选修2-2数学导数及其应用练习题

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

人教a版数学高二选修2-2习题_第一章_导数及其应用_1.1.3导数的几何意义

人教a版数学高二选修2-2习题_第一章_导数及其应用_1.1.3导数的几何意义

第一章 导数及其应用1.1 变化率与导数1.1.3 导数的几何意义A 级 基础巩固一、选择题1.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)与f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1解析:由题意得f (5)=-5+8=3,f ′(5)=-1.答案:B2.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为3x -y +1=0,则( )A .f ′(x 0)<0B .f ′(x 0)>0C .f ′(x 0)=0D .f ′(x 0)不存在解析:由导数的几何意义可知曲线在(x 0,f (x 0))处的导数等于曲线在该点处的切线的斜率,所以f ′(x 0)=3.答案:B3.曲线y =x 2在点P (1,1)处的切线方程为( )A .y =2xB .y =2x -1C .y =2x +1D .y =-2x解析:因为Δy Δx =(x +Δx )2-x 2Δx=2x +Δx ,所以 Δy Δx =2x ,所以y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1.答案:B4.曲线y =12x 2-2x 在点(2,-2)处切线的斜率为( ) A .1 B .-1 C .0 D .-2解析:f′(2)= f (2+Δx )-f (2)Δx=12(2+Δx )2-2(2+Δx )-(-2)Δx =Δx 2=0. 答案:C 5.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-18解析:k =(x +Δx )3-x 3Δx ==3x 2=3,所以x =±1,所以点P 的坐标为(1,1),(-1,-1).答案:B二、填空题 6.设y =f (x )为可导函数,且满足条件f (1)-f (1-x )2x =-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________. 解析:由 f (1)-f (1-x )2x =-2,得12f ′(1)=-2, 即f ′(1)=-4.答案:-47.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则 f (1+Δx )-f (1)Δx=______.解析:由导数的概念和几何意义知,f (1+Δx )-f (1)Δx =f ′(1)=k AB =0-42-0=-2. 答案:-28.曲线y =x 3在点(3,27)处的切线与两坐标轴所围成的三角形的面积为________.解析:因为f ′(3)= (x +Δx )3-x 3Δx =27, 所以在点(3,27)处的切线方程为y -27=27(x -3),即y =27x -54.此切线与x 轴、y 轴的交点分别为(2,0),(0,-54).所以切线与两坐标轴围成的三角形的面积为S =12×2×54=54.答案:54三、解答题9.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.解:先求曲线y =3x 2-4x +2在点M (1,1)处的斜率, k =y ′|x =1= 3(1+Δx )2-4(1+Δx )+2-3+4-2Δx =(3Δx +2)=2.设过点P (-1,2)且斜率为2的直线为l ,则由点斜式得:y -2=2(x +1),化为一般式:2x -y +4=0.所以,所求直线方程为2x -y +4=0.10.求曲线y =1x -x 上一点P (4,-74)处的切线方程. 解:因为y ′=(1x +Δx -1x )-(x +Δx -x )Δx =-Δx x (x +Δx )-Δx x +Δx +x Δx= ⎝ ⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . 所以y ′|x =4=-116-14=-516, 所以曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为: y +74=-516(x -4),即5x +16y +8=0.B 级 能力提升1.y =ax 2+1的图象与直线y =x 相切,则a =( )A.18B.14C.12D .1 解析:因为Δy Δx =a (x +Δx )2+1-ax 2-1Δx =a (Δx )2+2a (Δx )x Δx=a (Δx )+2ax ,所以 Δy Δx =2ax ,即y ′=2ax ,设切点为(x 0,y 0),则2ax 0=1,所以x 0=12a .因为切点在直线y =x 上,所以y 0=12a .代入y =ax 2+1得12a =14a +1,所以a=14. 答案:B2.设f (x )=f ′(1)+x,则f (4)=________.解析:f ′(1)= f (1+Δx )-f (1)Δx= (f ′(1)+1+Δx )-(f ′(1)+1)Δx= 1+Δx -1Δx = 11+Δx +1=12, 所以f (x )=12+x , 所以f (4)=12+4=52.答案:523.点P 在曲线y =f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标. 解:设P (x 0,y 0),则y 0=x 20+1. f ′(x 0)= (x 0+Δx )2+1-(x 20+1)Δx =2x 0. 所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20.而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点.由⎩⎪⎨⎪⎧y =2x 0x +1-x 20,y =-2x 2-1得2x 2+2x 0x +2-x 20=0, 所以Δ=4x 20-8(2-x 20)=0,解得x 0=±233,y 0=73. 所以点P 的坐标为⎝ ⎛⎭⎪⎫233,73或⎝ ⎛⎭⎪⎫-233,73.。

高中数学苏教版高二选修2-2学业分层测评:第一章_导数及其应用_4

高中数学苏教版高二选修2-2学业分层测评:第一章_导数及其应用_4

学业分层测评(四)(建议用时:45分钟)学业达标]一、填空题1.函数y =-2e x sin x 的导数y ′=________.【解析】 y ′=(-2e x )′sin x +(-2e x )·(sin x )′=-2e x sin x -2e x cos x =-2e x (sin x +cos x ).【答案】 -2e x (sin x +cos x )2.函数f (x )=x e -x 的导数f ′(x )=________.【解析】 f ′(x )=x ′·e -x +x (e -x )′=e -x -x e -x =(1-x )e -x .【答案】 (1-x )e -x3.函数f (x )=cos ⎝ ⎛⎭⎪⎫12x -π4,则f ′(3π)=________. 【解析】 因为f ′(x )=-sin ⎝ ⎛⎭⎪⎫12x -π4·⎝ ⎛⎭⎪⎫12x -π4′ =-12sin ⎝ ⎛⎭⎪⎫12x -π4, 所以f ′(3π)=-12sin ⎝ ⎛⎭⎪⎫3π2-π4=-12sin 5π4=24. 【答案】 244.曲线C :f (x )=e x +sin x +1在x =0处的切线方程是________.【解析】 ∵f ′(x )=e x +cos x ,∴k =f ′(0)=2,切点为(0,2),切线方程为y =2x +2.【答案】 y =2x +25.(2016·东营高二检测)设函数f (x )的导数为f ′(x ),且f (x )=x 2+2x ·f ′(1),则f ′(0)=________.【解析】 f ′(x )=2x +2f ′(1),令x =1,则f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.【答案】 -46.(2016·佛山高二检测)若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________.【解析】 y ′=k +1x ,则曲线在点(1,k )处的切线的斜率为k +1,∴k +1=0,∴k =-1.【答案】 -17.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________.【解析】 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=x 0+1,y 0=ln(x 0+a ).又y ′=(x +a )′x +a =1x +a 及导数的几何意义, ∴1x 0+a=1, 即x 0+a =1.因此,y 0=ln(x 0+a )=0,∴x 0=-1,∴a =2.【答案】 28.(2016·广州高二检测)若函数为y =sin 4x -cos 4x ,则y ′=________________.【解析】 ∵y =sin 4x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )=-cos 2x ,∴y ′=(-cos 2x )′=-(-sin 2x )·(2x )′=2 sin 2x .【答案】 2sin 2x二、解答题9.求下列函数的导数.(1)y =1-2x 2;(2)y =e sin x ;(3)y =sin ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1). 【解】 (1)设y =u ,u =1-2x 2,则y ′=(u )′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2) (-4x )=-2x 1-2x2. (2)设y =e u ,u =sin x ,则y x ′=y u ′·u x ′=e u ·cos x =e sin x cos x .(3)设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos ⎝ ⎛⎭⎪⎫2x +π3. (4)设y =5log 2u ,u =2x +1,则y ′=y u ′·u x ′=10u ln 2=10(2x +1)ln 2.10.求曲线y =2sin 2x 在点P ⎝ ⎛⎭⎪⎫π6,12处的切线方程. 【解】 因为y ′=(2sin 2x )′=2×2sin x ×(sin x )′=2×2sin x ×cos x =2sin 2x ,所以y ′|x =π6=2sin ⎝ ⎛⎭⎪⎫2×π6= 3. 所以过点P 的切线方程为y -12=3⎝ ⎛⎭⎪⎫x -π6, 即3x -y +12-3π6=0.能力提升]1.若f (x )=sin x sin x +cos x,则f ′⎝ ⎛⎭⎪⎫π4等于________. 【解析】∵f ′(x )=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2 =1(sin x +cos x )2=11+sin 2x, ∴f ′⎝ ⎛⎭⎪⎫π4=11+sin π2=12. 【答案】 122.(2014·江西高考)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【导学号:01580010】【解析】 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=eln e =e ,∴点P 的坐标为(e ,e).【答案】 (e ,e)3.已知函数y =f (x )在点(2,f (2))处的切线为y =2x -1,则函数g (x )=x 2+f (x )在(2,g (2))处的切线方程为________.【解析】 由题意知,f (2)=3,f ′(2)=2,则g (2)=4+f (2)=7.∵g ′(x )=2x +f ′(x ),∴g ′(2)=4+f ′(2)=6.∴函数g (x )在(2,g (2))处的切线方程为y -7=6×(x -2),即6x -y -5=0.【答案】 6x -y -5=04.已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.【解】(1)f′(x)=1-ae x,因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=1-ae=0,解得a=e.(2)当a=1时,f(x)=x-1+1e x,f′(x)=1-1e x.设切点为(x0,y0),∵f(x0)=x0-1+1e x0=kx0-1,①f′(x0)=1-1e x0=k,②①+②得x0=kx0-1+k,即(k-1)(x0+1)=0. 若k=1,则②式无解,∴x0=-1,k=1-e.∴l的直线方程为y=(1-e)x-1.。

