深圳大学单级交流放大电路实验报告
单级放大电路实验报告
单级放大电路实验报告摘要:本实验通过搭建单级放大电路并进行测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,单级放大电路在合适的设计和调试下能够实现电压信号的有效放大,但也存在一定的局限性。
引言:放大电路是电子技术中的重要组成部分,能够将弱小的电信号放大为更大的信号,以便后续电路进行处理或驱动。
本实验中,我们研究的是单级放大电路,它是放大电路中最基本的一种,并且具有较为简单的电路结构。
材料与方法:实验所需材料如下:1.1个NPN型晶体管2.2个电阻(分别为R1和R2)3.1个直流电源4.1个信号发生器实验步骤如下:1.按照电路图搭建单级放大电路。
2.调节电阻R1和R2的值,使其满足所需的放大倍数。
3.将信号发生器的输出接入放大电路的输入端。
4.通过示波器观察输出信号,并记录相关数据。
结果与讨论:在本实验中,我们设置放大倍数为20,即输出信号的幅度是输入信号的20倍。
调节电路中的电阻值后,我们成功地获得了期望的输出信号。
我们进一步探讨了输入和输出阻抗对于放大电路性能的影响。
实验结果表明,输入阻抗较大时,放大电路能够更好地接受输入信号,减小了信号源与放大电路之间的负载效应。
而当输出阻抗较小时,放大电路能够更好地推动负载电路,使得输出信号更加稳定。
同时,我们还研究了电压放大倍数与电压源频率的关系。
实验结果显示,当电压源频率较低时,放大倍数较高;而当电压源频率超过一定值后,放大倍数会逐渐减小。
这是因为晶体管的内部电容、电感等因素导致了对高频信号的损耗。
结论:本实验通过搭建单级放大电路并测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。
实验结果表明,在合适的设计和调试下,单级放大电路能够实现电压信号的有效放大。
其中,输入和输出阻抗的选择对于放大电路的性能有着重要影响。
此外,电压放大倍数与电压源频率之间存在一定的关联关系,需要根据实际情况进行设计和选择。
实验一 单级交流放大电路 实验报告
实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。
测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。
单级交流放大电路实验报告
单级交流放大电路实验报告本实验的目的是通过实验操作,掌握单级交流放大电路的基本原理和性能特点,以及对单级放大电路进行性能参数测量和分析。
实验原理:单级交流放大电路是放大器的基本部件,它能够放大信号的幅度,并对信号进行滤波。
在实验中,我们使用的是共射放大电路。
共射放大电路的特点是输入和输出信号都进行交流耦合,这使得信号能够通过放大电阻的放大作用,输出的电压幅度得到放大。
实验步骤:1. 搭建单级交流放大电路,连接电路元件。
2. 使用函数发生器产生待放大的信号,并接入放大电路的输入端。
3. 调节函数发生器的频率和振幅,观察并记录放大电路输出端的波形。
4. 改变输入信号的频率和振幅,观察输出端的波形的变化情况。
5. 测量并记录实验中使用的电路元件的参数,如电阻、电容等。
6. 使用示波器测量并记录放大电路输入端和输出端的电压幅值、电流幅值以及相位差等参数。
7. 对实验数据进行分析和处理,计算并绘制放大电路的幅频特性曲线、相频特性曲线等。
实验结果和数据分析:根据实验所得数据,计算并绘制了单级交流放大电路的幅频特性曲线和相频特性曲线。
通过对比实验数据和理论结果,可以得出实验结果与理论结果基本吻合的结论。
实验结论:本实验成功搭建了单级交流放大电路,通过实验观察验证了放大电路的基本原理和性能特点。
实验结果表明,该单级交流放大电路能够放大信号的幅度,并对信号进行滤波。
实验结果与理论结果基本吻合,验证了单级交流放大电路的性能参数测量和分析方法的正确性。
实验心得:通过本次实验,我深刻理解了单级交流放大电路的原理和性能特点,并掌握了对单级放大电路进行性能参数测量和分析的方法。
实验过程中,我遇到了一些问题,如电路元件的选择和连接、实验数据的测量和记录等。
通过认真学习实验原理和操作步骤,我逐渐解决了这些问题,并取得了满意的实验结果。
这次实验对我今后的学习和研究具有重要意义,我将继续深入学习电路理论和实验技术,提高自己的实验能力和创新能力。
实用文档之实验一 单级交流放大电路 实验报告
实用文档之"实验一单级交流放大电路"一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic 很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。
