整式的乘法练习题1

合集下载

12.2《整式的乘法》同步练习1

12.2《整式的乘法》同步练习1

12.2 整式的乘法一、选择题1.下列计算错误的是( )A .7323000)10(3a a a =-⋅-B .a b a b a x x x 21243-=⋅--+C .826322218)(6))(3(c b a c ab c a ab -=⋅--D .2221))((+-=--m n m n y x xy y x2.如果33827)23(b a b a Q +=+⋅,则Q 等于( )A .22469b ab a ++B .22263b ab a +-C .22469b ab a +-D .224129b ab a +-3.如果多项式乘积9)3)((2-=--x x b ax ,那么b a -等于( )A .-2B .2C .-4D .44.)(2c b a a -+-与)(2ac ab a a +--的关系是( )A .相等B .符号相反C .前式是后式的a -倍D .以上结论都不对 5.)34)(25(22b a ab b a +-+的计算结果是( )A .332220173b a ab b a +-+-B .33226201713b a ab b a +-+C .3322620133b a ab b a +-+-D .3322620173b a ab b a +-+-6.下列各式成立的是( )A .a ax ax x x a +--=+--2)12(22B .12)1(22+-=+x x xC .2222)(c b a bc a +=+D .42121-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x 7.若等式2222)5)(5()2)(83(m x x x x x x +-=-+-+-是恒等式,则m 等于( )A .3B .-3C .±2D .±3二、填空题1.____2332323=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛xy y x .2.____)()3()()2()(32232423232=⋅⋅-⋅c a ab c ab c b a c b a . 3.____)2()(32=-⋅++a c b a .4.bxy xyz xy xy 49147(____)7+--=⋅-.5.长为b a 23+,宽为b a -5的长方形的面积为________.6.梯形的上底长为)2(b a +,下底长为)32(b a +,高为)(b a +,则梯形的面积为________.7.圆环的外圆半径为b a 27+,内圆半径为b a -6,则它的面积是_____.三、计算题(一)计算题1.43223])2[(xy y x ⋅-;2.3222231)5.0(21⎪⎭⎫ ⎝⎛-⋅⋅bc ab c b a ; 3.)6(43)2(452342323y x z y x yz y x -+⋅;4.⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-+y x y xy x 222345323; 5.⎪⎭⎫ ⎝⎛-⋅+⋅---b a ab b a ab 521021)()2(522; 6.)2)(3()23)(12(62--+-+-x x x x x ; 7.)1)(1(234+-+-+m m m m m .(二)先化简,再求值.1.已知12,5-=--=+b a b a ,求)(2)()(222b a a a ab b b b ab -+--+的值.2.)3)(5()96)(2(2------x x x x x x ,其中31-=x .。

2021年八年级数学上册第十四章《整式的乘法与因式分解》习题(答案解析)(1)

2021年八年级数学上册第十四章《整式的乘法与因式分解》习题(答案解析)(1)

一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.3.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ C解析:C【分析】 利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.4.下列多项式中,不能用完全平方公式分解因式的是( ) A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29D 解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.6.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y = D .623x x x ÷= C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.7.已知1x =,1y =,则代数式222x xy y ++的值为( ). A .20B .10 C.D.解析:A【分析】 利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.8.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .32D 解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --= D【分析】根据整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算并判断.【详解】A 、235x x x =,故该项错误;B 、2222x x x +=,故该项错误;C 、22(2)4x x -=,故该项错误;D 、358(3)(5)15a a a --=,故该项正确;故选:D .【点睛】此题考查整式的计算,正确掌握整式的同底数幂的乘法,合并同类项,积的乘方,单项式乘以单项式计算法则是解题的关键.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】 解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.分解因式:32m n m -=________.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式==故答案为:【点睛】此题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:(1)(1)m mn mn -+【分析】原式提取公因式,再利用平方差公式分解即可.解:原式=3222(1)m n m m m n -=-,=(1)(1)m mn mn -+故答案为:(1)(1)m mn mn -+.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 12.已知18m x =,16n x =,则2m n x +的值为________.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘 解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18mx =,16n x =求值即可. 【详解】 解:()2222111684m n m n m n x x x x x +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】 此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.13.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.14.若231m n -=,则846m n -+=________.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 16.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知}a =}b b =,且a 和b 是两个连续的正整数,则a+b =_____.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9【分析】根据新定义得出a,b的值,再求和即可.【详解】解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.17.关于x的一次二项式mx+n的值随x的变化而变化,分析下表列举的数据x01 1.52mx+n-3-101若mx+n=17,线段AB的长为x,点C在直线AB上,且BC=12AB,则直线AB上所有线段的和是_____________.20或30【分析】把表格中的前两对值代入求出m与n 的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n=-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=12AB,∴BC=12×10=5,∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.18.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键19.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.20.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________.2029【分析】由题意得将原式变形成整体代入得再一次整体代入即可求出结果【详解】解:∵∴原式故答案为:【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想进行求解解析:2029【分析】由题意得23y y +=,将原式变形成()2232020y y y y +++,整体代入得2332020y y ++,再一次整体代入即可求出结果.【详解】解:∵23y y +-,∴23y y +=,原式()2232020y y y y =+++ 2332020y y =++()232020y y =++92020=+2029=.故答案为:2029.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想进行求解.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+ 解析:(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.解析:(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=, ()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.24.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--解析:(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 解析:(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.计算(1)20193(1)98|32|--;(2)9(3)(3)x x -+-;(3)2(23)4(3)a b a a b ---.解析:(1)2;(2)221839x b -;()【分析】(1)根据乘方、立方根、算术平方根、绝对值的意义计算出各项值再去括号进行加减即可;(2)先根据平方差公式计算后两项的积,然后去括号合并同类项即可;(3)根据完全平方公式或单项式乘多项式法则计算出前面两个乘法结果后合并同类项即可 .【详解】解:(1)原式=-1+3+2-(2=4-22=+(2)原式=()222999918x x x --=-+=-;(3)原式=222241294129a ab b a ab b -+-+=.【点睛】本题考查实数和整式的混合运算,熟练掌握有关运算法则和乘法公式的应用是解题关键. 27.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= .解析:(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值.【详解】(1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3,一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x ,故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0,解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=, ∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021.【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.28.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩ ∴另一个因式为x ﹣7,m 的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .解析:(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k-=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测(有答案解析)(1)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测(有答案解析)(1)