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.

高中数学选修22:第一章导数及其应用单元测试题.doc

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。

选修2-2导数及其应用典型例题

选修2-2导数及其应用典型例题

第一章 导数及其应用1.1 变化率与导数【知识点归纳】1.平均变化率:2.瞬时速度:3.导数及导函数的概念:4.导数的几何意义:拓展知识:5.平均变化率的几何意义:6.导数与切线的关系:【典型例题】题型一 求平均变化率:例1.函数2()21y f x x ==-的图像上一点〔1,1〕及其邻近一点(1,1)x y +∆+∆,那么y x∆∆=_______.变式训练:1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2s t v t gt =-,求物体在0t 到0t t +∆这段时间的平均速度v .2.求正弦函数sin y x =在0x =和2x π=附近的平均变化率,并比较他们的大小.题型二 实际问题中的瞬时速度例 2 质点M 按规律223s t =+做直线运动〔位移单位:cm ,时间单位:s 〕〔1〕当2,0.01t t =∆=时,求s t ∆∆;〔2〕当2,0.001t t =∆=时,求s t∆∆; 〔3〕求质点M 在t=2时的瞬时速度.题型三 求函数的导数及导函数的值例 3求函数1y x x =-在1x =处的导数.题型四 曲线的切线问题例 4〔1〕曲线22y x =上一点A 〔1,2〕,求点A 处的切线方程.〔2〕求过点〔-1,-2〕且与曲线32y x x =-想切的直线方程.〔3〕求曲线321()53f x x x =-+在x=1处的切线的倾斜角.〔4〕曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.1.2 导数的计算【知识点归纳】1.常见函数的导数:2.根本初等函数的导数公式:3.导数的运算法那么:4.复合函数的导数:【典型例题】题型 一 根本初等函数导数公式运用例1 给出以下结论: ①1(cos )sin 662ππ'=-=-;②假设21y x=,那么32y x -'=-;③假设()3f x x =,那么[(1)]3f ''=;④.假设y =y '= 其中正确的选项是_________________.题型 二 导数运算法那么的应用例 2 求以下函数的导数:〔1〕531253y x x =+;〔2〕lg x y x e =-;〔3cos x ;〔4〕sin cos 22x x y x =-.变式训练:判断下面的求导是否正确,如果不正确,加以改正.2221cos 2(1cos )sin ()x x x x x x x +++'=题型三复合函数求导的应用例7求以下函数的导数.〔1〕3(1cos2)y x=+;〔2〕21sinyx=.变式训练:求函数2(2y x=-题型四切线方程及应用例4曲线sin xy x e=+在点〔0,1〕处的切线方程是?变式训练:曲线32y x x=+-在P处的切线平行于直线41y x=-,那么点P的坐标为_________.题型五利用导数求参数问题例5 假设曲线3y x ax=+在坐标原点处的切线方程是20x y-=,那么实数a=_________变式训练:假设函数()x ef xx=在x=a处的导数值为函数值互为相反数,求a的值题型 六 对数求导数的应用〔选讲〕例6 求以下函数的导数〔1〕(1)(2)(3)(3)y x x x x =--->;〔2〕(1)(2)(3)1()212x x x y x x +++=>-+;1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数【知识点归纳】1.函数的单调性与其导数的关系:2.利用导数求函数的单调区间:3.导数的绝对值的大小与图像的关系〔选讲〕:【典型例题】题型 一 里用导数的信息确定函数大致图像例1 导函数()f x '的以下信息:当23x <<时,()0f x '<; 当3x >或2x <时,()0f x '>;当3x =或2x =时,()0f x '=;试画出函数f 〔x 〕图像的大致形状.题型 二 判断或者证明函数的单调性例2 试判断函数()ln f x x x =+在其定义域上的单调性.变式训练:证明:函数ln ()xf x x =在区间〔0,2〕上是单调递增函数.题型三求函数的单调性例3确定函数32()267f x x x=-+的单调区间.变式训练:求函数3y x x=-的单调性.题型四含有参数的函数的单调性例4函数2()ln(2)f x x ax a x=-+-,讨论f〔x〕的单调性.变式训练:函数1()2axf xx+=+在(2,)-+∞单调递增,数a的取值围.1.3.2 导数的极值与导数【知识点归纳】1.导数的极值的概念:2.导数的极值的判断和求法:【典型例题】题型 一 求函数的极值例1 求以下函数的极值:〔1〕276y x x =-+; 〔2〕2ln y x x =.变式训练:设32()1f x x ax bx =+++的导数()f x '满足(1)2,(2)f a f b ''==-,其中常数,a b R ∈.〔1〕求曲线()y f x =在点(1,(1))f 处的切线方程.〔2〕设()()xg x f x e -'=,求函数()g x 的极值.题型 二 判断函数极值点的情况例2 判断以下函数有无极值,假设有极值,请求出极值;如果没有极值,请说明理由.〔1〕31()43f x x =+; 〔2〕321()43f x x x x =++; 〔3〕23()1(2)f x x =--.变式训练:设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数f 〔x 〕没有极值点,当0ab <时,函数f 〔x 〕有且只有一个极值点,并求出极值.题型 三导函数的图像与函数极值的关系 例3 函数f 〔x 〕的定义域为开区间〔a ,b 〕,导函数f′〔x 〕在〔a ,b 〕的图象如下列图,那么函数f 〔x 〕在开区间〔a ,b 〕有极小值点的个数为〔 〕A 1个 B.2个 C.3个 D.4个题型四极值的逆向问题例4 函数44f x ax x bx c x=+->在x=1处取得极值-3-c,其中a,b为常数.()ln(0)〔1〕试确定a,b的值.〔2〕讨论函数f〔x〕的单调区间.综上:假设说明函数没有极值,一般不讨论有无导数,而是在区间上只有一个单调性,没有“拐点〞.1.3.3 函数的最大小值与导数【知识点归纳】1.最大小值与极值的关系:2.求最大小值的步骤:3.开区间的最值问题:【典型例题】题型一利用导数求函数最值问题例1 求函数543f x x x x=+++在区间[1,4]()551-上的最大值和最小值.变式训练:设函数3f x ax bx c a=++≠为奇函数,其图像在(1,(1))()(0)f处的切线与直线--=垂直,导数的最小值为-12.x y670〔1〕求a,b,c的值.〔2〕求函数f〔x〕的单调递增区间,并求函数f〔x〕在[-1,3]上的最大小值.题型 二 含参数最值问题例 2 设a 为常数,求函数3()3(01)f x x ax x =-+≤≤的最大值.变式训练:1.设3211()232f x x x ax =-++ 〔1〕假设f 〔x 〕在2(,)3+∞上存在单调递增区间,求a 的取值围. 〔2〕当02a <<时,f 〔x 〕在[1,4]上的最小值为163-,求f 〔x 〕在该区间上的最大值.题型 三 由函数的最值求参数的值例3 设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为,求a ,b 的值.1.4 生活中的优化问题【知识点归纳】利用求函数的最大小值的方法际应用中的最优化问题函数的极值与端点值的比较【典型例题】题型 一 利润最大问题例 1 某商品每件本钱9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x 〔单位:元, 021x ≤≤〕的平方成正比,商品单价降低2元时,一星期多卖出24件.〔1〕将一星期的商品销售利润表示成x 的函数〔2〕如何定价才能使一个星期的商品销售利润最大变式训练:某分公司经销某种品牌的产品,每件产品的本钱为3元,并且每件产品需向总公司交m 〔3≤m ≤5〕元的管理费,预计当每件产品的售价为x 〔9≤x≤11〕元时,一年的销售量为(12-x)2万件.〔1〕求分公司一年的利润L 〔万元〕与每件产品的售价x 的函数关系式;〔2〕当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q 〔m 〕.题型二用料最省、费用最低问题例2如图,某单位用木料制作如下列图的框架,框架的下部是边长分别为x,y〔单位:米〕的矩形,上部是斜边长为x的等腰直角三角形,要求框架围成的总面积为8平方米.〔Ⅰ〕求x,y的关系式,并求x的取值围;〔Ⅱ〕问x,y分别为多少时用料最省?变式训练:某企业拟建造如下列图的容器〔不计厚度,长度单位:米〕,其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r≥.假设该容器的建造费用仅与其外表积有关.圆柱形局部每平方米建造费用为3千元,半球形局部每平方米建造费用为c〔c>3〕千元.设该容器的建造费用为y千元.〔Ⅰ〕写出y关于r的函数表达式,并求该函数的定义域;〔Ⅱ〕求该容器的建造费用最小时的r.题型 三 面积、体积最值问题例 3如图在二次函数2()4f x x x =-的图像与x 轴所围成的图形中有一个接矩形ABCD ,求这个接矩形的最大面积.变式训练:请您设计一个帐篷.它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥〔如下列图〕.试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?x y1.5 定积分的概念【知识点归纳】定积分的概念:定积分的性质:【典型例题】题型一利用定义计算积分例1利用定积分定义,计算21(32) x dx+⎰题型二求曲边梯形的面积例2利用定积分的定义求出直线x=1,x=2和y=0及曲线3y x=围成的图形的面积.1.6 微积分根本定理【知识点归纳】1.牛顿—莱布尼茨公式:2.定积分的取值:3.定积分的一些性质:【典型例题】题型一求简单函数的定积分例1 求以下函数的定积分:〔1〕2211()x dxx+⎰;〔2〕22sin xdxππ-⎰;〔3〕4dx+⎰;题型二求分段函数的定积分例2 求函数32,[0,1](),[1,2]2,[2,3]xx xf x x xx⎧∈⎪=∈⎨⎪∈⎩在区间[0,3]上的定积分.变式训练:求定积分:〔1〕2201x dx -⎰; 〔2〕题型 三 定积分的实际应用例 3 汽车以每小时36 km 的速度行驶,到某处需要减速停车,设汽车的减速度为21.8 /a m s =刹车,求从开场停车到停车,汽车的走过的距离.变式训练:等比数列{}n a 中,36a =,前三项和3304s xdx =⎰,那么公比q 的值是多少?1.7 定积分的简单应用【知识点归纳】1.常见的平面图形的面积求法:2.定积分在物理公式中的应用:【典型例题】题型 一 用定积分求平面图形的面积例 1 求曲线2y x =与y x =所围成的图形的面积.变式训练:求由抛物线22,15xy y x ==-所围成的图形的面积例2 求正弦曲线3sin,[0,]2y x xπ=∈和直线32xπ=及x轴所围成的平面图形的面积.变式训练:求由曲线222,24y x x y x x=-=-所围成的图形的面积题型二用定积分求变速直线运动的距离例3 有一两汽车以每小时36km的速度形式,在B出以22 /m s的加速度减速停车,问从开场刹车到停车一共行驶多少的路程.题型三用定积分解决变力作功问题例4 有一个长为25cm的弹簧,假设以100N的力,那么弹簧伸长到30cm,求弹簧由25cm 伸长到40所做的功.。