测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。
2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。
改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。
单级交流放大电路实验报告数据
单级交流放大电路实验报告数据
引言:
单级交流放大电路是一种常见的电子电路,它可以将输入的微弱交流信号放大成为较大的输出信号。
在本次实验中,我们将学习如何设计和制作一个单级交流放大电路,并测试其性能。
实验原理:
单级交流放大电路由放大器管、直流偏置电路和耦合电容组成。
其中,放大器管是核心部件,它能够放大输入信号的电压或电流。
直流偏置电路可以提供稳定的工作电压,确保输出信号的稳定性。
耦合电容则用于将输入和输出信号隔离,防止直流信号干扰。
实验步骤:
1. 准备工作:准备所需元器件,包括晶体管、电阻、电容等,并根据电路图连接电路。
2. 调试电路:将电路连接好后,通过万用表检测电路中各个元器件的参数是否符合设计要求,如电阻值、电容值等。
3. 测试电路:将信号源的输出端连接到电路的输入端,测量电路的输出信号的电压值,并将其与输入信号的电压值比较,计算放大倍数。
4. 优化电路:根据测试结果对电路进行优化,如更换元器件、调整电阻、电容等。
实验结果:
经过多次调试和优化,我们成功地制作出了一台单级交流放大电路。
在测试中,我们发现该电路放大倍数为150,输出信号的失真率小于5%。
这说明该电路能够有效地放大输入信号,输出信号质量较高。
结论:
单级交流放大电路是一种基本的电子电路,它在各种电子设备中都有广泛的应用。
通过本次实验,我们深入地了解了单级交流放大电路的原理和制作方法,并获得了实践经验。
我们相信这将为今后的电子工程师之路奠定坚实的基础。
实验一单级交流放大电路有数据
实验一单级交流放大电路(有数据) 实验一:单级交流放大电路一、实验目的1.掌握单级交流放大电路的基本原理和组成。
2.学习使用示波器和电压表测量放大电路的输入输出电压。
3.通过实验数据分析放大电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
二、实验原理单级交流放大电路是模拟电子技术中最基本的放大电路之一,它由一个晶体管、一个交流电源、一个负载电阻和一对输入输出端口组成。
通过适当的选择晶体管和电阻等元件的参数,可以实现对交流信号的放大作用。
三、实验步骤1.搭建单级交流放大电路,确保电路连接正确无误。
2.接通电源,调整输入信号源,使输入信号源的幅度适中。
3.使用示波器和电压表分别测量输入输出电压,记录数据。
4.改变输入信号源的幅度,重复步骤3,记录数据。
5.改变负载电阻,重复步骤3和4,记录数据。
6.分析实验数据,计算放大倍数、输入电阻和输出电阻等性能指标。
7.根据实验结果,分析单级交流放大电路的性能特点。
四、实验数据分析等性能指标与输入信号幅度无关。
这是因为单级交流放大电路只包含一个晶体管和几个电阻元件,其性能指标主要由元件参数决定,而非输入信号幅度。
此外,实验数据还表明,单级交流放大电路的输入电阻和输出电阻都很大,这有利于减小信号源内阻对放大电路性能的影响,同时也有利于减小信号在传输过程中的损失。
然而,单级交流放大电路的放大倍数较大,可能会导致输出信号失真。
因此,在实际应用中需要根据具体需求选择合适的放大倍数。
五、结论总结通过本次实验,我们验证了单级交流放大电路的基本原理和组成,掌握了使用示波器和电压表测量放大电路的输入输出电压的方法。
通过数据分析发现,单级交流放大电路的性能指标主要由元件参数决定,而非输入信号幅度。
此外,我们还了解到单级交流放大电路具有较大的输入电阻和输出电阻,有利于减小信号源内阻对放大电路性能的影响以及减小信号传输过程中的损失。
然而,由于放大倍数较大可能导致输出信号失真,因此在实际应用中需要根据具体需求选择合适的放大倍数。
单级交流放大电路实验报告
单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。
2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。
3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。
4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。
二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。
它的主要作用是将输入的小信号进行放大,输出一个较大的信号。
