>0)与x轴25.(本题满分 12 分) 如图 1,已知抛物线的方程C1:y =-1 (x + 2)(x -m)m交于点B、C,与y 轴交于点E,且点B 在点C 的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△B C E的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△B C E 相似?若存在,求m 的值;若不存在,请说明理由.图 1数学试题参考答案与评分标准一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分.1.【答案】B.2.【答案】C.3.【答案】A.4.【答案】B.5.【答案】B.6.【答案】:A.7.【答案】:A.8.【答案】A9.【答案】A10.【答案】C第Ⅱ卷(非选择题共 84 分)二、填空题:本大题共 8 小题,共 24 分,只要求填写最后结果,每小题填对得 4 分.11.【答案】100012.【答案】8.13.【答案】414.【答案】x2-5x+6=0215.【答案】6.16.【答案】:.17.【答案】:18.18.【答案】5 31 .2三、解答题:本大题共 7 小题,共 64 分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分 7 分,第⑴题 4 分,第⑵题 4 分)(1)计算:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0.解:2c o s45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2 ﹣1,= +4﹣2 ﹣1,=3﹣.(2)先简化,再求值:,其中x=.解:原式= ·= ,当 x= +1 时,原式= = .20.【答案】:(1)40%,144新|课|标|第|一|网(2)如图:(3)1000 ⨯10% = 100 人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21.答案:⎨⎩ (1)证明: BD 为ΘO 的直径,∴∠DEB = ∠DFB = 90︒又 四边形ABCD 是平行四边形,∴ AD // BC .∴∠FBC = ∠DFB = 90︒, ∠EDA = ∠BED = 90︒∴四边形BEDF 为矩形. (2)直线CD 与ΘO 的位置关系为相切.理由如下: BD 2 = BE ⋅ BC ,∴ BD = BCBE BD∠DBC = ∠CBD ,∴∆BED ∴CD 与ΘO 相切.∆BDC ∴∠BDC = ∠BED = 90︒,即BD ⊥ CD .22. 【答案】(1)证明:∵A B =B C ,∴∠A=∠C ,∵P E ∥A B ,∴∠C P E =∠A ,∴∠C P E =∠C ,∴△P C E 是等腰三角形;(2) 解:∵△P C E 是等腰三角形,E M ⊥C P ,∴C M = C P = ,t a n C =t a n A=k ,∴E M =C M ·t a n C = ·k =,同理:F N =A N ·t a n A= ·k =4k ﹣ ,由于 B H =A H ·t a n A= ×8·k =4k ,而 E M +F N =+4k ﹣ =4k ,∴E M +F N =B H ;(3)解:当 k =4 时,E M =2x ,F N =16﹣2x ,B H =16,所以,S △P C E = x ·2x =x 2,S △A P F = (8﹣x )·(16﹣2x )=(8﹣x )2,S △A BC = ×8×16=64, S =S △A BC ﹣S △P C E ﹣S △A P F ,=64﹣x 2﹣(8﹣x )2,=﹣2x 2+16x , 配方得,S=﹣2(x ﹣4)2+32, 所以,当 x=4 时,S 有最大值 32.23. 【答案】:解:(1)设 y 与 x 的函数解析式为 y =kx +b ,⎧10k + b = 60,⎧k = - 1 , 根据题意,得 ⎨20k + b = 55, 解得 ⎪2 ⎪⎩b = 65.∴y 与 x 之间的函数关系式为 y = - 1x + 65 (10≤x ≤70).2(2)设该机器的生产数量为 x 台,根据题意,得 x ( - 1x + 65 )=2000,解得 x 1=50,x 2=80.∵2 10≤x ≤70,∴x =50.答:该机器的生产数量为 50 台.⎧55k + b = 35(3) 设销售数量 z 与售价 a 之间的函数关系式为 z =ka +b ,根据题意,得 ⎨75k + b = 15,⎧k = -1,解得 ⎨ ∴z =-a +90.⎩b = 90.⎩当z=25 时,a=65.设该厂第一个月销售这种机器的利润为w 万元,w=25×(65-2000 )=625(万元).5024【解】如图,过点B 作BD⊥CA,交CA 的延长线于点D,由题意,得∠A C B=60°-30°=30°.∠A B C=75°-60°=15°∴∠D A B=∠D B A=45°在R t⊿A D B中.A B=12.∠B A D=45°,∴B D=A D=AB cos 45 = 6 2在R t⊿B C D中,CD=BD=66 tan30∴AC = 6 6 - 6 2 ≈ 6.2 (海里)答:A C两地之间的距离约为6.2海里25.解答(1)将M(2,2)代入y=-1(x+2)(x-m),得2=-1⨯4(2-m).解得m=4.m m(2)当m=4时,y=-1(x+2)(x-4)=-1x2 +1x+2.所以C(4,0),E(0,2).4 4 2所以S△B C E=1BC⋅O E=1⨯6⨯2=6.2 2(3)如图 2,抛物线的对称轴是直线x=1,当H 落在线段EC 上时,BH+EH 最小.设对称轴与x 轴的交点为P,那么HP =EO .新|课|标|第| 一|网CP CO=因此HP =2 .解得HP =3 .所以点H 的坐标为(1, 3) .3 4 2 2(4)①如图3,过点B作E C的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠B C E=∠F B C,所以当CE=BC,即BC2=CE⋅BF时,△B C E∽△F B C.CB BF1(x + 2)(x -m)设点F 的坐标为(x, -1 (x + 2)(x -m)) ,由FF ' =EO ,得m=2 .m解得x=m+2.所以F′(m+2,0).BF ' CO x + 2 m 由CO =BF ',得m m + 4 .所以BF =(m +4)m2+ 4CE BF m2+ 4 BF m222(m + 4) m2+ 4由BC =CE ⋅BF ,得(m + 2) = m + 4 ⨯.m整理,得 0=16.此方程无解.图 2 图 3 图 4②如图4,作∠C B F=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠E B C=∠C B F,所以BE=BC,即BC2=BE⋅BF时,△B C E∽△B F C.BC BF在R t△B FF′中,由FF′=B F′,得1(x+2)(x-m)=x+2.m解得x=2m.所以F′(2m,0).所以B F′=2m+2,BF=2(2m+2).由BC 2=BE ⋅BF ,得(m + 2)2= 2 2 ⨯ 2(2m + 2) .解得m = 2 ± 2 2 .综合①、②,符合题意的m 为2 + 2 2 .2019-2020 年中考数学模拟试题含答案(精选 5 套).注意事项:1.本试卷分选择题和非选择题两部分. 在本试题卷上作答无效;2.答题前,请认真阅读答题卷上的注意事项;3.考试结束后,将本试卷和答题卷一并交回.一、选择题(本大题满分 36 分,每小题 3 分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑)1. 2 sin 60°的值等于3A. 1B.C. 222.下列的几何图形中,一定是轴对称图形的有D. 3圆弧角扇形菱形等腰梯形A. 5 个B. 4 个C. 3 个D. 2 个3.据2013 年1 月24 日《桂林日报》报道,临桂县 2012 年财政收入突破 18 亿元,在广西各县中排名第二. 将 18 亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104.估计8 -1 的值在A.0 到1 之间B. 1 到2 之间C. 2 到3 之间D. 3 至4 之间5.将下列图形绕其对角线的交点顺时针旋转 90°,所得图形一定与原图形重合的是A.