自感与互感.

合集下载

互感和自感

互感和自感

互感系数与自感系数的计算公式 互感与自感系数的物理意义 互感与自感系数的单位 互感与自感系数的比较
汇报人:XX
汇报人:XX
互感现象是电磁感应的一种 特殊情况
两个线圈之间的电磁感应现 象
当一个线圈中的电流发生变 化时,在另一个线圈中产生
感应电动势
互感现象是一种常见的物理 现象,在电力、电子等领域
有着广泛的应用
定义:当一个线圈中 的电流发生变化时, 它会在另一个线圈中
产生感应电动势
原理:变化的磁场会在 导体中产生感应电动势
产生条件:两个线圈之 间存在磁耦合
应用:变压器、感应电 机等
互感器:利用互感原理制成的测量 仪器,用于测量大电流和高压
电机:利用互感原理制成的电动机 和发电机,用于转换电能和机械能
添加标题
添加标题
添加标题
添加标题
变压器:利用互感原理制成的电力 设备,用于升高或降低电压
电磁炉:利用互感原理加热食物的 厨房电器
互感系数的定 义:表示两个 线圈之间互感
的程度
互感系数的单 位:亨利
互感系数的计 算公式:互感 系数 = 互感磁 链 / 自感磁链
互感系数与线 圈匝数、线圈 之间的距离以 及磁导率的关

自感现象:电流变化时, 自身产生磁场的现象
自感系数:描述线圈自感 能力的物理量
自感电动势:线圈中产生 的感应电动势
自感现象的应用:如电磁 炉、变压器等
线圈的自感现象 线圈的自感系数
自感电动势的产生 自感现象的应用
继电器保护系统:利用自感原理实现高压线路的继电保护 电机控制:通过自感原理实现电机的启动、调速和制动控制 电磁炉:利用自感原理产生高频交变磁场,实现高效加热 无线充电:通过自感原理实现无线充电,方便快捷

自感与互感

自感与互感

电路如图1 线圈自感系数 L ,电路总电阻 R 。电源 源电动势 ,开关 K 1

图1
如果电路中无自感线圈,则
回路中的电流不能立刻达到 (最大值)
I0
I0 R
当有自感线圈
值,而是由
时, L t I 0 I0
I 穿过线圈 与 I 反向
L
L的
d dt
0
s law m 由闭合电路 oh :I
l R 2 L ln I 2 R 1

二、互感应 1. 意义:在通有变化电流的两个回路里互相激起感应电动势的 现象。
设线圈(1)中通有电流 I 1 线圈(2)中通有电流
21 ,I 1 变化时, 2 i 也变化。 回路(2)中激起感电动势 21 ,感应电流 同理:I 2 变化,在(1)中的 12 也变化。回路(1)中激
放出来转变为焦耳热。
1 2 QW m LI 2
磁场能量体密度以螺线管为例:
B nI
L n2V 1 2 1 2 B2 W LI n V ( ) m 2 2 n 1 B2 V 2
1 BHV 2
磁场能量体密度
2 W 1 1 1 B 2 m BH H m V 2 2 2

dr
l
[解] 由环路定律在内外圆筒之间的磁场强度
H
I 2 r
取电缆长 l
ds ldr I d B dS ldr 2 r
R 2
1
Il R 2 d l n R 2 R 1
长度为
通过长 l 的两圆筒之间的总磁通量
l 电缆的自感系数
单位长自感系数
L R 2 L ln l 2 R 1

高中物理互感和自感

高中物理互感和自感

自感的防止
自感系数很大
绕线电阻
小结
1、 当一个线圈中电流变化,在另一个线圈中产生 感应电动势的现象,称为互感。互感现象产生的 感应电动势,称为互感电动势。
2、由于导体本身的电流发生变化而产生的电磁感应 现象,叫自感现象。
3、自感现象中产生的电动势叫自感电动势。
(1)自感电动势的作用:阻碍导体中原来的电流变 化。
2、应用与危害
反向截止 R L
发光二极管
I感与I原同向
I B感

I的变化 B的变化 Φ的变化 E感 阻碍 I的变化
二、自感现象
1.定义:由于线圈本身的电流发生变化而产生 的电磁感应现象,叫自感现象。由于自感而产 生的感应电动势叫做自感电动势。 2.分类
探究通电自感现象 I感与I原
B 方向相反
B’ A L
A. 当电路中电流变化时,两股导线中产生的 自感电动势互相抵消
B. 当电路中电流变化时,两股导线中产生的 感应电流互相抵消
C. 当电路中电流变化时,两股导线中产生的 磁通量互相抵消
D. 以上说法均不正确
2.如图所示电路中,A、B是两个相同的小灯泡。 L是一个带铁芯的线圈,其电阻可忽略不计。调 节R,电路稳定时两小灯泡都正常发光,则( )
A.合上开关时,A、B两灯同时正常发光,断开 开关时,A、B两灯同时熄灭
B.合上开关时,B灯比A灯先达到正常发光状态
C.断开开关时,A、B两灯都不会立即熄灭,通 过A、B两
I
(2)自感电动势大小: E L
t
4、自感系数L:与线圈的大小、形状、圈数及有无 铁心有关
学以致用
1.如图所示,LA和LB是两个相同的小灯泡,L是 一个自感系数相当大的线圈,其电阻值与R相 同。由于存在自感现象,在电键S闭合和断开 时,灯LA和LB先后亮暗的顺序是( )

互感和自感

互感和自感
A
一、互感现象
1、定义:当一个线圈中电流变化,在另一个线 圈中产生感应电动势的现象,称为互感。互感 现象中产生的感应电动势,称为互感电动势。 2、本质:一种电磁感应现象
利用互感现象,可以把能量从一个线圈传 递到另一个线圈。因此,互感现象在电工 技术和电子技术中有广泛的应用。
收音机里的磁性天线.
3、应用:变压器就是利用互感现象制成。
街头的变压器是中型的互感器
变电站的大型变压器是大型的互感器
互感现象不仅发生于绕在同一铁芯上的两个线圈之间, 且可发生于任何两个相互靠近的电路之间。在电力工程和 电子电路中,互感现象有时会影响电路的正常工作,这时 要设法减小电路间的互感。
A
1、由于导体本身的电流 变化而产生的电磁感应现 象叫自感现象。 2、自感现象中产生的电 动势叫自感电动势。
延时继电器
练习、如图所示, L为自感系数较大的线圈,电路稳定后小灯
泡正常发光,当断开开关S的瞬间会有什么现象( A.灯A立即熄灭
A

