算术平方根
平方根计算公式
平方根计算公式
平方根公式计算公式:X(n+1)=Xn+(A/Xn−Xn)1/2。
平方根又叫二次方根,表示为±√,其中属于非负数的平方根称之为算术平方根。
一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数有两个共轭的纯虚平方根。
一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。
只有在复数系内,负数才可以开平方。
负数的平方根为一对共轭纯虚数。
平方根和算术平方根区别是什么
大部分同学只对平方根有所了解,对算术平方根不懂什么意思,那如何理解它们的区别呢。
以下是由编辑为大家整理的“平方根和算术平方根区别是什么”,仅供参考,欢迎大家阅读。
平方根和算术平方根区别1、平方根的定义:若x2=a,则x为a 的平方根,若22=4,2是4的平方根,(-2)2=4,-2是4的平方根,算术平方根的定义:一个非负数的正的平方根叫做它的算术平方,如:2和-2都是4的平方根,而2是4的算术平方根.。
2、个数不同:正数的平方根有两个且互为相反数,正数的算术平方根只有一个。
3、表示方法不同:前者非负数a的平方根为a的正负平方根,后者非负数a的算术平方根为a的正的平方根。
联系:(1)存在条件相同:平方根和算术平方根都只有非负数才有,(2)具有包含关系:平方根包含算术平方根,而算术平方根是平方根中非负数的那一个,(3)0的平方根和算术平方根都是0。
注意:1、正数有两个平方根,他们互为相反数,负数没有平方根,0的平方根是0。
2、非负数的算术平方根只有一个。
平方根和开平方平方根如果一个数的平方等于a,那么这个数叫做a的平方根(square root). (平方根也称作二次方根)。
开平方求一个数a的平方根的运算叫做开平方(extraction of square root),a叫做被开方数。
要点提示1.平方根的定义用数学语言表示即为:若x2=a,则x叫做a的平方根。
2.平方根的三条性质:(1)一个正数a的平方根有两个,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根。
3.平方与开平方是互为逆运算的关系.把一个正数开平方,其思维方式与乘方是逆向的.如求9的平方根.可这样思考:什么数的平方等于9?因为32=9,(-3)2=9,所以9的平方根是3和-3。
拓展阅读:如何学好初中数学很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
什么是一个数的算术平方根
1 a 1 3 a 32
2 1
1 2a
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零; ②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x
(5) x3
1、16的平方根是什么? 算术平方根是什么? 2、0的平方根是什么?算术平方根是什么? 3、-7有没有平方根?有没有算术平方根?
正数和0都有算术平方根; 负数没有算术平方根。
50米 ?米
a米
塔座所形成的这个直角三角形的
斜边长为____a_2___2_5__0_0__米。
S
圆形的下球体在平面图上的面积为S,
S
则半径为____________.
如图所示的值表示正方形的面
积,则正方形的边长是 b 3
b-3
你认为所得的各代数式有哪些共同特点?
a2 2500
s
b3
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a叫被开方数
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
x0
(6)
1 x2
x0
x0
1.若 (a 5)2 (2b 3)2 =0,则 ab2 =_____。
2.已知a.b为实数,且满足
a 2b 1 1 2b 1 ,你能求出a及 a+b 的值吗?
3、已知 1 有意义,那A(a, a )在 二 象限.
a
∵由题意知a<0 ∴点A(-,+)
?
形如 a (a 0)的式子叫做二次根式.
算术平方根、平方根、立方根之间区别联系
问题:90的整数部分是什么?小 数部分是什么?