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

选修2-2导数及其简单应用

选修2-2导数及其简单应用

河南省伊川高中II 部2010-2011学年高二下学期第一次月考理 数 试 题 命题人:张晓锋一、选择题(共有12个小题,每小题5分,共60分)1、若()()()kx f k x f x f k 2lim,20000--='→则的值为 ( )A .-2 B. 2 C.-1 D. 12、曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4) 3、下列求导运算正确的是 ( ) A .(x +211)1xx +=' B .(log 2x )′=2ln 1xC .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x4、()()=+-=x f x xx f 则设函数,122( )A .在(-∞,+∞)单调递增B .在(-∞,+∞)单调递减C .在(-1,1)单调递减,其余区间单调递增D .在(-1,1)单调递增,其余区间单调递减5、已知函数f (x )的导数为x x x f 44)(3-=',当函数f (x )取得极大值时,x 的值应为( )A .-1B .0C .1D .±16、函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( ) A. 5 , -15 B. 5 , 4 C. -4 , -15 D. 5 , -167、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是 ( )A .B .C .D .8、两曲线3212xy y b ax x y +-=++=与相切于点(1,-1)处,则a ,b 值分别为 ( ) A .0,2 B .-1,-1 C .-1,1 D . 1,-39、f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g(x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是 ( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a ≠0,b =2,则方程g (x )=0有两个实根.C .若a =-1,-2<b <0,则方程g (x )=0有大于2的实根.D .若a ≥1,b <2,则方程g (x )=0有三个实根10、设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为 ( )A.15-B.0C.15D.511、11dx xxm e dx =⎰⎰e1与n=的大小关系是 ( ) A .m n > B .m n < C .m n = D .无法确定12、设2(01)()2(12)x x f x x x ⎧≤<=⎨-≤≤⎩,则20()f x dx ⎰等于 ( )A .34 B .45 C .56D .不存在 二、填空题(共有4个小题,每小题5分,共20分)13、质点运动的速度2(183)/v t t m s =-,则质点由开始运动到停止运动所走过的路程是___________________.14、若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是__________________.15、已知函数2()321f x x x =++,若11()2()f x dx f a -=⎰成立,则a =______.16、已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c应满足的条件是 _________ .河南省伊川高中II部2010-2011学年高二下学期第一次月考理数试题命题人:张晓锋一、选择题(共有12个小题,每小题5分,共60分)二、填空题(共有4个小题,每小题5分,共20分)13、___________________ 14、___________________15、___________________ 16、___________________三、解答题(共有6个小题,共70分,解答必须写出文字说明、证明过程或演算步骤)17、设函数y=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,(1)求a、b、c的值;(2)求函数的递减区间.18、已知函数f(x)=4x3+ax2+bx+5在x=-1与x=32处有极值。

数学选修2-2第一章导数及其应用

数学选修2-2第一章导数及其应用

数学选修2-2第一章导数及其应用1.一质点的运动方程是253s t =-,则在一段时间[11]t +∆,内相应的平均速度为( ) A.3()6t ∆+ B.3()6t -∆+ C.3()6t ∆- D.3()6t -∆-2.下列说法正确的是( )A.函数的极大值就是最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.闭区间上的连续函数一定存在最值3.抛物线214y x =在点(21)Q ,处的切线方程( ) A.10x y -++= B.30x y +-= C.10x y -+= D.10x y +-=4.设21()(1)f x x =-,则(0)f '等于( ) A.2-B.1- C.1 D.25.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )A 充分不必要条件B 必要不充分条件C 充要条件 (D )非充分非必要条件6.曲线y=x 3+x-2 在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)7.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -168.已知201()212x x f x x x ⎧⎪=⎨-<⎪⎩,,,, ≤≤ ≤则20()f x dx =⎰( )A.56 B.76 C.43 D.53 9.设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是( )10.设313y x ax c =-+在()-+,∞∞上单调递增,则( ) A.0a <且0c = B.0a >且c 是任意实数 C.0a <且c 是任意实数 D.0a <且0c ≠11.从边长为10cm 16cm ⨯的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为( ) A.312cmB.372cmC.3144cmD.3160cm12.如图,由曲线32y x x =-与2y x =所围图形的面积为( ) A.512B.3712C.94 D.8313.若对于任意x ,有3()4(1)1f x x f '==-,,则此函数解析式为 . 14.函数32x x y -=的单调增区间为 ,单调减区间为__________________; 15.函数()323922y x x x x =---<<有极大值 ,极小值 ;16.若()sin cos f x x α=-,则'()f α等于 ;17、已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是 18.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 ; 19.计算下列定积分。