平行四边形B. 矩形C. 正方形D. 菱形6.如图,由 5 个完全相同的小正方体组合成一个立体图形,它的左视图是A. B. C. D.7.为调查某校 1500 名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有A. 1200 名B. 450 名C. 400 名D. 300 名8.用配方法解一元二次方程x2 + 4x –5 = 0,此方程可变形为A. (x + 2)2= 9B. (x - 2)2 = 9C. (x + 2)2= 1D. (x - 2)2=19.如图,在△ABC中,AD,BE 是两条中线,则 S△EDC∶S△ABC=A. 1∶2B. 1∶4C. 1∶3D. 2∶310.下列各因式分解正确的是(第 7 题图)(第 9 题图)A. x2 + 2x -1=(x - 1)2B. - x2 +(-2)2=(x - 2)(x + 2)C. x3- 4x = x(x + 2)(x - 2)D. (x + 1)2= x2 + 2x + 111.如图,AB 是⊙O的直径,点 E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为 3 A.3 B. 2 3C.D. 1212. 如图,△ABC 中,∠C = 90°,M 是 AB 的中点,动点 P 从点 A出发,沿 AC 方向匀速运动到终点 C ,动点 Q 从点 C 出发,沿CB 方向匀速运动到终点 B. 已知 P ,Q 两点同时出发,并同时到达终点,连接 MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大 B. 一直减小 C. 先减小后增大D. 先增大后减小(第 12 题图)二、填空题(本大题满分 18 分,每小题 3 分,请将答案填在答题卷上,在试卷上答题无效) 113. 计算:│- │=.314. 已知一次函数 y = kx + 3 的图象经过第一、二、四象限,则 k 的取值范围是.15. 在 10 个外观相同的产品中,有 2 个不合格产品,现从中任意抽取 1 个进行检测,抽到合格产品的概率是.16. 在临桂新区建设中,需要修一段全长 2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每天修路 x m ,则根据题意可得方程.17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单位称为 1 次变换. 如图,已知等边三角形ABC 的顶点 B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续 9 次这样的变换得到△A ′B ′C ′,则点 A 的对 应点 A ′ 的坐标是.18. 如图,已知等腰 Rt△ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE ……依此类推直到第五个等腰 Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为 .(第 17 题图)(第 18 题图)三、解答题(本大题 8 题,共 66 分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分 8 分,每题 4 分)(1)计算:4 cos45°- 8 +(π- 3 )+(-1)3;n m(2)化简:(1 -m + n)÷m 2 - n 2 .20. (本小题满分 6 分)1 +x-x -1≤1,……①解不等式组: 2 33(x - 1)<2 x + 1. ……21.(本小题满分 6 分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线 BD 交AC 于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线 BD 后,求∠BDC的度数.(第 21 题图)22.(本小题满分 8 分)在开展“学雷锋社会实践”活动中,某校为了解全校 1200 名学生参加活动的情况,随机调查了 50 名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这 50 个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校 1200 名学生共参加了多少次活动.23.(本小题满分 8 分)如图,山坡上有一棵树 AB,树底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. 小宁在山脚的平地 F 处测量这棵树的高,点C 到测角仪 EF 的水平距离 CF = 1 米,从 E 处测得树顶部A 的仰角为 45°,树底部 B 的仰角为 20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第 23 题图)24.(本小题满分 8 分)如图,PA,PB 分别与⊙O 相切于点 A,B,点 M 在 PB 上,且OM∥AP,MN⊥AP,垂足为 N.(1)求证:OM = AN;(2)若⊙O 的半径 R = 3,PA = 9,求 OM 的长.(第 24 题图)25.(本小题满分 10 分)某中学计划购买 A 型和B 型课桌凳共 200 套. 经招标,购买一套 A 型课桌凳比购买一套 B 型课桌凳少用 40 元,且购买 4 套A 型和5 套B 型课桌凳共需 1820 元.(1) 求购买一套 A 型课桌凳和一套 B 型课桌凳各需多少元? (2) 学校根据实际情况,要求购买这两种课桌凳总费用不能超过 40880 元,并且购买 A 型课桌2 凳的数量不能超过 B 型课桌凳数量的 ,求该校本次购买 A 型和 B 型课桌凳共有几种方3案?哪种方案的总费用最低?26. (本小题满分 12 分)在平面直角坐标系中,现将一块等腰直角三角板 ABC 放在第二象限,斜靠在两坐标轴上,点 C 为(-1,0). 如图所示,B 点在抛物线 y = 1 x 2 - 1x – 2 图象上,过点 B2 2作 BD ⊥x 轴,垂足为 D ,且 B 点横坐标为-3. (1) 求证:△BDC ≌ △COA; (2) 求 BC 所在直线的函数关系式; (3) 抛物线的对称轴上是否存在点 P ,使△ACP 是以 AC 为直角边的直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由.(第 26 题图)一、选择题2016 年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第 12 题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而 1降低难度,得出答案. 当点 P ,Q 分别位于 A 、C 两点时,S △MPQ = S △ABC ;当点 P 、Q 分别运动到 AC ,BC 21 1 1 11的中点时,此时,S △MPQ = × AC.BC = S △ABC ;当点 P 、Q 继续运动到点 C ,B 时,S △MPQ = S △ABC ,22 24 2故在整个运动变化中,△MPQ 的面积是先减小后增大,应选 C.二、填空题 14 82400 240013.; 14. k <0; 15.(若为扣 1 分); 16.-= 8;3510 31 x(1 20%)x17. (16,1+三、解答题3 ); 18. 15.5(或 ).22 19. (1)解:原式 = 4×-2 22 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分)= 0 .................................. 4 分m +n n m2-n2(2)解:原式 =(- )· ................................... 2分m +n m +n mm (m +n)(m -n)= ·.......................... 3 分m +n m= m –n ............................................................. 4分20. 解:由①得3(1 + x)- 2(x-1)≤6,............................... 