B.灯A慢慢熄灭
C.灯A突然闪亮一下再慢慢熄灭 D.灯A突然闪亮一下再突然熄灭
A
自感电动势的作用:
阻碍导体中原来的电流变化。
注意: “阻碍”不是“阻止”,电流 原来怎么变化还是怎么变,只是变化 变慢了,即对电流的变化起延迟作用。
1、物 横截面越大、匝数越多自感系数越大,有铁芯比无 铁芯自感系数大得多。
3、单位:亨利。符号 H。
1 应用: 在交流电路中、在各种用电设备 和无线电技术中有着广泛的应用。如日光灯 的镇流器,LC振荡电路等。 2 防治:在切断自感系数很大、电流很强的 电路的瞬间,产生很高的电动势,形成电弧, 在这类电路中应采用特制的开关。
6、自感 现象的应 用与防止

8 第6节 互感和自感

8 第6节 互感和自感

第6节 互感和自感1.知道什么是互感现象和自感现象.2.观察通电自感和断电自感实验现象,理解自感电动势在自感现象中的作用.(重点+难点)3.知道自感电动势的大小与什么有关,理解自感系数和自感系数的决定因素.(重点)【基础梳理】一、互感现象1.互感:两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感. 2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的. 3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作. 二、自感现象当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫做自感电动势.三、自感电动势与自感系数1.自感电动势:E =L ΔI Δt,其中L 是自感系数,简称自感或电感.单位:亨利,符号:H .2.自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关.四、自感现象中磁场的能量1.线圈中电流从无到有时:磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.【自我检测】判断正误 (1)两个线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)自感现象中,感应电流一定与原电流方向相反.( )(3)线圈的自感系数与电流大小无关,与电流的变化率有关.( )(4)线圈中电流最大的瞬间可能没有自感电动势.( )提示:(1)× (2)× (3)× (4)√探究思考 断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对互感现象的理解和应用1.互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间.2.互感现象可以把能量由一个电路传到另一个电路.变压器就是利用互感现象制成的.3.在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时需要设法减小电路间的互感.在同一铁芯上绕着两个线圈,单刀双掷开关原来接在点1,现把它从1扳向2,如图所示,试判断在此过程中,在电阻R上的电流方向是()A.先由P→Q,再由Q→PB.先由Q→P,再由P→QC.始终由Q→PD.始终由P→Q[解析]单刀双掷开关接在点1上时,A线圈中的电流恒定不变,在铁芯中产生的磁场方向是沿铁芯自右向左.在单刀双掷开关由点1扳向点2的过程中,通过线圈A中的电流,先沿原方向减小到零,再由零增大到原电流值,所以B中产生的感应电流分两个阶段分析:(1)在A中电流沿原方向减小到零的过程中,A产生的磁场自右向左也跟着减弱,导致穿过线圈B的磁通量在减小.由楞次定律知,线圈B中会产生右上左下的感应电流,即流过电阻R的电流方向是P→Q.(2)在A中电流由零增大到原方向的电流的过程中,A产生的磁场自右向左也跟着增强,导致穿过线圈B的磁通量在增大.由楞次定律知,线圈B中会产生左上右下的感应电流,即通过电阻R的电流方向是Q→P.综上分析知,全过程中流过电阻R的电流方向先是P→Q,然后是Q→P,所以A对.[答案] A(多选)如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通,当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化解析:选BC.线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以选项B正确,A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以选项C正确,D错误.对自感现象的理解1.自感现象的特点(1)自感现象是由于通过导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.(3)自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同,同样遵循“增反减同”的规律.2.通电自感与断电自感比较与线圈串联的灯泡与线圈并联的灯泡电路图通电时电流逐渐增大,灯泡逐渐变亮电流立刻变大,灯泡变亮,然后逐渐变暗断电时电流逐渐减小灯泡逐渐变暗电流方向不变电路中稳态电流为I1、I2①若I2≤I1,灯泡逐渐变暗②若I2>I1,灯泡闪亮后逐渐变暗两种情况灯泡中电流方向均改变命题视角1对自感电动势的理解(2019·南昌高二检测)关于线圈中自感电动势大小的说法中正确的是()A.电感一定时,电流变化越大,自感电动势越大B.电感一定时,电流变化越快,自感电动势越大C.通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大[思路点拨] 影响自感电动势大小的两个因素:(1)线圈自感系数越大产生的自感电动势越大.(2)电流变化越快产生的自感电动势越大.[解析] 电感一定时,电流变化越快,ΔI Δt 越大,由E =L ΔI Δt知,自感电动势越大,A 错,B 对;线圈中电流为零时,电流的变化率不一定为零,自感电动势不一定为零,故C 错;当通过线圈的电流最大时,电流的变化率为零,自感电动势为零,故D 错.[答案] B命题视角2 对通电自感现象的分析(2019·长沙一中高二检测)如图所示,电路中自感线圈电阻很小,可以忽略不计.R 的阻值和L 的自感系数都很大,A 、B 为两个完全相同的灯泡,电源为理想电源,当S 闭合时,下列说法正确的是( )A .A 比B 先亮,然后A 灭B .B 比A 先亮,然后A 灯逐渐变亮C .A 、B 一起亮,然后A 灭D .A 、B 一起亮,然后B 灭[思路点拨] S 闭合瞬间,含电感线圈的支路相当于断路;稳定后,自感线圈相当于导体.[解析] S 闭合时,由于与A 灯串联的线圈L 的自感系数很大,故在线圈上产生很大的自感电动势,阻碍电流的增大,所以B 比A 先亮,由于L 的直流电阻很小,所以稳定后A 灯的电流变大,A 灯逐渐变亮,故A 、C 、D 错误,B 正确.[答案] B命题视角3 对断电自感现象的分析(2019·济南外国语学校高二检测)如图甲、乙中,自感线圈L 的电阻很小,接通S ,使电路达到稳定,灯泡A 发光,下列说法正确的是( )A .在电路甲中,断开S ,A 将立即熄灭B.在电路甲中,断开S,A将先变得更亮,然后逐渐变暗C.在电路乙中,断开S,A将逐渐变暗D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗[思路点拨][解析]甲图中,灯泡A与电感线圈L在同一个支路中,流过的电流相同,断开开关S 时,线圈L中的自感电动势的作用使得支路中的电流瞬时不变,以后渐渐变小,A、B错误;乙图中,灯泡A所在支路的电流比电感线圈所在支路的电流要小(因为电感线圈的电阻很小),断开开关S时,电感线圈的自感电动势要阻碍电流变小,此瞬间电感线圈中的电流不变,电感线圈相当于一个电源给灯泡A供电.因此反向流过A的电流瞬间要变大,然后逐渐变小,所以灯泡要先更亮一下,然后渐渐变暗,C错误,D正确.[答案] D自感问题的分析技巧(1)当电路接通瞬间,自感线圈相当于断路;当电路稳定时,相当于电阻,如果线圈没有电阻,相当于导线(短路);当电路断开瞬间,自感线圈相当于电源,电流逐渐减小.(2)断开开关后,灯泡是否瞬间变得更亮,取决于电路稳定时两支路中电流的大小关系,即由两支路中电阻的大小关系决定.(3)若断开开关后,线圈与灯泡不能组成闭合回路,则灯泡会立即熄灭.(4)电流减小时,自感线圈中电流大小一定小于原先所通的电流大小,但自感电动势可能大于原电源电动势.(5)在线圈中产生自感电动势,自感电动势阻碍电流的变化,但“阻碍”不是“阻止”,“阻碍”实质上是“延缓”.1.关于自感现象,下列说法正确的是( )A .感应电流一定和原电流方向相反B .线圈中产生的自感电动势较大时,其自感系数一定较大C .对于同一线圈,当电流变化越快时,线圈中的自感系数较大D .对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大解析:选D.自感现象中感应电动势的方向遵从楞次定律.当原电流减小时,自感电动势和自感电流与原电流方向相同;当原电流增大时,自感电流与原电流方向相反,所以选项A 错误;自感电动势的大小E 自=L ΔI Δt,所以自感电动势大不一定是由自感系数大引起的,有可能是电流的变化率很大引起的,所以选项B 错误;线圈自感系数的大小,由线圈本身决定,与线圈中有无电流以及电流变化的快慢无关,所以选项C 错误;由E 自=L ΔI Δt知,对于同一线圈,自感系数L 确定,当电流变化较快时,线圈中产生的自感电动势也越大,所以选项D 正确.2.