在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。
静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。
通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。
放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。
输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。
三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。
2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。
3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。
(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。
2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。
3、计算电压放大倍数 Av = Vopp / 10mV。
(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。
2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。
实验二单级交流放大电路实验
实验二单级交流放大电路实验一、实验目的1、进一步熟悉常用电子元器件,实验设备的使用方法;2、学习晶体管放大电路静态工作点的测试方法,掌握共射级电路特性;3、理解电路元件参数对静态工作点的影响,以及调整静态工作点的方法;4、学习放大电路性能指标:电压增益Av、输入电阻Ri、输出电阻Ro 的测量方法。
二、预习要求1、熟悉单管放大电路,掌握不失真放大的条件;2、熟悉共射级放大电路静态和动态的测量方法;3、了解负载变化对共射级放大电路放大倍数的影响。
三、实验内容及步骤1、仿真电路图2.1 小信号放大电路2、实验步骤(1)按图2.1 所示绘制电路,即Vin 接信号源,Vout 接示波器。
(2)在Proteus中点击仿真,启动仿真,调节滑动变阻器,观察、分析、比较仿真输出波形与实验实际输出的波形。
(3)PROTEUS 仿真输出波形如图2.2 所示。
图2.2 仿真输出波形3、测量并计算静态工作点将输入端对地短路,调节电位器,使Vc=VCC/2 (取Vc=6~7伏,VCC=+12V),测静态工作点Vc、Ve、Vb及Vb1的数值,记入表1-1中。
按下式计算Ib 、Ic。
Ib=(Vb1-Vb)/RB1-Vb/RB2,Ie=(Vb-VBE)/RE,Ic=Ie。
调整电位器测量计算Vc(V) Ve(V) Vb(V) Vb1(V) Ic(mA) Ib(μA)表2-14、动态研究(1)将信号发生器调到f=1KHz,幅值为50mV,接到放大器输入端Vin,观察Vin和Vout 的波形,并比较相位。
(2)信号源频率不变,逐渐加大幅度,观察V out不失真时的最大值并填表3.2(RL= ∞时)。
实测实测计算估算s is i i R V V V R -=Vin (mV ) Vout (V ) Av Av表2.2(3)保持Vi 不变,放大器接入负载R L ,在改变Rc 数值情况下测量,并计算结果填表2.3。
给定参数 实测实测计算 估算 Rc R L Vin (mV )Vout (V )Av Av 2K 5.1K2K 2.2K 5.1K 5.1K 5.1K2.2K表2.3(4)、保持Vin 不变,增大和减小电位器RP2,观察Vout 波形变化,测量并填表2.4。
单级交流放大电路实验报告
单级交流放大电路实验报告实验名称:单级交流放大电路实验报告实验教材:《电子技术基础》实验目的:1. 了解单级交流放大电路的工作原理和基本构成;2. 学会测量单级交流放大电路的放大倍数和频率响应;3. 培养实验操作能力和分析问题的能力。
实验器材:1. 电压表;2. 万用表;3. 信号发生器;4. 示波器;5. 电阻、电容等元件;6. 晶体管等半导体器件。
实验步骤:1. 按照图1的电路连接,调节信号发生器的频率为1kHz,输出电压为0.1Vrms,用万用表测量输入信号的电压和输出信号的电压,并计算电路的放大倍数;2. 调节信号发生器的频率,依次测量该电路在10Hz、100Hz、1kHz、10kHz、100kHz、1MHz时的输出电压,并画出该电路的频率响应曲线;3. 改变电路中电容的容值,重复步骤1和步骤2,比较不同电容容值对电路的影响。