一、选择题1.将多项式241x +加上一个单项式后,使它能成为一个完全平方式,下列添加单项式错误的是( )A .2xB .4xC .4x -D .44x2.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+ 4.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 5.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13- C .7-或7 D .13-或13 6.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2 7.若28x x k -+是完全平方式,则k 的值是( ) A .4B .8C .16D .32 8.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c a b >>D .a c b >> 9.下列运算正确的是( ) A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 11.下列各式中,计算正确的是( )A .34x x x +=B .()246x x =C .5210x x x ⋅=D .826(0)x x x x ÷=≠ 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.已知a m =2,a n =12,则a n -m =____.14.若()()253x x x bx c +-=++,则b+c=______. 15.若2211392781n n ++⨯÷=,则n =____.16.已知2m a =,5n a =,则2m n a -=___________.17.已知102m =,103n =,则32210m n ++=_______.18.计算(7+1)(7﹣1)的结果等于_____.19.设23P x xy =-,239Q xy y =-,若P Q =,则x y的值为__________. 20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.在数学中,有许多关系都是在不经意间被发现的,当然,没有敏锐的观察力是做不到的.认真观察图形,解答下列问题:()1如图l ,用两种不同方法表示两个阴影图形的面积的和,可以得到的等式为_ ;()2如图2,是由4个长为,a 宽为b 的长方形卡片围成的正方形,试利用面积关系写出一个代数恒等式;()3如图3,是由边长分别为(),a b a b >的两个正方形拼成的图形,已知10a b +=,24,ab =利用()1中得到的等式,求出图3中阴影部分的面积.22.先化简,再求值:()()()2222x y x y x y --+-其中1x =-,2y =23.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积:________________;(2)观察图2,你能写出下列三个式子:2()m n +,2()m n -,mn 之间的等量关系吗?(3)根据(2)中的等量关系,已知:21a a -=求:2a a+的值. 24.计算: (1)()3210842a a a a +-÷; (2)()()22222ab a b ---⋅.25.某超市有线上和线下两种销售方式,与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的销售总额、线上销售额、线下销售额(直接在表格中填写结果); 时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份 a xa x - 2020年4月份26.计算:4a 2·(-b )-8ab ·(b -12a ).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据完全平方公式即可求出答案.【详解】解:A.4x 2+2x+1,不是完全平方式,故此选项符合题意;B.4x 2+4x+1=(2x+1)2,是完全平方式,故此选项不符合题意;C.4x 2-4x+1=(2x-1)2,是完全平方式,故此选项不符合题意;D.4x 4+4x 2+1=(2x 2+1)2,是完全平方式,故此选项不符合题意;故选:A .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型. 2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键. 4.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.5.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯-- ∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 6.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.7.C解析:C【分析】根据完全平方公式的特征进行计算即可.【详解】 ∵222288()(4)8162x x x x x --+=-=-+, ∴k=16,故选C.【点睛】本题考查了完全平方公式,熟记公式并灵活变形是解题的关键. 8.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.11.D解析:D【分析】根据合并同类项法则,幂的乘方,同底数幂的乘法,同底数幂相除的法则逐项判断即可求解.【详解】解:A.不是同类项,无法合并,计算错误,不合题意;B. ()248x x =,计算错误,不合题意;C. 527x x x ⋅=计算错误,不合题意;D. 826(0)x x x x ÷=≠,计算正确,符合题意.故选:D【点睛】本题考查了合并同类项法则,幂的乘方,同底数幂的乘法,同底数幂相除的法则,熟知运算法则是解题关键.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.6【分析】根据同底数幂的除法计算即可;【详解】∵am=2an=12∴;故答案是6【点睛】本题主要考查了同底数幂的除法准确分析计算是解题的关键 解析:6【分析】根据同底数幂的除法计算即可;【详解】∵a m =2,a n =12,∴1226n m n m a a a -=÷=÷=;故答案是6.【点睛】本题主要考查了同底数幂的除法,准确分析计算是解题的关键.14.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.15.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 17.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==,∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.18.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.【详解】﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 19.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--;()314.【分析】(1)和的完全平方公式的变形;(2)两种完全平方公式的恒等关系;(3)根据公式计算即可.【详解】(1)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴两个白色长方形的面积和为2ab ,∴阴影部分的面积为222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴四个白色长方形的面积和为4ab ,∵内部小正方形的边长为(a-b ),∴正方形的面积为2()a b -,∴22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--; (3)根据图3可得,()222221*********S a b a a b b a b ab =+--+=+-阴影 ()()22113222212a b ab ab a b ab ⎡⎤+--=+-⎣=⎦, 当10a b +=,24ab =时,原式=213102422⨯-⨯=14. 【点睛】本题考查了以图形面积解释完全平方公式,公式的变形,熟练掌握面积的计算,准确进行公式变形是解题的关键.22.248xy y -+,40【分析】先提公因式(2)x y -,然后计算括号内的运算,得到最简整式,然后把1x =-,2y =代入计算,即可得到答案.【详解】解:原式()()()222x y x y x y =---+⎡⎤⎣⎦()[]222x y x y x y =----()42y x y =--248xy y =-+.当1x =-,2y =时,原式()4212240=-⨯⨯--⨯=.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则进行化简. 23.(1)2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-;(3)±3.【分析】(1)一种方法是先表示出大正方形面积和四个长方形的面积,用大正方形面积减去四个长方形的面积表示出阴影部分面积;另一种方法是先用m 、n 表示出阴影部分边长,再用正方形面积公式表示之;(2)22(),(),m n m n mn +-分别表示大正方形,小正方形和长方形面积,由图知大正方形面积-四个长方形面积=小正方形面积,可得它们之间的关系;(3)直接把(2)中得到的关系式用(a+b )、ab 的值对应替换即可.【详解】解:(1)由图知:图2中阴影部分的面积:2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-; (3)因为22228189a a a a ⎛⎫⎛⎫+=-+=+= ⎪ ⎪⎝⎭⎝⎭, 所以23a a+=±. 【点睛】 本题考查完全平方差公式和完全平方和公式的联系.会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到. 24.(1)2542a a +-;(2)224a b . 【分析】(1)多项式除以单项式,用多项式中的每一项分别除以单项式进行计算;(2)幂的混合运算,注意先算乘方,然后再按照单项式乘单项式的法则进行计算.【详解】解:(1)()3210842a a a a +-÷ 321028242a a a a a a =÷+÷-÷2542a a =+-(2)()()22222ab a b ---⋅ 24424a b a b --=⋅224a b --=224a b =. 【点睛】 本题考查整式的混合运算和幂的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.(1)1.1a ;1.43x ,1.04()a x -;(2)0.8.【分析】(1)2019年4月份的销售总额为a 元乘以(1+10%)即可得到2020年4月份销售总额,用2019年4月线上销售额为x 元乘以(1+43%)即可得到2020年4月份线上销售额,用2019年的销售总额减去线上销售额再乘以(14%)+即可2020年4月份线下销售额; (2)根据2020年销售总额与线上线下销售额的关系得到213x a =,再列式比较即可得到答案.【详解】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为()(14%)a x -+=1.04()a x -元.∵2019年4月线上销售额为x 元,2020年4月份,线上销售额增长43%,∴2020年4月份线上销售额(1+43%)x=1.43x ,∵2019年4月份的销售总额为a 元,该超市2020年4月份销售总额增长10%, ∴2020年4月份的销售总额(1+10%)a = 1.1a ,(2)依题意,得:,解得:213x a =, ∴()21.041.040.88130.81.1 1.1 1.1a a a x a a a a⎛⎫- ⎪-⎝⎭===. 答:2020年4月份线下销售额与当月销售总额的比值为0.8.【点睛】本题考查整式与实际问题的应用,一元一次方程与实际问题,列代数式,整式的除法计算,正确理解题意是解题的关键.26.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+a b ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。

七年极下数学课本习题第1章整式的乘除

七年极下数学课本习题第1章整式的乘除

第一章整式的乘除第1节同底数幂的乘法1. P3-例1计算:(1)(-3)7×(-3)6(2)(1111)3 ×1111(3)-x3·x5(4)b2m·b2m+12. P3-例2光在真空中的速度约为3×108m/s,太阳光射到地球上大约需要5×102s。

地球距离太阳大约有多远?3. P3-随堂练习-1计算:(1)52×57(2)7×73×72(3)-x2·x3(4)(- c)3·(- c)m4. P3-随堂练习-2一种电子计算机每秒可做4×109次运算,它工作5×102 s可做多少次运算?5. P3-随堂练习-3光在真空中的速度大约是3×108m/s。

太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107s计算,比邻星与地球的距离约为多少?6. P4-习题1.1-1计算:(1)c·c11(2)104×102×10 (3)(-b)3·(-b)2(4)-b3·b2(5)x m-1·x m+1(m>1)(6)a·a3·a n7. P4-习题1.1-2已知a m=2,a n=8,求a m+n。

8. P4-习题1.1-3下面的计算是否正确?如有错误请改正。

(1)a3·a2=a6(2)b4·b4=2b4(3)x5+x5=x10(4)y7·y=y89. P4-习题1.1-4在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧1.3×108kg的煤所产生的能量。

我国960万km2的土地上,一年从太阳得到的能量相当于燃烧多少千克的煤所产生的能量?(结果用科学记数法表示)。

10. P4-习题1.1-5某种细菌每分由1个分裂成2个。

1.4整式的乘法(1)(2)(3)

1.4整式的乘法(1)(2)(3)
2 =2x2−2xy + xy y 2 2 y = 2x −xy
=2x•x−2x• y + y•x y•y
练习一、计算:
(1) (2n+6)(n–3); (2) (2x+3)(3x–1);
(3) (2a+3)(2a–3); (4) (2x+5)(2x+5).
解:(1) (x+y)(x–y)
运用多项式乘法法则,要有序地逐项 相乘,不要漏乘,并注意项的符号.
最后的计算结果要化简 ̄ ̄ ̄
合并同类项.
2
2.(2a b )(3a) [(2) (3)](a a) b
2 3
2
3
6a b
3 3
3.(4 10 ) (5 10 ) (4 5) (10 10 )
5 4
5 4
20 10
9
2 10 6 3 2 2 3 2 4.( x y) (4 xy ) ( x y ) (4 xy )

2、单项式乘法法则对于三个以上的单项
式相乘能否同样适用呢? 适用
做一做
1 1 2 1.(2 xy ) ( xy)(3xyz ) (2 3) ( xxx)( y yy) z 3 3
2
2x y z
3 4
1 2 1 2 2 2.(2 x )( xy z )(6 yz ) [2 (6)] ( x x) ( y y) ( zz) 3 3 3 3 2
x 2 a 2 ax
3、长为2x米,宽为3a米的矩形, 面积为多少平方米?
2 x 3a 6 ax
在这里,求矩形的面积,会遇到如下的式子,这
是什么运算呢?

整式的乘法经典习题--大全 (1)

整式的乘法经典习题--大全 (1)

单项式与单项式相乘一、选择题1.计算2322)(xy y x -⋅的结果是( )A. 105y xB. 84y xC. 85y x -D.126y x 2.)()41()21(22232y x y x y x -⋅+-计算结果为( ) A. 36163y x - B. 0 C. 36y x - D. 36125y x - 3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( )A. 13106⨯B. 13106⨯-C. 13102⨯D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( ) A. z y x 663 B. z y x 663- C. z y x 553 D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.x 的m 次方的5倍与2x 的7倍的积为( )A. m x 212B. m x 235C. 235+m xD. 212+m x7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( ) A. mn m y x 43 B. m m y x 22311+- C. n m m y x ++-232 D. n m y x ++-5)(311 10.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---二、填空题:3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a 5.._____________)(4)3(523232=-⋅-b a b a 6..______________21511=⋅⋅--n n n y x y x 7.._____________)21()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .单项式与多项式相乘一、选择题1.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -2.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)4.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 5.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a b B .3222536a b a b +C .2332223236a b a b a b -++D .232236a b a b -+ 二、填空题1.22(3)(21)x x x --+-= 。

初中数学冀教版七年级下册第八章 整式的乘法8.4 整式的乘法-章节测试习题(1)

初中数学冀教版七年级下册第八章 整式的乘法8.4 整式的乘法-章节测试习题(1)