(多选)如图是用电流传感器(相当于电流表,其内阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R ,L 是一个自感系数足够大的自感线圈,其直流电阻值也为R .坐标图是某同学画出的在t 0时刻开关S 切换前后,通过传感器的电流随时间变化的图象.关于这些图象,下列说法正确的是( )A .图甲是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况B .图乙是开关S 由断开变为闭合,通过传感器1的电流随时间变化的情况C .图丙是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况D .图丁是开关S 由闭合变为断开,通过传感器2的电流随时间变化的情况解析:选BC.开关S 由断开变为闭合,电源与传感器2组成的回路立即有电流,而线圈这一支路,由于线圈阻碍电流的增加,通过线圈的电流要慢慢增加,所以干路电流(通过传感器1的电流)也要慢慢增加,故A错误,B正确.开关S由闭合变为断开,通过传感器1的电流立即消失,而电感这一支路,由于电感阻碍电流的减小,该电流又通过传感器2,只是电流的方向与以前相反,且通过传感器2的电流逐渐减小,故C正确,D错误.3.(多选)如图所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.下列说法正确的是()A.合上开关S接通电路时,A2先亮,A1后亮,最后一样亮B.合上开关S接通电路时,A1和A2始终一样亮C.断开开关S切断电路时,A2立刻熄灭,A1过一会儿才熄灭D.断开开关S切断电路时,A1和A2都要过一会儿才熄灭解析:选AD.由于自感现象,合上开关时,A1中的电流缓慢增大到某一个值,故过一会儿才亮;断开开关时,A1中的电流缓慢减小到零,线圈产生感应电动势,相当于新电源;A1、A2串联,其电流始终相等,故两灯都是过一会儿才熄灭,故选项A、D正确.4.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.在由L、G2、R及G1组成的闭合回路中,感应电流将从G2的负接线柱流入,因而G2的指针向右摆;感应电流将从G1的正接线柱流入,因而G1的指针向左摆.故B正确.(建议用时:30分钟)【A组基础巩固】1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)下列说法正确的是()A.当线圈中电流不变时,线圈中没有自感电动势B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中电流不变时,不产生自感电动势,选项A正确;当线圈中电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,选项B错误;当线圈中电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,选项C正确;当线圈中电流减小时,自感电动势阻碍电流的减小,线圈中自感电动势的方向与线圈中电流的方向相同,选项D错误.3. 在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B、D错误,只有C正确.4.(多选)一个线圈中的电流如果均匀增大,则这个线圈的()A.自感电动势将均匀增大B.磁通量将均匀增大C.自感系数也均匀增大D.自感系数和自感电动势都不变解析:选BD.线圈的自感系数L确定,当线圈中的电流均匀增大时,电流的变化率恒定知,自感电动势恒定不变,所以选项A、C错误,选项D正确;电流均匀不变,由E=LΔIΔt增大时,产生的磁场均匀增强,穿过线圈的磁通量也均匀增大,选项B正确.5.(2019·浙江诸暨中学月考)如图所示,电感线圈L的直流电阻R L=3.0 Ω,小灯泡A 的电阻R=6.0 Ω,闭合开关S,待电路稳定后再断开开关,则在断开开关S的瞬间,小灯泡A()A.不熄灭B.立即熄灭C.逐渐熄灭D.闪亮一下再逐渐熄灭解析:选D.因为电感线圈的直流电阻R L<R,当电流达到稳定时,小灯泡中的电流小于线圈中的电流,开关S断开瞬间,线圈L产生自感电动势,L中电流要逐渐变小,灯泡中的电流与L中的电流变化一致,由于电流比灯泡原来的电流大,所以灯泡要闪亮一下再逐渐熄灭,故D正确,A、B、C错误.6.(多选)如图所示,电池的电动势为E,内阻不计,线圈自感系数较大,直流电阻不计.当开关S闭合后,下列说法正确的是()A.a、b间电压逐渐增加,最后等于EB.b、c间电压逐渐增加,最后等于EC.a、c间电压逐渐增加,最后等于ED .电路中电流逐渐增加,最后等于E R解析:选BD.由于线圈自感系数较大,当开关闭合瞬间,a 、b 间近似断路,所以a 、b 间电压很大,随着电流的增加,a 、b 间电压减小,b 、c 间电压增大,最后稳定后,a 、b 间电压为零,b 、c 间电压等于E ,电流大小为I =E R,选项B 、D 对,A 、C 错. 7.如图所示电路,多匝线圈的电阻和电池的内电阻可以忽略,电源的电动势为E ,两个电阻的阻值都是R ,开关S 未闭合时,电流I 0=E 2R,现闭合开关S 将一电阻短路,于是线圈中有自感电动势产生,该自感电动势( )A .有阻碍电流减小的作用,最后电流由I 0减小到零B .有阻碍电流减小的作用,最后电流小于I 0C .有阻碍电流增大的作用,因而电流保持为I 0不变D .有阻碍电流增大的作用,但电流最后还是要增大到2I 0解析:选D.开关S 闭合后,电路中电流增大,由于线圈产生自感电动势,阻碍电流增大,但阻碍不是阻止,最终结果不受影响,电流最后还是要增大到2I 0.8.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C .灯A 突然闪亮一下再慢慢熄灭D .灯A 突然闪亮一下再突然熄灭解析:选A.当开关S 断开时,由于通过自感线圈的电流从有变到无,线圈将产生感应电动势,但由于线圈L 与灯A 在S 断开后,不能形成闭合回路,因此灯A 在开关断开后,电流为零,立即熄灭.【B 组 素养提升】9.(多选)用电流传感器可以清楚地演示自感对电路中电流的影响,不一定要用两个灯泡作对比.电流传感器的作用相当于一个电流表,实验就用电流表的符号表示.它与电流表的一个重要区别在于,传感器与计算机相结合能够即时反映电流的迅速变化,并能在屏幕上显示电流随时间变化的图象.先按图甲连接电路,测一次后,可以拆掉线圈,按图乙再测一次,得到如图a、b所示的图象.则下列说法正确的是()A.a图象是对应甲测得的B.a图象是对应乙测得的C.b图象是对应甲测得的D.b图象是对应乙测得的解析:选AD.电路甲中电流在开关闭合后,由于自感电动势作用,逐渐增至最大;电路乙中电流在开关闭合后,立即增至最大,所以选项A、D正确.10.如图所示,L为一纯电感线圈(即电阻为零),A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间及接通稳定后,灯泡中均有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流解析:选B.开关S接通瞬间,灯泡中的电流从a到b,线圈由于自感作用,通过它的电流将逐渐增大.开关S接通后,电路稳定时,纯电感线圈对电流无阻碍作用,将灯泡短路,灯泡中无电流通过.开关S断开的瞬间,由于线圈的自感作用,线圈中原有向右的电流将逐渐减小,该线圈与灯泡形成回路,故灯泡中有从b到a的瞬间电流.11.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.12.(多选)(2019·南京高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L 是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭解析:选AB.闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确;合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确;断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误;由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D错误.13.(多选)如图所示的电路中,电感L的自感系数很大,电阻可忽略,D为理想二极管,则下列说法正确的有()A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L2立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭解析:选BD.当S闭合时,因二极管加上了反向电压,故二极管截止,L1一直不亮;通过线圈的电流增加,感应电动势阻碍电流增加,故使得L2逐渐变亮,选项B正确,A错误;当S断开时,由于线圈自感电动势阻碍电流的减小,故通过L1的电流要在L2→L1→D→L 之中形成新的回路,故L1突然变亮,然后逐渐变暗至熄灭,选项C错误,D正确.14.(2019·河南南阳一中月考)在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.。