实验结果:1. 在1kHz时,电路的输入电压为0.1Vrms,输出电压为0.8Vrms,电路的放大倍数为8;2. 该电路的频率响应曲线如图2所示;3. 当电容值增大时,电路的低频响应增强,放大倍数增大。
实验分析:1. 在实验过程中,我们通过测量电路的输入和输出电压,以及计算电路的放大倍数,了解了单级交流放大电路的基本工作原理;2. 通过绘制频率响应曲线,我们发现该电路在低频和高频时放大倍数较小,在中频时放大倍数较大;3. 改变电容的容值可以改变电路的频率响应特性,这对于设计一个满足特定要求的放大电路具有重要意义。
实验结论:本次实验通过实验操作和分析数据,深入掌握了单级交流放大电路的工作原理、性能参数和频率特性,同时也培养了我们实验操作和数据分析的能力。
该电路在电子技术中应用广泛,研究和设计该电路对于我们掌握电子技术有很大帮助。
单级交流放大电路实验报告
单级交流放大电路实验报告实验目的,通过实验,了解单级交流放大电路的工作原理和特性,掌握其基本参数的测量方法。
实验仪器和设备,示波器、信号发生器、直流稳压电源、万用表、电阻、电容、二极管等。
实验原理,单级交流放大电路是由一个晶体管和少量的外围元件构成的,它可以将输入信号的幅度放大到一定的程度。
在交流放大电路中,输入信号是交流信号,而输出信号也是交流信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好,并接通电源。
2. 调节信号发生器,输入交流信号,并观察示波器上的波形。
3. 调节直流稳压电源,改变电路中的直流工作点,观察示波器上的波形变化。
4. 测量电路中的电压、电流等参数,并记录下实验数据。
5. 根据实验数据,分析单级交流放大电路的工作特性。
实验结果与分析:通过实验,我们得到了单级交流放大电路的输入输出特性曲线。
当输入信号幅度较小时,输出信号的幅度也较小,但随着输入信号的增大,输出信号的幅度也随之增大,直到达到一定的饱和值。
这说明单级交流放大电路具有放大输入信号的功能,但是当输入信号幅度过大时,输出信号会出现失真。
同时,我们还测量了电路中的直流工作点、交流增益、输入阻抗、输出阻抗等参数。
这些参数的测量结果对于了解单级交流放大电路的工作特性和性能有着重要的意义。
实验总结:通过本次实验,我们对单级交流放大电路的工作原理和特性有了更深入的了解。
我们掌握了单级交流放大电路的基本参数测量方法,同时也发现了单级交流放大电路存在的一些问题和局限性。
在今后的学习和实践中,我们将进一步深入研究电子电路的相关知识,提高自己的实验技能,为今后的科研和工程实践打下坚实的基础。
结语:单级交流放大电路是电子技术中的重要组成部分,它在通信、音响、电视等领域有着广泛的应用。
通过本次实验,我们对单级交流放大电路有了更加深入的了解,这对我们今后的学习和工作都具有重要的意义。
希望我们能够不断学习,不断进步,为电子技术的发展做出自己的贡献。
实验一单级交流放大电路实验报告
实验一单级交流放大电路实验报告一、实验目的:1.学习单级交流放大电路的基本原理;2.了解交流放大电路的放大特性;3.熟悉实验仪器的使用。
二、实验仪器和材料:1.函数发生器;2.直流电压源;3.双踪示波器;4.两只电压表;5.电阻、电容等被测元件。
三、实验原理:1.交流放大电路交流放大电路是指对输入信号的交流成分进行放大处理的电路,常用的有单级放大电路、共射放大电路等。
2.单级交流放大电路单级交流放大电路是对输入信号的交流成分进行放大处理的电路,由输入电容、输出电容、输入电阻、输出电阻以及放大元件(如三极管)等组成。
四、实验步骤:1.搭建单级交流放大电路,连接电阻、电容元件,使用函数发生器输入信号;2.调整函数发生器的频率和幅度,观察输出信号的变化;3.使用示波器观察输入信号和输出信号的波形,测量输入信号和输出信号的幅度;4.更改电阻、电容元件的数值,观察输出信号的变化。
五、实验结果和数据处理:在实验中我们尝试了不同的频率和幅度的输入信号,并观察了输出信号的变化。
通过测量输入信号和输出信号的幅度,我们得到了如下数据:输入信号频率:1kHz输入信号幅度:2V输出信号幅度:4V输入信号频率:10kHz输入信号幅度:1V输出信号幅度:3V输入信号频率:100kHz输入信号幅度:0.5V输出信号幅度:2V从数据可以看出,随着输入信号频率的增加,输出信号的幅度逐渐减小。
这是因为交流放大电路具有一定的截止频率,超过该频率时放大效果逐渐减弱。
六、实验讨论:1.交流放大电路的截止频率是通过电路元件的数值进行调节的,可通过改变电容和电阻的数值来改变截止频率;2.在实验中我们没有考虑到放大器的失真问题,实际应用中要考虑到放大器的失真程度,例如非线性失真、相位失真等。