1 分化简得x≤1. .......................................................................3 分由②得3x – 3 < 2x + 1, ................................................ 4 分化简得x<4. .......................................................................5 分∴原不等式组的解是x≤1. ...............................................6 分21.解(1)如图所示(作图正确得 3 分)(2)∵BD 平分∠ABC,∠ABC = 72°,1∴∠ABD = ∠ABC = 36°,......................................... 4 分2∵AB = AC,∴∠C =∠ABC = 72°,........................... 5 分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36°= 72°. ........ 6 分22.解:(1)观察条形统计图,可知这组样本数据的平均数是_ 1⨯ 3 + 2 ⨯ 7 + 3⨯17 + 4 ⨯18 + 5 ⨯5x = =3.3,................... 1 分50∴这组样本数据的平均数是3.3. ..................... 2 分∵在这组样本数据中,4 出现了 18 次,出现的次数最多,∴这组数据的众数是4. ........................... 4 分3 + 3∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有=23.∴这组数据的中位数是3. .............. 6 分(2)∵这组数据的平均数是 3.3,∴估计全校 1200 人参加活动次数的总体平均数是 3.3,有 3.3×1200 = 3900.∴该校学生共参加活动约3960 次 ............................... 8分23.解:在Rt△BDC中,∠BDC = 90°,BC = 6 3米,∠BCD = 30°, ∴DC = BC ·cos30° ............................................ 1 分3 = 6 3 ×= 9,..................................... 2 分2∴DF = DC + CF = 9 + 1 = 10,… ....................... 3 分 ∴GE = DF = 10. ......................... 4 分 在 Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° .......................................... 5 分=10×0.36=3.6, ....................................... 6 分 在 Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ............................................... 7 分 ∴AB = AG – BG = 10 - 3.6 = 6.4. 答:树 AB 的高度约为 6.4 米 ........................... 8 分24. 解(1)如图,连接 OA ,则 OA⊥AP. .............. 1 分∵MN ⊥AP ,∴MN ∥OA. ........................ 2 分 ∵OM ∥AP ,∴四边形 ANMO 是矩形.∴OM = AN. .................................... 3 分 (2)连接 OB ,则 OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ...................... 5 分 ∴OM = MP. 设 OM = x ,则 NP = 9- x............................................ 6 分在 Rt △MNP 中,有 x 2 = 32+(9- x )2. ∴x = 5. 即 OM = 5 ..........................8 分25. 解:(1)设 A 型每套 x 元,则 B 型每套(x + 40)元 ............................. 1 分∴4x + 5(x + 40)=1820. ............................... 2 分 ∴x = 180,x + 40 = 220. 即购买一套 A 型课桌凳和一套 B 型课桌凳各需 180 元、220 元 ........................ 3 分 (2)设购买 A 型课桌凳 a 套,则购买 B 型课桌凳(200 - a )套.a ≤ 2(200 - a ),3∴ ........................................................................................... 4 分 180 a + 220(200- a )≤40880. 解得 78≤a ≤80. ............................... 5 分 ∵a 为整数,∴a = 78,79,80 ∴共有 3 种方案 .................................................................... 6 分 设购买课桌凳总费用为 y 元,则y = 180a + 220(200 - a )=-40a + 44000. ............ 7 分 ∵-40<0,y 随 a 的增大而减小, ∴当 a = 80 时,总费用最低,此时 200- a =120. ........... 9 分即总费用最低的方案是:购买A 型80 套,购买B 型120 套 ......................................... 10 分⎩2一、选择题2016 年中考数学模拟试题(二)1、 数-1, 5, 0, 2 中最大的数是()A 、 -1B 、 5C 、0D 、 222、9 的立方根是() A 、 ±3B 、3C 、 ± 3 9D 、 392 主视图左视图3、已知一元二次方程 x 2 - 4x + 3 = 0 的两根 x 1 、 x 2 ,则 x 1 + x 2 = () A 、4 B 、3 C 、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为 2 B 、几何体是圆锥体,高为 2 C 、几何体是圆柱体,半径为 2 D 、几何体是圆柱体,半径为 25、若 a > b ,则下列式子一定成立的是()俯视图A 、 a + b > 0B 、 a - b > 0C 、 ab > 0D 、 a> 0bAB 6、如图 AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80°C 、60°D 、100°7、已知 AB 、CD 是⊙O 的直径,则四边形 ACBD 是() A 、正方形B 、矩形C 、菱形D 、等腰梯形ED⎧x + 3 > 08、不等式组⎨-x ≥ -2 的整数解有()A 、0 个B 、5 个C 、6 个D 、无数个9、已知点 A (x 1, y 1), B (x 2 , y 2 ) 是反比例函数 y = x图像上的点,若 x 1 > 0 > x 2 , A 则一定成立的是() A 、 y 1 > y 2 > 0 C 、0 > y 1 > y 2B 、 y 1 > 0 > y 2 D 、 y 2 > 0 > y 1OO ‘B10、如图,⊙O 和⊙O ′相交于 A 、B 两点,且 OO’=5,OA=3, O’B =4,则 AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 A 12、计算: -m 3 ÷ m =13、分解因式: 3x 2- 3y 2=BC14、如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200 米,从飞机上看地面控制点 B的俯角= 20︒,则飞机 A 到控制点 B 的距离约为 。