解:92 81,102 100,而81 90 100,
9 90 10
90的整数部分是 9,小数部分是 90 9
(1)
13的整数部分是
___3______小数部分是
13 3
——————
(2)
21
的整数部分是 4 ——————
那么0.0017201的平方根是 0.04147
已知 2.36 1.536, 23.6 4.858,
掌 握
若 x 0.4858,则x是 0.236
规 律
已知3 5.25 1.738, 3 52.5 3.744,
则3 5250的值是 17.38
注意算术平方根和立方根的移位规律
8是 64 的平方根
(2)求算术平方根时,被开方数的小数点向 右(向左)移动2位,开方的算术平方根小 数点向右(向左)移动1位
(1)在求立方前被开方数中小数点每向右(或左)移动 三位,开方后立方根中小数点向右(或左)移动一位。
已知 1.7201 1.311, 17.201 4.147,
x52
33
x 1
当方程中出现平方时,若有解,一般都有 两个解
当方程中出现立方时,一般都有一个解
解方程:
(1)(x-1)3 125 (4)2(7 x 2)3 125 0
(2)23x 12 8
3
(5) 4x2 25
(3)(x 2)2 3 (6)9x2 49 0
不
64的平方根是 ±8
要 搞
64的值是 8
错 了
64的平方根是 8
64的立方根是 4
算术平方根
=0
算术平方根
一般地如果一个正数x的平方等于a,即x2=a, 那么这个正数x叫做a的算术平方根。a的算术平方 根记为 a ,读作“根号a”,a叫做被开方数。 即: x2=a x叫做a的算术平方根。 记做:x= a 特殊:0的算术平方根是0,记作 0=0
例1,求下列各数的算术平方根 (1)121 (2) 9 (3)0.36
25
(4)0
思考: a 中,a能为负数吗? a 的值是怎样的数? a≥0
a ≥0
平方根与算术平方根的联系与区别: 联系:
1. 算术平方根是平方根的一种; 2. 算术平方根是平方根都只有非负数才有; 3. 0的算术平方根和平方根都是0。
区别:
1.定义不同; 3. 表示法不同; 2.个数不同; 4.取值范围不同。
5:如果3b-6没有平方根,则b <2 ;如果3b-6的平方根 是0,则b =2 ;如果3b-6的一个平方根是-3,那么 b= 5 .
想一想:
• 对于正数a,
a
2
等于多少?
• 对于任意数a,
Hale Waihona Puke a2 一定等于a吗?
例2:求下列各式中的x
(1) (3)
(x-1)2=36 (2x-1)2=81
(2)3x2-27=0
练习: 填空: 1:一个正数有 两 个平方根, 0 只有一个平方根, 它是 0 ,负数 没有 平方根。
1 1 1 1 2: 的平方是 16 , 的 平方根是 ± 2 。
4
4
3:0.64的算术平方根是 0.8 ,平方根是 ±0.8 。
4如果a2-1=24则a= ±5 若a>0,则a的平方根是 ± .5
2 2
2
巩固练习:
算数平方根课件
(3)144
(1) = ,即16的算术平方根是4;
(2) = ;
(3) = .
例1、求下列各数的算术平方根
(4)−(−) −(−) = =
(5) −
+
= =
=
=
思考:-4的算术平方根是多少?
(
)
(4) 的算术平方根是
(
)
例4 已知 + 和 − 互为相反数,
求,
课堂小结
☆主要讨论:一个非负数的算术平方根,
即哪个非负数的平方等于这个数的问题。
注意:
☆根号
没有算术平方根.
有双重含义:
能否用两个面积为1的小正方形拼成一个面积
为2的大正方形?
如果能拼成,有几种不同的方法?
如果拼不成,请说明理由。
算术平方根
算术平方根:
如果正数的平方等于 ,即 =
那么这个正数叫做的算术平方根.
平方运算:
=
开方运算: =
: 的算术平方根
:被开方数
注1: 中的2可以省略,记为
² =3
= 3
3:3的算术平方根
例1、求下列各数的算术平方根
(1)16
(2)64
负数没有算术平方根
例2 判断下列各式是否有意义?为什么?
有意义的式子写出结果.
(1)− ; (2) − ;
(4) − −
(5)−
−
(3)
−
;
(6) − − .
例3 判断&辨析
(1) 7的算术平方根是
算术平方根与平方根
平方根与算术平方根的概念:
若x
a 的平方根,记为: x a ,其中 x a 叫做 a 的算术平方根。
2
a a 0 ,则 x 叫
基础练习
算术平方根 , 3 表示3的_____________ 平方根 1、3表示3的 _______________ 。 负的平方根 ________。 - 3表示3的 ____________ 2、
a ____________。
)
x 4 7 ,则
B. 53
x 的算术平方根是(
C.7 D.
A. 49
53
9. 3 a 的算数平方根是
5
,求a的值。
10.已知a、b满足等式 求ab的值.