七、实验总结:通过本次实验,我们学习了单级交流放大电路的基本原理,了解了交流放大电路的放大特性。
实验中我们使用了函数发生器、示波器等仪器,熟悉了这些仪器的使用方法。
单级放大电路实验报告
单级放大电路一.实验目的1、熟悉电子元器件和模拟电路实验箱。
2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。
3、学习测量放大器Q点,Av,ri,ro的方法,了解共射放大电路特性。
4、学习放大器的动态性能。
二.实验原理实验电路图1、三极管放大作用当三极管发射结处于正向偏置状态,而集电结处于反向偏置状态时,集电极电流受基极电流控制,且基极电流发生很小变化时集电极电流变化很大,如果将小信号加到基极与集电极之间,即会引起Ib变化,Ib放大后,导致Ic发生很大变化,根据U=Ic*R,电阻上电压发生很大变化,即得到放大信号。
2、静态工作点的测量测量静态工作点时,应在输入信号ui=0的情况下进行,将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位Uc、Ue。
当流过Rb1和Rb2的电流远大于晶体管基极电流Ib时,Ub=(Rb1/(Rb1+Rb2))Ucc,Ie=Ic。
3、放大器动态指标测试调整放大器到合适的静态工作点然后加入输入电压Ui在输出电压uo不失真的情况下,用数字万用表测出ui和uo的有效值Ui和Uo,则Au=Uo/Ui。
三.实验设备1、示波器2、数字万用表3、分立元件放大电路模块4、导线若干四.实验内容及步骤l 、实验电路如上图(1)、用万用表判断实验箱上三极管的极性和好坏、电容C的极性和好坏。
接通电源,用示波器调出准确的正弦波信号,关闭电源。
(2)、按图连接电路,将R p的阻值调到阻值最大位置。
(3)、接线完毕仔细检查,确定无误后接通电源。
2、静态分析3、动态研究( 1 )将示波器接入输入输出端观察U i和U O端波形,并比较相位。
( 2 )信号源频率不变,逐渐加大信号幅度观察UO不失真时的最大值。
五.实验总结及感想1. 从实验数据来看,实验值和理论值还是存在一定差异。
实验中所采用的元件并非理想元件,理论计算时一般都忽略一些小量,所以两者都有误差。
单级交流放大器实训报告
一、实验目的1. 理解单级交流放大器的基本原理和组成。
2. 掌握单级交流放大器的静态工作点调试方法。
3. 学习测量放大电路的电压放大倍数、输入电阻和输出电阻。
4. 分析静态工作点对放大电路性能的影响。
二、实验原理单级交流放大器是一种常见的电子电路,主要由晶体管、直流偏置电路和耦合电容组成。
晶体管作为放大器的核心部件,能够放大输入信号的电压或电流。
直流偏置电路为晶体管提供稳定的工作电压,确保输出信号的正常工作。
耦合电容将输入信号和输出信号隔离开,使交流信号得以传输。
三、实验仪器与设备1. 晶体管万用表2. 晶体管稳压电源(WYT—30V,2A)3. 低频信号发生器4. BS—601双线示波器5. ZH12通用电学实验台四、实验步骤1. 按照实验电路图连接实验线路,经指导老师检查同意后,方可接通电源。
2. 测量静态工作点:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。
(2)调整电位器Rp1,使输出波形不出现失真。
(3)逐渐增大Vi,同时调节Rp1,直到同时出现饱和与截止失真为止。
(4)此时静态工作点已调整好,放大电路处于最大不失真工作状态。
(5)撤去交流信号,用万用表测量静态工作点值VB、VC和RB(VB、VC均为对地电位,测RB时要关掉电源,去掉连线)。
3. 观察RB变化对静态工作点、电压放大倍数和输出波形的影响:(1)将RB减小,观察静态工作点、电压放大倍数和输出波形的变化。
(2)将RB增大,观察静态工作点、电压放大倍数和输出波形的变化。
4. 测量放大电路的电压放大倍数、输入电阻和输出电阻:(1)输入Vi=5mV,f=1kHz的交流信号,观察输出波形。
(2)用示波器测量输出电压Uo。
(3)根据电压放大倍数公式Aυ=Uo/Vi,计算电压放大倍数。
(4)测量放大电路的输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点对放大电路性能的影响:通过实验观察发现,静态工作点的调整对放大电路的性能有重要影响。
单级交流放大电路
3
四、数据处理分析:
截止失真 饱和失真 合适
4
五、实验结果与讨论:
静态工作点对电压放大倍数影响比较小,IE 大一些放大倍数略有增加。但是静态 工作点对输出波形影响较大,低了会截止失真,高了会饱和失真。负载对放大倍数影 响比较大,RL 越大,电压放大倍数越大。旁路电容对电压放大倍数和输出波形影响比 较小,但是高频时影响较大。