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。

高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.5.3

高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.5.3

1.5.3 定积分的概念明目标、知重点1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.探究点一定积分的概念思考1 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.思考2 怎样正确认识定积分ʃb a f(x)d x?答(1)定积分ʃb a f(x)d x是一个数值(极限值).它的值仅取决于被积函数与积分上、下限,另外ʃb a f(x)d x与积分区间a,b]息息相关,不同的积分区间,所得值也不同.(2)定积分就是和的极限lim n →∞∑i =1nf (ξi )·Δx ,而ʃba f (x )d x 只是这种极限的一种记号,读作“函数f (x )从a 到b 的定积分”.(3)函数f (x )在区间a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件). 例1 利用定积分的定义,计算ʃ10x 3d x 的值. 解 令f (x )=x 3. (1)分割在区间0,1]上等间隔地插入n -1个分点,把区间0,1]等分成n 个小区间i -1n ,in](i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n(i =1,2,…,n ),则ʃ10x 3d x ≈S n =∑ni =1f (in)·Δx =∑ni =1(i n )3·1n=1n 4∑ni =1i 3=1n 4·14n 2(n +1)2=14(1+1n)2. (3)取极限ʃ10x 3d x =lim n →∞S n =lim n →∞ 14(1+1n )2=14. 反思与感悟 (1)利用定积分定义求定积分的数值仍然是“分割、近似代替、求和、取极值”这一过程,需要注意的是在本题中将近似代替、求和一起作为步骤(2),从而省略了解题步骤. (2)从过程来看,当f (x )≥0时,定积分就是区间对应曲边梯形的面积. 跟踪训练1 用定义计算ʃ21(1+x )d x .解 (1)分割:将区间1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+in (i =1,2,…,n ),每个小区间的长度为 Δx =1n.(2)近似代替、求和:在⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取点ξi =1+i -1n(i =1,2,…,n ),于是f (ξi )=1+1+i -1n =2+i -1n ,从而得∑i =1n f (ξi )Δx =∑i =1n(2+i -1n )·1n =∑i =1n ⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n20+1+2+…+(n -1)]=2+1n 2·n (n -1)2=2+n -12n .(3)取极限:S =lim n →∞ ⎝⎛⎭⎪⎫2+n -12n =2+12=52. 因此ʃ21(1+x )d x =52.探究点二 定积分的几何意义思考1 从几何上看,如果在区间a ,b ]上函数f (x )连续且恒有f (x )≥0,那么ʃba f (x )d x 表示什么?答 当函数f (x )≥0时,定积分ʃba f (x )d x 在几何上表示由直线x =a ,x =b (a <b ),y =0及曲线y =f (x )所围成的曲边梯形的面积.思考2 当f (x )在区间a ,b ]上连续且恒有f (x )≤0时,ʃba f (x )d x 表示的含义是什么?若f (x )有正有负呢?答 如果在区间a ,b ]上,函数f (x )≤0时,那么曲边梯形位于x 轴的下方(如图①). 由于b -an>0,f (ξi )≤0,故 f (ξi )b -a n ≤0.从而定积分ʃb a f (x )d x ≤0,这时它等于如图①所示曲边梯形面积的相反值,即ʃbaf (x )d x =-S.当f (x )在区间a ,b ]上有正有负时,定积分ʃba f (x )d x 表示介于x 轴、函数f (x )的图象及直线x =a ,x =b (a ≠b )之间各部分面积的代数和(在x 轴上方的取正,在x 轴下方的取负).(如图②),即ʃba f (x )d x =-S 1+S 2-S 3. 例2 利用几何意义计算下列定积分: (1)ʃ3-39-x 2d x ;(2)ʃ3-1(3x +1)d x .解 (1)在平面上y =9-x 2表示的几何图形为以原点为圆心以3为半径的上半圆, 其面积为S =12·π·32.由定积分的几何意义知ʃ3-39-x 2d x =92π.(2)由直线x =-1,x =3,y =0,以及y =3x +1所围成的图形,如图所示: ʃ3-1(3x +1)d x 表示由直线x =-1,x =3,y =0以及y =3x +1所围成的图形在x 轴上方的面积减去在x 轴下方的面积,∴ʃ3-1(3x +1)d x =12×(3+13)×(3×3+1)-12(-13+1)×2=503-23=16. 反思与感悟 利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积.不规则的图象常用分割法求面积,注意分割点的准确确定. 跟踪训练2 根据定积分的几何意义求下列定积分的值: (1)ʃ1-1x d x ;(2)ʃ2π0cos x d x ;(3)ʃ1-1|x |d x . 解 (1)如图(1),ʃ1-1x d x =-A 1+A 1=0. (2)如图(2),ʃ2π0cos x d x =A 1-A 2+A 3=0.(3)如图(3),∵A 1=A 2,∴ʃ1-1|x |d x =2A 1=2×12=1.(A 1,A 2,A 3分别表示图中相应各处面积)探究点三 定积分的性质思考1 定积分的性质可作哪些推广? 答 定积分的性质的推广①ʃb a f 1(x )±f 2(x )±…±f n (x )]d x =ʃb a f 1(x )d x ±ʃb a f 2(x )d x ±…±ʃba f n (x )d x ; ②ʃb a f (x )d x =ʃc 1a f (x )d x +ʃc 2c 1f (x )d x +…+ʃb c n f (x )d x (其中n ∈N *). 思考2 如果一个函数具有奇偶性,它的定积分有什么性质? 答 奇、偶函数在区间-a ,a ]上的定积分①若奇函数y =f (x )的图象在-a ,a ]上连续不断,则ʃa-a f (x )d x =0. ②若偶函数y =g (x )的图象在-a ,a ]上连续不断,则ʃa -a g (x )d x =2ʃa0g (x )d x . 例3 计算ʃ3-3(9-x 2-x 3)d x 的值. 解 如图,由定积分的几何意义得ʃ3-39-x2d x=π×322=9π2,ʃ3-3x3d x=0,由定积分性质得ʃ3-3(9-x2-x3)d x=ʃ3-39-x2d x-ʃ3-3x3d x=9π2.反思与感悟根据定积分的性质计算定积分,可以先借助于定积分的定义或几何意义求出相关函数的定积分,再利用函数的性质、定积分的性质结合图形进行计算.跟踪训练3 已知ʃ10x3d x=14,ʃ21x3d x=154,ʃ21x2d x=73,ʃ42x2d x=563,求:(1)ʃ203x3d x;(2)ʃ416x2d x;(3)ʃ21(3x2-2x3)d x.解(1)ʃ203x3d x=3ʃ20x3d x=3(ʃ10x3d x+ʃ21x3d x)=3×(14+154)=12;(2)ʃ416x2d x=6ʃ41x2d x=6(ʃ21x2d x+ʃ42x2d x)=6×(73+563)=126;(3)ʃ21(3x2-2x3)d x=ʃ213x2d x-ʃ212x3d x=3ʃ21x2d x-2ʃ21x3d x=3×73-2×154=7-152=-12.1.下列结论中成立的个数是( )①ʃ10x3d x=∑i=1n i3n3·1n;②ʃ10x3d x=limn→∞∑i=1n(i-1)3n3·1n;③ʃ10x3d x=limn→∞∑i=1n i3n3·1n.A.0 B.1 C.2 D.3答案 C解析 ②③成立.2.定积分ʃba f (x )d x 的大小( )A .与f (x )和积分区间a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间a ,b ]无关D .与f (x )、积分区间a ,b ]和ξi 的取法都有关 答案 A3.根据定积分的几何意义,用不等号连接下列式子: ①ʃ10x d x ________ʃ10x 2d x ; ②ʃ204-x 2d x ________ʃ202d x . 答案 ①> ②<4.若ʃT 0x 2d x =9,则常数T 的值为________. 答案 3解析 令f (x )=x 2. (1)分割将区间0,T ]n 等分,则Δx =Tn. (2)近似代替、求和取ξi =T i n(i =1,2,…,n ),S n =∑i =1n(T i n )2·T n =T 3n 3∑i =1n i 2=T 3n 3(12+22+…+n 2)=T 3n 3·n (n +1)(2n +1)6=T 36(1+1n )(2+1n). (3)取极限S =lim n →∞T 36×2=T 33=9, ∴T 3=27,∴T =3. 呈重点、现规律]1.定积分ʃbaf (x )d x 是一个和式∑i =1nb -anf (ξi )的极限,是一个常数. 2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.一、基础过关1.下列命题不正确的是( )A .若f (x )是连续的奇函数,则ʃa-a f (x )d x =0 B .若f (x )是连续的偶函数,则ʃa -a f (x )d x =2ʃa0f (x )d x C .若f (x )在a ,b ]上连续且恒正,则ʃba f (x )d x >0D .若f (x ) 在a ,b ]上连续且ʃba f (x )d x >0,则f (x )在a ,b ]上恒正 答案 D解析 对于A ,f (-x )=-f (x ),ʃa-a f (x )d x=ʃ0-a f (x )d x +ʃa 0f (x )d x =-ʃa 0f (x )d x +ʃa0f (x )d x =0,同理B 正确;由定积分的几何意义知,当f (x )>0时,ʃb a f (x )d x >0即C 正确;但ʃb a f (x )d x >0,不一定有f (x )恒正,故选D. 2.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( ). A .0 B .16 C .12 D .8 答案 B解析 偶函数图象关于y 轴对称, 故ʃ6-6f (x )d x =2ʃ60f (x )d x =16,故选B. 3.已知ʃt 0x d x =2,则ʃ0-t x d x 等于( ) A .0 B .2 C .-1 D .-2 答案 D解析 ∵f (x )=x 在-t ,t ]上是奇函数, ∴ʃt -t x d x =0.而ʃt -t x d x =ʃ0-t x d x +ʃt0x d x , 又ʃt0x d x =2,∴ʃ0-t x d x =-2.故选D.4.由曲线y =x 2-4,直线x =0,x =4和x 轴围成的封闭图形的面积(如图)是( ) A .ʃ40(x 2-4)d x B.||ʃ40(x 2-4)d x C .ʃ40|x 2-4|d xD .ʃ20(x 2-4)d x +ʃ42(x 2-4)d x 答案 C5.设a =ʃ10x 13d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b答案 B解析 根据定积分的几何意义,易知ʃ10x 3d x <ʃ10x 2d x <ʃ10x 13d x ,a >b >c ,故选B.6.若ʃa-a |56x |d x ≤2 016,则正数a 的最大值为( ) A .6 B .56 C .36 D .2 016 答案 A解析 由ʃa -a |56x |d x =56ʃa-a |x |d x ≤2 016, 得ʃa-a |x |d x ≤36,∴ʃa-a |x |d x =2ʃa0x d x =a 2≤36, 即0<a ≤6.故正数a 的最大值为6.7.lim n →∞ln n(1+1n )2(1+2n )2…(1+n n)2等于( )A .ʃ21ln 2x d x B .2ʃ21ln x d x C .2ʃ21ln(1+x )d x D .ʃ21ln 2(1+x )d x答案 B解析 lim n →∞ln n(1+1n )2(1+2n )2…(1+n n)2=lim n →∞2n ln ⎣⎢⎡⎦⎥⎤(1+1n )(1+2n)…(1+n n ) =2lim n →∞ ∑ni =1ln (1+i n )n =2ʃ21ln x d x (这里f (x )=ln x ,区间1,2]或者2lim n →∞ ∑ni =1ln (1+in )n=2ʃ10ln(1+x )d x ,区间0,1]).二、能力提升8.由y =sin x ,x =0,x =-π,y =0所围成图形的面积写成定积分的形式是S =________. 答案 -ʃ0-πsin x d x解析 由定积分的意义知,由y =sin x ,x =0,x =-π,y =0围成图形的面积为S =-ʃ0-πsinx d x .9.计算定积分ʃ1-14-4x 2d x =________. 答案 π解析 由于ʃ1-14-4x 2d x =2ʃ1-11-x 2d x 表示单位圆的面积π,所以ʃ1-14-4x 2d x =π. 10.设f (x )是连续函数,若ʃ10f (x )d x =1,ʃ20f (x )d x =-1,则ʃ21f (x )d x =________. 答案 -2解析 因为ʃ20f (x )d x =ʃ10f (x )d x +ʃ21f (x )d x ,所以ʃ21f (x )d x =ʃ20f (x )d x -ʃ10f (x )d x =-2.11.利用定积分的定义计算ʃ21(-x 2+2x )d x 的值,并从几何意义上解释这个值表示什么. 解 令f (x )=-x 2+2x . (1)分割在区间1,2]上等间隔地插入n -1个分点,把区间1,2]等分为n 个小区间1+i -1n ,1+in](i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =1+in(i =1,2,…,n ),则S n =∑ni =1f (1+i n )·Δx =∑ni =1-(1+i n )2+2(1+i n )]·1n=-1n 3(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2(n +1)+(n +2)+(n +3)+…+2n ]=-1n 32n (2n +1)(4n +1)6-n (n +1)(2n +1)6]+2n 2·n (n +1+2n )2=-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n .(3)取极限ʃ21(-x 2+2x )d x =lim n →∞S n =lim n →∞-13(2+1n )(4+1n )+16(1+1n )(2+1n )+3+1n ]=23, ʃ21(-x 2+2x )d x =23的几何意义为由直线x =1,x =2,y =0与曲线f (x )=-x 2+2x 所围成的曲边梯形的面积.12.用定积分的意义求下列各式的值:(1)ʃ30(2x +1)d x ;(2)⎰x .解 (1)在平面上,f (x )=2x +1为一条直线,ʃ30(2x +1)d x 表示直线f (x )=2x +1,x =0,x =3与x 轴围成的直角梯形OABC 的面积,如图(1)所示,其面积为S =12(1+7)×3=12.根据定积分的几何意义知ʃ30(2x +1)d x =12.(2)由y =1-x 2可知,x 2+y 2=1(y ≥0)图象如图(2),由定积分的几何意义知⎰1-x 2d x等于圆心角为120°的弓形CED 的面积与矩形ABCD 的面积之和.S 弓形=12×23π×12-12×1×1×sin 23π=π3-34,S 矩形=|AB |·|BC |=2×32×12=32,∴⎰1-x 2d x =π3-34+32=π3+34.三、探究与拓展13.已知函数f (x )=⎩⎪⎨⎪⎧x 3, x ∈[-2,2)2x , x ∈[2,π)cos x , x ∈[π,2π],求f (x )在区间-2,2π]上的积分.解 由定积分的几何意义知 ʃ2-2x 3d x =0,ʃπ22x d x =(π-2)(2π+4)2 =π2-4, ʃ2ππcos x d x =0, 由定积分的性质得ʃ2π-2f (x )d x =ʃ2-2x 3d x +ʃπ22x d x +ʃ2ππcos x d x =π2-4.。