a2 +
b 3 =0,
拓展延伸
1.已知 x 3 y 1 z 2 0, 求
2
-0.4
2
5
2 - 7
0.6
基础练习
3 < 15< ______ 4 5、估计与 15 最接近的两个整数是多少?______
6、比较大小:
< 8 5 _____
5+1 11 > ______ 8 2
< 6 2 _____
2
> _____ 2
升级演练
7.若 a 1+ 1 a 有意义,则 8.若
2
2 xy z的平方根。
解:依题意得: x 3 0 y 1 0 z 2 0
解得:x 3, y 1,1 2 2
即2 xy z的平方根为 2。
若x, y都是实数,且y 求x y的算术平方根。 解:依题意得:
算术平方根怎么算
算术平方根怎么算
1、有没有
负数没有算术平方根,0的算术平方根还是0,正数有一个算术平方根。
2、怎么求
若a>0,则a 的算术平方根为a ,如a 含有可以开方的约数应开方化简,如a 是分数或小数要有理化,根号下面不能有分母。
共有四种情况,分别举例如下:
(1)a=2,算术平方根为2=a ,已经是最简;
(2)a=4,,4是完全平方数,算术平方根为22242====a ;
(3)a=12,含有可以开方的约数4,要化简,算术平方根为323412=⨯=
=a ; (4)a=1.5,分数或小数,要有理化,算术平方根为2
6235.1==
=a 。
3、关于笔算开方 怎么求2的近似值?可以用笔算开方。
(1)小数点两边,每两位一组分组,2只有一位,自己分成一组,试商1,
(2)商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(3)试商,上面填什么,左边空位里就填什么,上4正好,
(4)重复第(2)步,商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(5)重复第(3)步,试商,上面填什么,左边空位里就填什么,上1正好,
(6)重复第(2)步,商乘以20,空一位作除数写在左边,被除数每次落两位即一组,
(7)重复第(3)步,试商,上面填什么,左边空位里就填什么,上4正好,
(8)重复(2),重复(3)......直到精确到需要的位数。
什么是算术平方根?
什么是算术平方根?
算术平方根定义
若一个正数x的平方等于a,即x^2=a,则这个正数x为a的算术平方根。
a的算术平方根记作√ ̄a,读作“根号a”,a叫做被开方数。
规定:0的算术平方根为0。
平方根的概念
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。
例:9的平方根是±3注:有时我们说的平方根指算术平方根。
简单来说就是一个数,假如是9,那么就是±3的平方:如果是4,就是±2的平方。
平方数列表
1^2=1
2^2=4
3^2=9
4^2=16
5^2=25
6^2=36
7^2=49
8^2=64
9^2=81
10^2=100
11^2=121
12^2=144
13^2=169
14^2=196
15^2=225
16^2=256
17^2=289 18^2=324 19^2=361 20^2=400。
平方根与算术平方根
平方根与算术平方根1.平方根:如果一个数x 的平方等于a ,即x 2=a ,那么这个x 就叫a 的平方根,表示为±a ,也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,即±=9±3.2.算数平方根: 若一个正数x 的平方等于a ,即x 2=a ,则这个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即0=0. 9的算术平方根只有一个是3.即39=.3.平方根的性质:一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.4.算数平方根的性质:非负数(正数和0)才有算术平方根,负数没有算术平方根. 即用式子表示为a (a ≥0)一定为非负数4.平方根与算术平方根的区别与联系1、联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.2、区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a .(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
练 习1.9的平方根是( )A .3B .-3C .±3D .32.下列说法中正确的是( )A .任何数都有平方根B .一个正数的平方根的平方就是它的本身C .只有正数才有算术平方根D .不是正数没有平方根3.下列各式正确的是( )A .1691=45B .414=221 C .25.0=0.05 D .-49-=-(-7)=7 4.下列说法正确的是( )A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根5.下列各式无意义的是( )A .-5B .25-C .51- D .2)5(- 6.3-2的算术平方根是( ) A .61 B .31C .3D .6 7.(-23)2的平方根是( ) A .±8 B .8 C .-8D .不存在 8.使x -有意义的x 的值是( )A .正数B .负数C .0D .非正数9.一个自然数的算术平方根是n ,那么大于这个自然数且与它相邻的自然数是( )A.n +1B.n 2+1C.12+n D.n +110.若x 2=2,则x 的准确值是多少? 如何表示?请填写下列各空:(1)∵42=16,∴16的算术平方根是 ,用符号表示出来为 ; (2)∵94)32(2=,∴94的算术平方根是 ;用符号表示出来为 ; (3)∵( )2=6,∴6的算术平方根是 .11.若一个数的算术平方根是5,则这个数是_________.12.8116的平方根是____________,(21-)2的算术平方根是____________. 13.y =x x -+-33+2,则x =__________,y =__________.14.一个数的算术平方根是它本身,这个数是______________.15.252-242的平方根是__________,0.04的负的平方根是____________.16.若2-a +|b -3|=0,则a +b -5=____________.17.若4x 2=9,则x =____________.18.81的算术平方根为_________.16的平方根是____________19. (-π)2的算术平方根为_____.20.求下列各数的算术平方根,并用符号表示出来:(1)(7.1)2; (2)(-3.5)2; (4)241.21、求各式的值-01.0 2)5(- 610-22、计算32÷(-3)2+|-61|×(-6)+49.23、求下列各式中x 的值.(1) 25x 2-36=0; (2) (x +1)2-81=0;24、12-x +(y +2)2=0,求x -3+y 3的值.25、 |2a -5|与2+b 互为相反数,求ab 的值.26、已知x ,y 满足x x y 211121-+-=+3,求x y27、请你在数轴上画出表示5的点,并简要说出你的画法.。
算术平方根与平方根
(1)算术平方根的概念,式子 a 中的双 重非负性: 一是a≥0, 二是 a ≥0. (2)算术平方根的性质: 一个正数的算术平方根是一个正数; 0的算术平方根是0; 负数没有算术平方根. (3)求一个正数的算术平方根的运算与平 方运算是互逆的运算,利用这个互逆运算关 系求非负数的算术平方根.