rbe
200 (1 ) 26mV IE
, AV
RL
Rc rbe
rce
,
实测
实测计算
Ui(mV)
UO(V)
AV
7.5
0.15
20
10.2
0.21
21
12.6
0.26
21
估算 AV
19.5 20.4 20
(3)保持 Vi=5mV 不变,放大器接入负载 RL,在改变 RC 数值情况下测量,并将计算结 果填表
指导教师批阅意见:
成绩评定: 备注:
指导教师签字: 年月日
5
深圳大学实验报告
实验一单级交流放大电路(有数据)
实验一单级交流放大电路(有数据)
单级交流放大电路是一种常见的电子电路,它可以放大输入信号,也可以把输入信号变成一个有用的输出信号。
本文将介绍单级交流放大电路的基本原理,以及一组有关实验数据。
首先,单级交流放大电路的结构比较简单,由一个基本的放大元件,如晶体管、电子管或集成电路,和少量的支持元件构成,如阻容电路、反馈电路和滤波电路。
单级交流放大电路可以把输入信号变放大,并把滤波电路带上去,从而取得更高质量的输出信号。
接下来,我们来看一下有关单级交流放大电路实验数据。
在实验参数中,输入电压为200mV;输出电压3000mV;单级放大器增益为15;输入阻抗500Kohm;输出阻抗150ohm;单位时间的输入电流30mA;单位时间的输出电流450mA。
从实验数据中,我们可以看到单级交流放大电路的输入电压被放大了15倍。
并且,从输入端到输出端的电阻变化,从500K ohm变成150 ohm。
这说明单级交流放大电路是一种非常简单而有效的放大电路。
单级交流放大电路实验
单级交流放大电路实验一、实验目的1.熟悉电子元器件和模拟电路实验箱。
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,A V,r i,r o的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1.示波器2.信号发生器3.数字万用表三、预习要求1.三极管及单管放大电路工作原理。
2.放大电路静态和动态测量方法。
四、实验内容及步骤1.装接电路与简单测量图2.l 基本放大电路(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。
(2)按图2.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。
2.静态测量与调整(1)接线完毕仔细检查,确定无误后接通电源。
改变R P,记录I C分别为0.5mA、1mA、1.5mA时三极管V的β值(其值较低)。
注意:I b和I c的测量和计算方法:测I b和I c一般可用间接测量法,即通过测V c和V b,R c和R b计算出I b和I c。
(2)按图2.2接线,调整RP使VE=2.2V,计算并填表2.1。
图2.2 工作点稳定的放大电路表2 1实测实测计算 V BE (V) V CE (V) R b (K Ω)I B (μA)I C (mA)(1)按图2.3所示电路接线。
(2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R1、R2衰减(100倍),Vi 点得到5mV 的小信号,观察Vi 和VO 端波形,并比较相位。
(3)信号源频率不变,逐渐加大信号源幅度,观察VO 不失真时的最大值并填表2.2。
分析图2.3的交流等效电路模型,由下述几个公式进行计算:Ebe I mVr 26)1(200β++≈,be ce c L V r r R R A β-=,c ce o be b b i R r r r R R r ==,2 表2.2 RL=∞实测实测计算估算 V i (mV) V O (V) A V A V图2.3 小信号放大电路(4)保持Vi=5mV 不变,放大器接入负载RL ,在改变RC 数值情况下测量,并将计算结果填表1.3。
实验一单级交流放大电路
实验一、单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV,Ri,Ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器1示波器2.信号发生器3.数字万用表三、实验内容及结果分析1.装接电路与简单测量(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。
测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。
三极管导通电压UBE=0.7V、UBC=0.7V,反向导通电压无穷大。
(2)按图连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。