自感和互感

自感和互感

µIl d r d Φ = Bl d r = 2π r R µIl d r µIl R2 Φ = ∫ dΦ = ∫ = ln R 2 2π R π r 1 Φ µ R2 ∵Φ = LI ∴L = = ln Il 2π R 1
2 1
2. 互感应
由一个回路中电流变化而在另一个回路中产生 感应电动势的现象,叫做互感现象 互感现象, 感应电动势的现象,叫做互感现象,这种感应电动 势叫做互感电动势 互感电动势。 势叫做互感电动势。
同理 因为 又有 可得
Φ21 = MI1 , Φ12 = MI2 Φ11 = L I1 , Φ22 = L2I2 1
M = K1K2 ⋅ L L2 = K L L2 1 1 (0 < K ≤1)
回路1和回路2之间的耦合因数。 回路1和回路2之间的耦合因数。
K = K1K2
1H =103 mH =106 µH
电磁阻尼
例13-7 由两个“无限长”的同轴圆筒状 由两个“无限长” µ 导体所组成的电缆, 导体所组成的电缆,其间充满磁导率为 的 磁介质, 磁介质,电缆中沿内圆筒和外圆筒流过的电 I 大小相等而方向相反。 流 大小相等而方向相反。设内外圆筒的半 R 求电缆单位长度的自感。 径分别为 R2和 ,求电缆单位长度的自感。 1
Φ21 = M21I1
Φ12 = M12I2
M12 = M21 = M 互感系数,简称互感 互感. 互感系数,简称互感.它和两个回路 的大小、形状、匝数以及周围磁介质的性质决定. 的大小、形状、匝数以及周围磁介质的性质决定.
d I2 d Φ12 ε12 = − = −M dt dt
d Φ21 d I1 ε21 = − = −M dt dt
应用安培环路定理, 解: 应用安培环路定理,可知在内圆筒之内以 及外圆筒之外的空间中磁感应强度都为零。 及外圆筒之外的空间中磁感应强度都为零。在内外两 圆筒之间, 圆筒之间,离开轴线距离为 处的磁感应强度为