选修2-2《导数及其应用》测试题

选修2-2《导数及其应用》测试题

人教B 版选修2-2《导数及其应用》测试题 姓名 得分 一.选择题:(只有一个结论正确,每小题4分,共60分) 1.曲线123-+=x x y 在点P (-1,-1)处的切线方程是 ( )A .1-=x yB .2-=x yC .x y =D .1+=x y2. 曲线f (x )= x 3+x -2在P 0点处的切线平行于直线y = 4x -1,则P 0点的坐标为 ( ) A .(1,0) B .(2,8) C .(1,0)和(-1,-4) D .(2,8)和(-1,-4)3.已知函数x x y 33-=,则它的单调递减区间是 ( ) A.)0,(-∞ B.)1,1(- C. ),0(+∞ D.)1,(--∞及),1(+∞4.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0= ( ) A .e 2B .e C.ln 22D .ln 25. .设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( )A .2B . 2-C . 12-D.126已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+x 2,则f ′(1)= ( ) A .-1 B .-2 C .1 D .27. 下列求导运算正确的是 ( )xx x D e C x x B x x x A x x sin 2)cos (.log 3)3(.2ln 1)(log .11)1(.2322-='='='+='+ 8. 函数)2ln()(2--=x x x f 的单调递增区间是 ( )),和(∞+-+∞---∞2)21,1(.),2(.)21,1(.)1,(.D C B A 9. 设)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2005x f ( ) x D x C x B x A cos .cos .sin .sin .--10.已知函数y = f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则000()()limh f x h f x h h→+--= ( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .011. 设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))((0,0x f x P 处切线的倾角的取值范围为]4,0[π,则P 点到曲线)(x f y =对称轴距离的取值范围为 ( )ab D ab C aB aA21,0[.]2,0[.]21,0[.]1,0[- 12.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)= ( ) A .26B .29C .212D .215二.填空题:(每小4分,共20分)13.若过原点作曲线y =e x的切线,则切点的坐标为________,切线的斜率为________. 14.设函数f (x )=x (e x+1)+12x 2,则函数f (x )的单调增区间为________.15.函数f (x )=x 3-3x 2+1在x =________处取得极小值. 16.如果函数y=f(x)的导函数的图像如右图所示, 给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增; (2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增;(4) 当x= -1/2时,函数y=f(x)有极大值; (5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是 .三.解答题:17.求下列函数的导数.(1)y =x 2sin x ; (2)y =log 2(2x 2+3x +1).18.设x x a x f ln 6)5()(2+-=,其中R a ∈,曲线)(x f 在点(1,f(1))处切线与y 轴交于点(0,6). (1)确定a 的值;(2)求函数)(x f 的单调区间.19.若函数xe xf x=)(在c x =处的导数值与函数值互为相反数,求c 的值.20.已知二次函数f (x )满足:①在x =1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x +y =0平行. ⑴求f (x )的解析式;⑵求函数g (x )=f (x 2)的单调递增区间.21.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值。