2019-2020数学中考模拟试卷(附答案)

2019-2020数学中考模拟试卷(附答案)

2019-2020数学中考模拟试卷(附答案)一、选择题1.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯2.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .153.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③ 4.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)5.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 26.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°8.下列各曲线中表示y是x的函数的是()A.B.C.D.9.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()A.61B.72C.73D.8610.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点()A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)11.根据以下程序,当输入x=2时,输出结果为()A.﹣1B.﹣4C.1D.1112.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二、填空题13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.14.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).15.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.17.若ab=2,则222a ba ab--的值为________.18.若一个数的平方等于5,则这个数等于_____.19.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.20.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.已知222111 x x x Ax x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.23.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.24.将A B C D,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A B,都在甲组的概率是多少?25.已知抛物线y=ax2﹣13x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)当BQ=13AP时,求t的值;(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.3.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <0,故本选项正确; ③由抛物线的开口向下知a <0, ∵对称轴为1>x=﹣>0,∴2a+b <0, 故本选项正确; ④对称轴为x=﹣>0, ∴a 、b 异号,即b >0, ∴abc <0, 故本选项错误;∴正确结论的序号为②③. 故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0; (2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号; (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值.4.D解析:D 【解析】 【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标. 【详解】解:因为点 P (m + 3,m + 1)在x 轴上, 所以m +1=0,解得:m =-1, 所以m+3=2,所以P 点坐标为(2,0). 故选D. 【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.5.D解析:D 【解析】 由题意得:1212k ky y x x ==-=- ,故选D. 6.B解析:B 【解析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D .本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.9.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.10.A解析:A【解析】【分析】把点(3,1)代入直线y=kx﹣2,得出k值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y=kx﹣2,得1=3k﹣2,解得k=1,∴y=x﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y=x﹣2中,只有(2,0)满足条件.故选A.【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.11.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.12.A解析:A【解析】【分析】【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.二、填空题13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半解析:2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,则扇形的弧长是:1206180π⋅=4π,所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.所以圆锥的底面半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.14.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.15.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:417.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可. 详解:∵a b=2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.18.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.19.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E ,∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-=去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.(1)11x -;(2)1 【解析】【分析】(1)根据分式四则混合运算的运算法则,把A 式进行化简即可.(2)首先求出不等式组的解集,然后根据x 为整数求出x 的值,再把求出的x 的值代入化简后的A 式进行计算即可.【详解】 (1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x x x +--=11x - (2)不等式组的解集为1≤x <3∵x 为整数,∴x =1或x =2,①当x =1时,∵x ﹣1≠0,∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时,A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.23.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1625.(1)y =-23x 2-13x +2;(2)当BQ =13AP 时,t =1或t =4;(3)存在.当t =1-+M(1,1),或当t=3+M(﹣3,﹣3),使得△MPQ为等边三角形.【解析】【分析】(1)把A(﹣2,0),B(0,2)代入y=ax2-13x+c,求出解析式即可;(2)BQ=13AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP关于t的表示,代入BQ=13AP可求t值.(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.【详解】(1)∵抛物线经过A(﹣2,0),B(0,2)两点,∴240,32.a cc⎧++=⎪⎨⎪=⎩,解得2,32.ac⎧=-⎪⎨⎪=⎩∴抛物线的解析式为y=-23x2-13x+2.(2)由题意可知,OQ=OP=t,AP=2+t.①当t≤2时,点Q在点B下方,此时BQ=2-t.∵BQ=13AP,∴2﹣t=13(2+t),∴t=1.②当t>2时,点Q在点B上方,此时BQ=t﹣2.∵BQ=13AP,∴t﹣2=13(2+t),∴t=4.∴当BQ=13AP时,t=1或t=4.(3)存在.作MC⊥x轴于点C,连接OM.设点M 的横坐标为m ,则点M 的纵坐标为-23m 2-13m +2. 当△MPQ 为等边三角形时,MQ =MP ,又∵OP =OQ ,∴点M 点必在PQ 的垂直平分线上,∴∠POM =12∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,∴m =-23m 2-13m +2, 解得m 1=1,m 2=﹣3. ∴M 点可能为(1,1)或(﹣3,﹣3).①如图,当M 的坐标为(1,1)时,则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2﹣2t +2=2t 2,解得t 1=3-t 2=13-(负值舍去).②如图,当M 的坐标为(﹣3,﹣3)时,则有PC =3+t ,MC =3,∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2,∵△MPQ 为等边三角形,∴MP =PQ ,∴t 2+6t +18=2t 2,解得t 1=333+t 2=333-∴当t =3-M (1,1),或当t =333+M (﹣3,﹣3),使得△MPQ 为等边三角形.【点睛】本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析.。