自感和互感

自感和互感

5.单位:亨利 符号:H
第六节:互感和自感
三、自感系数 I 1.自感电动势的大小: 与电流的变化率成正比 EL t 2.自感系数 L: 简称自感或电感 3.自感物理意义: 描述线圈产生自感电动势的能力 4.决定线圈自感系数的因素: 粗细、长短、匝数、有无铁芯 5.单位:亨利 符号:H 四、自感现象利用和防止 1.防止: 油浸开关 双线绕法
L
S
解释:在电路断开的瞬间,通过线圈的电流突然减
弱,穿过线圈的磁通量也就很快减少,因而在线圈 中产生感应电动势。虽然这时电源已经断开,但线 圈L和灯泡A组成了闭合电路,在这个电路中有感应 电流通过,所以灯泡不会立即熄灭。
L R
A1逐渐亮
A逐渐熄灭
A2
立刻亮
L
S
S
R1
实验总结:实验表明线圈电流发生变化时,自身产生感应 电动势,这个感应电动势总阻碍原电流的变化。
L R A1 逐渐 A2
立刻
S
R1
解释:在接通电路的瞬间,电路中 的电流增大,穿过线圈L的磁通量 也随着增大,因而线圈中必然会产 生感应电动势,这个感应电动势阻 碍线圈中电流的增大,所以通过A1 的电流只能逐渐增大,灯泡A1只能 逐渐亮起来。
实验二
观察:当电路断开时,灯泡A的亮度变化情况。
A
现象:S断开时,A 灯逐渐熄灭。
I I I I
t
t
t
t
A
B
C
D
例与练
• 1、如图所示的电路中,A1和A2是完全相同的灯泡,线圈 L的电阻可以忽略不计,下列说法中正确的是( ) • A.合上开关S接通电路时,A2先亮A1后亮,最后一样亮 • B.合上开关S接通电路时,A1和A2始终一样亮 • C.断开开关S切断电路时,A2立即熄灭,A1过一会熄灭 • D.断开开关S切断电路时,A1和A2都要过一会才熄灭

互感与自感的关系

互感与自感的关系

互感与自感的关系互感和自感是人类交往中不可或缺的两个要素,两者相辅相成,相互影响。

互感是指我们与他人进行互动时,感受到对方情感的能力,而自感则是我们主观地感受自己的情感和情绪。

两者之间有着微妙的关系,互感可以引起自感,而自感也可以影响我们对他人的互感。

首先,互感的存在可以激发自感。

当我们与他人进行交流和互动时,会自然而然地感受到对方所传递的情感和情绪。

例如,当我们与朋友共度愉快时光时,可以感受到他们的快乐和满足,这种互感会激发我们自己内心的喜悦和幸福感。

另一方面,如果我们在困境中与他人分享痛苦和难过,也会感受到对方的不安和焦虑,从而引发自己对于悲伤和焦虑的自感。

互感通过共情的机制,将他人的情感传递给我们,进而影响我们的情绪和体验,使我们更加真切地感受到自己的情感。

同时,自感也可以影响我们对他人的互感。

我们的情感和情绪会显露在我们的言行举止中,进而影响到他人对我们的感知。

举例来说,如果一个人自感到愤怒和暴躁,他的情绪会通过他的语气、表情和行为传递给身边的人。

这种自感不仅会导致他人对他的互感变得紧张和沮丧,也会使他人对他的态度发生变化。

与此相反,如果一个人自感到兴奋和乐观,他的情绪会通过积极的态度和微笑传递给他人,这种自感会促使他人对他的互感变得友好和愉悦。

互感和自感的相互作用还可以帮助我们更好地理解他人和自己。

互感能够让我们感知到他人的情感,使我们能够更好地理解他们的需求和感受。

通过互感,我们能够更加敏锐地感知到他人的情绪变化,及时做出反应。

例如,当我们注意到朋友的低落时,我们可以主动关心并提供支持,以缓解他们的困难和压力。

另一方面,自感可以让我们更加深入地了解自己的情感和需求。

通过自感,我们可以认识到自己的情绪变化和内心需求,从而有针对性地进行自我调节和满足。

如果我们发现自己情绪低落,就可以采取积极的行动来改善自己的心理状态。

综上所述,互感与自感之间存在着密切的关系。

互感激发自感,而自感则影响我们对他人的互感。

互感和自感

互感和自感

1、如磁场相对于导体转动,在导体中会产 生感应电流,感应电流使导体受到安培力的 作用,安培力使导体运动起来----电磁驱动。
2、交流感应电动机就是利用电Fra bibliotek驱动的 原理工作的。
电磁阻尼与电磁驱动的区别和联系
• 电磁阻尼是导体相对于磁场运动; 电磁驱动是磁场相对于导体运动. • 安培力的作用都是阻碍它们间的 相对运动。
b.用互相绝缘的硅钢片叠成的铁芯来代替整块硅 钢铁芯。
二.电磁阻尼
1.当导体在磁场中运动时,感应电流会使导体 受到安培力,安培力的方向总是阻碍导体的运 动-----电磁阻尼
V
2.思考与讨论:P27 (1)为什么用铝框做线圈骨架?
(2)、微安表的表头在运输时为何应该 把两个接线柱连在一起?
三.电磁驱动
B
E
涡流
2.应用
(1)利用 真空冶炼炉,高频焊接
线圈导线
焊 接 处
电源
待焊接元件
应用: 真空冶炼炉:
抽真空
电磁炉
探雷器
安检门
门框
报警电路
线圈
~ 交流电
(2)减少涡流
线圈中流过变化的电流,在铁芯中产生的涡流使 铁芯发热,浪费了能量,还可能损坏电器。 减少涡流的途径: a.增大铁芯材料的电阻率,常用的材料是硅钢。
自感电动势
1、定义:
在自感现象中产生的感应电动势叫自感电动势。
阻碍导体中原来电流的变化。
2、自感电动势的作用:
3、影响自感电动势大小的因素:
4.自感系数
I EL t
线圈大小、形状、线圈匝数、 线圈的横截面积、线圈中是否有铁芯。
自感系数的单位:亨利,简称亨,符号是H。
7.涡流、电磁阻尼和电磁驱动