第一章导数及其应用单元测试_A———高中数学选修2-2

第一章导数及其应用单元测试_A———高中数学选修2-2
(2)若对任意的 x1 , x2 Î [1,e ] ( e 为自然对数的底数)都有 f ( x1 ) ≥ g ( x2 ) 成立,求实数 a 的取值 范围.
第一章导数及其应用单元测试(A)参考答案
第 4 页 共 8 页
一、选择题(共 12 小题,每小题 5 分,共 60 分) 题号 1 2 3 4 5 6 答案 C A D A C B
第 3 页 共 8 页
21. (本小题满分 12 分)已知函数 f ( x) = x - 3 x.
3
(1)求曲线 y = f ( x ) 在点 x = 2 处的切线方程; (2)若过点 A(1, m) ( m ¹ -2) 可作曲线 y = f ( x ) 的三条切线,求实数 m 的取值范围.
a2 , g ( x ) = x + ln x ,其中 a > 0 . 22. (本小题满分14分)已知函数 f ( x ) = x + x (1)若 x = 1 是函数 h ( x ) = f ( x ) + g ( x ) 的极值点,求实数 a 的值;
第一章导数及其应用单元测试(A)
一、选择题(共 12 小题,每小题 5 分,共 60 分) 1. f ( x) = x , f '( x0 ) = 6 ,则 x0 = (
3
) D. ±1
b
A. 2 2.设连续函数
B. - 2
C. ± 2
f ( x) > 0 ,则当 a < b 时,定积分 òa f ( x )dx 的符号
2 3 21.解(1) f ¢( x ) = 3 x - 3, f ¢(2) = 9, f (2) = 2 - 3 ´ 2 = 2
………………………2 分

高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案
x x [n, 2n] 上的 n 个矩形的面积之和小于曲边梯形的面积,
1 1 1 25 . + +⋯+ < n+1 n+2 2n 36

2n 1 1 1 1 n + +⋯+ <∫ dx = ln x| 2 n = ln 2n − ln n = ln 2, n+1 n+2 2n x n
因为ln 2 ≈ 0.6931 , 25 ≈ 0.6944 ,所以ln 2 < 25 .所以
3 1
π 2 dx;(3)∫ 0 2 (sin x − cos x)dx. x

(1 + x + x2 ) = ∫
3 1
1 2 3 1 x | 1 + x3 | 3 1 2 3 1 1 = (3 − 1) + (3 2 − 1 2 ) + (3 3 − 1 3 ) 2 3 44 = . 3 = x| 3 1 +
∑ f (ξi )Δx = ∑
i =1 i =1 n n
b−a f (ξi ), n
当 n → ∞ 时,上述和式无限接近某个常数,这个常数叫做函数 f (x) 在区间 [a, b] 上的定积分(definite integral),记作 ∫ ab f (x)dx,即

b a
f (x)dx = lim ∑

b a
f (x)dx = F (x)| b a = F (b) − F (a).
例题: 利用定积分定义计算: (1)∫ 1 (1 + x)dx;(2)∫ 0 xdx. 解:(1)因为 f (x) = 1 + x 在区间 [1, 2] 上连续,将区间 [1, 2] 分成 n 等份,则每个区间的

高中数学选修2-2《导数及其简单应用》一堂练试题

高中数学选修2-2《导数及其简单应用》一堂练试题

《导数及其简单应用》一堂练一、选择题:每小题10分,共50分1、30(),'()6,f x x f x ==则0x = ( )AB、 C、D 、1± 2、设连续函数()0f x >,则当a b <时,定积分()ba f x dx ⎰的符号是 ( )A 、必为正数B 、必为负数C 、0a b <<时为正数,0a b <<时为负数D 、不确定 3、若20(23)0kx x dx -=⎰,则k = ( )A 、1B 、0C 、1或0D 、以上都不对4、设ln y x x =-,则此函数在区间(0,1)内为 ( )A 、单调递增B 、有增有减C 、单调递减D 、不确定5、若函数()f x 在区间(,)a b 内的导数为正,且()0f b ≤,则函数()f x 在(,)a b 内有 ( )A 、()0f x >B 、()0f x <C 、()0f x =D 、无法确定 二、填空题:每小题10分,共30分6、抛物线2(12)y x =-在32x =处的切线方程是 7、用定积分的几何意义,则3-=⎰8、若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是三、解答题:任选一题解答,满分20分9、计算下列积分:(1)220(3sin )x x dx π+⎰ (2)220|1|x dx -⎰ (3)321(2)y y dy -⎰ (1) (2) (3)10、求抛物线2y x =与直线20x y +-=所围成的图形的面积班级 姓名 座号 得分。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(有答案解析)

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(有答案解析)