章节测试题1.【题文】[ab(1-a)-2a(b-)]·(2a3b2);【答案】-2a5b3- 2a4b3+2a4b2【分析】先算括号内的乘法,再合并,最后算乘法即可.【解答】解:原式=(ab-a2b-2ab+a)·(2a3b2)=(-a2b-ab+a)·(2a3b2)=-2a5b3- 2a4b3+2a4b2.2.【题文】;【答案】m5n2+m4n2-m3n【分析】根据多项式乘多项式法则展开,再计算单项式的积即可得. 【解答】解:原式=m5n2+m4n2-m3n.3.【题文】计算:().().().【答案】(1) ;(2) ;(3)【分析】按照整式的乘法和除法法则进行运算即可.【解答】解:(),.(),,.(),.4.【题文】先化简,再求值:,其中满足【答案】原式【分析】先求出x、y的值,再把原式化简,最后代入求出即可.【解答】解:原式,∵,∴,原式.5.【题文】阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图1所示的面积关系来说明.(1)根据图2写出一个等式;(2)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.【答案】(1) 2a2+5ab+2b2;(2)见解析【分析】根据图2写出等式即可;根据已知等式画出相应图形即可.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2.(2)等式(x+p)(x+q)=x2+(p+q)x+pq可以用以下图形面积关系说明:6.【题文】计算:(32x5-16x4+8x2)÷(-2x)2【答案】8x3-4x2+2【分析】同底数幂的除法法则:底数不变,指数相减.根据多项式除以单项式的计算法则得出答案.【解答】解:原式=8x3-4x2+27.【题文】若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.【答案】m=3,n=0.【分析】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.【解答】解:原式=mx3+(m-3)x2-(3+mn)x+3n,由展开式中不含x2和常数项,得到m-3=0,3n=0,解得m=3,n=0.8.【题文】计算:(1)x·x7;(2)a2·a4+(a3)2;(3)(-2ab3c2)4;(4)(-a3b)2÷(-3a5b2).【答案】(1) x8;(2) a6+a6=2a6;(3) 16a4b12c8;(4)原-a.【分析】(1)根据同底数幂的乘法法则计算;(2)先算幂的乘方和同底数幂的乘法,再合并同类项;(3)根据积的乘方法则计算;(4)先算积的乘方,再算单项式除以单项式.【解答】解:(1)x·x7= x8;(2)a2·a4+(a3)2= a6+a6=2a6;(3)(-2ab3c2)4=16a4b12c8;(4)(-a3b)2÷(-3a5b2)=a6b2÷(-3a5b2)= .9.【题文】已知一个长方形的面积为(6x2y+12xy﹣24xy3)平方厘米,它的宽为6xy厘米,求它的长为多少厘米?【答案】(x+2﹣4y2)厘米.【分析】利用矩形面积公式,结合整式的除法运算法则求出答案.【解答】解:∵一个长方形的面积为(6x2y+12xy﹣24xy3)平方厘米,它的宽为6xy厘米,∴它的长为:(6x2y+12xy﹣24xy3)÷6xy=(x+2﹣4y2)厘米.10.【题文】化简:a(3-2a)+2(a+1)(a-1).【答案】3a-2.【分析】先去括号,然后再合并同类项即可.【解答】解:原式=3a-2a2+2(a2-1)=3a-2a2+2a2-2=3a-2.11.【题文】先化简,再求值:(x+2)(x-2)-x(x-1),其中x=-2.【答案】-6【分析】先分别利用平方差公式、单项式乘多项式进行展开,然后合并同类项,最后代入数值进行计算即可得.【解答】解:原式=x2-4-x2+x=x-4,当x=-2时,原式=-2-4=-6.12.【题文】先化简,再求值:,其中,【答案】,14.【分析】先根据整式的乘法计算化简,然后代入求值即可.【解答】解:原式当时,原式13.【题文】已知,求的值【答案】【分析】根据完全平方公式、单项式乘以单项式的乘法法则、平方差公式把所给的整式展开,合并同类项化为最简后,再代入求值即可.【解答】解:原式=当原式=5.14.【题文】先化简,再求值:(3x-y)2+(3x+y)(3x-y) ,其中x=1,y=-2.【答案】30【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并得到最简结果,将与的值代入计算即可求出值.【解答】解:.当时,原式=.15.【题文】计算:(1)6mn2·(2-mn4)+(-mn3)2;(2)(1+a)(1-a)+(a-2)2(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2.【答案】(1)12mn2- 7m2n6;(2)-4a+5;(3)-x2+8xy.【分析】(1)根据单项式乘多项式法则和积的乘方法则计算后,再合并同类项即可;(2)根据乘法公式计算后,再合并同类项即可;(3)根据乘法公式计算后,再合并同类项即可.【解答】解:(1)原式=12mn2- 6m2n6-m2n6=12mn2- 7m2n6(2)原式=1-a2+a2-4a+4=-4a+5(3)原式=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy16.【题文】计算:(2m-3)(2m+5) -(4m-1).【答案】【分析】先进行多项式乘法运算,然后再合并同类项即可.【解答】解:原式=.17.【题文】计算:(a-b)(a+b)+2ab3÷ab【答案】【分析】按运算顺序先利用平方差公式进行乘法运算,同时进行后面的除法运算,然后再合并同类项即可.【解答】解:原式==.18.【题文】已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.【答案】p=3,q=1.【分析】根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.19.【题文】老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=时求所捂的多项式的值.【答案】(1)2a2+4ab(2)0【分析】(1)所捂的多项式是被减式,根据被减式=减式+差求解;(2)把a,b的值代入到(1)中所求的多项式中求值.【解答】解:(1)所捂多项式=a2-4b2+a2+4b2+4ab=2a2+4ab;(2)当a=-1,b=时,所捂多项式=2×(-1)2+4×(-1)×=2-2=0.20.【题文】先化简,再求值:(1)(1+a)(1-a)+(a-2)2,其中a=;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.【答案】(1)-4a+5;3;(2)x2-5;4.【分析】(1)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,合并得到最简结果,将a的值代入计算即可求出值.(2)原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:(1)原式=1-a2+a2-4a+4=-4a+5.当a=时,原式=-4×+5=3.(2)原式=4x2-9-4x2+4x+x2-4x+4=x2-5.当x=-3时,原式=(-3)2-5=4.。

人教版八年级数学上册整式的乘法 同步练习及答案1

人教版八年级数学上册整式的乘法 同步练习及答案1

一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题1(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题1(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题1(附答案) 1.计算33(2)a -的结果是( ).A .66a -B .96a -C .68a -D .98a - 2.642284a b c a b ÷的结果是( )A .322a b cB .322a bC .422a b cD .4212a b c 3.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记, ()1123+1n k k n n==++-+∑L , ()()()()334+n k x k x x x n =+=+++++∑L , ()()()()533+45k x k x x x =+=++++∑,已知: ()()221=44n k x k x k xx m =+-+++∑,则m 的值为( )A .-20B .-40C .-60D .-704.据教育部数据显示,2017届全国普通高校毕业生预计795万人.将数据795万用科学记数法可表示为A .B .C .D .5.下列计算中,正确的是( )A .224a a a +=B .236a a a •=C .a 224a a -÷=D .()328a a = 6.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .B .C .D . 7.下列运算正确的是( )A .4a 2﹣4a 2=4aB .(﹣a 3b )2=a 6b 2C .a+a=a 2D .a 2•4a 4=4a 88.下列运算正确的是( ).A .325a b ab +=B .326a b ab ⋅=C .325()a a =D .326()ab ab = 9.下列运算正确的是( )A .a 3·a 3=2a 3B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .(-2a 2)3=-8a 610.《战狼2》在2017年暑假档上映取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为A .5.49×1010B .5.49×109C .5.49×108D .549×10711.“*”是规定的一种运算法则:a*b=a 2﹣2b .(1)求2*3的值为(2)若(﹣3)*x=7,求x 的值;12.把下列用科学记数法表示的数还原成原数.(1)地球的直径大约71.2810m ⨯,约为______km ;(2)地球与冥王星的距离最近时也有94.010km ⨯,记为______m ;(3)有资料统计,我国2003年前4个月,14家汽车行业国家重点企业共实现利润101.2010⨯元,记作______万元;(4)某年我国在公路建设投资62.6110⨯万元,记作______元.13.我国于2016年10月17日7时30分在酒泉卫星发射中心成功发射了神舟十一号载人飞船,据资料显示神舟十一号与天宫二号将会在距离地面393000米的轨道上进行对接,393000用科学记数法表示为__________;14.为加速调整产业结构,加快城镇化建设,某县2017年3月拆迁农户达2350户,请将2350用科学记数法表示为__________.15.化简的结果是____________.16.计算:(直接写结果)()233-2x xy ⋅ = _____ ,(x+2y ﹣3)(x ﹣2y+3) = ___________17.若10的n 次幂为100 000,则n =________;若a 4=10 000,则a =________. 18.-23的结果是_____.19.方程()()()()32521841x x x x +--+-=的解是______20.计算:(-2)3·(-2)2=______.21.化简求值:(1)求多项式22112333a abc c a c +--+的值,其中1,2,36a b c =-==-. (2)先化简,后求值:y 2x =+13,3x y ==- 22.已知3x m-3y 5-n 与-8x 3y 2的积是2x 4y 9的同类项,求m 、n 的值.23.(1)若2m =8,2n =32,求22m +n -4的值;(2)若x =2m -1,则将y =1+4m +1用含x 的代数式表示.24.已知一个长方体的长为2a ,宽也是2a ,高为h.(1)用a 、h 的代数式表示该长方体的体积与表面积.(2)当a=3,h=12时,求相应长方体的体积与表面积. (3)在(2)的基础上,把长增加x ,宽减少x ,其中0<x <6,问长方体的体积是否发生变化,并说明理由.25.(﹣12)﹣2﹣(23)2017×(﹣32)2018. 26.计算(1)221(2)()2-;(213π+--27.(1)先化简,再求值: 2224)(5)(3)(3)x x x x +-+-+-( 其中x=-2(2)先化简,再求值:已知22008x y -=,求[](32)(32)(2)(52)8x y x y x y x y x +--+-÷的值28.计算(1)22⨯ (212参考答案1.D【解析】试题分析:积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.2.C【解析】由单项式相除的除法法则知64228a b c 4a b ÷=422a b c故选C3.B【解析】试题解析:∵x 2项的系数是4,∴n =5,∴(x +2)(x -1)+(x +3)(x -2)+(x +4)(x -3)+(x +5)(x -4)=(x 2+x -2)+(x 2+x -6)+(x 2+x -12)+(x 2+x -20)=4x 2+4x -40,∵()()2[1nk x k x k =+-+∑=4x 2+4x +m , ∴m =-40.故选B .4.B【解析】7950000=;故选B 。