2019-2020年中考数学第一次模拟考试试题含答案解析

2019-2020年中考数学第一次模拟考试试题含答案解析
2019-2020 年中考数学第一次模拟考试试题含答案解析
一、选择题( 本大题共有 8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项
是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相.应.位.置.... 上 )
1 1. 的相反数是(
2
▲)
A. 2
B
.1
2
C
.2
D
.1
2
交 CD 的延长线于 F ,则四边形 AFCE 的面积为
▲ cm 2 .
AE , AF
17 .如图,在四边形 ABCD中, BAC 交点为 M ,则 DM = ▲ .
BDC 90 , AB AC
5 , CD 1,对角线的 y
A
B
A
C
பைடு நூலகம்
D
F
D 16 题
E
C
B
D
A
M
17 题
C
B
O
E
x
18 题
18.如图,边长为 1 的正 ABO 的顶点 O 在原点,点 B 在 x 轴负半轴上, 正方形 OEDC 边长为 2 , 点 C 在 y 轴正半轴上, 动点 P 从点 A 出发, 以每秒 1 个单位的速度沿着 ABO 的边按逆时针方向
运动,动点 Q 从 D 点出发,以每秒 1 个单位的速度沿着正方形 OEDC 的边也按逆时针方向运动,
点 Q 比点 P 迟 1 秒出发,则点 P 运动 2016秒后,则 PQ 2 的值是


三、解答题 (本大题共有 10 小题,共 96 分.请在答.题.卡.指.定.区.域. 内作答,解答时应写出
必要的文字说明、证明过程或演算步骤)
和为奇数则小红获胜,数字之和为偶数则小明获胜,请用树状图或列表说明谁获胜的可能性大.

2019-2020中考数学模拟试卷含答案

2019-2020中考数学模拟试卷含答案

2019-2020中考数学模拟试卷含答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.3.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1B.2C.3D.44.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°5.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°7.下列各式化简后的结果为2的是()A6B12C18D368.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x ⨯+-= 9.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab b C .32242⋅+⋅=a a a a aD .22(5)25-=-a a 10.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .11.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣3B .13π3C .43π﹣3D .43π3 12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A.3B.154C.5D.152二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.当直线()223y k x k=-+-经过第二、三、四象限时,则k的取值范围是_____.16.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD 的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.17.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.3.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.4.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.5.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B .的取值范围是解题关键.6.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.7.C解析:C【解析】A 不能化简;BC ,故正确;D ,故错误;故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.8.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.10.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.11.C解析:C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1,在Rt △COD 中利用勾股定理可知:=,∵sin ∠COD= 2CD OC =, ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2× S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =43π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5故选C .【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D 为AB 的中点∴DF=AB =25∵DE 为△ABC 的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D 为AB 的中点,∴DF=12AB=2.5, ∵DE 为△ABC 的中位线, ∴DE=12BC=4, ∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.【解析】【分析】过D 作DQ⊥x 轴于Q 过C 作CM⊥x 轴于M 过E 作EF⊥x 轴于F 设D 点的坐标为(ab )求出CE 的坐标代入函数解析式求出a 再根据勾股定理求出b 即可请求出答案【详解】如图过D 作DQ⊥x 轴于Q 解析:25【解析】【分析】过D 作DQ ⊥x 轴于Q ,过C 作CM ⊥x 轴于M ,过E 作EF ⊥x 轴于F ,设D 点的坐标为(a ,b ),求出C 、E 的坐标,代入函数解析式,求出a ,再根据勾股定理求出b ,即可请求出答案.【详解】如图,过D 作DQ ⊥x 轴于Q ,过C 作CM ⊥x 轴于M ,过E 作EF ⊥x 轴于F ,设D 点的坐标为(a ,b ),则C 点的坐标为(a+3,b ),∵E 为AC 的中点,∴EF=12CM=12b ,AF=12AM=12OQ=12a , E 点的坐标为(3+12a ,12b ), 把D 、E 的坐标代入y=k x得:k=ab=(3+12a )12b , 解得:a=2, 在Rt △DQO 中,由勾股定理得:a 2+b 2=32,即22+b 2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a 、b 的方程是解此题的关键.17.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.18.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;10.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C2经过的路径长=9010180π⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.。