2.静态测量与调整(1) 接线完毕仔细检查,确定无误后接通电源。
改变RP,记录IC分别为0.5mA、1mA、1.5mA 时三极管V的β值(其值较低)。
参考值:IC=0.5mA时,IB=25µA,β=20; IC=1mA时,IB=40.2µA,β=24.9;IC=1.5mA时,IB=54.5µA,β=27.5;(2)按图2接线,调整RP使VE=2.2V,计算并填表3.动态研究(1)按图3所示电路接线。
(2) 将信号发生器的输出信号调到f=1KHz,幅值为500mV,接至放大电路的A点,经过R1、R2衰减(100倍),Vi点得到5mV的小信号,观察Vi和VO端波形,并比较相位。
(3) 信号源频率不变,逐渐加大信号源幅度,观察VO不失真时的最大值并填表1.2(4) 保持Vi=5mV不变,放大器接入负载RL,在改变RC数值情况下测量,并将计算结果填表(5) V¬i=5mV,RC=5K1,不加RL时,如电位器RP调节范围不够,可改变Rb1(51K或150K),增大和减小RP,观察VO波形变化,若失真观察不明显可增大Vi幅值(>10 mV),并重测,将测量结果。
2021年实验一单级交流放大电路实验报告
试验一单级交流放大电路一、试验目1.熟悉电子元器件和模拟电路试验箱,2.掌握放大电路静态工作点调试方法及其对放大电路性能影响。
3.学习测量放大电路Q点, AV , ri, ro方法, 了解共射极电路特征。
4.学习放大电路动态性能。
二、试验仪器1.示波器2.信号发生器3.数字万用表三、试验原理1.三极管及单管放大电路工作原理。
以NPN三极管共发射极放大电路为例说明三极管放大电路基础原理:三极管放大作用是: 集电极电流受基极电流控制, 而且基极电流很小改变, 会引发集电极电流很大改变, 。
假如将一个改变小信号加到基极跟发射极之间, 这就会引发基极电流Ib改变, Ib改变被放大后, 造成了Ic很大改变。
假如集电极电流Ic是流过一个电阻R, 那么依据电压计算公式U=R*I能够算得, 这电阻上电压就会发生很大改变。
我们将这个电阻上电压取出来, 就得到了放大后电压信号了。
2.放大电路静态和动态测量方法。
放大电路良好工作基础是设置正确静态工作点。
所以静态测试应该是指放大电路静态偏置设置是否正确, 以确保放大电路达成最优性能。
放大电路动态特征指对交流小信号放大能力。
所以动态特征测试应该指放大电路工作频带, 输入信号幅度范围, 输出信号幅度范围等指标。
四、试验内容及步骤1.装接电路与简单测量图1.1 工作点稳定放大电路(1)用万用表判定试验箱上三极管V 极性和好坏, 电解电容C 极性和好坏。
测三极管B 、 C 和B 、 E 极间正反向导通电压, 能够判定好坏; 测电解电容好坏必需使用指针万用表, 经过测正反向电阻。
三极管导通电压UBE=0.7V 、 UBC=0.7V, 反向导通电压无穷大。
(2)按图1.1所表示, 连接电路(注意: 接线前先测量+12V 电源, 关断电源后再连线), 将RP 阻值调到最大位置。
2.静态测量与调整接线完成仔细检验, 确定无误后接通电源。
改变R P , 统计I C 分别为0.5mA 、 1mA 、 1.5mA 时三极管V β值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告
课程名称:模拟电路
实验项目:单级交流放大电路
学院:信息工程学院
专业:电子信息工程
指导教师:
报告人:学号:班级:
实验时间: 2016.11.03 实验报告提交时间: 2016.11.17
教务处制
任务一装接电路与简单测量
第一,连接好电路后,先不要打开总开关,应该先检查所连电路是否正确,确保无误后再打开总开关,避免烧坏实验箱和电路板;
第二,电路板和实验箱之间的电源连接部分要插紧,特别是电路板的接地孔和实验箱上的接地孔要用单支线连接起来,这样才能确保电路的有效供电,否则容易烧坏电路板和实验箱。
用万用表判定实验箱上三极管V的极性和好坏,并测量β。
(三极管为3DG6、NPN型三极管,放大倍数β一般为24~45。
)
①判定基极。
将数字万用表旋钮开关置于蜂鸣档,用红表笔接三极管任一脚,用黑表笔分别去碰另两个脚,如果此时测得三极管的两个脚是导通状态,那么此三极管为NPN型,红表笔接触的脚是该三极管的基极b;如果另外两个脚没有导通,再将红表笔换三极管的另外两个脚,按上面步骤反复测量是否导通,直到找到基极b;如果最后都没有找到基极b,那么该三极管很可能为PNP型。
此时,改用黑表笔接三极管任一脚,再用红表笔分别去碰另两个脚,如果此时测得三极管的两个脚是导通状态,那么此三极管为PNP型,黑表笔接触的脚是该三极管的基极b;如果另外两脚没有导通,再将黑表笔换。