自感和互感

自感和互感

电工、电子技术中的互感现象
思考:如图电路中,当电键闭合和断开时, 线圈中有无电磁感应现象产生? L
1
A
S
二.自感现象
实验一:
R
L
A1
A2
S
R1
现象分析: 由于线圈L自身的磁通量增加而产生了感应电 动势,这个电动势总是阻碍磁通量的变化即阻碍线 圈中电流的变化。故通过A1的电流不能立即增大, A1的亮度只能慢慢增加,最终与A2相同。
t
t
t
t
A
B
C
D
二.自感现象
1、自感现象: 由于线圈中电流变化时,而在自身电路中产生感应 电动势的现象。 2、自感电动势: 由于自感而产生的电动势叫做自感电动势 3、自感电动势的作用:
总是阻碍原电流的变化。原电流增大时,产生 的电动势阻碍电流的增大;原电流减小时,产 生的电动势阻碍原电流减小,
A 实验二: L
1
S 现象:
思考:
断开后,灯闪亮一下后熄 灭
1、电键断开后,流过灯泡的电流方向与原来的方向是否一致 2、电键断开后,要使流过灯泡的亮度比原来更亮,对线圈有 何要求
4、决定自感电动势大小的因素: △I E = L △t
1)自感系数L:用来表示线圈的自感特性的物理量 2)自感系数影响因素:形状、长短、匝数、有无铁芯 3)单位:亨利符号:H 常用单位:毫亨(mH) 微亨(μH) 1mH=10-3H 1μH=10-3mH
第六节 互感和自感
一.互感现象: 互感:当一个线圈中电流变化时,在另一个线 圈中产生感应电动势的现象
互感电动势:由互感现象产生的感应电动 势叫做互感电动势
R
思考: 如图断开开关瞬间,CD中会 有感应电流吗?如果有,那么 是什么方式引起的? 互感特点

自感与互感

自感与互感

d I1 dt
2
同样通有电流I2的线圈2 在空间产生磁场B2,B2在线圈
1中产生的磁通量为21,并且 21正比于I2,21 = M21 I2 ,
1
2
B2
1
I2
电流I2 变化,1中 产生感应电动势
1 =
M 21
d I2 dt
2和1称为互感电动势,方向可按照楞次定律确定。
3
理论和实验都可以证明 M21=M12= M
线圈内或周围空间: 无磁介质:互感M由线圈的几何形状、大小、匝数和相对 位置所决定。
有非铁磁质:除与以上因素有关外,还与磁介质的磁导率 有关,但与线圈中电流无关 无铁磁质:除与以上因素有关外,还决定于线圈中的电流。
互感应用:无线电和电磁测量。电源变压器, 输 入输出变压器,电压互感器,电流互感器等。
质, L与I无关;若当线圈内或周围空间存在铁磁质 时,L与I有关。
自感单位也是H (亨利),与互感相同。 自感应用:日光灯镇流器;高频扼流圈;自感 线圈与电容器组成振荡电路或滤波电路。
自感危害:电路断开时,产生自感电弧。
7
互感和自感的关系
互感: M N1N2 S
0l
自感
L1
I
0
N2 1 l
S
N1
圈的应用。
5
二、自感现象 (self-induction phenomenon) 自感现象:当一个线圈中的电流变化时,激发的
变化磁场引起了线圈自身的磁通量变化,从而在线 圈自身产生感应电动势。
所产生的感应电动势称为自感电动势。
过线圈的磁通量与线圈自身电流成正比: I1
= LI, L为自感系数,简称自感。
线圈中电流I 发生变化,自身磁通量也相应

什么是自感、互感?他们有什么区别与特点

什么是自感、互感?他们有什么区别与特点

什么是自感、互感?他们有什么区别与特点磁电感应与电磁感应,是电气领域广泛应用的能量转换方式。

比如电动机、变压器、整流器等,其转换过程离不开自感和互感两种方式。

什么是自感与互感呢?你清楚吗?很多电工虽然略懂一二,但只知皮毛。

并不能全面解释概念与熟知原理,下面我们将进行一一解答。

希望为你夯实电工基础提供支持与帮助!一、什么是自感、互感?1、自感:指当电流通过导体时,自身在电流变化的状态下,其周围产生电磁感应现象,叫做自感现象。

自感的产生与大小,与磁通匝数、自感系数、自感磁能、自感电压四个方面的因素所影响。

自感在电工、电器、无线电技术应用广泛,比如我们常见的接触器线圈、电磁阀、电感元件、电控锁等。

2、互感:当一个线圈产生电流变化时,临近线圈也随之产生电压电流变化。

人们把这种磁量转换的方式,称为互感现象。

互感的产生与大小,会受单线圈自感系数与互感系数(两个线圈的几何形状,大小,相对位置)所影响。

通过互感现象,能量可以从一次线圈传递给二次线圈。

如我们常见的变压器、感应线圈、稳压器等。

二、自感与互感的区别有哪些?1、自感是单线圈电磁感应,互感是双线圈电磁感应。

是两种不同的能量转换方式,但都是电磁感应的原理。

2、自感为电能转为磁能的性能方式,互感可实现一种电压电流转为另一种电压电流的方式。

3、自感为自身电磁感应,互感会受自感的影响因素而发生变化。

4、两种感应方式,在电子、电器中与其他电气元件相互连接,所实现的功能差异较大。

一般自感用于调频、谐振、电磁感应等作用。

互感则用于电路变压器、电压电流调节、电源稳压等用途。

通过上述内容,我们基本了解了自感、互感的含义解释与区别差异。

希望你潜心学习,应用掌握,不断巩固与提升自身的电气技术能力。

互感与自感的关系

互感与自感的关系

互感与自感的关系互感和自感是两个物理概念,它们在电磁学和电路理论中起着重要的作用。

本文将探讨互感和自感之间的关系及其在电路中的应用。

一、互感和自感的定义互感是指两个或多个线圈或导体之间由于磁场的相互作用而产生的感应电势。

当电流通过一个线圈时,其磁场会影响附近的其他线圈,从而使其他线圈中有感应电势的产生。

这种现象称为互感。

自感是指电流通过一个线圈时,该线圈自身所产生的磁场对自身感应电势的影响。

当电流变化时,线圈中的磁场也会发生变化,从而在线圈中引起感应电势,这种现象称为自感。

二、互感和自感的关系互感和自感都是由于磁场变化而引起的感应电势,它们之间存在着密切的关系。

在电路中,互感和自感可以相互转换。

当两个线圈互相靠近时,它们之间会产生互感。

互感的大小与线圈的匝数、线圈之间的距离以及磁性材料的性质有关。

互感可以用数学公式表示为:M = k√(L1L2)其中,M表示互感系数,L1和L2分别表示两个线圈的自感系数,k表示两个线圈之间的耦合系数。

自感可以看作是互感的特殊情况,即只有一个线圈时的互感。

自感的大小与线圈的匝数、线圈的形状以及线圈中的电流有关。

自感可以用数学公式表示为:L = μ0μrN²A/l其中,L表示自感系数,μ0表示真空中的磁导率,μr表示线圈中的相对磁导率,N表示线圈的匝数,A表示线圈的横截面积,l表示线圈的长度。