1-4 整式的乘法(分层练习)(解析版)

1-4 整式的乘法(分层练习)(解析版)

第一章整式的乘除1.4整式的乘法精选练习一、单选题1.(2022秋·天津和平·八年级校考期末)计算()31x x --的结果()A .41x --B .4x x --C .4x x-+D .4x x-【答案】C【分析】根据去括号法则及单项式乘多项式法则直接求解即可得到答案.【详解】解:由题意可得,()341x x x x --=-+,故选C .【点睛】本题考查单项式乘多项式及去括号:括号前面是负号去掉括号要变号.2.(2022秋·山西大同·八年级大同市第七中学校校考阶段练习)若()()234x x x px q -+=+-,那么p 、q 的值是()A .1p =,12q =-B .1p =,12q =C .7p =,12q =D .7p =,12q =-【答案】B【分析】将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】解:∵()()234x x x px q -+=+-,∴2212x x x px q +-=+-,∴1p =,12q =故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解题关键.3.(2022秋·福建泉州·八年级南安市实验中学校考阶段练习)如果()()3x x a -+的展开式中不含x 项,则a 的值是()A .3B .13C .0D .3-【答案】A【分析】将式子按照多项式乘多项式法则展开后,进行加减计算,令含x 项的系数为0即可求出结果.【详解】解:()()()2233333x x a x ax x a x a x a -+=+--=+--,∵展开式中不含x 项,∴30a -=,解得:3a =.故选:A .【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式法则.4.(2021春·山东济南·七年级统考期中)已知()()231x x x mx n -+=-+,则n m 的值为()A .8-B .8C .18-D .18值为()A .1B .2-C .0D .2【答案】A【分析】根据多项式乘以多项式的法则,可表示为()()a b m n am an bm bn ++=+++,计算即可.【详解】解:根据题意得:()()()211x m x x m x m +-=-+-+,∵x m +与1x -的乘积中不含x 的一次项,∴10m -=,∴1m =,故选:A .【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(2022秋·山西大同·八年级大同市第三中学校校考阶段练习)小羽制作了如图所示的卡片A 类,B 类,C 类各50张,其中A ,B 两类卡片都是正方形,C 类卡片是长方形,现要拼一个长为()57a b +,宽为()7a b +的大长方形,那么所准备的C 类卡片的张数()A .够用,剩余4张B .够用,剩余5张C .不够用,还缺4张D .不够用,还缺5张【答案】C【分析】根据大长方形的面积公式求出拼成大长方形的面积,再对比卡片的面积,即可求解.【详解】解:大长方形的面积为()()2257735547a b a b a ab b ++=++,C 类卡片的面积是ab ,∴需要C 类卡片的张数是54,∴不够用,还缺4张,故选:C .【点睛】本题主要考查多项式与多项式的乘法与图形的面积,掌握多项式乘以多项式的计算方法是解题的关键.二、填空题7.(2022秋·贵州黔南·八年级统考期末)已知5m n +=,mn 2=-,则()()11m n --的值为______.【答案】6-【分析】先根据多项式乘以多项式计算,再把5m n +=,mn 2=-代入,即可求解.【详解】解:()()11m n --1m n mn=--+()1m n mn=-++∵5m n +=,mn 2=-,∴原式1526=--=-.故答案为:6-【点睛】本题主要考查了多项式乘以多项式,熟练掌握多项式乘以多项式法则是解题的关键.8.(2022秋·河南南阳·八年级南阳市第十三中学校校考期末)用如图所示的正方形和长方形卡片若干张,拼成一个长为32a b +,宽为a b +的矩形,需要B 类卡片______张.【答案】5【分析】利用长乘宽,求出长方形面积,找出各个面积对应卡片,即可找出相应的数量.【详解】解:长方形面积S =长⨯宽,2222(32)()3322352S a b a b a ab ab b a ab b ∴=++=+++=++,由题可知:A 类面积2a =,B 类面积ab =,C 类面积2b =,∴需要A 类,B 类,C 类卡片分别是3,5,2.故答案为5.【点睛】本题主要考查了多项式乘多项式的运算,找出对应卡片面积的系数,分别对应,即可找出所需卡片数量.9.(2022秋·全国·八年级专题练习)一个矩形的边长分别为221()2x y y +与4xy ,则这个矩形的面积为_____________.,则b =_____.【答案】5-12-【分析】利用多项式乘多项式法则,求出()()234x x +-,利用对应项的系数相等,进行求解即可.【详解】解:()()2223425122x x x x x ax b +-=--=++,512a b =-=-,,故答案为:5-,12-.【点睛】本题考查多项式乘多项式.熟练掌握多项式乘多项式的法则,是解题的关键.三、解答题11.(2022秋·全国·八年级专题练习)计算:(1)(21)(2)m n m n ++⋅-;(2)21(5)(5x x x +⋅-+;(3)(32)(21)2(21)x a x a a a +⋅--+⋅+;(4)226(21)(35)t t t t --⋅-+-.厘米的长方形图案,其中两横两竖涂上阴影,阴影部分的宽均为x 厘米.(1)阴影部分的面积是多少平方厘米?(2)空白区域的面积是多少平方厘米?【答案】(1)21612x xy +(2)228168x xy y ++【分析】(1)利用平移可得阴影部分面积为()()4222642x y x x x y x +⋅+⋅+-,再利用多项式乘多项式法则计算可得;(2)空白部分面积为()()642422x y x x y x +-+-,再利用多项式乘多项式法则计算可得.【详解】(1)解:阴影部分面积为()()4222642x y x x x y x +⋅+⋅+-228488x xy x xy =+++21612x xy =+;(2)解:空白部分的面积为()()642422x y x x y x +-+-()()4422x y x y ++=228888x xy xy y =+++228168x xy y =++.【点睛】本题考查了列代数式和整式的乘法运算,解决本题的关键是利用平移将阴影部分拼在一起.提升篇一、填空题1.(2022秋·上海杨浦·七年级统考期中)若()()2531207x b ax x x c -+=--,则()b a c +=______.【答案】7【分析】根据等式中等号两边同类项的系数相等求出a 、b 、c 的值,然后代入计算即可.【详解】解:∵2(53)(1)5(53)3x b ax ax ab x b -+=+--,∴520a =,537ab -=-,3b c =,解得4a =,把4a =代入得:5347b -⨯=-,∴1b =,∴313c =⨯=,∴11()(43)77b a c +=+==,故答案为:7.【点睛】本题考查了多项式乘多项式,运用相关法则正确计算是解题的关键.2.(2021秋·陕西榆林·七年级统考期中)如图,一个长方形的长为a ,宽为b ,将它剪去一个正方形①,然后从剩余的长方形中再剪去一个正方形③,最后剩下长方形②,则长方形②的面积为__________.【答案】23ab a -【分析】根据图形可知正方形①边长为:b ,正方形③边长为:()a b -,再根据大长方形的面积减去正方形①和正方形③的面积,即可求解.【详解】由图可知:正方形①边长为:b ,正方形③边长为:()a b -,大长方形的长为a ,宽为b ,∵S S S S =--长方形②正方大长方形形①正方形③,∴()2223S ab b a b ab a =---=-长方形②,故答案为:23ab a -.【点睛】本题主要考查了根据图形列代数式的知识,理清图中各图形之间的面积关系是解答本题的关键.3.(2022秋·上海青浦·七年级校考期中)已知()()2222235x ax bx x x -++-+的展开式中不含三次项和四次项,则展开式中二次项和一次项的系数之和为______.【答案】2-【分析】利用多项式乘多项式法则将原式展开,根据题意展开式中不含三次项和四次项,可得220a -=,3320a b -++=,求解即可得,a b 的值,然后代入求值可确定展开式中二次项和一次项的系数,求和即可得答案.【详解】解:()()2222235x ax bx x x -++-+4324323222352352354610x x x ax ax ax bx bx bx x x =-+-+-+-++-+432(22)(332)(5534)(56)10a x ab x a b x b x =-+-+++--++-+根据题意,展开式中不含三次项和四次项,∴220a -=,3320a b -++=,解得1a =,0b =,∴55345513044a b --+=-⨯-⨯+=,565066b -=⨯-=-,即展开式中二次项系数为4,一次项的系数为6-,∴展开式中二次项和一次项的系数之和为4(6)2+-=-.【点睛】本题主要考查了多项式乘多项式运算、多项式相关概念、代数式求值等知识,熟练掌握多项式乘多项式运算法则,正确展开原式是解题关键.4.(2022秋·八年级课时练习)如图,将边长为n 的小正方形AMGF 与边长为m 的大正方形BHCG 放在一起(0)m n >>,则ABC 的面积是______.②号长方形纸片按图1和图2两种方式放置(放置的纸片间没有重叠部分),正方形中未被覆盖的部分(阴影部分)的周长相等.(1)若①号长方形纸片的宽为2厘米,则②号长方形纸片的宽为_______厘米;(2)若①号长方形纸片的面积为40平方厘米,则②号长方形纸片的面积是_________平方厘米.二、解答题6.(2022秋·全国·八年级专题练习)计算:(1)()()222324xy x xy y ---;(2)()23111623m n mn m n ⎛⎫--+⋅- ⎪⎝⎭;(3)()()222334561x y xy y x -⋅---+;(4)()()325213a a a a ----.【答案】(1)3223648x y x y xy -++(2)52423326m n m n m n+-(3)544552423645549x y x y x y x y ---+(4)13a【分析】(1)根据单项式乘多项式的运算法则进行计算即可;(2)根据单项式乘多项式的运算法则进行计算即可;(3)先算乘方,再根据单项式乘多项式的运算法则进行计算即可得出答案;(4)根据单项式乘多项式的运算法则分别进行计算,然后合并同类项即可.x 项,求:(1)m n 、的值.(2)求22()()m n m mn n +-+的值.【答案】(1)38m n ==,(2)539【分析】(1)原式利用多项式乘以多项式法则计算得到结果,由结果不含2x 和3x 项,列方程求出m 与n 的值即可,(2)把m 与n 的值代入()()22m n m mn n +-+求值.【详解】(1)22()()31x mx n x x ++-+432322333x x x mx mx mx nx nx n =-++-++-+()()()4323313x m x n m x m n x n=+-+-++-+∵原式展开式中不含3x 项和2x 项,∴30,310m n m -=-+=解得38m n ==,.(2)()()22m n m mn n +-+322223m m n mn m n mn n =-++-+33m n =+当38m n ==,时,原式333827512539=+=+=【点睛】本题考查了多项式乘以多项式,多项式的项的定义,能得出关于m n 、的方程是解此题的关键.8.(2022秋·山西临汾·七年级统考期末)如图,长方形ABCD 的长为m ,宽为n ,扇形ADE 的半径为n ,BF 的长为12n .(1)求图中阴影部分的面积S .(用含m ,n 的代数式表示)(2)当8m =,4n =时,求S 的值.(结果保留π)。