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析

2019-2020年中考数学模拟试卷含答案解析2019-2020年中考数学模拟试卷含答案解析一、选择题(每小题3分,共计30分)1.若a=-2,则|a|的值是(2)。

2.下列运算正确的是(D):(ab2)2=a2b4.3.下列图形中,既是轴对称图形又是中心对称图形的是(D)。

4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是(C)。

5.n是非零常数,两点如图,正比例函数y=mx与反比例函数y=n/x的图象交于A、B两点。

若点A的坐标为(1,2),则点B的坐标是(B):(-2,-1)。

6.如图,河提横断面迎水坡AB的斜坡坡度i=1:3是指破面的铅直高度BC与水平宽度AC的比,若堤高BC=5m,则坡面AB的长度是(D):10m。

7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是(C):___。

8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务。

设原来平均每天生产x个书桌,下面所列方程正确的是(A):(280/2-x*7)/(x+21)=7.9.如图,将△ABC绕点A逆时针旋转80°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接BB′,若∠B′BC=20°,则∠BB′C′的大小是(D):76°。

10.___和___在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知___先出发2秒,在跑步的过程中,___和___的距离y (米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②___发100秒时到达了终点;③___出发125秒时到达了终点;④___发20秒时,___在小明前方10米。

福建省泉州市2019年小学毕业班数学模拟试卷、参考答案及评分说明(可编辑修改word版)

福建省泉州市2019年小学毕业班数学模拟试卷、参考答案及评分说明(可编辑修改word版)

亲爱的同学们: 时间如梭,转眼六年的小学生活即将结束,你们即将踏上新征程! 拿起笔,勇敢地走进数学王国,用智慧和细心编织未来的梦想!祝你成功!一、反复比较,慎重选择。

(10%)1.估一估: 把你自己的一只拳头慢慢地伸进盛满水的脸盆中,并浸没它,溢出来的水的体积大约是( )。

①大于 1 L ②在 0. 4 L 左右③在 6~10 m L 之间④小于 6 mL2. a ∶7=9∶b ,下面的式子中不能成立的是( )。

a7① 7∶b =a ∶9② a b =63③ a ∶b =7∶9 ④ =1 1 9 b3. 两根同样长的绳子,甲用去它的 ,乙用去它的 米,剩下的相比较( )。

6 6①甲剩下的长 ②乙剩下的长 ③一样长 ④无法比较 4. 一个立体图形从正面看到的形状是 ,从左面看到的形状是。

搭这样的立体图形,最多需要()块小立方块。

① 4② 5③ 7④ 85. 深圳往返厦门的动车,除起点和终点外,中途还要停靠 5 个车站。

一共需要准备( )种不同的车票。

① 10 ② 20③ 21④ 426. 一张长方形纸长 8 cm ,宽 6 cm 。

用这样的长方形密铺成一个正方形至少需要()张长方形纸。

① 12② 16③ 24④ 367. 把一根 18 厘米长的吸管剪成 3 段, 再用这三段吸管围成一个三角形, 最多可以有( ) 种不同的剪法。

( 每段的长度都是整厘米)① 5② 6③ 7④ 8 8. 一双鞋子, 若卖 100 元, 可赚钱 25%; 若卖 90 元, 则可赚钱( ) %。

① 10%② 12. 5%③ 15%④ 20%)。

9. 将右图中的直角三角形 ABC 以直角边 BC 所在的直线为轴旋转一周, 求所得图形的体积,列式正确的是( )。

① π×42×3 ② π×42×3×1 3 ③ π×32×4×13④ π×52×4×1310. 两摞相同规格的羽毛球整齐地叠放在桌面上,如右图 (单位:cm )。

2019-2020中考数学模拟试卷(含答案)

2019-2020中考数学模拟试卷(含答案)