互感和自感之间的关系可以通过互感和自感之比来描述,这个比值称为耦合系数。

耦合系数是一个介于0和1之间的数,表示互感和自感之间的相对强度。

当耦合系数等于1时,表示互感和自感完全一致;当耦合系数等于0时,表示互感和自感完全独立。

三、互感和自感的应用互感和自感在电路中有着广泛的应用。

它们可以实现信号的耦合、变压器的工作以及电路的滤波等功能。

1. 信号耦合:互感可用于将一个电路的信号传递到另一个电路中。

通过合适选择互感系数和耦合方式,可以实现信号的耦合和传输。

2. 变压器:变压器是基于互感的原理工作的。

第四章 第6节 互感和自感

第四章  第6节  互感和自感

第6节互感和自感1.当一个线圈中的电流变化时,会在另一个线圈中产生感应电动势,这种现象叫互感,互感的过程是一个能量传递的过程。

2.当一个线圈中的电流变化时,会在它本身激发出感应电动势,叫自感电动势,自感电动势的作用是阻碍线圈自身电流的变化。

3.自感电动势的大小为E =L ΔI Δt,其中L 为自感系数,它与线圈大小、形状、圈数,以及是否有铁芯等因素有关。

4.当电源断开时,线圈中的电流不会立即消失,说明线圈中储存了磁场能。

一、互感现象1.定义两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。

产生的电动势叫做互感电动势。

2.应用互感现象可以把能量由一个线圈传递到另一个线圈,变压器、收音机的“磁性天线”就是利用互感现象制成的。

3.危害互感现象能发生在任何两个相互靠近的电路之间。

在电力工程和电子电路中,互感现象有时会影响电路正常工作。

二、自感现象和自感系数1.自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身激发出感应电动势的现象。

2.自感电动势 由于自感而产生的感应电动势。

3.自感电动势的大小E =L ΔI Δt,其中L 是自感系数,简称自感或电感,单位:亨利,符号为H 。

4.自感系数大小的决定因素 自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。

三、磁场的能量1.自感现象中的磁场能量(1)线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中。

(2)线圈中电流减小时:磁场中的能量释放出来转化为电能。

2.电的“惯性” 自感电动势有阻碍线圈中电流变化的“惯性”。

1.自主思考——判一判(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象。

(×)(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用。

(√)(3)只有闭合的回路才能产生互感。

(×)(4)线圈的自感系数与电流大小无关,与电流的变化率有关。

什么是自感互感他们有什么区别与特点

什么是自感互感他们有什么区别与特点

什么是自感互感他们有什么区别与特点自感和互感是两个心理概念,涉及到个体与环境之间的互动关系。

他们在定义上有所区别,并且具有不同的特点。

首先,自感是指个体主观意识中对自我感受与情绪的认知和反应。

它是个体对自己感受和体验的直接知觉与表达。

自感是个体对内在感觉、心理状态进行知觉和表达的过程,可以包括情绪、情感、疼痛、温度等。

自感是个体对自身的反应和评价,是主观感受的一种体现。

互感则是个体对他人感受的知觉和体验。

它涉及到个体对他人情绪、心理状态和需要的感知和理解。

互感是个体通过观察、倾听和培养共情能力而理解和感知他人的情感和需要。

它是个体对他人的反应和认知,是一种外向的感知与体验。

自感和互感在性质上是不同的。

自感是个体对自身的反应和评价,是个体内心的一种体验;而互感是个体对他人的情绪和需求进行感知和理解,是个体与他人之间的一种交流和联接。

此外,自感和互感还有一些不同的特点。

1.方向性:自感是个体对自身的感受与情绪的体验和表达,是自我导向的;而互感则是个体对他人的情绪和需求的感知与理解,是他人导向的。

2.内向与外向:自感是发自个体内心的感受和评价,是内向的;而互感是通过观察和感知他人的情感和需求,是外向的。

3.表达方式:自感通常通过语言、行为和身体语言等来表达;而互感则可以通过倾听、支持和共情等方式来传达。

需要注意的是,自感和互感是相互影响的。

个体的自感能力可以影响其对他人的互感能力,而个体的互感能力也可以影响其对自己的自感能力。

这两者之间互动和平衡的关系是重要的。

综上所述,自感和互感是两个心理概念,分别指个体对自身感受和他人感受的认知和体验。

它们在性质、方向性、表达方式和心理效应等方面都有所区别和特点,但又相互关联和影响。

9、4互感和自感

9、4互感和自感

三,自感系数
△I △I 写成等式就是: E∝ △t 写成等式就是: E=L△t 式中L是比例系数,叫做自感系数 简称电感 自感系数, 电感或 式中L是比例系数,叫做自感系数,简称电感或自感 单位:亨利,简称亨,符号:H 单位:亨利,简称亨 符号: 其他单位:毫亨(mH) 微亨( 其他单位:毫亨(mH),微亨(H)
A. 有阻碍电流的作用,最后电流由 0 减少到零 有阻碍电流的作用,最后电流由I B. 有阻碍电流的作用,最后电流总小于 0 有阻碍电流的作用,最后电流总小于I C. 有阻碍电流增大的作用,因而电流 0保持不变 有阻碍电流增大的作用,因而电流I D. 有阻碍电流增大的作用,但电流最后还是增大到 I0 有阻碍电流增大的作用,但电流最后还是增大到2
二,自感现象
通电导线周围产生磁 场,那么当线圈自身中电 化时, 流发生变 化时,线圈中会 有感应电动势吗? 有感应电动势吗? 当一个线圈中的电流变化时,它产生的变化的磁 当一个线圈中的电流变化时, 场不仅在邻近的电路中激发出感应电动势, 场不仅在邻近的电路中激发出感应电动势,同样也在 它本身激发出感应电动势.这种现象称为自感 自感. 它本身激发出感应电动势.这种现象称为自感.由于 自感而产生的感应电动势叫自感电动势 自感而产生的感应电动势叫自感电动势