6.5.1整式的乘法1

6.5.1整式的乘法1
8
1 xm 8
xm 1.2xm
1 xm 8
(1) 第一幅画的画面面积是多少平方米? 第二幅呢?你是怎样做的? (2) 若把图中的1.2x改为mx,其他不变, 则两幅画的面积又该怎样表示呢?
自学指导
• 学生认真看书自学课本第36页的内容并解决一下 问题: • 1、 3a2b ·2ab3 和 (xyz) · y2z又等于什么?你是怎 样计算的? • 2、如何进行单项式乘单项式的运算? • 3、在你探索单项式乘法运算法则的过程中,运用 了哪些运算律和运算法则? • 4、认真自学课本例1,不会的请教你的小组长。 • 5分钟后,检测同学们的自学效果。
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系 数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
自学检测:
计算:
1 (1)2 xy ( xy ) 3 (2) 2a 2b3 (3a)
2
(3)7 xy 2 z (2 xyz ) 2 2 2 3 3 5 1 2 (4)( a bc ) ( c ) ( ab c) 3 4 3
整式的乘法1 (单项式与单项式相乘)
学习目标
1、理解并掌握单项式与单项式相乘的法则, 能够熟练地进行单项式的乘法计算。 2、经历单项式与单项式相乘的法则的探究过 程,培养学生的归纳、归纳、猜测、验证 等能力. 3、在单项式与单项式相乘的计算过程中培养 学生认真细心的作风.
温故育新:
运用幂的运算性质计算下列各题:
巩固练习
完成课本37页:随堂练习
完成课本37页:习题1、2题
延伸拓展:
一家住房的结构如图 示,房子的主人打算把 卧室以外的部分全都铺 上地砖,至少需要多少 平方米的地砖?如果某 种地砖的价格是a元/平 方米,那么购买所需地 砖至少需要多少元?

6.5.1 整式的乘法(一)

6.5.1 整式的乘法(一)

探索规律:
1、 3a2b ·2ab3 和 (xyz) · y2z又等于什么? 你是怎样计算的? 2、如何进行单项式乘单项式的运算? 3、在你探索单项式乘法运算法则的过 程中,运用了哪些运算律和运算法则?
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系 数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
解:
(3 5)( x 2 x ) 15 x .
3
(2) 4 y (-2 xy )
2
(3) 8a 2b (ab2 ) 2b 2
(8) (1) 2(a a)(b b b )
2 2 2
16 a 3b 5 .
(4) (3 x 2 y ) 3 (4 x)
反馈延伸
• 反馈练习: 计算
(1) (-y)3÷(-y)2 ; (2) x12÷x-4 ;
(3) m÷m0 ; (5) -kn÷kn+2 ; (4) (-r)5÷r 4 ; (6) (mn)5÷(mn) ;
第六章
整式的乘除
5 整式的乘法(第1课时)
知识储备箱
幂的三个运算性质 1.同底数幂的乘法: aman= 2.幂的乘方: 3.积的乘方: m n (a ) = n (ab) =

单项式乘以多项式 多项式乘以多项式 . 、
议一议
代数式:
1 mn 、 3 x 、 2 a h、 2 5
都是由数与字母的乘积组成的, 这样的代数式叫做单项式; 单项式中的数字因数叫做这个单项式的 系数 一个单项式中,所有字母的指数的和 叫做这个单项式的 次数。
单项式概念中的字母具有可任 意取值的含义。
y
卫生间 卧室

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

人教版八年级数学整式的乘法练习

人教版八年级数学整式的乘法练习

八年级数学练习姓名 得分1. 若a 为正整数,且x 2a =5,则(2x 3a )2÷4x a的值为…………………… ) (A )5 (B )25 (C )25 (D )10 2.计算(-2)2007+(-2)2008的结果是( )A . 22015B .22007C .-2D .-220083.已知x 2+x -1=0,求x 3+2x 2 +3的值.4.已知(a -1)(b -2)-a (b -3)=3,求代数式222b a -ab 的值.5.(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.6.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.7.已知a m =6,a n =2,求a 2m -3n 的值.8.计算4x 2-(-2x+3)(-2x-3)9.(2014•鄄城县模拟)如果一个数的平方等于-1,记作i2=-1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3-5i)=(2+3)+(1-5)i=5-4i,(5+i)×(3-4i)=5×3+5×(-4i)+i×3+i×(-4i)=15-20i+3i-4×i2=15-17i-4×(-1)=19-17i(1)化简:i3= ,i4=(2)计算:(3+i)2;(3)试一试:请利用以前学习的有关知识将2+i2−i化简成a+bi的形式.10.(2014•台湾)如图,O为△ABC内部一点,OB=3.5,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.。

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)