Hale Waihona Puke 若 x 2 a ,则x叫a的平方根,x a . 正数有2个平方根,0的平方根是0. 负数没有平方根. 方法总结: 求一个数的平方根就是转化寻找哪个
数平方等于这个数
平方与开方的互化关系
1.纯循环小数转化成分数:小数点后 有几个数字,分母就有几个9,分子为 循环节的数字. 该化简就化简即可. 2.混循环小数转化成分数:循环节内 有几位数,分母就有几个9,分母9后面 就有几个0,分子是循环数字减去循 环节数字的差,需要化简再化简.
例题:《同步精练》第9页
算术平方根表示方法
算术平方根表示方法算术平方根是数学中的重要概念,它代表了一个数的平方根。
在本文中,我们将探讨算术平方根的定义、性质以及一些常见的计算方法。
我们来定义算术平方根。
对于一个非负实数x,如果存在一个非负实数y,使得y的平方等于x,那么y就是x的算术平方根。
我们用符号√x来表示x的算术平方根。
算术平方根具有一些重要的性质。
首先,对于任何非负实数x,它的算术平方根都是唯一的。
换句话说,一个数的平方根是确定的,不会有多个答案。
如果一个数x大于0,则它的算术平方根也大于0。
这是因为平方根是非负实数,不可能是负数。
算术平方根具有乘法性质。
即对于任何非负实数x和y,√(xy)等于√x乘以√y。
这个性质可以用来简化一些复杂的平方根计算。
那么如何计算一个数的算术平方根呢?常见的方法有两种:迭代法和牛顿法。
迭代法是一种通过不断逼近的方式来计算平方根的方法。
它的基本思想是从一个初始猜测值开始,通过迭代计算不断逼近平方根的真实值。
具体来说,对于一个非负实数x,我们可以从一个初始猜测值y0开始,然后通过以下迭代公式来计算下一个近似值yn+1:yn+1 = (yn + x/yn) / 2不断重复这个迭代过程,直到计算得到的近似值足够接近真实的平方根。
牛顿法是一种更高效的计算平方根的方法。
它利用了函数的切线与x轴的交点来逼近平方根的真实值。
具体来说,对于一个非负实数x,我们可以从一个初始猜测值y0开始,然后通过以下迭代公式来计算下一个近似值yn+1:yn+1 = (yn + x/yn) / 2同样地,不断重复这个迭代过程,直到计算得到的近似值足够接近真实的平方根。
除了这两种常见的计算方法,还有一些其他的方法可以用来计算平方根,例如二分法和连分数法等。
这些方法各有特点,适用于不同的情况和需求。
总结起来,算术平方根是数学中的重要概念,它代表了一个数的平方根。
通过迭代法、牛顿法等计算方法,我们可以计算一个数的平方根。
算术平方根具有唯一性、非负性和乘法性质等重要性质。
小学数学中的算术平方根与立方根
小学数学中的算术平方根与立方根在小学数学中,算术平方根与立方根是两个重要的概念。
通过学习和理解这些概念,学生可以更好地掌握数学运算,培养数学思维能力。
本文将深入探讨小学数学中的算术平方根与立方根的概念、性质以及应用。
一、算术平方根的概念与性质算术平方根是指一个数的平方等于该数本身的非负实数解。
以正整数为例,我们可以通过列举一系列数的平方来寻找其算术平方根。
例如,1的平方是1,2的平方是4,3的平方是9,4的平方是16,5的平方是25,以此类推。
从中我们可以看出,1、4、9、16、25等都是完全平方数,它们的算术平方根分别是1、2、3、4、5。
对于任意一个正整数n,它的算术平方根可以用符号√n表示。
例如√16=4,√25=5。
在小学数学中,我们通常通过列举一些完全平方数的算术平方根来帮助学生掌握这一概念。
算术平方根具有以下性质:1. 非负数的算术平方根是唯一的,即一个数的算术平方根只有一个解;2. 完全平方数的算术平方根是整数,非完全平方数的算术平方根是无理数,它们不能用分数表达。
二、算术平方根的应用算术平方根在实际生活和数学问题中有广泛的应用。
下面举几个例子说明:1. 面积求解:在解决面积问题时,我们经常用到算术平方根。
例如,我们需要求解一个正方形的面积,已知边长为a。