一、选择题1.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .23,ln 3⎛⎫+∞ ⎪ ⎪⎝⎭ D .230,ln 3⎛⎫⎪ ⎪⎝⎭2.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-4.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( )A .(),8-∞-B .()8,-+∞C .(),8-∞D .()8,+∞5.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭6.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭ D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞9.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.函数()21xy x e =-的图象大致是( )A .B .C .D .12.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.14.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .15.设()ln f x x =,若函数()()h x f x ax =-在区间()0,8上有三个零点,则实数a 的取值范围______.16.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =③函数sin y x =与2y x 的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题为_____ 17.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.设函数()f x '是奇函数()f x ()x R ∈的导函数, ()20f -=,当0x >时,()()0xf x f x '-<,则不等式()0f x >的解集为______________.20.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为__________.三、解答题21.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值. 22.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围.23.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m ,梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θ π(0)4θ<<. (1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?24.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 25.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 26.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0fx >恒成立,试确定实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x=令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .3.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭, 所以8b >-,【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>”8.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e '-'=∴=<∴单调递减(1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D9.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x=+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x=+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.A解析:A 【分析】根据函数图象,当12x <时,()210xy x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案.【详解】 解:因为12x <时,()210xy x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21xy x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减, 所以A 正确,B 错误. 故选:A. 【点睛】本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.12.A解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 二、填空题13.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.14.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm ,所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.15.【分析】画出函数图像计算直线和函数相切时和过点的斜率根据图像得到答案【详解】故画出图像如图所示:当直线与函数相切时设切点为此时故解得;当直线过点时斜率为故故答案为:【点睛】本题考查了根据函数零点个数解析:3ln 21,8e ⎛⎫⎪⎝⎭ 【分析】()f x ax =,画出函数图像,计算直线和函数相切时和过点()8,ln8的斜率,根据图像得到答案. 【详解】()()0h x f x ax =-=,故()f x ax =,画出图像,如图所示:当直线与函数相切时,设切点为()00,x y ,此时()ln f x x =,()1'f x x=, 故01a x =,00y ax =,00ln y x =,解得0x e =,01y =,1a e=; 当直线过点()8,ln8时,斜率为3ln 28k =,故3ln 218a e<<. 故答案为:3ln 21,8e ⎛⎫⎪⎝⎭.【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和综合应用能力.16.②③④【分析】①构造函数求出函数的导数研究函数的导数和单调性进行判断即可;②利用与x 的关系进行转化判断;③设函数利用导数研究其单调性根据零点存在原理得出零点个数判断其真假④设函数利用导数研究其单调性解析:②③④ 【分析】①构造函数()sin f x x x =-,求出函数的导数,研究函数的导数和单调性,进行判断即可;②x 的关系进行转化判断;③设函数()2sin g x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假.④设函数()3sin h x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假. 【详解】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵()0=0f ,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <,当01x <≤sin x x >>,当1x >sin x >,当0x =sin x =,综上当0x >sin x >恒成立,函数sin y x =与y =②正确,③设函数()2sin g x x x =-,则()cos 2g x x x '=-, 又()sin 20g x x ''=--<,所以()g x '在R 上单调递减. 又()01g '=,02g ππ⎛⎫'=-< ⎪⎝⎭所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '= 即当0x x <时,()0g x '>,函数()g x 单调递增. 当0x x >时,()0g x '<,函数()g x 单调递减. 由函数()g x 在()0,x -∞上单调递增且()00g =,所以函数()g x 在(]0-∞,上有且只有一个零点. 由()00g =,函数()g x 在()0,x -∞上单调递增,则()00g x >又21024g ππ⎛⎫=-< ⎪⎝⎭,且函数()g x 在()0x +∞,上单调递减. 所以()g x 在()0x +∞,上有且只有一个零点. 即()g x 在()0+∞,上有且只有一个零点. 所以()g x 有2个零点,即函数sin y x =与2yx 的图象恰有两个交点,故③正确.④设函数()3sin h x x x =-,()h x 为奇函数,且()00h =.所以只需研究()h x 在()0+∞,上的零点个数即可. 则()2cos 3h x x x '=-,则()sin 6h x x x ''=--,所以()cos 60h x x '''=--<,所以()h x ''在()0+∞,上单调递减. 所以当()0x ∈+∞,时,()()00h x h ''''<=,则()h x '在()0+∞,上单调递减. 又()01h '=,203024h ππ⎛⎫'=-⨯< ⎪⎝⎭. 所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00h x '=. 即当00x x <<时,()0h x '>,函数()h x 单调递增. 当0x x >时,()0h x '<,函数()h x 单调递减.()00h =,由函数()h x 在()00x ,上单调递增,则()00h x >又31028h ππ⎛⎫=-< ⎪⎝⎭,且函数()h x 在()0x +∞,上单调递减. 所以()h x 在()0x +∞,上有且只有一个零点. 即()h x 在()0+∞,上有且只有一个零点. 由()h x 为奇函数,所以()h x 在()0-∞,上有且只有一个零点,且()00h =. 所以()h x 有3个零点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确. 故答案为:②③④. 【点睛】本题主要考查命题的真假判断,涉及函数零点个数,利用数形结合或构造函数,利用导数是解决本题的关键.属于中档题.17.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点,等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m 的取值范围. 【详解】当0x >时,2ln ()xf x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →;作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2. 【点睛】本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】根据当时构造函数求导在上是减函数再根据是奇函数在上是增函数由写出的解集【详解】设所以因为当时则所以在上是减函数又因为是奇函数所以在上是增函数因为所以所以当或时所以不等式的解集为故答案为:【点 解析:(),2(0,2)-∞-⋃【分析】根据当0x >时,()()0xf x f x '-<,构造函数()()f x g x x=,求导 ()()()20xf x f x g x x'-'=<,()g x 在()0,∞+上是减函数,再根据()f x 是奇函数,()g x 在(),0-∞上是增函数,由()20f -=,()20f =,写出()0f x >的解集.【详解】 设()()f x g x x=, 所以()()()2xf x f x g x x '-'=,因为当0x >时,()()0xf x f x '-<,则()0g x '<, 所以()g x 在()0,∞+上是减函数,又因为()f x 是奇函数,所以()g x 在(),0-∞上是增函数, 因为()20f -=,所以()20f =, 所以当2x <- 或02x <<时,()0f x >, 所以不等式()0f x >的解集为(),2(0,2)-∞-⋃. 故答案为:(),2(0,2)-∞-⋃ 【点睛】本题主要考查构造函数,用导数研究函数的单调性解不等式,还考查了运算求解的能力,属于中档题.20.【分析】把代入即恒成立构造利用导数研究最值即得解【详解】则恒成立等价于令因此在单调递增在单调递减故故答案为:【点睛】本题考查了导数在不等式的恒成立问题中的应用考查了学生转化与划归数学运算的能力属于中 解析:[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【详解】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥ 故答案为:[)0,+∞ 【点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.三、解答题21.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ; 当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<; 22.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-, 曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. (3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln e x a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增, ()()max 1480x e a e e φφ⎛⎫==--> ⎪⎝⎭,则2288214142eea e e e >>=>-,此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x ⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 23.(1)1600cos 4S πθθ⎛⎫=<< ⎪⎝⎭;(2)当θ为π6时该别墅总造价最低 【分析】(1)由题知FH ⊥HM ,在Rt △FHM 中,所以5FM cos θ=,得△FBC 的面积25cos θ,从而得到屋顶面积FBC ABFE 160S 2S2S cos θ梯形=+=;(2)别墅总造价为y S k h 16k =⋅+⋅=2sin θ80k 96k cos θ-⎛⎫⋅+ ⎪⎝⎭,令()2sin θf θcos θ-=,求导求最值即可 【详解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM .在Rt △FHM 中,HM = 5,FMH θ∠=,所以5FM cos θ=. 因此△FBC 的面积为1525102cos θcos θ⨯⨯=. 从而屋顶面积FBC ABFE S 2S2S =+梯形 252516022 2.2cos θcos θcos θ=⨯+⨯⨯=. 所以S 关于θ的函数关系式为160S cos θ=(π0θ4<<). (2)在Rt △FHM 中,FH 5tan θ=,所以主体高度为h 65tan θ=-. 所以别墅总造价为y S k h 16k =⋅+⋅()160k 65tan θ16k cos θ=⋅+-⋅ 16080sin θk k 96k cos θcos θ=-+ 2sin θ80k 96k cos θ-⎛⎫=⋅+ ⎪⎝⎭记()2sin θf θcos θ-=,π0θ4<<, 所以()22sin θ1f θcos θ-=', 令()f θ0'=,得1sin θ2=,又π0θ4<<,所以πθ6=. 列表:θπ06⎛⎫ ⎪⎝⎭, π6ππ64⎛⎫ ⎪⎝⎭, ()f θ'-+()f θ3所以当πθ6=时,()f θ有最小值. 答:当θ为π6时该别墅总造价最低. 【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S 表示为θ函数是关键,求最值要准确,是中档题24.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.25.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间. (2)m <0 . 【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m,令:21()(2)022xxx e f x xe x e x x =+'=+=∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <026.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解. 试题(1)由k e =得()xf x e ex =-,所以()x f x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数. 于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增. 故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<.<<.综合①②得,实数k的取值范围是0k e也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用.。

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

西安交通大学附属中学分校高中数学选修2-2第三章《导数应用》测试(包含答案解析)