八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)1、下列运算正确的是().A. x3⋅x3=x9B. x8÷x4=x2C. (ab3)2=ab6D. (2x)3=8x32、如果正方体的棱长是(1−2b)3,那么这个正方体的体积是().A. (1−2b)6B. (1−2b)9C. (1−2b)12D. 6(1−2b)63、计算:2(a5)2⋅(a2)2−(a2)4⋅(a3)2.4、若3x=15,3y=5,则3x−y等于().A. 5B. 3C. 15D. 105、已知2x+3y−4=0,则9x⋅27y=.6、已知:2m=a,2n=b,则22m+3n用a、b可以表示为().A. 6abB. a2+b3C. 2a+3bD. a2b37、若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为().A. 3B. 5C. 4或5D. 3或4或58、如果a=355,b=444,c=533,那么a、b、c的大小关系是().A. a>b>cB. c>b>aC. b>a>cD. b>c>a9、根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明的多项式的乘法运算是().A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b210、已知a+b=m,ab=−4,化简(a−2)(b−2)的结果是().A. 6B. 2m−8C. 2mD. −2m11、已知(x−1)(x+3)=ax2+bx+c,求代数式9a−3b+c的值.12、要使(y2−ky+2y)(−y)的展开式中不含y2项,则k的值为().A. −2B. 0C. 2D. 313、计算:(−6x3+9x2−3x)÷(−3x)=().A. 2x2−3xB. 2x2−3x+1C. −2x2−3x+1D. 2x2+3x−114、下列计算正确的是().A. 10a4b3c2÷5a3bc=ab2cB. (a2bc)2÷abc=aC. (9x2y−6xy2)÷3xy=3x−2yD. (6a2b−5a2c)÷(−3a2)=−2b−53c15、下列等式错误的是().A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n516、若(2a m b n)3=8a9b15成立,则().A. m=6,n=12B. m=3,n=12C. m=3,n=5D. m=6,n=517、计算(−32)2018×(23)2019的结果为().A. 23B.32C. −23D. −3218、已知x+4y−3=0,则2x⋅16y的值为.19、若2x=5,2y=3,则22x+y=.20、若5x=16,5y=2,则5x−2y=.21、比较255、344、433的大小().A. 255<344<433B. 433<344<255C. 255<433<344D. 344<433<25522、观察等式(2a−1)a+2=1,其中a的取值可能是().A. −2B. 1或−2C. 0或1D. 1或−2或023、已知x2n=3,则(19x3n)2⋅4(x2)2n的值是().A. 12B. 13C. 27 D. 12724、已知ab=a+b+1,则(a−1)(b−1)=.25、先化简,再求值:3a(2a2−4a+3)−2a2(3a+4),其中a=−2.26、若多项式乘法(x+2y)(2x−ky−1)的结果中不含xy项,则k的值为().A. 4B. −4C. 2D. −227、下列运算正确的是().A. a3+a3=2a6B. (−2ab2)3=−6a3b6C. (28a3−14a2+7a)÷7a=4a2−2aD. a2⋅a3=a528、计算(12x3−8x2+16x)÷(−4x)的结果是().A. −3x2+2x−4B. −3x2−2x+4C. −3x2+2x+4D. 3x2−2x+41 、【答案】 D;【解析】 A选项 : x3⋅x3=x6,故选项A错误.B选项 : x8÷x4=x4,故选项B错误.C选项 : (ab3)2=a2b6,故选项C错误.D选项 : (2x)3=8x3,故选项D正确.2 、【答案】 B;【解析】[(1−2b)3]3=(1−2b)9.3 、【答案】a14.;【解析】4 、【答案】 B;【解析】3x−y=3x÷3y=15÷5=3.5 、【答案】81;【解析】9x⋅27y=32x⋅33y=32x+3y=81.6 、【答案】 D;【解析】∵2m=a,2n=b,∴22m+3n=(2m)2×(2n)3=a2b37 、【答案】 C;【解析】∵2x+1⋅4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴{x=2y=2或{x=4y=1,∴x+y=4或5.故选C.8 、【答案】 C;【解析】a=355=(35)11=24311b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.9 、【答案】 A;【解析】根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2.10 、【答案】 D;【解析】(a−2)(b−2)=ab−2a−2b+4=ab−2(a+b)+4,把ab=−4,a+b=m代入原式得原式=−4−2m+4=−2m.故选D.11 、【答案】0.;【解析】∵(x−1)(x+3)=x2+3x−x−3=x2+2x−3,∴a=1,b=2,c=−3,∴9a−3b+c=9×1−3×2−3=9−6−3=0.12 、【答案】 C;【解析】∵(y2−ky+2y)(−y)的展开式中不含y2项,∴−y3+ky2−2y2中不含y2项,∴k−2=0,解得:k=2.13 、【答案】 B;【解析】(−6x3+9x2−3x)÷(−3x)=2x2–3x+1.故选B.14 、【答案】 C;【解析】 A选项 : 10a4b3c2÷5a3bc=2ab2c,故A错误;B选项 : (a2bc)2÷abc=a4b2c2÷abc=a3bc,故B错误;C选项 : (9x2y−6xy2)÷3xy=9x2y÷3xy−6xy2÷3xy=3x−2y,故C正确;D选项 : (6a2b−5a2c)÷(−3a2)=−2b+53c,故D错误.15 、【答案】 D;【解析】(2mn)2=4m2n2,A项正确;(−2mn)2=4m2n2,B项正确;(2m2n2)3=8m6n6,C项正确;(−2m2n2)3=−8m6n6,D项错误.故选D.16 、【答案】 C;【解析】(2a m b n)3=8a9b15,m=3,n=5.17 、【答案】 A;【解析】(−32)2018×(23)2019=(−32)2018×(23)2018×23=23.故选:A.18 、【答案】8;【解析】∵x+4y−3=0,∴x+4y=3,∴2x⋅16y=2x⋅24y=2x+4y=23=8.19 、【答案】 75;【解析】 ∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75. 故答案为:75.20 、【答案】 4;【解析】 5x−2y =5x 52y =5x (5y )2=16(2)2=164=4. 21 、【答案】 C;【解析】 255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选C .22 、【答案】 D;【解析】 ∵(2a −1)a+2=1,∴①2a −1=1,a =1,13=1;②2a −1=−1,且a +2为偶数,即a =0,(−1)2=1; ③{2a −1≠0a +2=0,即a =−2,(−5)0=1; 综上,a 的值为:1,0,−2.23 、【答案】 A;【解析】 根据积的乘方法则,可将待求式化为: (19)2×(x 3n )2×4(x 2)2n , 根据幂的乘方法则,得481×x 6n ×x 4n ,根据同底数幂的乘法法则,得481x 10n , 即4×(x 2n )581,将x 2n =3代入,原式=4×35×181=4×3=12.故选A .24 、【答案】 2;【解析】 当ab =a +b +1时, 原式=ab −a −b +1=a +b +1−a −b +1 =2,故答案为:2.25 、【答案】 −98.;【解析】 3a (2a 2−4a +3)−2a 2(3a +4) =6a 3−12a 2+9a −6a 3−8a 2 =−20a 2+9a .当a =−2时,−20a 2+9a =−20×4−9×2=−98. 26 、【答案】 A;【解析】 (x +2y)(2x −ky −1), =2x 2−kxy −x +4xy −2ky 2−2y , =2x 2+(4−k)xy −x −2ky 2−2y , ∵ 结果中不含xy 项,∴ 4−k =0,解得k=4.27 、【答案】 D;【解析】 A选项 : a3+a3=2a3,故原题计算错误;B选项 : (−2ab2)3=−8a3b6,故原题计算错误;C选项 : (28a3−14a2+7a)÷7a=4a2−2a+1,故原题计算错误;D选项 : a2⋅a3=a5,故原题计算正确.28 、【答案】 A;【解析】解:(12x3−8x2+16x)÷(−4x)=−3x2+2x−4,故选:A.11。

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)

1.1同底数幂的乘法一、单选题1.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y --D.4()x y +2.下列计算过程正确的是( )A.2358x x x x ⋅⋅=B.347x y xy ⋅=C.57(9)(3)3-⋅-=-D.56()()x x x --= 3.下列各式的计算结果为7a 的是( )A.25()()a a -⋅-B.25()()a a -⋅- C.25()()a a -⋅- D.6()()a a -⋅- 4.当0,a n <为正整数时,52()()n a a -⋅-的值 ( )A.正数B.负数c.非正数 D.非负数 5.10,10x ya b ==,则210x y ++等于( )A.2abB.a b +C.2a b ++D.100ab6.已知2,3,m n x x ==则m n x +的值是( )A.5B. 6C. 8D. 97.计算·53a a 正确的是( ) A. 2aB. 8aC. 10aD.15a8.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a9.已知m n 34a a ==,,则m+n a 的值为( ).A.12B.7 二、解答题10.求下列各式中x 的值.(1)21381243;x +=⨯(2)3141664 4.x -⨯=⨯三、填空题11.已知34x =,则23x += .12.计算34x x x ⋅+的结果等于________.13.已知1428m +=,则4m = .14.若2m 5x x x ⋅=,则m =_____.参考答案1.答案:A解析:2.答案:D解析:选项A 中,2351359x x x x x ++⋅⋅==,故本选项错误;选项B 中,3x 与4y 不是同底数幕,不能运算,故本选项错误;选项C 中,5257(9)(3)3(3)3-⋅-=-⋅-=,故本选项错误;选项D 中,5516()()()x x x x +--=-=,故本选项正确.故选D3.答案:C解析:选项A 中,275()()a a a -⋅-=-,故此选项错误;选项B 中,257()()a a a -⋅-=-,故此选项错误;选项C 中,275()()a a a -⋅-=,故此选项正确;选项D 中,67()()a a a ⋅-=--.故此选项错误.4.答案:A解析:5225()()(),n n a a a +-⋅-=-∴当0,a n <为正整数,即0a ->时,25()0,n a +->是正数5.答案:D解析:2210101010100x y x y ab ++=⨯⨯=.6.答案:B解析:2,3,23 6.m n m n m n x x x x x +==∴=⋅=⨯=7.答案:B解析:8.答案:C解析:9.答案:A解析:10.答案:解(1)21381243x +=⨯2145333x +=⨯则219x +=解得4x =(2)31416644x -⨯=⨯3124444x -⨯=314x +=则1x =解得解析:11.答案:36解析:223334936x x +=⋅=⨯=.12.答案:42x解析:13.答案:7解析:因为11444m m +=⨯,所以4428m ⨯=,所以47.m =14. 答案:3 1.2幂的乘方与积的乘法一、单选题1.下列运算正确的是( )A.326x x x ⋅=11=C.224+=x x xD.()22436x x = 2.计算(-2x 2)3的结果是( )A.-8x 6B.-6x 6C.-8x 5D.-6x 53.下列各式计算正确的是( )A. 235ab ab ab +=B. ()22345a ba b -=C. =D. ()2211a a +=+4.计算(-xy 2)3的结果是( )A.-x 3y 6B.x 3y 6C.x 4y 5D.-x 4y 55.下列运算正确的是( )A.x 2·x 3=x 6B.x 3+x 2=x 5C.(3x 3)2=9x 5D.(2x)2=4x 26.计算正确的是( )A.a 3-a 2=aB.(ab 3)2=a 2b 5C.(-2)0=0D.3a 2·a -1=3a 7.下列计算正确的是( )A.a 3·a 2=a 6B.3a+2a 2=5a 2C.(3a)3=9a 3D.(-a 3)2=a 6 8.计算(-x 2)3的结果是( )A.-x 5B.x 5C.x 6D.-x 6 9.计算(-a 2)5的结果是( )A.a 7B.-a 7C.a 10D.-a 10 二、解答题10.已知 333,2,m n a b ==求()()332242m n m n m n a b a b a b ⋅+-的值 。

(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)

(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)