2019-2020中考数学模拟试卷(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差3.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <04.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是26.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .9.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)10.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°11.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10012.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______. 18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 22.解方程:x 21x 1x-=-. 23.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A .从一个社区随机选取1 000户家庭调查;B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.24.解分式方程:232 11xx x+= +-25.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.3.D解析:D【解析】【分析】【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12b x a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D. 考点:二次函数的图象及性质.4.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 8.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.9.D解析:D【解析】【分析】=可确定a的范围,排除掉在范围内的选项即可.a【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 10.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.11.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得12.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos ∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos ∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB=OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:, ∴252512BOD OACS OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.16.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.【解析】【分析】根据关于x 的一元二次方程ax2+2x+2﹣c =0有两个相等的实数根结合根的判别式公式得到关于a 和c 的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a (2﹣c )=0整理得:解析:【解析】【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a-=-, 则12c a+=, 故答案为:2.【点睛】 本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.18.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴C F =BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF =CD 2x 2=.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12 22=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.2x=.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x2-2x+2=x2-x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1) 整理化简,得x=-5经检验,x=-5是原方程的根∴原方程的解为:x=-5.25.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。

2019-2020中考数学模拟试卷(及答案)

2019-2020中考数学模拟试卷(及答案)

2019-2020中考数学模拟试卷(及答案)一、选择题1.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.22.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmmC.林茂从体育场出发到文具店的平均速度是50minmD.林茂从文具店回家的平均速度是60min4.下表是某学习小组一次数学测验的成绩统计表:分数/分708090100人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分5.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④6.2-的相反数是()A.2-B.2C.12D.12-7.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.128.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.239.已知命题A:“若a为实数,则2a a=”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.a=1B.a=0C.a=﹣1﹣k(k为实数)D.a=﹣1﹣k2(k为实数)10.估6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间11.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.23C2D512.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如果a 是不为1的有理数,我们把11a -称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .15.如图,点A 在双曲线y=4x上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a +的值等于_______.18.计算:82-=_______________.19.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.23.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x +=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;x ,原分式方程无解”,请(2)小华的妈妈说:“我看到标准答案是:方程的增根是2你求出原分式方程中“?”代表的数是多少?25.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键. 4.D解析:D【解析】【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分.故选D .【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.5.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;根据二次函数的对称轴为x =-2b a ,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.6.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.A解析:A【解析】试题解析:∵直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∴B (0,43),∴OB=43,在RT △AOB 中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P 与l 相切,设切点为M ,连接PM ,则PM ⊥AB ,∴PM=12PA ,设P (x ,0),∴PA=12-x ,∴⊙P 的半径PM=12PA=6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数,∴使得⊙P 成为整圆的点P 个数是6.故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.8.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB ===3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D【解析】【分析】a =可确定a 的范围,排除掉在范围内的选项即可.【详解】解:当a ≥0a =,当a <0a =-,∵a =1>0,故选项A 不符合题意,∵a =0,故选项B 不符合题意,∵a =﹣1﹣k ,当k <﹣1时,a >0,故选项C 不符合题意,∵a =﹣1﹣k 2(k 为实数)<0,故选项D 符合题意,故选:D .【点睛】本题考查了二次根式的性质,20 aaa aa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 10.C解析:C【解析】【分析】先化简后利用的范围进行估计解答即可.【详解】=6-3=3,∵1.7<<2,∴5<3<6,即5<<6,故选C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFHAH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=122, 故选:C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BA E+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB ∥CD ,∴GE ∥CD ,∴∠BAE=∠AEG ,∠DFE=∠GEF ,∴∠AEF=∠BAE+∠DFE ,设∠CEF=x ,则∠AEC=2x ,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE <15°,∴6°<3x-60°<15°,解得22°<x <25°,又∵∠DFE 是△CEF 的外角,∠C 的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a 2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=34,故答案为:3 4 .【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.16.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.17.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键解析:2【解析】【分析】先把8化简为22,再合并同类二次根式即可得解.【详解】82-=22-2=2.故答案为2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.()14,4;()23150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB = ∴AB CD =又∵AB ∥CD , ∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==.在Rt AOB V 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.23.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.24.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m,x-得方程两边同时乘以()2()+-=-321m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.。

2019-2020中考数学模拟试卷附答案

2019-2020中考数学模拟试卷附答案

2019-2020中考数学模拟试卷附答案一、选择题1.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .22.在数轴上,与表示6的点距离最近的整数点所表示的数是( )A .1B .2C .3D .4 3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--4.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.黄金分割数51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 6.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°8.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内»OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3210.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点()A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)11.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=12.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠二、填空题13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.15.如图,在平面直角坐标系xOy 中,函数y=k x (k >0,x >0)的图象经过菱形OACD 的顶点D 和边AC 的中点E ,若菱形OACD 的边长为3,则k 的值为_____.16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)18.计算:21(1)211x x x x ÷-+++=________. 19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;(2)请补全条形统计图; (3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a b 3m 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若(233a m +=+,且ab m n 、、、均为正整数,求a 的值. 24.解方程:3x x +﹣1x=1. 25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.2.B解析:B【解析】【分析】6的大小,即可得到结果.【详解】Q,<<46 6.25∴<<,26 2.56的点距离最近的整数点所表示的数是2,故选:B .【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.3.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 4.C解析:C【解析】12π(AA 1+A 1A 2+A 2A 3+A 3B)= 12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Ⅳ)原不等式组的解集为

(20)(本小题 8 分)
2019 天津体育中考满分 30 分,约有考生 70000 人.从某区九年级参加体育中考的成绩 中随机 抽取了 一个样本 ,根据 他们的成绩(单位:分),绘制出如下的统计图①和图②.请根据相关信息,解 答下列问题:
28分
m % 30分
27分 24 %
(Ⅰ) BC 的长等于