二,自感现象
三,自感系数
自感电动势也是感应电动势,同样遵从法拉第电 自感电动势也是感应电动势, 磁感应定律,也就是说,它的大小正比于穿过线圈的 磁感应定律,也就是说, 磁通量的变化率, 磁通量的变化率,即: △Φ E∝ △t 实验表明,磁场的强弱正比于电流的强弱, 实验表明,磁场的强弱正比于电流的强弱,也就 是说,磁通量的变化正比于电流的变化, 是说,磁通量的变化正比于电流的变化,所以也可以 自感电动势正比于电流的变化率, 说,自感电动势正比于电流的变化率,即: △I E∝ △t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则,回路1的电动势为:
d 1 d 11 d 12 i ( ) ( ) dt dt dt
由回路l条件变化而在 回路1中引起的电动势 由回路2条件变化而在 回路1中引起的电动势
d 11 L dt
~自感电动势
12
d 12 dt
~互感电动势
一、 自感 1. 自感现象
dI 物理意义: 当 1 时,L L dt
dI 一定,L dt
. L 线圈阻碍 I 变化能力越强。
L : 描述线圈电磁惯性的大小;~基本的电器元件。
L单位:亨利(H) 1H 1Wb A1 常用: 1H 103 mH 106 H
(3) 计算:求L的步骤(与求电容C类似)
2. 互感系数 (1)定义 当线圈几何形状、相对位置、周围介质磁 导率均一定时
21 N 221 I1 21 M 21I1
12 N112 I 2
互感系数 M
12 M 12 I 2 M 12 M 21 M
M
实验、理论均证明:
21 12
I1 I2
(r r2 )
同理:设外管r2通电流I2
B2
N2 I 2 n2 I 2 l
0
(r r2 )
穿过内管的磁通量:
N2 L 2
12 N1 B2 dS N1B2 S1
s1
N1 N1 N 2 I 2 r12 l l 12 N1 N 2 2 2 M12 r1 n1n2l ( r1 ) I2 l
m L 设 I s I 例1(P220)求长直螺线管自感系数( n , V LS, 0 r ) n L 解:设长直螺线管载流 I
S
I
B 分布
求 m N B dS
r
B 0 r H nI
NBS nLBS n IV
2
增大V 提高L的途径 提高n
2 L n V I
实用
放入 值高的介质
五.互感 1. 互感现象
12
12 21K Nhomakorabea
R
G
I1
I2
I1 变化 I 2 变化
21
变化
12 变化
线圈2中产生 21
线圈1中产生 12
一个载流回路中电流变化,引起邻近另一回路中产 生感生电动势的现象~互感现象;这两个回路~互 感耦合回路 互感电动势
21
I1
例(P222 例3)两同轴长直密绕螺线管的互感 如图1324所示,有两个长度均为 l,半径分别为r1和r2(且r1 < r2),匝数分别为N1和N2的同轴长直密绕螺线管。试 计算它们的互感。 N
2
L2
解:设内管r1通电流I1
B1
0
N1 I1 n1 I1 l
(r r1 )
N
I1
I
R1 R2
h
解一:这是一个互感问题 先求M
x
h
设直导线中通有电流I1
ds
0 I1 B1 2x
BI
m N B dS
m I
自感系数: L m
m LI
I
~与回路形状、大小、匝数 及周围介质的磁导率有关。
定义:某回路的自感,在数值上等于通有单位电流 时,穿过回路的全磁通。
(2) 物理意义
d m d(LI ) dL dI ( I L ) 由法拉第定律 L dt dt dt dt d I 若 L 为常数 L L 愣次定律的 dt 数学表达式
§13-3 自感与互感 不论何种方式只要能使穿过闭 合回路的磁通量发生变化,此闭 合回路内就会有感应电动势出现。 引起磁通量变化的原因是多种多样 的,必须依据情况作具体分析。
1
2
I1
I2
如图,依场叠加原理知,穿过回路1的磁通量为:
1 11 12
由回路l中的电流I1在 回路1中引起的磁通量 由回路2中的电流I2在 回路1中引起的磁通量
M : 当一个回路中电流变化率为一个单位时,在
M的单位与L相同:亨利(H)
相邻另一回路中引起的互感电动势的绝对值。
M的值通常用实验方法测定,一些较简单的可用 计算方法求得。
(3) 计算 设I 1
I1的磁场分布B1
s2
穿过回路2的 21 得 M
21 N 2
B1 dS
B
IL
A
R, L
R
K

o
t
由于回路中电流变化,引起穿过回路包围面积的磁通变 化,从而在回路自身中产生感生电动势的现象叫自感现 象。
自感电动势 L
2. 自感系数 (1) 定义:
由叠加原理: B dB
磁链:
s
0 Idl r 由毕-萨定律: dB 3 4 r
dB I
2r2 2r1
L1
M12 M 21 M
2 N N L1 n12V1 ( 1 ) 2l r12 1 r12 l l 2 r 2 N2 2 M L1 L2 L2 r2 r1 l
一般情况:
N2 L 2
M K L1L2
K : 耦合系数,取决于两
2r2 2r1
L1
N1
(r r1)
l
穿过外管的磁通量:
N2 L 2
21 N2 B1 dS N2 B1 S1
s2
N1 N 2 I1 r12 l
2r2 2r1
L1
N1
l
M 21
21
I1
N1 N 2 r12 n1n2l ( r12 ) l
~第一种定义式
两个线圈的互感M在数值上等于其中一个线圈中的电 流为一单位时,穿过另一个线圈所围面积的磁通量。
(2) 物理意义
d 21 dI 1 21 M dt dt
d 12 dI 2 12 M dt dt
dI 2 dt
M
21
dI1 dt

12
~第二种定义式
线圈的相对位置及绕法。
2r2 2r1
L1
N1
l ( 0 K 1 ) 两螺线管共轴,且 R1 R2 , K 1 :完全耦合
两螺线管轴相互垂直,
K 0 :不耦合
例:矩形截面螺绕环尺寸如图, 密绕N匝线圈,其轴 线上置一无限长直导线,当螺绕环中通有电流 I I 0 cost 时,直导线中的感生电动势为多少?
相关文档
最新文档