一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.若6a b +=,4ab =,则22a ab b ++的值为() A .40B .36C .32D .303.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b = D .623a a a ÷=4.若1x x -的值为1,则2215x x++的值为( ) A .7B .8C .9D .10 5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.如图,矩形ABCD 的周长是10cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为17cm 2,那么矩形ABCD 的面积是( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 7.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 8.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .129.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .1210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 12.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=二、填空题13.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 14.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________. 15.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.16.若2421x kx ++是完全平方式,则k=_____________. 17.2(56)x x -+÷___________=3x -.18.已知29x mx ++是完全平方式,则m =_________.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值. 25.化简:2(3)3(2)m n m m n +-+. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.3.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;4.B解析:B 【分析】把1x x-进行完全平方,展开计算221x x +的值即可.【详解】∵1x x-=1, ∴21()x x-=1, ∴221x x +-2=1, ∴221x x+=3, ∴2215x x++=8, 故选B. 【点睛】本题考查了完全平方公式的展开计算,熟练运用完全平方公式是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.B解析:B 【分析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=17,2(x +y )=10,利用完全平方公式即可求出xy 的值. 【详解】解:设AB =x ,AD =y ,∵正方形ABEF 和ADGH 的面积之和为17cm 2 ∴x 2+y 2=17,∵矩形ABCD 的周长是10cm ∴2(x +y )=10, ∵(x +y )2=x 2+2xy +y 2, ∴25=17+2xy , ∴xy =4,∴矩形ABCD 的面积为:xy =4cm 2, 故选:B . 【点睛】本题考查了正方形面积、矩形面积和完全平方公式,恰当的设未知数,建立方程,设而不求,只求xy 的值是解题关键.7.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ ,解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.12.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.二、填空题13.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b - 【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案. 【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2) =8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.14.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3 【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可. 【详解】解:方程()()22201820208x x -+-=可变形为: [(x-2019)+1]2+[(x-2019-1)]2=8 设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8 ∴y 2+2y+1+y 2-2y+1=8 即2y 2=6 ∴y 2=3即(x-2019)2=3. 故答案为:3. 【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.15.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a . 【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案. 【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦ =1526()a a a -÷- =158()a a -÷- =7a . 故答案为:7a . 【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±. 故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.【分析】设要填的式子为根据题意可得利用整式的乘法计算左边各项对应即可得到答案【详解】解:设要填的式子为根据题意可得即可得解得故答案为:【点睛】本题考查整式的乘法掌握多项式乘多项式是解题的关键 解析:2x -【分析】设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+,利用整式的乘法计算左边,各项对应即可得到答案. 【详解】解:设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+, 即()223356ax a b x b x x +-+-=-+,可得1a =,36b -=, 解得1a =,2b =-,故答案为:2x -.【点睛】本题考查整式的乘法,掌握多项式乘多项式是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y +-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则.24.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)(1)

新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(答案解析)(1)

一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅=3.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52-B .52C .5D .-54.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2105.若3a b +=,1ab =,则()2a b -的值为( ) A .4B .5C .6D .76.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 8.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>9.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a += C .()2424m m --=-+D .33a b ab +=10.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽11.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫- ⎪⎝⎭的值是( ) A .0B .1C .-2D .-112.下列运算正确的是( ) A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.若231m n -=,则846m n -+=________.14.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.15.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.16.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.17.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 18.若2x y a +=,2x y b -=,则22x y -的值为____________. 19.分解因式3225a ab -=____.20.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 23.(1)23235ab a b ab (2)23233x xxx24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______; (2)请用两种不同的方法求图2中阴影部分的面积. ①________________; ②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.计算:(1)2(1)(1)(2)x x x +--+ (2)(34)(34)x y x y -++- 26.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.3.B解析:B 【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值. 【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项, ∴5-2a=0,∴a=52. 故选B . 【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.4.B解析:B所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.5.B解析:B 【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果. 【详解】 ∵3a b +=,∴22()3a b +=,即2229a ab b ++=, 将1ab =代入上式得:229217a b +=-⨯=. ∵222()2a b a b ab -=+-, ∴2()725a b -=-=. 故选:B . 【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键.6.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.7.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.8.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.A解析:A 【分析】根据同类项的定义与单项式的乘法法则,分别判断分析即可.解:A.2222x y yx x y -+=,故A 正确;B.22245a a a +=,故B 不正确;C.-2(m-4)=-2m+8,故C 不正确;D.3a 与b 不是同类项,不能合并,故D 不正确. 故选A. 【点睛】本题考查了合并同类项与单项式的乘法、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.10.C解析:C 【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解. 【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2 =(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ), 由已知可得:我爱昭通, 故选:C . 【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.11.D解析:D 【分析】先对()()22113(21)a b ab ++=-进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫- ⎪⎝⎭进行因式分解即可. 【详解】∵()()22113(21)a b ab ++=-, ∴2222163a b a b ab +++=-,22222440a b ab a b ab +-+-+=,()()2220a b ab -+-=,∴a b =,2ab =,∴1121bb a ab a a⎛⎫-=-=-=-⎪⎝⎭ 故选:D .本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6 【分析】将原式化为82(23)m n --,再整体代入即可. 【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6. 故答案为:6. 【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.14.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9 【分析】根据新定义得出a ,b 的值,再求和即可.解:∵min{21,a}=21,min{21,b}=b,∴21<a,b<21,又∵a和b为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a,b的值是解题关键.15.20或30【分析】把表格中的前两对值代入求出m与n的值即可求出x的值然后把x的值代入求解即可【详解】解:由表格得x=0时m0+n=-3∴n =-3;x=1时m1+(-3)=-1∴m=2;∵mx+n解析:20或30【分析】把表格中的前两对值代入求出m与n的值,即可求出x的值,然后把x的值代入求解即可.【详解】解:由表格得x=0时,m⋅0+n=-3,∴n=-3;x=1时,m⋅1+(-3)=-1,∴m=2;∵mx+n=17,∴2x-3=17,∴x=10,当点C在线段AB上时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=20;当点C在点B右侧时,∵BC=1AB,2∴BC=1×10=5,2∴AC+AB+BC=30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键.16.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1 【分析】根据积的乘方的逆运算和幂的乘方计算即可 【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦==故答案为:1 【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键17.【分析】根据题意得:通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到得a 和c 的关系式经计算即可得到答案【详解】根据题意得:∴∴∴∴故答案为:【点睛】本题考查了三元一次方程组整式运算的知识;解题的解析:222644c c -+-【分析】根据题意得:20a b c ++=,2342a b c ++=,通过计算得到b 和c 的关系式;再将b 和c 的关系式代入到20a b c ++=,得a 和c 的关系式,经计算即可得到答案. 【详解】根据题意得:20a b c ++=,2342a b c ++= ∴204223a b c b c =--=-- ∴222b c =-∴20202222a b c c c c =--=-+-=- ∴()()2222222644w a b c c c c =⨯=--=-+-故答案为:222644c c -+-. 【点睛】本题考查了三元一次方程组、整式运算的知识;解题的关键是熟练掌握三元一次方程组、整式乘法运算的性质,从而完成求解.18.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab . 【分析】应用平方差把多项式22x y -因式分解,再整体代入即可. 【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.19.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 20.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.三、解答题21.(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =, 由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分,∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.(1)3x +;(2)229816-+-x y y .【分析】(1)先分别利用完全平方公式和多项式乘多项式运算法则计算,再去括号、合并同类项即可得到结果;(2)原式变形后,运用平方差公式和完全平方公式计算即可求出结果.【详解】计算:⑴ 原式2221(2)x x x x =++-+-22212x x x x =++--+3x =+,(2)原式[3(4)][3(4)]x y x y =--+-229(4)x y =--229816=-+-x y y .【点睛】本题主要考查了整式的混合运算,掌握运算法则及灵活运用乘法公式是解题的关键. 26.4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦ ()()22223293ab b a ab b a a =--++-÷-()()23123ab a a =-÷-4a b =- ∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b = ∴原式1284255=⨯-= 【点睛】 本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。