(Ⅱ)过点 A 的 直 线 交 BC 于 点 D ,
A
满 足 S△A△B△C : S ABD : S ADC 3 : 2 :1 ,
请在如图所示的网格中,用无刻度的直尺,
B
画出直线 AD ,并简要说明点 D 的位置是如何 找到的(不要求证明)
C
第(18)题

数学模拟试卷(一) 第 4 页 (共 9 页)
图①
O
C
E
D
B
第(21)题
F 图②
数学模拟试卷(一) 第 6 页 (共 9 页)
(22)(本小题 10 分) 如图,厂房屋顶人字架的跨度 BC=10m ,中柱 AD BC 于 D, B 36 , C 35 ,求中柱 AD 和
B
第(11)题
(12)已知抛物线 y ax2 bx c (a , b , c 为常数, a 0),其顶点坐标为(1,5),且与 x 轴的一个交
点在点(-1,0)和原点之间 .有下列结论: ① abc 0 ; ②abc0; ③ 3a b 0 ; ④方程 ax2 bx c- 4 0 有两个不相等的实数根.
2019—2020 年天津数学模拟试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是 符合题目要求的)
(1)计算 3 (5) 的结果等于( ).
(A) 8
(B) 2
(C) 8
(D) 2
(2) sin 30 的值等于( ).
(A) 1 2
(C) 3 2
数学模拟试卷(一) 第 2 页 (共 9 页)
其中,正确结论的个数为( ). (A)1 (C)3
(B)2 (D)4
数学模拟试卷(一) 第 3 页 (共 9 页)
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
(13)计算 (xy2 )2 的结果等于

(14)计算(2)(3 ) 6 2 3 6 的结果等于
(B) 2 2
(D) 3
(3)2018 年天津中考人数约为:75900 名,将 75900 用科学记数法表示为( ).
(A) 0.759 105
(B) 7.59 104
(C) 75.9 103
(D) 759 102
(4)下列图形中,可以看作是轴对称图形的是( ).
(A)
(B)
(C)
(D)
(5)右图是一个由 5 个相同的正方体组成的立体图形,它的主视图是( ).
的图象上,则y1

y2

y3
的大小关系
是( ).
(A) y3 y2 y1
(B) y3 y1 y2
(C) y1 y2 y3绕点 A 逆时针旋转 30 得 △ADE ,若
CAB 的度数为120 ,连接 BD .则下列结论错误的是(
).
(A) AD AC
x 2y 9, (8)方程组 3x 2 y 1的解是( ).
(A)
x y
2, 7 2
(B)
x y
8, 3 9 2
(C)
x y
4, 5 2
(D)
x y
5, 2 17 4
(9)若点 A(,6)y1
, B(- 4 ,y)2 ,C(2,)y3
在反比例函数y
12 x
(B)
C E
A
第(10)题
D B
EAB 150
(C) AE AC
(D) AC // B D
(11)如图,在菱形 ABCD 中, E 是 AD 的中点, P 是对角线 BD 上
D
E
的一个动点,则下列线段的长等于 AP EP 最小值的是( ).
A
C
(A) CE
(B) BD
P
(C) AC
(D) AD
三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算步骤或推理过程)
(19)(本小题 8 分)
x 4≥,3 ①
解不等式组
6x
≤.2 ②5x
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来:
-2 -1 0 1 2 3 4
(A)
(B)
(C)
(6)估计 34 的值在( ). (A)3 和 4 之间 (C)5 和 6 之间
(7)计算 2a 2 的结果为( ). a 1 a 1
(A) - 2 (C) a 2
a 1
(D)
(B)4 和 5 之间 (D)7 和 8 之间
(B) a 1 (D) 2
第(5)题
数学模拟试卷(一) 第 1 页 (共 9 页)

(15)不透明袋子中装有 8 个球,其中有 3 个红球, 4 个黄球,1 个绿球,这些球除颜色外无其他差
别.从袋子中随机取出1 个球,则它是黄球的概率是

(16)若一次函数 y kx b ( k 、b 是常数, k 0 )的图象与直线 y 2x 平行,满足条件的一次函数的
解析式为
.(写出一个即可).
(17)如图,在 两个 边长 分别 为 2 和 4 的正方形 ABCD 与
正方形 CGEF 中, 点 B , C , F 在同一条直线上,
M 是线段 AE 的中点, DM 的延长线交 EG 于点 N ,
连接 MF ,则 MF 的长为

A
D
BC
F
M
G N
E
第(17)题
(18)如图,在每个小正方形的边长为1 的网格中,点 A , B , C 均在格点上.
(21)(本小题 10 分)
已知 AB 是⊙ O 的直径,弦 CD 与 AB 相交 点 E, AE AD , BAD 36 .
(Ⅰ)如图①,连接 CO ,求 ADC 和 OCD 的大小;
(Ⅱ)如图②,过点 D 作⊙ O 的切线,与 CB 的延长线交于点 F ,求 BFD 的大小.
A
A
O
C
E
D
B
16 %
26分 29分 8%
20 %
图①
人数
16
16
12
12
8 4
4
10 8
0 26 27 28 29 30
第(20)题
图②
分数 / 分
(Ⅰ)图①中 m 的值为

(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计这 70000 名考生中,成绩为满分的约有多少人?
数学模拟试卷(一) 第 5 页 (共 9 页)
相关文档
最新文档