西安交通大学附属中学分校高中数学选修2-2第三章《导数应用》测试(包含答案解析)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-5.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞6.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 9.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .10.函数()21xy x e =-的图象大致是( )A .B .C .D .11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .1212.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 15.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,,,DBC ECA FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起,,DBC ECA FAB ,使得D ,E ,F 重合,得到三棱锥.当所得三棱锥体积(单位:3cm )最大时,ABC 的边长为_________(cm ).16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 19.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.20.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.三、解答题21.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 22.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围. 23.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)24.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 25.已知函数()xf x mx e =-(e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围. 26.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D .本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2],则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.5.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.6.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1x x xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.C解析:C【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案.【详解】 由题意,函数10()ln ,0x x f x x x x⎧⎪⎪=⎨⎪⎪⎩,<>, 要使得函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()()0F x f x kx =-=, 可得2ln x k x =, 要使得()0F x =有两个实数解,即y k =和()2ln x g x x =有两个交点, 又由()312ln x g x x -'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln x g x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >, 综上可得,实数k 的取值范围是1(0,)2e . 故选:C.【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.9.C解析:C【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.10.A解析:A根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解.【详解】设函数()32f x nx x n =+-,则()232f x nx '=+, 当n 时正整数时,可得()0f x '>,则()f x 为增函数,因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A.【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+是解答的关键. 二、填空题13.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x =, 则()21ln x f x x-'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】连接交于点设求出构造函数利用导数研究函数的单调性从而得出时所得三棱锥体积最大时进而得解【详解】如图连接交于点连接由题意知所以所以设则三棱锥的高则三棱锥的体积令则令即解得所以当时在上单调递增; 解析:43【分析】连接OD ,交BC 于点G ,设OG x =,求出23BC x =,4532510V x x =⨯-,构造函数,利用导数研究函数的单调性,从而得出2x =时,所得三棱锥体积最大时,进而得解.【详解】如图,连接OD ,交BC 于点G ,连接OB ,由题意,知OD BC ,12BG BC =,30OBG ∠=︒, 所以,133tan 302OG BG BC BC =⨯︒==,所以23BC OG =, 设OG x =,则23BC x =,5DG x =-,三棱锥的高()222252510h DG OG x x x =-=--=-21233332ABC S x x x =⨯⨯=△, 则三棱锥的体积245113325103251033ABC V S h x x x x =⨯=⨯-=-△,令()452510f x x x =-502x ⎛⎫<< ⎪⎝⎭, 则()3410050f x x x =-′, 令()0f x '=,即34100500x x -=,解得2x =,所以,当02x <<时,()0f x >′,()f x 在()0,2上单调递增; 当522x <<时,()0f x <′,()f x 在52,2⎛⎫ ⎪⎝⎭上单调递减, 所以,当2x =时,()f x 取得极大值,也是最大值,此时,BC ==,所以,当所得三棱锥体积最大时,ABC 的边长为故答案为:【点睛】本题考查三棱锥体积的计算及利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求极值的方法,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =,()3313130g e e =--<,()4414200g e e =-->,则方程2()2f x x x =+有一根在(3,4)之间,故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立,若0x x e e k -+->,即1x x x x k e ee e -<+=+恒成立, 而12x xe e +,若有2k <, 故④正确;综合可得:①②④正确;故答案为:①②④.【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立, 令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >, 当0x a <<()0f x '<;当x a ()0f x '>, 故x a =()f x 的极小值点,也是最小值点,且()ln 1f a a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->, ∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增, 而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2.故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.三、解答题21.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析. 【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立. 【详解】(1)函数()x f x e x =-的定义域为R ,且()1xf x e '=-.令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--, 当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.(1)详见解析;(2)[1,)-+∞. 【分析】(1)对函数求导[]()(2)121()a x x f x x-+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可. 【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+,则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增,当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方, 则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立,则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x-=+,则()()()()22211ln x x x g x x x +-+-'=+,令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<, 所以当1x =时,()g x 取得最大值1-,所以1a ≥-, 所以实数a 的取值范围是[1,)-+∞. 【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论.. 2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x af x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 24.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果; (2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域.【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =. ∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f=-+>,即0>,而0>恒成立,∴0b >. 所以实数b 的取值范围为()0,∞+. (2)()22f x x ax b '=-++,由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-,令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符. 当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤; 令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =. 又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减. 又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】 思路点睛:导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 25.(1)答案见解析;(2)24(,0),e ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【分析】(1)根据函数()x f x mx e =-,求导得到()xf x m e '=-,然后分0m ≤和0m >两种情况讨论求解.(2)根据()f x 在1x =处取得极大值,由(1)知,0m >,且()f x 在ln x m =处取得极大值,从而求得m ,然后将2()0x f x ex p -+<在[]0,3x ∈恒成立,转化为20xx e p-+<在[]0,3x ∈上恒成立求解.【详解】(1)因为函数()xf x mx e =-,所以()xf x m e '=-,若0m ≤,则()()0,f x f x '<在R 上单调递减; 若0m >,令()0f x '=,则x lnm =,当x lnm <时,()()0,f x f x '>单调递增;当x lnm >时,()()0,f x f x '<单调递减, 综上所述,当0m ≤时,函数()f x 在R 上单调递减;当0m >时,函数()f x 的单调增区间为(),lnm ∞﹣,单调减区间为(),lnm +∞. (2)()f x 在1x =处取得极大值,由(1)知,0m ≤不符合题意,故0m >,此时()f x 在ln x m =处取得极大值,1lnm ∴=,解得(),x m e f x ex e =∴=﹣. 2()0x f x ex p -+<在[]0,3x ∈恒成立,20xx e p∴-+<在[]0,3x ∈上恒成立,显然0p ≠,当0p <时,20xx e p-+<恒成立,符合题意; 当0p >时,问题可转化为2x xp e>在[]0,3x ∈上恒成立,设2()([0,3])xx g x x e =∈,则22()xx x g x e '-=, 当[)0,2x ∈时,()()'0,g x g x ≥单调递增;当(]2,3x ∈时,()()'0,g x g x <单调递减.42max24()(2),g x g p e e∴==∴>,综上,实数p 的取值范围为24(,0),e ⎛⎫-∞⋃+∞⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性、极值和存在性问题,还考查运分类讨论、构造函数和参变分离等方法以及逻辑推理和运算能力,属于中档题.26.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案.【详解】(1)由题意,得21()(0)kf x x x x'=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-2第一章导数及其应用测试题一、 选择题1.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y2.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定3.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(- 4.设xx y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22--- 5.设1ln)(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .53 6.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe 8.积分=-⎰-aa dx x a 22( ). A .241a π B .221a π C .2a π D .22a π9.由双曲线12222=-by a x ,直线b y b y -==,围成的图形绕y 轴旋转一周所得旋转体的体积为( )A .238ab π B .b a 238π C .b a 234π D .234ab π 10.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ).A .18B .338C .316D .1611.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧)0(sin π≤≤=x x y 组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为( ).A .2336π+B .223312π+C .26π+D .22336π+ 13. 函数13)(23+-=x x x f 是减函数的区间为 ( D )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)14.曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。

32y x =-+C 。

43y x =-+D 。

45y x =- a15. 函数y =a x 2+1的图象与直线y =x 相切,则a =( )A . 18B .41C .21 D .1 16. 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( )A .2B .3C .4D .517. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .018.函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤19.函数3()34f x x x =- ([]0,1x ∈的最大值是( )A .12B . -1C .0D .1 20.函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( )A 、0B 、1002C 、200D 、100!21.曲线313y x x =+在点413⎛⎫ ⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23二、填空题22.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为61,则=a _________ 。

23.一点沿直线运动,如果由始点起经过t 秒后的位移是23425341t t t S +-=,那么速度为零的时刻是_______________。

24.=++++++∞→)2211(lim 22222nn n n n n _______________. 25. =-+-⎰dx x x 40|)3||1(| ____________。

26.垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。

27.设f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .28.函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = ,b = 。

29.已知函数32()45f x x bx ax =+++在3,12x x ==-处有极值,那么a = ;b =30.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是31.已知函数32()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值范围是32.若函数32()1f x x x mx =+++ 是R 是的单调函数,则实数m 的取值范围是 33.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 。

三、解答题:(本大题共5小题,共74分,解答应写出文字说明,证明过程或演算步骤) 34(本小题满分10分)已知向量),1(),1,(2t x x x -=+=,若函数x f ⋅=)(在区间)1,1(-上是增函数,求t 的取值范围。

35(本小题满分12分)已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.36(本小题满分14分)设a x ≤≤0,求函数x x x x x f 24683)(234+--=的最大值和最小值。

37(本小题满分12分)用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α多大时,容器的容积最大?38 (本小题满分12分)直线kx y =分抛物线2x x y -=与x 轴所围成图形为面积相等的两个部分,求k 的值.39(本小题满分14分) 已知函数0,21)(,ln )(2≠+==a bx ax x g x x f 。

(1)若2=b ,且函数)()()(x g x f x h -=存在单调递减区间,求a 的取值范围。

(2)设函数)(x f 的图象1C 与函数)(x g 的图象2C 交于点Q P ,,过线段PQ 的中点作x 轴的垂线分别交1C 、2C 于点N M ,。

证明:1C 在点M 处的切线与2C 在点N 处的切线不平行。

40.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M ))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.41.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(Ⅰ)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(Ⅱ)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.42.已知函数323()(2)632f x ax a x x =-++- (1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。

43.已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式; (II )求()f x 的单调区间; (III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.44.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.45.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f (Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.46.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-. (Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.。

相关文档
最新文档