冀教版2020七年级数学下册第八章整式的乘法自主学习基础达标测试题1(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习基础达标测试题1(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习基础达标测试题1(附答案) 1.在算式(x +m)(x -n)的积中不含x 的一次项,则m ,n 一定满足( )A .互为倒数B .互为相反数C .相等D .mn =02.下列运算正确的是( )A .(﹣2a 3)2=﹣4a 6B .(a+b )2=a 2+b 2C .a 2•a 3=a 6D .a 3+2a 3=3a 3 3.下列不能进行平方差计算的是( )A .(x+y)(-x-y)B .(2a+b )(2a-b)C .(-3x-y)(-y+3x)D .(a 2+b )(a 2-b)4.下列运算正确的是( )A .236()a a -=B .22422a a a +=C .32a a a -⨯=D .()222a b a b -=-5.下列运算错误的是( )A .235m m m -⋅=-B .2222x x x -+=C .3262()a b a b -=D .22()22x x y x xy --=--6.已知空气的单位体积质量是0.01239g/cm 3,数据0.001239用科学记数法可表示为( )A .1.239×10﹣3B .1.239×10﹣2C .0.1239×10﹣2D .12.39×10﹣47.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)8.下列计算正确的是( ) A .(-2x 3y 2)3=-6x 9y 6 B .-3x 2·x 3=-3x 6 C .(-x 3)2=-x 6 D .x 10÷x 6=x 49.下列计算不正确的是( )A .a m ÷a m =a 0=1B .a m ÷(a n ÷a p )=a m -n -pC .(-x) 5÷(-x) 4=-xD .9-3÷(3-3) 2=l10.下列运算结果为的是( ) A . B . C . D . 11.已知(3x-2)0有意义,则x 应满足的条件是_________________ .12.计算: ()()200820092+323⋅-=_________.13.如图,正方形 ABCD ,根据图形写出一个正确的等式:________.14.23[(2)]-= _____,23(2)-=_____.15.如果23n x =,则34()n x =_______.16.(2xy 2)3·(________)=-16x 4y 817.计算木星的质量得1901.64×1021吨,用科学记数法表示它的近似值(保留两个有效数字)为____________ ×1024. 18.在代数式x 2____2x____1的空格“____”中,任意填上“+”或“﹣”,可组成若干个不同的代数式,其中能够构成完全平方式的概率为____.19.我国西部地区面积约为640万平方公里,640万用科学记数法表示为-________. 20.据报道,2016年单位就业人员年平均工资超过70300元,将数70300用科学计数法表示为_____.21.[2x (2y 2﹣4y+1)﹣2x]÷(﹣4xy )22.先化简,再求值(a+b )2﹣(b ﹣a )2﹣2(b ﹣a )(b+a ),其中a=1,b=2.23.计算|﹣5|+327﹣(13)﹣1. 24.已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y)3m ·y m 的值.25.先化简,再求值:2(a+b )(a ﹣b )﹣(a+b )2+(a ﹣b )2,其中a =2,b =. 26.已知=2m x ,=3n x ,求23m n x +的值27.(1)计算:012cos302017︒-; (2)解不等式组23{331.22x x x -≤+>-,并求其最小整数解. 28.计算(1) (2)×12(3))02112---+参考答案1.C【解析】因为(x +m)(x -n)=x 2+(m-n)x-mn ,所以m-n=0,则m=n.故选C.2.D【解析】分析:本题考查的是整式的运算性质.解析:(﹣2a 3)2=4a 6故A 选项错误;()2222,a b a ab b +=++ 故B 选项错误;a 2•a 3=a 5故C 选项错误; a 3+2a 3=3a 3故D 选项正确.故选D.3.A【解析】分析:平方差公式为()()22a b a b a b +-=- . 解析:A 选项结果为()2x y -+ ,故不能运用平方差计算.故选A.4.C【解析】试题解析:A 、(-a 2)3=-a 3+2=-a 5,故A 错误;B 、22223a a a +=,故B 错误;C 、32a a a -⨯=,故C 正确;D 、()2222a b a ab b -=-+,故D 错误.故选C .5.D【解析】试题解析:A 选项,23235m m m m +-⋅=-=- ,故正确;B 选项,()2222221x x x x -+=-= ,故正确;C 选项,()()()22233621a b a b a b -=-= ,故正确;D 选项,()2222x x y x xy --=-+ ,故错误. 所以本题应选D.6.A【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.001239=1.239×10﹣3, 故选:A .7.C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.8.D【解析】A.(-2x 3y 2)3=-8x 9y 6,故本选项错误;B.-3x 2·x 3=-3x 5,故本选项错误;C.(-x 3)2=x 6,故本选项错误;D.x 10÷x 6=x 4,故本选项正确;故选:D.9.B【解析】试题分析:根据同底数幂相除,可知a m ÷a m =a 0=1,故正确;根据运算顺序和同底数幂相除,可知a m ÷(a n ÷a p )=a m -(n -p )=a m -n+p ,故不正确; 根据同底数幂的除法和乘方的意义,可知(-x) 5÷(-x) 4=-x ,故正确; 根据负整指数幂的性质和同底数幂相除,可知9-3÷(3-3) 2=l ,故正确. 故选:B.点睛:此题主要考查了幂的性质,解题时利用同底数幂相除和混合运算的顺序,负整指数幂的性质直接解答即可.同底数幂相除,底数不变,指数相减; 负整数指数1(0)p p aa a -=≠. 10.D【解析】试题解析:A.m 2与m 3不是同类项,其结果不等于m 6;B.m 2×m 3=m 5,该选项错误;C.(-m 2)3=-m 6,该选项错误;D.m 9÷m 3=m 6,正确故选D.11.x≠23【解析】试题分析:根据零指数幂的性质()010a a =≠ ,可知3x-2≠0,解得x≠23.12【解析】原式=2008?⎡⎤⨯⎣⎦13.答案不唯一:2()a b +=222a ab b =++根据图形,从两个角度计算面积即可求出答案.解:(a+b )2=a 2+2ab+b 2“点睛”本题考查多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题. 14.64, -64【解析】()322⎡⎤-⎣⎦=43=64; ()322-=(-4)3=-64. 故答案为64;-64.15.729【解析】()43n x =x 12n =(2n x )6=36=729.故答案为729.点睛:本题考察幂的乘方与其逆运算的综合运用,其中进行逆运算时注意x 12n 与x 2n 的关系. 16.-2xy 2【解析】()3482483621621682x y xy x y x y xy -÷=-÷=-Q∴答案为-2xy 217.1.9 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数, 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字, 用科学记数法表示的数的有效数字只与前面的a 有关,与10的多少次方无关,由此可知1901.64×1021≈1.9×1024, 故答案为:1.9.【点睛】本题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法,熟记表示方法是关键.18.12.试题解析:画树状图得:∵共有4种等可能的结果,其中能够构成完全平方式的有2种情况,∴能够构成完全平方式的概率为:21 42 =.考点:1.列表法与树状图法;2.完全平方式.19.6.4 x106【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.故:将640万用科学记数法表示为6.4×106.20.47.0310⨯【解析】70300=47.0310⨯.21.﹣y+2【解析】根据多项式除单项式,先用多项式的每一项除以单项式,再把所得的商相加,计算即可.[2x(2y2﹣4y+1)﹣2x]÷(﹣4xy)=(4xy2﹣8xy+2x﹣2x)÷(﹣4xy)=(4xy2﹣8xy)÷(﹣4xy)=﹣y+2“点睛”本题考查了多项式除以单项式的运算,熟练掌握运算法则是解题的关键,计算时要注意符号的变化.22.2.【解析】试题分析:先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.试题解析:原式=a2+2ab+b2−b2+2ab−a2−2b2+2a2=4ab+2a2−2b2,当a=1,b=2时,原式=2.23.5【解析】试题分析:原式第一项利用绝对值的代数意义化简,第二项利用立方根定义化简,最后一项利用负指数幂法则计算即可得到结果.试题解析:解:原式=5+3﹣3=5.24.-5.【解析】根据幂的乘方的性质将式子进行变形,然后代入求解即可.试题分析:因为x3n=2,y2n=3,所以(x2n)3+(y n)6−(x2y)3n⋅y n=x6n+y6n−x6n y3n⋅y n=(x3n)2+(y2n)3−(x3n)2⋅(y2n)2=22+33−22×32=4+27−4×9=−5.25.2a2-2b2-4ab,【解析】试题分析:先算乘法,再合并同类项,最后代入求出即可.试题解析:原式=2(a2-b2)-(a2+2ab+b2)+( a2-2ab+b2)=2a2-2b2- a2-2ab-b2+ a2-2ab+b2=2a2-2b2-4ab把代入得2×22-2×()2-4×2×()=26.108【解析】试题分析:根据同底数的乘法法则:m n m n a a a +=n 和幂的乘方法则:()mn n m a a =将所求的代数式进行化简,然后将已知条件代入化简后的式子进行计算得出答案.试题解析:解:∵2,3m n x x ==,∴()()23232323••23108m n m n mn x x x x x +===⨯=. 27.(1)原式=﹣2;(2)不等式组的解集为x ≥-1;最小整数解为-1【解析】试题分析:(1)根据绝对值和二次根式的性质,零次幂的性质,30°角的锐角三角函数值直接代入求值即可;(2)分别求解两个不等式,然后取其解集的公共部分,然后取最小整数解即可.试题解析:(1)原式﹣2.(2)解不等式①得x ≥-1解不等式②得x >-5;不等式组的解集为x ≥-1;最小整数解为-128.(3)-3【解析】试题分析:(1)化简各根式,再合并同类二次根式即可;(2)根据二次根式乘除法法则计算即可;(3)先化简每一部分,然后加减即可.试题解析:解:(1)原式=(2)原式=132⨯(3)原式=91122-+=3--。

整式的乘法练习题(1)

整式的乘法练习题(1)

整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=_ _____.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=__ ____.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是[ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是[ ] A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1. 41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[ ]A.-4t-5 ;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[ ] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).56.(3m-n)(m-2n).57.(x+2y)(5a+3b).58.(-ab)3·(-a2b)·(-a2b4c)2.59.[(-a)2m]3·a3m+[(-a)5m]2.60.x n+1(x n-x n-1+x).61.(x+y)(x2-xy+y2).62.5x(x2+2x+1)-(2x+3)(x-5).63.(2x-3)(x+4).64.(-2ab2)3·(3a2b-2ab-4b2) 65.-8(a-b)3·3(b-a)66.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).67.(-4xy3)·(-xy)+(-3xy2)2.68.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).69.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=70.已知ab2=-6,求-ab(a2b5-ab3-b)的值(四)化简(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来).108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.70.(-2a m b n)(-a2b n)(-3ab2).119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.1、2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6 = 64时, 该式的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法练习题
一、选择题.
1.下列计算中,运算正确的有几个( )
(1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (-a+b)(-a-b)=a 2-b 2
3 3 A 、0个 B 、1个 C 、2个2.如图,一块四边形绿化园地,四角都做有半径为R 的圆形
喷水池,则这四个喷水池占去的绿化园地的面积为( ) A 、22R π B 、24R π C 、2R π
D 、不能确定 3.已知:有理数满足0|4|)4
(22=-++n n m ,则22n m 的值为( ) A.±1 B.1 C. ±2 D.2
4.规定一种运算:a*b=ab+a+b,则a*(-b )+ a*b 计算结果为 ( )
A. 0
B. 2a
C. 2b
D.2ab
5.已知7)(2=+b a ,3)(2=-b a ,则22b a +与ab 的值分别是 ( )
A. 4,1
B. 2,
23 C.5,1 D. 10,23 二、计算(5X7分)
① (2a 2 -
23a - 9)·(-9a) ②(x-y)( x 2+xy+y 2)
③(2x -y )(2x +y )+y (y -6x ) ④)2)(2(z y x z y x ++-+-
⑤)1)(1)(1)(1(42-+++x x x x
三.化简与求值:(a +b )(a -b )+(a +b )2-a(2a +b),其中a=
23,b =-112。

(10分)
四.观察下列各式:(5分)
2311= 233321=+ 23336321=++ 23333104321=+++
……
观察等式左边各项幂的底数与右边幂的底数的关系,猜一猜可以得出什么规律,并把这规律用等式写出来: .
五.阅读下列材料:(2+2+6分) 让我们来规定一种运算:c a d b
=bc ad -, 例如:42 53
=212104352-=-=⨯-⨯,再如:1x 42
=4x-2
按照这种运算的规定:请解答下列各个问题:
② 21-- 5.02= (只填最后结果);
②当x= 时, 1x 2
5.0x
-=0; (只填最后结果) ③求x,y 的值,使
815.0-x 3y =5.0x 1--y = —7(写出解题过程).。

相关文档
最新文档