由于正方形的四条边相等,所以面积可以表示为a^2,于是我们可以通过开方运算得到边长a的值。
2. 距离计算:在地理学或几何学中,我们需要计算两点之间的距离。
如果已知两点的坐标(x1, y1)和(x2, y2),那么这两点之间的距离可以表示为√[(x2-x1)^2 + (y2-y1)^2]。
这个公式就是利用了算术平方根来计算两点之间的直线距离。
三、立方根的概念与性质与算术平方根类似,立方根也是一个数的立方等于该数本身的实数解。
以正整数为例,我们可以通过列举一系列数的立方来寻找其立方根。
例如,1的立方是1,2的立方是8,3的立方是27,4的立方是64,5的立方是125,以此类推。
数学算术平方根
一个数的算术平4的非负平方根。
算术平方根的性质
01
02
03
04
非负性
算术平方根总是非负的,即对 于任何实数a,√a≥0。
唯一性
对于非负实数a,其算术平方 根是唯一的。也就是说,如果
b是a的算术平方根,那么 b^2=a。
递增性
对于任意实数a和b,如果 a<b,那么√a<√b。
详细描述
公式法适用于任何正实数,可以通过使用算术平方根的公式 来求解。算术平方根的公式为sqrt(x) = x^(1/2),其中x为正 实数。使用公式法可以快速准确地求得任何正实数的算术平 方根。
03
CATALOGUE
算术平方根的应用
在几何学中的应用
勾股定理
勾股定理是几何学中一个重要的定理,它涉及到直角三角形的边长关系,其中一个直角边 的平方等于另一直角边和斜边的平方和。算术平方根在勾股定理中起到关键作用。
02 03
函数值域
在确定函数值域时,算术平方根可以用于确定函数的下界和上界。例如 ,对于非负函数,其最小值可以通过求最小正数解的算术平方根来得到 。
参数取值范围
在解决与参数取值范围相关的问题时,算术平方根可以用于确定参数的 最小值和最大值。
在日常生活中的应用
建筑测量
在建筑行业中,测量是必不可少的环 节。算术平方根可以帮助计算建筑物 的面积、体积以及材料用量等。
配方法
总结词
配方法是一种通过配方将原式转化为完全平方形式,从而求得算术平方根的方 法。
详细描述
配方法适用于一些复杂的平方数,可以通过配方将原式转化为完全平方形式, 然后开平方求得算术平方根。例如,求9的算术平方根,可以先将9配方为(3)^2 ,然后开平方得到3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 0
a0
36 6
那么
(×)
如果 b 2 表示(b-2)的算术平方根,
b2
(√)
例1.求下列各数的算术平方根:
• 略
(1)求0.0625, 5 ) ( 11
解:
2
64 , 169
的算术平方根。
0.25
2
0.0625 , 0.0625 0.25
2
5 ( ) 11
算 术 平 方 根
算术平方根
学习目标:
理解算术平方根的意义;会用符号 表示算术平方根;会求算术平方根。
• 算术平方根的定义:
一般,如果一个正数x的平方等于a,即 x a
2
那么这个正数x叫做a的算术平方根。记为: a a叫做被开方数。 0的算术平方根是0.
对“算术平方根”的理解: (1)算术平方根的非负性,即 (2)被开方数的非负性,即 判断: 2 (2) 2 (×)
5 ( ) 11
2
5 11
8 ( ) 13
2
64 64 8 , 169 169 13
(2)计算:
0.01
1.21
解: 0.01 1.21
=0.1-1.1
=-1
(3)比较大小: 2
2
( ) 3
2
与
1 ( ) 2
2Hale Waihona Puke • 解:因为 2> ( 1 ) ( ) 3 2
2
2
所以
2 ( ) 3
>
1 ( ) 2
2
• (4) m 1 表示的是(m+1)的算术平 方根,其中m的取值范围是m≥-1
小结本课
• 1、算术平方根的意义: • 2、算术平方根的非负性;被开方数的非负 性。 • 3、会用符号表示算术平方根;会计算算术 平方根。